intel_pm.c 286.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36 37
#include "i915_drv.h"
#include "intel_drv.h"
38
#include "../../../platform/x86/intel_ips.h"
39

B
Ben Widawsky 已提交
40
/**
41 42
 * DOC: RC6
 *
B
Ben Widawsky 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

60
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
61
{
62 63 64
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
65
		 * Display WA #0390: skl,kbl
66 67 68 69 70 71 72 73 74
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

75
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
76 77 78
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

79
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
80 81
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
82

83 84
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
85 86 87
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
88

89
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
90 91
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
92 93 94 95 96 97

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
98 99
}

100
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
101
{
102
	gen9_init_clock_gating(dev_priv);
103

104 105 106 107
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

108 109
	/*
	 * FIXME:
110
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
111 112
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
113
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
114 115 116 117 118

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
119 120
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
121 122
}

123 124 125 126 127 128 129 130 131 132 133
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
134 135 136 137 138 139 140 141 142 143

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

144 145
}

146
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

184
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

211
	dev_priv->ips.r_t = dev_priv->mem_freq;
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
243
		dev_priv->ips.c_m = 0;
244
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
245
		dev_priv->ips.c_m = 1;
246
	} else {
247
		dev_priv->ips.c_m = 2;
248 249 250
	}
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

289 290
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

313 314 315 316
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

317
	mutex_lock(&dev_priv->pcu_lock);
318 319 320 321 322 323 324 325 326 327 328 329 330 331

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

332
	mutex_unlock(&dev_priv->pcu_lock);
333 334
}

335 336 337 338
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

339
	mutex_lock(&dev_priv->pcu_lock);
340

341
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
342 343 344 345
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
346
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
347

348
	mutex_unlock(&dev_priv->pcu_lock);
349 350
}

351 352 353
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

354
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
355
{
356
	bool was_enabled;
357
	u32 val;
358

359
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
361
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
362
		POSTING_READ(FW_BLC_SELF_VLV);
363
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
364
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
365
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
366
		POSTING_READ(FW_BLC_SELF);
367
	} else if (IS_PINEVIEW(dev_priv)) {
368 369 370 371 372 373
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
374
		I915_WRITE(DSPFW3, val);
375
		POSTING_READ(DSPFW3);
376
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
377
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
378 379 380
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
381
		POSTING_READ(FW_BLC_SELF);
382
	} else if (IS_I915GM(dev_priv)) {
383 384 385 386 387
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
388
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
389 390 391
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
392
		POSTING_READ(INSTPM);
393
	} else {
394
		return false;
395
	}
396

397 398
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

399 400 401 402 403
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
404 405
}

V
Ville Syrjälä 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
443
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
444
{
445 446
	bool ret;

447
	mutex_lock(&dev_priv->wm.wm_mutex);
448
	ret = _intel_set_memory_cxsr(dev_priv, enable);
449 450 451 452
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
453
	mutex_unlock(&dev_priv->wm.wm_mutex);
454 455

	return ret;
456
}
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
472
static const int pessimal_latency_ns = 5000;
473

474 475 476
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

477
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
478
{
479
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
480
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
481
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
482 483
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
484

485
	switch (pipe) {
486
		u32 dsparb, dsparb2, dsparb3;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
506 507
		MISSING_CASE(pipe);
		return;
508 509
	}

510 511 512 513
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
514 515
}

516 517
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
518
{
519
	u32 dsparb = I915_READ(DSPARB);
520 521 522
	int size;

	size = dsparb & 0x7f;
523
	if (i9xx_plane == PLANE_B)
524 525
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

526 527
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
528 529 530 531

	return size;
}

532 533
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
534
{
535
	u32 dsparb = I915_READ(DSPARB);
536 537 538
	int size;

	size = dsparb & 0x1ff;
539
	if (i9xx_plane == PLANE_B)
540 541 542
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

543 544
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
545 546 547 548

	return size;
}

549 550
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
551
{
552
	u32 dsparb = I915_READ(DSPARB);
553 554 555 556 557
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

558 559
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
560 561 562 563 564 565

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
566 567 568 569 570
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
571 572
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
573 574 575 576 577
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
578 579
};
static const struct intel_watermark_params pineview_cursor_wm = {
580 581 582 583 584
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
585 586
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
587 588 589 590 591
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
592 593
};
static const struct intel_watermark_params i965_cursor_wm_info = {
594 595 596 597 598
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
599 600
};
static const struct intel_watermark_params i945_wm_info = {
601 602 603 604 605
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
606 607
};
static const struct intel_watermark_params i915_wm_info = {
608 609 610 611 612
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
613
};
614
static const struct intel_watermark_params i830_a_wm_info = {
615 616 617 618 619
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
620
};
621 622 623 624 625 626 627
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
628
static const struct intel_watermark_params i845_wm_info = {
629 630 631 632 633
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
634 635
};

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
673
	u64 ret;
674

675
	ret = (u64)pixel_rate * cpp * latency;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

732 733
/**
 * intel_calculate_wm - calculate watermark level
734
 * @pixel_rate: pixel clock
735
 * @wm: chip FIFO params
736
 * @fifo_size: size of the FIFO buffer
737
 * @cpp: bytes per pixel
738 739 740 741 742 743 744 745 746 747 748 749 750
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
751 752 753 754
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
755
{
756
	int entries, wm_size;
757 758 759 760 761 762 763

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
764 765 766 767 768
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
769

770 771
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
772 773

	/* Don't promote wm_size to unsigned... */
774
	if (wm_size > wm->max_wm)
775 776 777
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
778 779 780 781 782 783 784 785 786 787 788

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

789 790 791
	return wm_size;
}

792 793 794 795 796 797 798 799 800 801
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

802 803 804 805 806
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

830
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
831
{
832
	struct intel_crtc *crtc, *enabled = NULL;
833

834
	for_each_intel_crtc(&dev_priv->drm, crtc) {
835
		if (intel_crtc_active(crtc)) {
836 837 838 839 840 841 842 843 844
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

845
static void pineview_update_wm(struct intel_crtc *unused_crtc)
846
{
847
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
848
	struct intel_crtc *crtc;
849 850
	const struct cxsr_latency *latency;
	u32 reg;
851
	unsigned int wm;
852

853 854 855 856
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
857 858
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
859
		intel_set_memory_cxsr(dev_priv, false);
860 861 862
		return;
	}

863
	crtc = single_enabled_crtc(dev_priv);
864
	if (crtc) {
865 866 867 868
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
869
		int cpp = fb->format->cpp[0];
870
		int clock = adjusted_mode->crtc_clock;
871 872 873 874

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
875
					cpp, latency->display_sr);
876 877
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
878
		reg |= FW_WM(wm, SR);
879 880 881 882 883 884
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
885
					4, latency->cursor_sr);
886 887
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
888
		reg |= FW_WM(wm, CURSOR_SR);
889 890 891 892 893
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
894
					cpp, latency->display_hpll_disable);
895 896
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
897
		reg |= FW_WM(wm, HPLL_SR);
898 899 900 901 902
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
903
					4, latency->cursor_hpll_disable);
904 905
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
906
		reg |= FW_WM(wm, HPLL_CURSOR);
907 908 909
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

910
		intel_set_memory_cxsr(dev_priv, true);
911
	} else {
912
		intel_set_memory_cxsr(dev_priv, false);
913 914 915
	}
}

916 917 918 919 920 921 922 923 924 925
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
926
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
927 928 929 930 931 932
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

933 934
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
935
{
936 937 938 939 940
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
958

959
	POSTING_READ(DSPFW1);
960 961
}

962 963 964
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

965
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
966 967
				const struct vlv_wm_values *wm)
{
968 969 970
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
971 972
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

973 974 975 976 977 978
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
979

980 981 982 983 984 985 986 987 988 989 990
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

991
	I915_WRITE(DSPFW1,
992
		   FW_WM(wm->sr.plane, SR) |
993 994 995
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
996
	I915_WRITE(DSPFW2,
997 998 999
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1000
	I915_WRITE(DSPFW3,
1001
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1002 1003 1004

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1007
		I915_WRITE(DSPFW8_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1010
		I915_WRITE(DSPFW9_CHV,
1011 1012
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1013
		I915_WRITE(DSPHOWM,
1014
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1015 1016 1017 1018 1019 1020 1021 1022 1023
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024 1025
	} else {
		I915_WRITE(DSPFW7,
1026 1027
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1028
		I915_WRITE(DSPHOWM,
1029
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1030 1031 1032 1033 1034 1035
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1036 1037 1038
	}

	POSTING_READ(DSPFW1);
1039 1040
}

1041 1042
#undef FW_WM_VLV

1043 1044 1045 1046 1047
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1048
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1049

1050
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1095 1096 1097
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1098 1099 1100 1101 1102
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1103 1104
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1143
		unsigned int small, large;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1156
	return min_t(unsigned int, wm, USHRT_MAX);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1194 1195 1196
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1325 1326
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1327 1328 1329 1330 1331
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1332 1333 1334 1335
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1336 1337 1338
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1339
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1405
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1406
{
1407
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1408 1409 1410 1411 1412 1413 1414
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1415 1416
	enum plane_id plane_id;

1417 1418 1419 1420 1421 1422 1423 1424
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1425
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1426
		!new_crtc_state->disable_cxsr;
1427
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1428
		!new_crtc_state->disable_cxsr;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1470
out:
1471 1472 1473 1474 1475
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1476
		new_crtc_state->wm.need_postvbl_update = true;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1573 1574
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1575 1576
				   unsigned int htotal,
				   unsigned int width,
1577
				   unsigned int cpp,
1578 1579 1580 1581
				   unsigned int latency)
{
	unsigned int ret;

1582 1583
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1584 1585 1586 1587 1588
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1589
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1590 1591 1592 1593
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1594 1595
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1596 1597 1598
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1599 1600

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1601 1602 1603
	}
}

1604 1605 1606
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1607
{
1608
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1609
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1610 1611
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1612
	unsigned int clock, htotal, cpp, width, wm;
1613 1614 1615 1616

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1617
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1618 1619
		return 0;

1620
	cpp = plane_state->base.fb->format->cpp[0];
1621 1622 1623
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1624

1625
	if (plane->id == PLANE_CURSOR) {
1626 1627 1628 1629 1630 1631 1632 1633
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1634
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1635 1636 1637
				    dev_priv->wm.pri_latency[level] * 10);
	}

1638
	return min_t(unsigned int, wm, USHRT_MAX);
1639 1640
}

1641 1642 1643 1644 1645 1646
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1647
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1648
{
1649
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1650
	const struct g4x_pipe_wm *raw =
1651
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1652
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1653 1654 1655
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1656
	int fifo_extra, fifo_left = fifo_size;
1657
	int sprite0_fifo_extra = 0;
1658 1659
	unsigned int total_rate;
	enum plane_id plane_id;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1672 1673
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1674 1675
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1676

1677 1678
	if (total_rate > fifo_size)
		return -EINVAL;
1679

1680 1681
	if (total_rate == 0)
		total_rate = 1;
1682

1683
	for_each_plane_id_on_crtc(crtc, plane_id) {
1684 1685
		unsigned int rate;

1686 1687
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1688 1689 1690
			continue;
		}

1691 1692 1693
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1694 1695
	}

1696 1697 1698
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1699 1700 1701
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1702 1703

	/* spread the remainder evenly */
1704
	for_each_plane_id_on_crtc(crtc, plane_id) {
1705 1706 1707 1708 1709
		int plane_extra;

		if (fifo_left == 0)
			break;

1710
		if ((active_planes & BIT(plane_id)) == 0)
1711 1712 1713
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1714
		fifo_state->plane[plane_id] += plane_extra;
1715 1716 1717
		fifo_left -= plane_extra;
	}

1718 1719 1720 1721 1722 1723 1724 1725 1726
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1727 1728
}

1729 1730 1731 1732 1733 1734
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1735
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1746 1747 1748 1749 1750 1751 1752 1753
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1754 1755 1756 1757
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1758
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1759
				 int level, enum plane_id plane_id, u16 value)
1760
{
1761
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1762
	int num_levels = intel_wm_num_levels(dev_priv);
1763
	bool dirty = false;
1764

1765
	for (; level < num_levels; level++) {
1766
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1767

1768
		dirty |= raw->plane[plane_id] != value;
1769
		raw->plane[plane_id] = value;
1770
	}
1771 1772

	return dirty;
1773 1774
}

1775 1776
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1777
{
1778 1779
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1780
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1781
	int level;
1782
	bool dirty = false;
1783

1784
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1785 1786
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1787
	}
1788

1789
	for (level = 0; level < num_levels; level++) {
1790
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1791 1792
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1793

1794 1795
		if (wm > max_wm)
			break;
1796

1797
		dirty |= raw->plane[plane_id] != wm;
1798 1799
		raw->plane[plane_id] = wm;
	}
1800

1801
	/* mark all higher levels as invalid */
1802
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1803

1804 1805
out:
	if (dirty)
1806
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1807 1808 1809 1810 1811 1812
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1813
}
1814

1815 1816
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1817
{
1818
	const struct g4x_pipe_wm *raw =
1819 1820 1821
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1822

1823 1824
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1825

1826
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1827
{
1828 1829 1830 1831
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1845
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1846 1847
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1848 1849 1850
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1851
	unsigned int dirty = 0;
1852

1853 1854 1855 1856
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1857 1858
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1859

1860
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1879
			intel_atomic_get_old_crtc_state(state, crtc);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1891
	}
1892

1893
	/* initially allow all levels */
1894
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1895 1896 1897 1898 1899
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1900
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1901

1902
	for (level = 0; level < wm_state->num_levels; level++) {
1903
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1904
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1905

1906
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1907
			break;
1908

1909 1910 1911 1912 1913 1914 1915 1916
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1917
						 raw->plane[PLANE_SPRITE0],
1918 1919
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1920

1921 1922 1923
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1924 1925
	}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1936 1937
}

1938 1939 1940
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1941 1942
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1943
{
1944
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1945
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1946 1947
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1948
	int sprite0_start, sprite1_start, fifo_size;
1949

1950 1951 1952
	if (!crtc_state->fifo_changed)
		return;

1953 1954 1955
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1956

1957 1958
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1959

1960 1961
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1972

1973
	switch (crtc->pipe) {
1974
		u32 dsparb, dsparb2, dsparb3;
1975
	case PIPE_A:
1976 1977
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1989 1990
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1991 1992
		break;
	case PIPE_B:
1993 1994
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2006 2007
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2008 2009
		break;
	case PIPE_C:
2010 2011
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2023 2024
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2025 2026 2027 2028
		break;
	default:
		break;
	}
2029

2030
	POSTING_READ_FW(DSPARB);
2031

2032
	spin_unlock(&dev_priv->uncore.lock);
2033 2034 2035 2036
}

#undef VLV_FIFO

2037
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2038
{
2039
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2040 2041 2042 2043 2044 2045 2046
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2047 2048
	int level;

2049 2050 2051 2052 2053 2054 2055
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2056
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2057
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2058
		!new_crtc_state->disable_cxsr;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2077
out:
2078 2079 2080 2081
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2082
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2083
		new_crtc_state->wm.need_postvbl_update = true;
2084 2085 2086 2087

	return 0;
}

2088
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2089 2090 2091 2092 2093
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2094
	wm->level = dev_priv->wm.max_level;
2095 2096
	wm->cxsr = true;

2097
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2098
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2113 2114 2115
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2116
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2117
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2118 2119 2120
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2121
		if (crtc->active && wm->cxsr)
2122 2123
			wm->sr = wm_state->sr[wm->level];

2124 2125 2126 2127
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2128 2129 2130
	}
}

2131
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2132
{
2133 2134
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2135

2136
	vlv_merge_wm(dev_priv, &new_wm);
2137

2138
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2139 2140
		return;

2141
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2142 2143
		chv_set_memory_dvfs(dev_priv, false);

2144
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2145 2146
		chv_set_memory_pm5(dev_priv, false);

2147
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2148
		_intel_set_memory_cxsr(dev_priv, false);
2149

2150
	vlv_write_wm_values(dev_priv, &new_wm);
2151

2152
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2153
		_intel_set_memory_cxsr(dev_priv, true);
2154

2155
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2156 2157
		chv_set_memory_pm5(dev_priv, true);

2158
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2159 2160
		chv_set_memory_dvfs(dev_priv, true);

2161
	*old_wm = new_wm;
2162 2163
}

2164 2165 2166 2167 2168 2169 2170
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2187 2188 2189 2190
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2191
static void i965_update_wm(struct intel_crtc *unused_crtc)
2192
{
2193
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2194
	struct intel_crtc *crtc;
2195 2196
	int srwm = 1;
	int cursor_sr = 16;
2197
	bool cxsr_enabled;
2198 2199

	/* Calc sr entries for one plane configs */
2200
	crtc = single_enabled_crtc(dev_priv);
2201 2202 2203
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2204 2205 2206 2207
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2208
		int clock = adjusted_mode->crtc_clock;
2209
		int htotal = adjusted_mode->crtc_htotal;
2210
		int hdisplay = crtc->config->pipe_src_w;
2211
		int cpp = fb->format->cpp[0];
2212 2213
		int entries;

2214 2215
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2216 2217 2218 2219 2220 2221 2222 2223
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2224 2225 2226
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2227
		entries = DIV_ROUND_UP(entries,
2228 2229
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2230

2231
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2232 2233 2234 2235 2236 2237
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2238
		cxsr_enabled = true;
2239
	} else {
2240
		cxsr_enabled = false;
2241
		/* Turn off self refresh if both pipes are enabled */
2242
		intel_set_memory_cxsr(dev_priv, false);
2243 2244 2245 2246 2247 2248
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2249 2250 2251 2252 2253 2254
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2255
	/* update cursor SR watermark */
2256
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2257 2258 2259

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2260 2261
}

2262 2263
#undef FW_WM

2264
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2265
{
2266
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2267
	const struct intel_watermark_params *wm_info;
2268 2269
	u32 fwater_lo;
	u32 fwater_hi;
2270 2271 2272
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2273
	struct intel_crtc *crtc, *enabled = NULL;
2274

2275
	if (IS_I945GM(dev_priv))
2276
		wm_info = &i945_wm_info;
2277
	else if (!IS_GEN(dev_priv, 2))
2278 2279
		wm_info = &i915_wm_info;
	else
2280
		wm_info = &i830_a_wm_info;
2281

2282 2283
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2284 2285 2286 2287 2288 2289 2290
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2291
		if (IS_GEN(dev_priv, 2))
2292
			cpp = 4;
2293
		else
2294
			cpp = fb->format->cpp[0];
2295

2296
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2297
					       wm_info, fifo_size, cpp,
2298
					       pessimal_latency_ns);
2299
		enabled = crtc;
2300
	} else {
2301
		planea_wm = fifo_size - wm_info->guard_size;
2302 2303 2304 2305
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2306
	if (IS_GEN(dev_priv, 2))
2307
		wm_info = &i830_bc_wm_info;
2308

2309 2310
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2311 2312 2313 2314 2315 2316 2317
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2318
		if (IS_GEN(dev_priv, 2))
2319
			cpp = 4;
2320
		else
2321
			cpp = fb->format->cpp[0];
2322

2323
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2324
					       wm_info, fifo_size, cpp,
2325
					       pessimal_latency_ns);
2326 2327 2328 2329
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2330
	} else {
2331
		planeb_wm = fifo_size - wm_info->guard_size;
2332 2333 2334
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2335 2336 2337

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2338
	if (IS_I915GM(dev_priv) && enabled) {
2339
		struct drm_i915_gem_object *obj;
2340

2341
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2342 2343

		/* self-refresh seems busted with untiled */
2344
		if (!i915_gem_object_is_tiled(obj))
2345 2346 2347
			enabled = NULL;
	}

2348 2349 2350 2351 2352 2353
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2354
	intel_set_memory_cxsr(dev_priv, false);
2355 2356

	/* Calc sr entries for one plane configs */
2357
	if (HAS_FW_BLC(dev_priv) && enabled) {
2358 2359
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2360 2361 2362 2363
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2364
		int clock = adjusted_mode->crtc_clock;
2365
		int htotal = adjusted_mode->crtc_htotal;
2366 2367
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2368 2369
		int entries;

2370
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2371
			cpp = 4;
2372
		else
2373
			cpp = fb->format->cpp[0];
2374

2375 2376
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2377 2378 2379 2380 2381 2382
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2383
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2384 2385
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2386
		else
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2403 2404
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2405 2406
}

2407
static void i845_update_wm(struct intel_crtc *unused_crtc)
2408
{
2409
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2410
	struct intel_crtc *crtc;
2411
	const struct drm_display_mode *adjusted_mode;
2412
	u32 fwater_lo;
2413 2414
	int planea_wm;

2415
	crtc = single_enabled_crtc(dev_priv);
2416 2417 2418
	if (crtc == NULL)
		return;

2419
	adjusted_mode = &crtc->config->base.adjusted_mode;
2420
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2421
				       &i845_wm_info,
2422
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2423
				       4, pessimal_latency_ns);
2424 2425 2426 2427 2428 2429 2430 2431
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2432
/* latency must be in 0.1us units. */
2433 2434 2435
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2436
{
2437
	unsigned int ret;
2438

2439 2440
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2441 2442 2443 2444

	return ret;
}

2445
/* latency must be in 0.1us units. */
2446 2447 2448 2449 2450
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2451
{
2452
	unsigned int ret;
2453

2454 2455
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2456
	ret = DIV_ROUND_UP(ret, 64) + 2;
2457

2458 2459 2460
	return ret;
}

2461
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2462
{
2463 2464 2465 2466 2467 2468
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2469
	if (WARN_ON(!cpp))
2470 2471 2472 2473
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2474
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2475 2476
}

2477
struct ilk_wm_maximums {
2478 2479 2480 2481
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2482 2483
};

2484 2485 2486 2487
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2488 2489 2490
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value, bool is_lp)
2491
{
2492
	u32 method1, method2;
2493
	int cpp;
2494

2495 2496 2497
	if (mem_value == 0)
		return U32_MAX;

2498
	if (!intel_wm_plane_visible(cstate, pstate))
2499 2500
		return 0;

2501
	cpp = pstate->base.fb->format->cpp[0];
2502

2503
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2504 2505 2506 2507

	if (!is_lp)
		return method1;

2508
	method2 = ilk_wm_method2(cstate->pixel_rate,
2509
				 cstate->base.adjusted_mode.crtc_htotal,
2510
				 drm_rect_width(&pstate->base.dst),
2511
				 cpp, mem_value);
2512 2513

	return min(method1, method2);
2514 2515
}

2516 2517 2518 2519
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2520 2521 2522
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2523
{
2524
	u32 method1, method2;
2525
	int cpp;
2526

2527 2528 2529
	if (mem_value == 0)
		return U32_MAX;

2530
	if (!intel_wm_plane_visible(cstate, pstate))
2531 2532
		return 0;

2533
	cpp = pstate->base.fb->format->cpp[0];
2534

2535 2536
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2537
				 cstate->base.adjusted_mode.crtc_htotal,
2538
				 drm_rect_width(&pstate->base.dst),
2539
				 cpp, mem_value);
2540 2541 2542
	return min(method1, method2);
}

2543 2544 2545 2546
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2547 2548 2549
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2550
{
2551 2552
	int cpp;

2553 2554 2555
	if (mem_value == 0)
		return U32_MAX;

2556
	if (!intel_wm_plane_visible(cstate, pstate))
2557 2558
		return 0;

2559 2560
	cpp = pstate->base.fb->format->cpp[0];

2561
	return ilk_wm_method2(cstate->pixel_rate,
2562
			      cstate->base.adjusted_mode.crtc_htotal,
2563
			      pstate->base.crtc_w, cpp, mem_value);
2564 2565
}

2566
/* Only for WM_LP. */
2567 2568 2569
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val)
2570
{
2571
	int cpp;
2572

2573
	if (!intel_wm_plane_visible(cstate, pstate))
2574 2575
		return 0;

2576
	cpp = pstate->base.fb->format->cpp[0];
2577

2578
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2579 2580
}

2581 2582
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2583
{
2584
	if (INTEL_GEN(dev_priv) >= 8)
2585
		return 3072;
2586
	else if (INTEL_GEN(dev_priv) >= 7)
2587 2588 2589 2590 2591
		return 768;
	else
		return 512;
}

2592 2593 2594
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2595
{
2596
	if (INTEL_GEN(dev_priv) >= 8)
2597 2598
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2599
	else if (INTEL_GEN(dev_priv) >= 7)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2610 2611
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2612
{
2613
	if (INTEL_GEN(dev_priv) >= 7)
2614 2615 2616 2617 2618
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2619
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2620
{
2621
	if (INTEL_GEN(dev_priv) >= 8)
2622 2623 2624 2625 2626
		return 31;
	else
		return 15;
}

2627
/* Calculate the maximum primary/sprite plane watermark */
2628
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2629
				     int level,
2630
				     const struct intel_wm_config *config,
2631 2632 2633
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2634
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2635 2636

	/* if sprites aren't enabled, sprites get nothing */
2637
	if (is_sprite && !config->sprites_enabled)
2638 2639 2640
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2641
	if (level == 0 || config->num_pipes_active > 1) {
2642
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2643 2644 2645 2646 2647 2648

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2649
		if (INTEL_GEN(dev_priv) <= 6)
2650 2651 2652
			fifo_size /= 2;
	}

2653
	if (config->sprites_enabled) {
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2665
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2666 2667 2668
}

/* Calculate the maximum cursor plane watermark */
2669
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2670 2671
				      int level,
				      const struct intel_wm_config *config)
2672 2673
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2674
	if (level > 0 && config->num_pipes_active > 1)
2675 2676 2677
		return 64;

	/* otherwise just report max that registers can hold */
2678
	return ilk_cursor_wm_reg_max(dev_priv, level);
2679 2680
}

2681
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2682 2683 2684
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2685
				    struct ilk_wm_maximums *max)
2686
{
2687 2688 2689 2690
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2691 2692
}

2693
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2694 2695 2696
					int level,
					struct ilk_wm_maximums *max)
{
2697 2698 2699 2700
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2701 2702
}

2703
static bool ilk_validate_wm_level(int level,
2704
				  const struct ilk_wm_maximums *max,
2705
				  struct intel_wm_level *result)
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2735 2736 2737
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2738 2739 2740 2741 2742 2743
		result->enable = true;
	}

	return ret;
}

2744
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2745
				 const struct intel_crtc *intel_crtc,
2746
				 int level,
2747
				 struct intel_crtc_state *cstate,
2748 2749 2750
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2751
				 struct intel_wm_level *result)
2752
{
2753 2754 2755
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2756 2757 2758 2759 2760 2761 2762 2763

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2776 2777 2778
	result->enable = true;
}

2779
static u32
2780
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2781
{
2782 2783
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2784 2785
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2786
	u32 linetime, ips_linetime;
2787

2788 2789 2790 2791
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2792
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2793
		return 0;
2794

2795 2796 2797
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2798 2799 2800
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2801
					 intel_state->cdclk.logical.cdclk);
2802

2803 2804
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2805 2806
}

2807
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2808
				  u16 wm[8])
2809
{
2810
	if (INTEL_GEN(dev_priv) >= 9) {
2811
		u32 val;
2812
		int ret, i;
2813
		int level, max_level = ilk_wm_max_level(dev_priv);
2814 2815 2816

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2817
		mutex_lock(&dev_priv->pcu_lock);
2818 2819 2820
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2821
		mutex_unlock(&dev_priv->pcu_lock);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2838
		mutex_lock(&dev_priv->pcu_lock);
2839 2840 2841
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2842
		mutex_unlock(&dev_priv->pcu_lock);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2869
		/*
2870
		 * WaWmMemoryReadLatency:skl+,glk
2871
		 *
2872
		 * punit doesn't take into account the read latency so we need
2873 2874
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2875
		 */
2876 2877 2878 2879 2880
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2881
				wm[level] += 2;
2882
			}
2883 2884
		}

2885 2886 2887 2888 2889 2890
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2891
		if (dev_priv->dram_info.is_16gb_dimm)
2892 2893
			wm[0] += 1;

2894
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2895
		u64 sskpd = I915_READ64(MCH_SSKPD);
2896 2897 2898 2899

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2900 2901 2902 2903
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2904
	} else if (INTEL_GEN(dev_priv) >= 6) {
2905
		u32 sskpd = I915_READ(MCH_SSKPD);
2906 2907 2908 2909 2910

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2911
	} else if (INTEL_GEN(dev_priv) >= 5) {
2912
		u32 mltr = I915_READ(MLTR_ILK);
2913 2914 2915 2916 2917

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2918 2919
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2920 2921 2922
	}
}

2923
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2924
				       u16 wm[5])
2925 2926
{
	/* ILK sprite LP0 latency is 1300 ns */
2927
	if (IS_GEN(dev_priv, 5))
2928 2929 2930
		wm[0] = 13;
}

2931
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2932
				       u16 wm[5])
2933 2934
{
	/* ILK cursor LP0 latency is 1300 ns */
2935
	if (IS_GEN(dev_priv, 5))
2936 2937 2938
		wm[0] = 13;
}

2939
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2940 2941
{
	/* how many WM levels are we expecting */
2942
	if (INTEL_GEN(dev_priv) >= 9)
2943
		return 7;
2944
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2945
		return 4;
2946
	else if (INTEL_GEN(dev_priv) >= 6)
2947
		return 3;
2948
	else
2949 2950
		return 2;
}
2951

2952
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2953
				   const char *name,
2954
				   const u16 wm[8])
2955
{
2956
	int level, max_level = ilk_wm_max_level(dev_priv);
2957 2958 2959 2960 2961

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2962 2963
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2964 2965 2966
			continue;
		}

2967 2968 2969 2970
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2971
		if (INTEL_GEN(dev_priv) >= 9)
2972 2973
			latency *= 10;
		else if (level > 0)
2974 2975 2976 2977 2978 2979 2980 2981
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2982
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2983
				    u16 wm[5], u16 min)
2984
{
2985
	int level, max_level = ilk_wm_max_level(dev_priv);
2986 2987 2988 2989 2990 2991

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2992
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2993 2994 2995 2996

	return true;
}

2997
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3013 3014 3015
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016 3017
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3046
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3047
{
3048
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3049 3050 3051 3052 3053 3054

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3055
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3056
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3057

3058 3059 3060
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3061

3062
	if (IS_GEN(dev_priv, 6)) {
3063
		snb_wm_latency_quirk(dev_priv);
3064 3065
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3066 3067
}

3068
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3069
{
3070
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3071
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3072 3073
}

3074
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3086
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3097
/* Compute new watermarks for the pipe */
3098
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3099
{
3100 3101
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3102
	struct intel_pipe_wm *pipe_wm;
3103
	struct drm_device *dev = state->dev;
3104
	const struct drm_i915_private *dev_priv = to_i915(dev);
3105 3106 3107 3108 3109
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3110
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3111
	struct ilk_wm_maximums max;
3112

3113
	pipe_wm = &cstate->wm.ilk.optimal;
3114

3115 3116
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3117

3118
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3119
			pristate = ps;
3120
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3121
			sprstate = ps;
3122
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3123
			curstate = ps;
3124 3125
	}

3126
	pipe_wm->pipe_enabled = cstate->base.active;
3127
	if (sprstate) {
3128 3129 3130 3131
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3132 3133
	}

3134 3135
	usable_level = max_level;

3136
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3137
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3138
		usable_level = 1;
3139 3140

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3141
	if (pipe_wm->sprites_scaled)
3142
		usable_level = 0;
3143

3144
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3145 3146
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3147

3148
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3149
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3150

3151
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3152
		return -EINVAL;
3153

3154
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3155

3156 3157
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3158

3159
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3160
				     pristate, sprstate, curstate, wm);
3161 3162 3163 3164 3165 3166

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3167 3168 3169 3170
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3171 3172
	}

3173
	return 0;
3174 3175
}

3176 3177 3178 3179 3180
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3181
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3182
{
3183 3184
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3185
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3186 3187 3188 3189 3190
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3191
	int level, max_level = ilk_wm_max_level(dev_priv);
3192 3193 3194 3195 3196 3197

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3198
	*a = newstate->wm.ilk.optimal;
3199 3200
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3201 3202
		return 0;

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3224
	if (!ilk_validate_pipe_wm(dev_priv, a))
3225 3226 3227 3228 3229 3230
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3231 3232
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3233 3234 3235 3236

	return 0;
}

3237 3238 3239
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3240
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3241 3242 3243 3244 3245
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3246 3247
	ret_wm->enable = true;

3248
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3249
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3250 3251 3252 3253
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3254

3255 3256 3257 3258 3259
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3260
		if (!wm->enable)
3261
			ret_wm->enable = false;
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3273
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3274
			 const struct intel_wm_config *config,
3275
			 const struct ilk_wm_maximums *max,
3276 3277
			 struct intel_pipe_wm *merged)
{
3278
	int level, max_level = ilk_wm_max_level(dev_priv);
3279
	int last_enabled_level = max_level;
3280

3281
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3282
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3283
	    config->num_pipes_active > 1)
3284
		last_enabled_level = 0;
3285

3286
	/* ILK: FBC WM must be disabled always */
3287
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3288 3289 3290 3291 3292

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3293
		ilk_merge_wm_level(dev_priv, level, wm);
3294

3295 3296 3297 3298 3299
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3300 3301 3302 3303 3304 3305

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3306 3307
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3308 3309 3310
			wm->fbc_val = 0;
		}
	}
3311 3312 3313 3314 3315 3316 3317

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3318
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3319
	    intel_fbc_is_active(dev_priv)) {
3320 3321 3322 3323 3324 3325
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3326 3327
}

3328 3329 3330 3331 3332 3333
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3334
/* The value we need to program into the WM_LPx latency field */
3335 3336
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3337
{
3338
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3339 3340 3341 3342 3343
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3344
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3345
				   const struct intel_pipe_wm *merged,
3346
				   enum intel_ddb_partitioning partitioning,
3347
				   struct ilk_wm_values *results)
3348
{
3349 3350
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3351

3352
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3353
	results->partitioning = partitioning;
3354

3355
	/* LP1+ register values */
3356
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3357
		const struct intel_wm_level *r;
3358

3359
		level = ilk_wm_lp_to_level(wm_lp, merged);
3360

3361
		r = &merged->wm[level];
3362

3363 3364 3365 3366 3367
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3368
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3369 3370 3371
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3372 3373 3374
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3375
		if (INTEL_GEN(dev_priv) >= 8)
3376 3377 3378 3379 3380 3381
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3382 3383 3384 3385
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3386
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3387 3388 3389 3390
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3391
	}
3392

3393
	/* LP0 register values */
3394
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3395
		enum pipe pipe = intel_crtc->pipe;
3396 3397
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3398 3399 3400 3401

		if (WARN_ON(!r->enable))
			continue;

3402
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3403

3404 3405 3406 3407
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3408 3409 3410
	}
}

3411 3412
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3413 3414 3415 3416
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3417
{
3418
	int level, max_level = ilk_wm_max_level(dev_priv);
3419
	int level1 = 0, level2 = 0;
3420

3421 3422 3423 3424 3425
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3426 3427
	}

3428 3429
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3430 3431 3432
			return r2;
		else
			return r1;
3433
	} else if (level1 > level2) {
3434 3435 3436 3437 3438 3439
		return r1;
	} else {
		return r2;
	}
}

3440 3441 3442 3443 3444 3445 3446 3447
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3448
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3449 3450
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3451 3452 3453 3454 3455
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3456
	for_each_pipe(dev_priv, pipe) {
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3500 3501
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3502
{
3503
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3504
	bool changed = false;
3505

3506 3507 3508
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3509
		changed = true;
3510 3511 3512 3513
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3514
		changed = true;
3515 3516 3517 3518
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3519
		changed = true;
3520
	}
3521

3522 3523 3524 3525
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3526

3527 3528 3529 3530 3531 3532 3533
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3534 3535
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3536
{
3537
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3538
	unsigned int dirty;
3539
	u32 val;
3540

3541
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3542 3543 3544 3545 3546
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3547
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3548
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3549
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3550
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3551
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3552 3553
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3554
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3555
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3556
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3557
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3558
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3559 3560
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3561
	if (dirty & WM_DIRTY_DDB) {
3562
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3577 3578
	}

3579
	if (dirty & WM_DIRTY_FBC) {
3580 3581 3582 3583 3584 3585 3586 3587
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3588 3589 3590 3591
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3592
	if (INTEL_GEN(dev_priv) >= 7) {
3593 3594 3595 3596 3597
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3598

3599
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3600
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3601
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3602
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3603
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3604
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3605 3606

	dev_priv->wm.hw = *results;
3607 3608
}

3609
bool ilk_disable_lp_wm(struct drm_device *dev)
3610
{
3611
	struct drm_i915_private *dev_priv = to_i915(dev);
3612 3613 3614 3615

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3627 3628 3629 3630 3631 3632
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3633 3634 3635 3636 3637
		enabled_slices++;

	return enabled_slices;
}

3638 3639 3640 3641
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3642
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3643
{
3644
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3645 3646
}

3647 3648 3649
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3650 3651
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3652 3653
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3666
intel_enable_sagv(struct drm_i915_private *dev_priv)
3667 3668 3669
{
	int ret;

3670 3671 3672 3673
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3674 3675
		return 0;

3676
	DRM_DEBUG_KMS("Enabling SAGV\n");
3677
	mutex_lock(&dev_priv->pcu_lock);
3678 3679 3680 3681

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3682
	/* We don't need to wait for SAGV when enabling */
3683
	mutex_unlock(&dev_priv->pcu_lock);
3684 3685 3686

	/*
	 * Some skl systems, pre-release machines in particular,
3687
	 * don't actually have SAGV.
3688
	 */
3689
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3690
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3691
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3692 3693
		return 0;
	} else if (ret < 0) {
3694
		DRM_ERROR("Failed to enable SAGV\n");
3695 3696 3697
		return ret;
	}

3698
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3699 3700 3701 3702
	return 0;
}

int
3703
intel_disable_sagv(struct drm_i915_private *dev_priv)
3704
{
3705
	int ret;
3706

3707 3708 3709 3710
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3711 3712
		return 0;

3713
	DRM_DEBUG_KMS("Disabling SAGV\n");
3714
	mutex_lock(&dev_priv->pcu_lock);
3715 3716

	/* bspec says to keep retrying for at least 1 ms */
3717 3718 3719 3720
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3721
	mutex_unlock(&dev_priv->pcu_lock);
3722 3723 3724

	/*
	 * Some skl systems, pre-release machines in particular,
3725
	 * don't actually have SAGV.
3726
	 */
3727
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3728
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3729
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3730
		return 0;
3731
	} else if (ret < 0) {
3732
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3733
		return ret;
3734 3735
	}

3736
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3737 3738 3739
	return 0;
}

3740
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3741 3742 3743 3744
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3745 3746
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3747
	struct intel_crtc_state *cstate;
3748
	enum pipe pipe;
3749
	int level, latency;
3750
	int sagv_block_time_us;
3751

3752 3753 3754
	if (!intel_has_sagv(dev_priv))
		return false;

3755
	if (IS_GEN(dev_priv, 9))
3756
		sagv_block_time_us = 30;
3757
	else if (IS_GEN(dev_priv, 10))
3758 3759 3760 3761
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3762
	/*
3763
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3775
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3776
	cstate = to_intel_crtc_state(crtc->base.state);
3777

3778
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3779 3780
		return false;

3781
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3782 3783
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3784

3785
		/* Skip this plane if it's not enabled */
3786
		if (!wm->wm[0].plane_en)
3787 3788 3789
			continue;

		/* Find the highest enabled wm level for this plane */
3790
		for (level = ilk_wm_max_level(dev_priv);
3791
		     !wm->wm[level].plane_en; --level)
3792 3793
		     { }

3794 3795
		latency = dev_priv->wm.skl_latency[level];

3796
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3797
		    plane->base.state->fb->modifier ==
3798 3799 3800
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3801
		/*
3802 3803
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3804
		 * can't enable SAGV.
3805
		 */
3806
		if (latency < sagv_block_time_us)
3807 3808 3809 3810 3811 3812
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3813 3814
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3815
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3816 3817
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3829
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3830 3831 3832

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3833 3834 3835 3836 3837
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3838
	 */
3839
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3840 3841 3842 3843 3844 3845 3846 3847 3848
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3849
static void
3850
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3851
				   const struct intel_crtc_state *cstate,
3852
				   const u64 total_data_rate,
3853
				   struct skl_ddb_allocation *ddb,
3854 3855
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3856
{
3857 3858
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3859
	struct drm_crtc *for_crtc = cstate->base.crtc;
3860 3861 3862 3863 3864 3865
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3866

3867
	if (WARN_ON(!state) || !cstate->base.active) {
3868 3869
		alloc->start = 0;
		alloc->end = 0;
3870
		*num_active = hweight32(dev_priv->active_crtcs);
3871 3872 3873
		return;
	}

3874 3875 3876 3877 3878
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3879 3880
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3881

3882
	/*
3883 3884 3885 3886 3887 3888
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3889
	 */
3890
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3891 3892 3893 3894 3895
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3896
		return;
3897
	}
3898

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3925 3926
}

3927
static unsigned int skl_cursor_allocation(int num_active)
3928
{
3929
	if (num_active == 1)
3930 3931 3932 3933 3934
		return 32;

	return 8;
}

3935 3936
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3937
{
3938

3939 3940
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3941

3942 3943
	if (entry->end)
		entry->end += 1;
3944 3945
}

3946 3947 3948 3949
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3950 3951
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3952
{
3953 3954
	u32 val, val2;
	u32 fourcc = 0;
3955 3956 3957 3958

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3959
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3960 3961 3962 3963 3964 3965
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3966 3967 3968 3969
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3970

3971 3972 3973 3974 3975
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3976
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3977

3978
		if (is_planar_yuv_format(fourcc))
3979 3980 3981 3982
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
3983 3984 3985
	}
}

3986 3987 3988
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
3989
{
3990 3991 3992
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
3993
	intel_wakeref_t wakeref;
3994
	enum plane_id plane_id;
3995

3996
	power_domain = POWER_DOMAIN_PIPE(pipe);
3997 3998
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
3999
		return;
4000

4001 4002 4003 4004 4005
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4006

4007
	intel_display_power_put(dev_priv, power_domain, wakeref);
4008
}
4009

4010 4011 4012 4013
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4014 4015
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4032
static uint_fixed_16_16_t
4033 4034
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4035
{
4036
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4037
	u32 src_w, src_h, dst_w, dst_h;
4038 4039
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4040

4041
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4042
		return u32_to_fixed16(0);
4043 4044

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4045
	if (plane->id == PLANE_CURSOR) {
4046 4047 4048 4049
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4050 4051
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4052 4053 4054
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4055 4056 4057 4058 4059
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4060 4061
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4062 4063 4064 4065
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4066 4067 4068 4069
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4070

4071
	return mul_fixed16(downscale_w, downscale_h);
4072 4073
}

4074 4075 4076
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4077
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4078 4079 4080 4081 4082

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4083 4084
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4096 4097 4098 4099
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4110
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4111 4112 4113 4114 4115
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4116
	int crtc_clock, dotclk;
4117
	u32 pipe_max_pixel_rate;
4118
	uint_fixed_16_16_t pipe_downscale;
4119
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4120 4121 4122 4123 4124 4125

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4126
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4144
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4145 4146 4147 4148 4149 4150
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4151 4152
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4153
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4154 4155 4156
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4157 4158

	if (pipe_max_pixel_rate < crtc_clock) {
4159
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4160 4161 4162 4163 4164 4165
		return -EINVAL;
	}

	return 0;
}

4166
static u64
4167
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4168
			     const struct intel_plane_state *intel_pstate,
4169
			     const int plane)
4170
{
4171 4172
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4173 4174
	u32 data_rate;
	u32 width = 0, height = 0;
4175 4176
	struct drm_framebuffer *fb;
	u32 format;
4177
	uint_fixed_16_16_t down_scale_amount;
4178
	u64 rate;
4179

4180
	if (!intel_pstate->base.visible)
4181
		return 0;
4182

4183
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4184
	format = fb->format->format;
4185

4186
	if (intel_plane->id == PLANE_CURSOR)
4187
		return 0;
4188
	if (plane == 1 && !is_planar_yuv_format(format))
4189
		return 0;
4190

4191 4192 4193 4194 4195
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4196 4197
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4198

4199
	/* UV plane does 1/2 pixel sub-sampling */
4200
	if (plane == 1 && is_planar_yuv_format(format)) {
4201 4202
		width /= 2;
		height /= 2;
4203 4204
	}

4205
	data_rate = width * height;
4206

4207
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4208

4209 4210 4211 4212
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4213 4214
}

4215
static u64
4216
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4217 4218
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4219
{
4220 4221
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4222 4223
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4224
	u64 total_data_rate = 0;
4225 4226 4227

	if (WARN_ON(!state))
		return 0;
4228

4229
	/* Calculate and cache data rate for each plane */
4230
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4231
		enum plane_id plane_id = to_intel_plane(plane)->id;
4232
		u64 rate;
4233 4234
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4235

4236
		/* packed/y */
4237
		rate = skl_plane_relative_data_rate(intel_cstate,
4238
						    intel_pstate, 0);
4239
		plane_data_rate[plane_id] = rate;
4240
		total_data_rate += rate;
4241

4242
		/* uv-plane */
4243
		rate = skl_plane_relative_data_rate(intel_cstate,
4244
						    intel_pstate, 1);
4245
		uv_plane_data_rate[plane_id] = rate;
4246
		total_data_rate += rate;
4247 4248 4249 4250 4251
	}

	return total_data_rate;
}

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4307
static int
4308
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4309 4310
		      struct skl_ddb_allocation *ddb /* out */)
{
4311
	struct drm_atomic_state *state = cstate->base.state;
4312
	struct drm_crtc *crtc = cstate->base.crtc;
4313
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4314
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4315
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4316
	struct skl_plane_wm *wm;
4317 4318 4319
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4320
	u64 total_data_rate;
4321
	enum plane_id plane_id;
4322
	int num_active;
4323 4324
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4325
	u32 blocks;
4326
	int level;
4327

4328
	/* Clear the partitioning for disabled planes. */
4329 4330
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4331

4332 4333 4334
	if (WARN_ON(!state))
		return 0;

4335
	if (!cstate->base.active) {
4336
		alloc->start = alloc->end = 0;
4337 4338 4339
		return 0;
	}

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	if (INTEL_GEN(dev_priv) < 11)
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
	else
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4352
	alloc_size = skl_ddb_entry_size(alloc);
4353
	if (alloc_size == 0)
4354
		return 0;
4355

4356 4357 4358 4359 4360 4361 4362 4363 4364
	/* Allocate fixed number of blocks for cursor. */
	total[PLANE_CURSOR] = skl_cursor_allocation(num_active);
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4365

4366
	/*
4367 4368
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4369
	 */
4370
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4371
		blocks = 0;
4372 4373 4374
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			if (plane_id == PLANE_CURSOR)
				continue;
4375

4376
			wm = &cstate->wm.skl.optimal.planes[plane_id];
4377 4378
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4379 4380 4381 4382 4383 4384
		}

		if (blocks < alloc_size) {
			alloc_size -= blocks;
			break;
		}
4385 4386
	}

4387
	if (level < 0) {
4388
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4389 4390
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4391 4392 4393
		return -EINVAL;
	}

4394
	/*
4395 4396 4397
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4398
	 */
4399
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4400 4401
		u64 rate;
		u16 extra;
4402

4403
		if (plane_id == PLANE_CURSOR)
4404 4405
			continue;

4406
		/*
4407 4408
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4409
		 */
4410 4411
		if (total_data_rate == 0)
			break;
4412

4413
		wm = &cstate->wm.skl.optimal.planes[plane_id];
4414

4415 4416 4417 4418
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4419
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4420 4421
		alloc_size -= extra;
		total_data_rate -= rate;
4422

4423 4424
		if (total_data_rate == 0)
			break;
4425

4426 4427 4428 4429
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4430
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_ddb_entry *plane_alloc, *uv_plane_alloc;

		if (plane_id == PLANE_CURSOR)
			continue;

		plane_alloc = &cstate->wm.skl.plane_ddb_y[plane_id];
		uv_plane_alloc = &cstate->wm.skl.plane_ddb_uv[plane_id];
4446

4447
		/* Gen11+ uses a separate plane for UV watermarks */
4448 4449 4450 4451 4452 4453 4454 4455
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4456

4457 4458 4459 4460
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4461
		}
4462
	}
4463

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			wm = &cstate->wm.skl.optimal.planes[plane_id];
			memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4474

4475 4476 4477 4478
			/*
			 * Wa_1408961008:icl
			 * Underruns with WM1+ disabled
			 */
4479 4480 4481
			if (IS_ICELAKE(dev_priv) &&
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4482 4483
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4484
			}
4485 4486 4487 4488 4489 4490 4491 4492 4493
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		wm = &cstate->wm.skl.optimal.planes[plane_id];
4494
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4495
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4496 4497
	}

4498
	return 0;
4499 4500
}

4501 4502
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4503
 * for the read latency) and cpp should always be <= 8, so that
4504 4505 4506
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4507
static uint_fixed_16_16_t
4508 4509
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4510
{
4511
	u32 wm_intermediate_val;
4512
	uint_fixed_16_16_t ret;
4513 4514

	if (latency == 0)
4515
		return FP_16_16_MAX;
4516

4517
	wm_intermediate_val = latency * pixel_rate * cpp;
4518
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4519 4520 4521 4522

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4523 4524 4525
	return ret;
}

4526 4527 4528
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4529
{
4530
	u32 wm_intermediate_val;
4531
	uint_fixed_16_16_t ret;
4532 4533

	if (latency == 0)
4534
		return FP_16_16_MAX;
4535 4536

	wm_intermediate_val = latency * pixel_rate;
4537 4538
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4539
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4540 4541 4542
	return ret;
}

4543
static uint_fixed_16_16_t
4544
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4545
{
4546 4547
	u32 pixel_rate;
	u32 crtc_htotal;
4548 4549 4550
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4551
		return u32_to_fixed16(0);
4552 4553 4554 4555

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4556
		return u32_to_fixed16(0);
4557 4558

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4559
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4560 4561 4562 4563

	return linetime_us;
}

4564
static u32
4565 4566
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4567
{
4568
	u64 adjusted_pixel_rate;
4569
	uint_fixed_16_16_t downscale_amount;
4570 4571

	/* Shouldn't reach here on disabled planes... */
4572
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4573 4574 4575 4576 4577 4578
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4579
	adjusted_pixel_rate = cstate->pixel_rate;
4580
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4581

4582 4583
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4584 4585
}

4586
static int
4587
skl_compute_plane_wm_params(const struct intel_crtc_state *cstate,
4588
			    const struct intel_plane_state *intel_pstate,
4589
			    struct skl_wm_params *wp, int color_plane)
4590
{
4591
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4592
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4593 4594
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4595
	u32 interm_pbpl;
4596

4597 4598 4599
	/* only planar format has two planes */
	if (color_plane == 1 && !is_planar_yuv_format(fb->format->format)) {
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4600 4601 4602
		return -EINVAL;
	}

4603 4604 4605 4606 4607 4608 4609
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4610
	wp->is_planar = is_planar_yuv_format(fb->format->format);
4611

4612
	if (plane->id == PLANE_CURSOR) {
4613
		wp->width = intel_pstate->base.crtc_w;
4614
	} else {
4615 4616 4617 4618 4619
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4620
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4621
	}
4622

4623
	if (color_plane == 1 && wp->is_planar)
4624 4625
		wp->width /= 2;

4626
	wp->cpp = fb->format->cpp[color_plane];
4627 4628
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4629

4630
	if (INTEL_GEN(dev_priv) >= 11 &&
4631
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
4632 4633 4634 4635
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4636
	if (drm_rotation_90_or_270(pstate->rotation)) {
4637

4638
		switch (wp->cpp) {
4639
		case 1:
4640
			wp->y_min_scanlines = 16;
4641 4642
			break;
		case 2:
4643
			wp->y_min_scanlines = 8;
4644 4645
			break;
		case 4:
4646
			wp->y_min_scanlines = 4;
4647
			break;
4648
		default:
4649
			MISSING_CASE(wp->cpp);
4650
			return -EINVAL;
4651 4652
		}
	} else {
4653
		wp->y_min_scanlines = 4;
4654 4655
	}

4656
	if (skl_needs_memory_bw_wa(dev_priv))
4657
		wp->y_min_scanlines *= 2;
4658

4659 4660 4661
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4662 4663
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4664 4665 4666 4667

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4668 4669
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4670
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4671 4672
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4673
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4674
	} else {
4675 4676
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4677
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4678 4679
	}

4680 4681 4682 4683 4684 4685 4686 4687
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

4688 4689 4690 4691 4692 4693 4694 4695 4696
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4697 4698 4699 4700 4701 4702
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 const struct intel_plane_state *intel_pstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4703
{
4704 4705
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4706
	u32 latency = dev_priv->wm.skl_latency[level];
4707 4708
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4709
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4710

4711 4712 4713
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4714
		return;
4715
	}
4716

4717
	/* Display WA #1141: kbl,cfl */
4718 4719
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4720 4721 4722
	    dev_priv->ipc_enabled)
		latency += 4;

4723
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4724 4725 4726
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4727
				 wp->cpp, latency, wp->dbuf_block_size);
4728
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4729
				 cstate->base.adjusted_mode.crtc_htotal,
4730
				 latency,
4731
				 wp->plane_blocks_per_line);
4732

4733 4734
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4735
	} else {
4736
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4737
		     wp->dbuf_block_size < 1) &&
4738
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4739
			selected_result = method2;
4740
		} else if (latency >= wp->linetime_us) {
4741
			if (IS_GEN(dev_priv, 9) &&
4742 4743 4744 4745 4746
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4747
			selected_result = method1;
4748
		}
4749
	}
4750

4751
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4752
	res_lines = div_round_up_fixed16(selected_result,
4753
					 wp->plane_blocks_per_line);
4754

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4770

4771 4772 4773 4774 4775 4776 4777 4778 4779
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4780
	}
4781

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4800 4801 4802
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4803 4804 4805
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4806
		return;
4807
	}
4808 4809 4810 4811 4812 4813 4814

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4815 4816
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4817 4818
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4819
	result->plane_en = true;
4820 4821
}

4822
static void
4823
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4824
		      const struct intel_plane_state *intel_pstate,
4825
		      const struct skl_wm_params *wm_params,
4826
		      struct skl_wm_level *levels)
4827
{
4828 4829
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4830
	int level, max_level = ilk_wm_max_level(dev_priv);
4831
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4832

4833
	for (level = 0; level <= max_level; level++) {
4834
		struct skl_wm_level *result = &levels[level];
4835

4836 4837
		skl_compute_plane_wm(cstate, intel_pstate, level, wm_params,
				     result_prev, result);
4838 4839

		result_prev = result;
4840
	}
4841 4842
}

4843
static u32
4844
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4845
{
M
Mahesh Kumar 已提交
4846 4847
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4848
	uint_fixed_16_16_t linetime_us;
4849
	u32 linetime_wm;
4850

4851
	linetime_us = intel_get_linetime_us(cstate);
4852
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4853

4854 4855
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4856
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4857 4858

	return linetime_wm;
4859 4860
}

4861
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4862
				      const struct skl_wm_params *wp,
4863
				      struct skl_plane_wm *wm)
4864
{
4865 4866
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
4867 4868 4869
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4870 4871 4872

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4873
		return;
4874 4875 4876

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4877
		return;
4878

4879 4880
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4881 4882 4883 4884
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4895
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4896

4897
	if (wp->y_tiled) {
4898 4899
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4900
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4901 4902
				trans_offset_b;
	} else {
4903
		res_blocks = wm0_sel_res_b + trans_offset_b;
4904 4905 4906 4907 4908 4909 4910

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4911 4912 4913 4914 4915 4916 4917
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4918 4919
}

4920
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4921 4922
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4923
{
4924
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4925 4926 4927
	struct skl_wm_params wm_params;
	int ret;

4928
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4929 4930 4931 4932
					  &wm_params, color_plane);
	if (ret)
		return ret;

4933 4934
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->wm);
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4935 4936 4937 4938

	return 0;
}

4939
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4940 4941
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4942
{
4943
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4944 4945 4946
	struct skl_wm_params wm_params;
	int ret;

4947
	wm->is_planar = true;
4948 4949

	/* uv plane watermarks must also be validated for NV12/Planar */
4950
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4951 4952 4953
					  &wm_params, 1);
	if (ret)
		return ret;
4954

4955
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->uv_wm);
4956

4957
	return 0;
4958 4959
}

4960
static int skl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4961 4962
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4963
{
4964 4965 4966
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
4967 4968
	int ret;

4969 4970 4971
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4972
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4973
					plane_id, 0);
4974 4975 4976
	if (ret)
		return ret;

4977
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4978
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4979 4980 4981 4982 4983 4984 4985 4986
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4987
static int icl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5006
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5007 5008 5009 5010
						y_plane_id, 0);
		if (ret)
			return ret;

5011
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5012 5013 5014 5015
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5016
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5017 5018 5019 5020 5021 5022
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5023 5024
}

5025 5026
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_pipe_wm *pipe_wm)
5027
{
5028
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5029 5030 5031
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
5032
	int ret;
5033

L
Lyude 已提交
5034 5035 5036 5037 5038 5039
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5040 5041 5042 5043
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5044
		if (INTEL_GEN(dev_priv) >= 11)
5045
			ret = icl_build_plane_wm(pipe_wm,
5046
						 cstate, intel_pstate);
5047
		else
5048
			ret = skl_build_plane_wm(pipe_wm,
5049
						 cstate, intel_pstate);
5050 5051
		if (ret)
			return ret;
5052
	}
5053

5054
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5055

5056
	return 0;
5057 5058
}

5059 5060
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5061 5062 5063
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5064
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5065
	else
5066
		I915_WRITE_FW(reg, 0);
5067 5068
}

5069 5070 5071 5072
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5073
	u32 val = 0;
5074

5075
	if (level->plane_en)
5076
		val |= PLANE_WM_EN;
5077 5078 5079 5080
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5081

5082
	I915_WRITE_FW(reg, val);
5083 5084
}

5085 5086
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5087
{
5088
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5089
	int level, max_level = ilk_wm_max_level(dev_priv);
5090 5091 5092 5093 5094 5095 5096 5097
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5098 5099

	for (level = 0; level <= max_level; level++) {
5100
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5101
				   &wm->wm[level]);
5102
	}
5103
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5104
			   &wm->trans_wm);
5105

5106
	if (INTEL_GEN(dev_priv) >= 11) {
5107
		skl_ddb_entry_write(dev_priv,
5108 5109
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5110
	}
5111 5112 5113 5114 5115 5116 5117 5118

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5119 5120
}

5121 5122
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5123
{
5124
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5125
	int level, max_level = ilk_wm_max_level(dev_priv);
5126 5127 5128 5129 5130 5131
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5132 5133

	for (level = 0; level <= max_level; level++) {
5134 5135
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5136
	}
5137
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5138

5139
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5140 5141
}

5142 5143 5144
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5145
	return l1->plane_en == l2->plane_en &&
5146
		l1->ignore_lines == l2->ignore_lines &&
5147 5148 5149
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5150

5151 5152 5153 5154 5155
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5156

5157 5158 5159 5160 5161 5162 5163
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5164 5165
}

5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5183 5184
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5185
{
5186
	return a->start < b->end && b->start < a->end;
5187 5188
}

5189 5190 5191
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
				 const struct skl_ddb_entry entries[],
				 int num_entries, int ignore_idx)
5192
{
5193
	int i;
5194

5195 5196 5197
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5198
			return true;
5199
	}
5200

5201
	return false;
5202 5203
}

5204
static int skl_update_pipe_wm(struct intel_crtc_state *cstate,
5205
			      const struct skl_pipe_wm *old_pipe_wm,
5206 5207
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
5208
{
5209
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5210
	int ret;
5211

5212
	ret = skl_build_pipe_wm(cstate, pipe_wm);
5213 5214
	if (ret)
		return ret;
5215

5216
	*changed = !skl_pipe_wm_equals(crtc, old_pipe_wm, pipe_wm);
5217

5218
	return 0;
5219 5220
}

5221
static u32
5222
pipes_modified(struct intel_atomic_state *state)
5223
{
5224 5225
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5226
	u32 i, ret = 0;
5227

5228 5229
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5230 5231 5232 5233

	return ret;
}

5234
static int
5235 5236
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5237
{
5238 5239 5240 5241
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5242

5243 5244 5245
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5246

5247 5248 5249 5250
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5251 5252
			continue;

5253
		plane_state = intel_atomic_get_plane_state(state, plane);
5254 5255
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5256

5257
		new_crtc_state->update_planes |= BIT(plane_id);
5258 5259 5260 5261 5262 5263
	}

	return 0;
}

static int
5264
skl_compute_ddb(struct intel_atomic_state *state)
5265
{
5266 5267
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5268 5269
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5270 5271
	struct intel_crtc *crtc;
	int ret, i;
5272

5273 5274
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5275
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5276 5277
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5278 5279 5280
		if (ret)
			return ret;

5281 5282
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5283 5284
		if (ret)
			return ret;
5285 5286 5287 5288 5289
	}

	return 0;
}

5290 5291 5292 5293 5294
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5295
static void
5296
skl_print_wm_changes(struct intel_atomic_state *state)
5297
{
5298 5299 5300 5301 5302
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5303
	int i;
5304

5305 5306 5307
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5308 5309
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5310 5311 5312 5313 5314
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5315 5316
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5317 5318
			const struct skl_ddb_entry *old, *new;

5319 5320
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5321 5322 5323 5324

			if (skl_ddb_entry_equal(old, new))
				continue;

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5355 5356
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5357
				      plane->base.base.id, plane->base.name,
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5394
				      plane->base.base.id, plane->base.name,
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5405 5406 5407 5408
		}
	}
}

5409
static int
5410
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5411
{
5412
	struct drm_device *dev = state->base.dev;
5413
	const struct drm_i915_private *dev_priv = to_i915(dev);
5414 5415
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5416
	u32 realloc_pipes = pipes_modified(state);
5417
	int ret, i;
5418

5419 5420 5421 5422
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5423 5424
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5425

5426 5427 5428 5429 5430 5431 5432 5433
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5434
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5435
		(*changed) = true;
5436

5437
	if (!*changed)
5438 5439
		return 0;

5440 5441 5442 5443 5444 5445 5446 5447
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5448
				       state->base.acquire_ctx);
5449 5450 5451
		if (ret)
			return ret;

5452
		state->active_pipe_changes = ~0;
5453 5454

		/*
5455
		 * We usually only initialize state->active_crtcs if we
5456 5457 5458 5459
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5460 5461
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5477
	if (state->active_pipe_changes || state->modeset) {
5478
		realloc_pipes = ~0;
5479
		state->wm_results.dirty_pipes = ~0;
5480 5481 5482 5483 5484 5485
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5486 5487 5488 5489
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5490 5491 5492 5493 5494
	}

	return 0;
}

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5555
static int
5556
skl_compute_wm(struct intel_atomic_state *state)
5557
{
5558 5559 5560 5561
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5562 5563 5564 5565
	struct skl_pipe_wm *pipe_wm;
	bool changed = false;
	int ret, i;

5566 5567 5568
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5569 5570 5571 5572
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5573 5574
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5575
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5576 5577 5578
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5579 5580
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    cstate, i) {
5581
		const struct skl_pipe_wm *old_pipe_wm =
5582
			&old_crtc_state->wm.skl.optimal;
5583

5584
		pipe_wm = &cstate->wm.skl.optimal;
5585 5586 5587 5588
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, &changed);
		if (ret)
			return ret;

5589
		ret = skl_wm_add_affected_planes(state, crtc);
5590 5591 5592 5593
		if (ret)
			return ret;

		if (changed)
5594
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5595 5596
	}

5597 5598 5599 5600
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5601
	skl_print_wm_changes(state);
5602

5603 5604 5605
	return 0;
}

5606 5607 5608 5609 5610 5611 5612
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5613 5614 5615

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5616 5617 5618 5619

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5620 5621
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5622
{
5623
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5624
	struct drm_device *dev = intel_crtc->base.dev;
5625
	struct drm_i915_private *dev_priv = to_i915(dev);
5626
	struct skl_ddb_values *results = &state->wm_results;
5627

5628
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5629 5630
		return;

5631
	mutex_lock(&dev_priv->wm.wm_mutex);
5632

5633 5634
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5635

5636
	mutex_unlock(&dev_priv->wm.wm_mutex);
5637 5638
}

5639
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5640 5641 5642 5643 5644
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5645
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5657
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5658
{
5659
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5660
	struct ilk_wm_maximums max;
5661
	struct intel_wm_config config = {};
5662
	struct ilk_wm_values results = {};
5663
	enum intel_ddb_partitioning partitioning;
5664

5665
	ilk_compute_wm_config(dev_priv, &config);
5666

5667 5668
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5669 5670

	/* 5/6 split only in single pipe config on IVB+ */
5671
	if (INTEL_GEN(dev_priv) >= 7 &&
5672
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5673 5674
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5675

5676
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5677
	} else {
5678
		best_lp_wm = &lp_wm_1_2;
5679 5680
	}

5681
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5682
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5683

5684
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5685

5686
	ilk_write_wm_values(dev_priv, &results);
5687 5688
}

5689 5690
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5691
{
5692 5693
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5694

5695
	mutex_lock(&dev_priv->wm.wm_mutex);
5696
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5697 5698 5699
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5700

5701 5702
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5703 5704 5705
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5706

5707 5708
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5709
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5710 5711 5712
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5713 5714
}

5715
static inline void skl_wm_level_from_reg_val(u32 val,
5716
					     struct skl_wm_level *level)
5717
{
5718
	level->plane_en = val & PLANE_WM_EN;
5719
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5720 5721 5722
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5723 5724
}

5725
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5726
			      struct skl_pipe_wm *out)
5727
{
5728 5729
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5730 5731
	int level, max_level;
	enum plane_id plane_id;
5732
	u32 val;
5733

5734
	max_level = ilk_wm_max_level(dev_priv);
5735

5736
	for_each_plane_id_on_crtc(crtc, plane_id) {
5737
		struct skl_plane_wm *wm = &out->planes[plane_id];
5738

5739
		for (level = 0; level <= max_level; level++) {
5740 5741
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5742 5743
			else
				val = I915_READ(CUR_WM(pipe, level));
5744

5745
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5746 5747
		}

5748 5749
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5750 5751 5752 5753
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5754 5755
	}

5756
	if (!crtc->active)
5757
		return;
5758

5759
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5760 5761
}

5762
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5763
{
5764
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5765
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5766
	struct intel_crtc *crtc;
5767
	struct intel_crtc_state *cstate;
5768

5769
	skl_ddb_get_hw_state(dev_priv, ddb);
5770 5771
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5772 5773 5774

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5775 5776
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5777
	}
5778

5779 5780 5781 5782
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5783 5784
}

5785
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5786
{
5787
	struct drm_device *dev = crtc->base.dev;
5788
	struct drm_i915_private *dev_priv = to_i915(dev);
5789
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5790
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5791
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5792
	enum pipe pipe = crtc->pipe;
5793
	static const i915_reg_t wm0_pipe_reg[] = {
5794 5795 5796 5797 5798 5799
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5800
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5801
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5802

5803 5804
	memset(active, 0, sizeof(*active));

5805
	active->pipe_enabled = crtc->active;
5806 5807

	if (active->pipe_enabled) {
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5822
		int level, max_level = ilk_wm_max_level(dev_priv);
5823 5824 5825 5826 5827 5828 5829 5830 5831

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5832

5833
	crtc->wm.active.ilk = *active;
5834 5835
}

5836 5837 5838 5839 5840
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5841 5842 5843
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5844
	u32 tmp;
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5867 5868 5869 5870
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5871
	u32 tmp;
5872 5873 5874 5875

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5876
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5877
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5878
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5879
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5880
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5881
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5882
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5883 5884 5885 5886 5887
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5888 5889 5890
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5891 5892

	tmp = I915_READ(DSPFW2);
5893 5894 5895
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5896 5897 5898 5899 5900 5901

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5902 5903
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5904 5905

		tmp = I915_READ(DSPFW8_CHV);
5906 5907
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5908 5909

		tmp = I915_READ(DSPFW9_CHV);
5910 5911
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5912 5913 5914

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5915 5916 5917 5918 5919 5920 5921 5922 5923
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5924 5925
	} else {
		tmp = I915_READ(DSPFW7);
5926 5927
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5928 5929 5930

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5931 5932 5933 5934 5935 5936
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5937 5938 5939 5940 5941 5942
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5943
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5944 5945 5946 5947 5948 5949 5950 5951
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5952
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6083
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6084 6085
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6086
	struct intel_crtc *crtc;
6087 6088 6089 6090 6091 6092 6093 6094
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6095
		mutex_lock(&dev_priv->pcu_lock);
6096

6097
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6098 6099 6100
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6101 6102 6103 6104 6105 6106 6107 6108 6109
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6110
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6124

6125
		mutex_unlock(&dev_priv->pcu_lock);
6126 6127
	}

6128
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6144
			struct g4x_pipe_wm *raw =
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6166
		crtc_state->wm.vlv.intermediate = *active;
6167

6168
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6169 6170 6171 6172 6173
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6174
	}
6175 6176 6177 6178 6179

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6204
			struct g4x_pipe_wm *raw =
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6245
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6246
{
6247
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6248
	struct intel_crtc *crtc;
6249

6250 6251
	ilk_init_lp_watermarks(dev_priv);

6252
	for_each_intel_crtc(&dev_priv->drm, crtc)
6253 6254 6255 6256 6257 6258 6259
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6260
	if (INTEL_GEN(dev_priv) >= 7) {
6261 6262 6263
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6264

6265
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6266 6267
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6268
	else if (IS_IVYBRIDGE(dev_priv))
6269 6270
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6271 6272 6273 6274 6275

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6276 6277
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6278
 * @crtc: the #intel_crtc on which to compute the WM
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6309
void intel_update_watermarks(struct intel_crtc *crtc)
6310
{
6311
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6312 6313

	if (dev_priv->display.update_wm)
6314
		dev_priv->display.update_wm(crtc);
6315 6316
}

6317 6318 6319 6320
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6321 6322 6323
	if (!HAS_IPC(dev_priv))
		return;

6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6339 6340 6341 6342 6343 6344
	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
	else
		dev_priv->ipc_enabled = true;

6345 6346 6347
	intel_enable_ipc(dev_priv);
}

6348
/*
6349 6350 6351 6352
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

6353
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6354 6355 6356
{
	u16 rgvswctl;

6357
	lockdep_assert_held(&mchdev_lock);
6358

6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6376
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6377
{
6378
	u32 rgvmodectl;
6379 6380
	u8 fmax, fmin, fstart, vstart;

6381 6382
	spin_lock_irq(&mchdev_lock);

6383 6384
	rgvmodectl = I915_READ(MEMMODECTL);

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6405
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6406 6407
		PXVFREQ_PX_SHIFT;

6408 6409
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6410

6411 6412 6413
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6430
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6431
		DRM_ERROR("stuck trying to change perf mode\n");
6432
	mdelay(1);
6433

6434
	ironlake_set_drps(dev_priv, fstart);
6435

6436 6437
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6438
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6439
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6440
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6441 6442

	spin_unlock_irq(&mchdev_lock);
6443 6444
}

6445
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6446
{
6447 6448 6449 6450 6451
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6452 6453 6454 6455 6456 6457 6458 6459 6460

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6461
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6462
	mdelay(1);
6463 6464
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6465
	mdelay(1);
6466

6467
	spin_unlock_irq(&mchdev_lock);
6468 6469
}

6470 6471 6472 6473 6474
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6475
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6476
{
6477
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6478
	u32 limits;
6479

6480 6481 6482 6483 6484 6485
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6486
	if (INTEL_GEN(dev_priv) >= 9) {
6487 6488 6489
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6490
	} else {
6491 6492 6493
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6494
	}
6495 6496 6497 6498

	return limits;
}

C
Chris Wilson 已提交
6499
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6500
{
6501
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6502 6503
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6504

C
Chris Wilson 已提交
6505
	lockdep_assert_held(&rps->power.mutex);
6506

C
Chris Wilson 已提交
6507
	if (new_power == rps->power.mode)
6508 6509 6510 6511 6512 6513
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6514 6515
		ei_up = 16000;
		threshold_up = 95;
6516 6517

		/* Downclock if less than 85% busy over 32ms */
6518 6519
		ei_down = 32000;
		threshold_down = 85;
6520 6521 6522 6523
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6524 6525
		ei_up = 13000;
		threshold_up = 90;
6526 6527

		/* Downclock if less than 75% busy over 32ms */
6528 6529
		ei_down = 32000;
		threshold_down = 75;
6530 6531 6532 6533
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6534 6535
		ei_up = 10000;
		threshold_up = 85;
6536 6537

		/* Downclock if less than 60% busy over 32ms */
6538 6539
		ei_down = 32000;
		threshold_down = 60;
6540 6541 6542
		break;
	}

6543 6544 6545 6546 6547 6548
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6549
	I915_WRITE(GEN6_RP_UP_EI,
6550
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6551
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6552 6553
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6554 6555

	I915_WRITE(GEN6_RP_DOWN_EI,
6556
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6557
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6568

6569
skip_hw_write:
C
Chris Wilson 已提交
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6614 6615
}

C
Chris Wilson 已提交
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6634 6635
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6636
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6637 6638
	u32 mask = 0;

6639
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6640
	if (val > rps->min_freq_softlimit)
6641
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6642
	if (val < rps->max_freq_softlimit)
6643
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6644

6645 6646
	mask &= dev_priv->pm_rps_events;

6647
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6648 6649
}

6650 6651 6652
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6653
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6654
{
6655 6656
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6657 6658 6659
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6660
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6661
		gen6_set_rps_thresholds(dev_priv, val);
6662

6663
		if (INTEL_GEN(dev_priv) >= 9)
6664 6665
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6666
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6667 6668 6669 6670 6671 6672 6673
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6674
	}
6675 6676 6677 6678

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6679
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6680
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6681

6682
	rps->cur_freq = val;
6683
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6684 6685

	return 0;
6686 6687
}

6688
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6689
{
6690 6691
	int err;

6692
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6693 6694 6695
		      "Odd GPU freq value\n"))
		val &= ~1;

6696 6697
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6698
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6699 6700 6701 6702
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6703
		gen6_set_rps_thresholds(dev_priv, val);
6704
	}
6705

6706
	dev_priv->gt_pm.rps.cur_freq = val;
6707
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6708 6709

	return 0;
6710 6711
}

6712
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6713 6714
 *
 * * If Gfx is Idle, then
6715 6716 6717
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6718 6719 6720
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6721 6722
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6723
	int err;
6724

6725
	if (rps->cur_freq <= val)
6726 6727
		return;

6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6740
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6741
	err = valleyview_set_rps(dev_priv, val);
6742
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6743 6744 6745

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6746 6747
}

6748 6749
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6750 6751
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6752
	mutex_lock(&dev_priv->pcu_lock);
6753
	if (rps->enabled) {
6754 6755
		u8 freq;

6756
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6757 6758
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6759
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6760

6761 6762
		gen6_enable_rps_interrupts(dev_priv);

6763 6764 6765
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6766 6767
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6768

6769
		if (intel_set_rps(dev_priv,
6770
				  clamp(freq,
6771 6772
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6773
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6774
	}
6775
	mutex_unlock(&dev_priv->pcu_lock);
6776 6777
}

6778 6779
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6780 6781
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6782 6783 6784 6785 6786 6787 6788
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6789
	mutex_lock(&dev_priv->pcu_lock);
6790
	if (rps->enabled) {
6791
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6792
			vlv_set_rps_idle(dev_priv);
6793
		else
6794 6795
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6796 6797
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6798
	}
6799
	mutex_unlock(&dev_priv->pcu_lock);
6800 6801
}

6802
void gen6_rps_boost(struct i915_request *rq)
6803
{
6804
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6805
	unsigned long flags;
6806 6807
	bool boost;

6808 6809 6810
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6811
	if (!rps->enabled)
6812
		return;
6813

6814
	if (i915_request_signaled(rq))
6815 6816
		return;

6817
	/* Serializes with i915_request_retire() */
6818
	boost = false;
6819
	spin_lock_irqsave(&rq->lock, flags);
6820 6821
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6822
		rq->waitboost = true;
6823
	}
6824
	spin_unlock_irqrestore(&rq->lock, flags);
6825 6826 6827
	if (!boost)
		return;

6828 6829
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6830

6831
	atomic_inc(&rps->boosts);
6832 6833
}

6834
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6835
{
6836
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6837 6838
	int err;

6839
	lockdep_assert_held(&dev_priv->pcu_lock);
6840 6841
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6842

6843 6844
	if (!rps->enabled) {
		rps->cur_freq = val;
6845 6846 6847
		return 0;
	}

6848
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6849
		err = valleyview_set_rps(dev_priv, val);
6850
	else
6851 6852 6853
		err = gen6_set_rps(dev_priv, val);

	return err;
6854 6855
}

6856
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6857 6858
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6859
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6860 6861
}

6862
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6863 6864 6865 6866
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6867
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6868 6869
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6870 6871 6872 6873
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6874
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6875
	I915_WRITE(GEN6_RP_CONTROL, 0);
6876 6877
}

6878
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6879 6880 6881 6882
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6883 6884 6885 6886 6887
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6888
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6889
{
6890
	/* We're doing forcewake before Disabling RC6,
6891
	 * This what the BIOS expects when going into suspend */
6892
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6893

6894
	I915_WRITE(GEN6_RC_CONTROL, 0);
6895

6896
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6897 6898
}

6899 6900 6901 6902 6903
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6904
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6905 6906 6907
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6919 6920

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6921
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6922 6923 6924 6925 6926 6927 6928 6929
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6930 6931
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6932
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6933 6934 6935 6936 6937 6938 6939
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6940
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6941 6942 6943
		enable_rc6 = false;
	}

6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6958 6959 6960 6961 6962 6963
		enable_rc6 = false;
	}

	return enable_rc6;
}

6964
static bool sanitize_rc6(struct drm_i915_private *i915)
6965
{
6966
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6967

6968 6969 6970
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6971

6972 6973
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6974
		DRM_INFO("RC6 disabled by BIOS\n");
6975
		info->has_rc6 = 0;
6976 6977
	}

6978 6979 6980 6981 6982 6983 6984 6985
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6986

6987
	return info->has_rc6;
6988 6989
}

6990
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6991
{
6992 6993
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6994
	/* All of these values are in units of 50MHz */
6995

6996
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6997
	if (IS_GEN9_LP(dev_priv)) {
6998
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6999 7000 7001
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
7002
	} else {
7003
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7004 7005 7006
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
7007
	}
7008
	/* hw_max = RP0 until we check for overclocking */
7009
	rps->max_freq = rps->rp0_freq;
7010

7011
	rps->efficient_freq = rps->rp1_freq;
7012
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7013
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7014 7015 7016 7017 7018
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
7019
			rps->efficient_freq =
7020 7021
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
7022 7023
					rps->min_freq,
					rps->max_freq);
7024 7025
	}

7026
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7027
		/* Store the frequency values in 16.66 MHZ units, which is
7028 7029
		 * the natural hardware unit for SKL
		 */
7030 7031 7032 7033 7034
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
7035
	}
7036 7037
}

7038
static void reset_rps(struct drm_i915_private *dev_priv,
7039
		      int (*set)(struct drm_i915_private *, u8))
7040
{
7041 7042
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
7043 7044

	/* force a reset */
C
Chris Wilson 已提交
7045
	rps->power.mode = -1;
7046
	rps->cur_freq = -1;
7047

7048 7049
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
7050 7051
}

J
Jesse Barnes 已提交
7052
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
7053
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
7054 7055 7056
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

7057
	/* Program defaults and thresholds for RPS */
7058
	if (IS_GEN(dev_priv, 9))
7059 7060
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7061 7062 7063 7064 7065

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
7066 7067
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

7068 7069 7070
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7071
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
7072 7073 7074 7075

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7076
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
7077
{
7078
	struct intel_engine_cs *engine;
7079
	enum intel_engine_id id;
7080
	u32 rc6_mode;
Z
Zhe Wang 已提交
7081 7082 7083 7084 7085 7086

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7087
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7088 7089 7090 7091 7092

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
7093 7094 7095 7096 7097 7098 7099 7100
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
7101
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
7102
	} else {
7103
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
7104 7105
	}

Z
Zhe Wang 已提交
7106 7107
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7108
	for_each_engine(engine, dev_priv, id)
7109
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7110

7111
	if (HAS_GUC(dev_priv))
7112 7113
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
7114 7115
	I915_WRITE(GEN6_RC_SLEEP, 0);

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7139

Z
Zhe Wang 已提交
7140
	/* 3a: Enable RC6 */
7141
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
7142 7143 7144 7145 7146 7147 7148

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7149
	I915_WRITE(GEN6_RC_CONTROL,
7150 7151 7152
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7153

7154 7155
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7156
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7157
	 */
7158
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7159 7160
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7161 7162
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7163

7164
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7165 7166
}

7167
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7168
{
7169
	struct intel_engine_cs *engine;
7170
	enum intel_engine_id id;
7171 7172 7173 7174

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7175
	/* 1b: Get forcewake during program sequence. Although the driver
7176
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7177
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7178 7179 7180 7181 7182 7183 7184 7185

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7186
	for_each_engine(engine, dev_priv, id)
7187
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7188
	I915_WRITE(GEN6_RC_SLEEP, 0);
7189
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7190 7191

	/* 3: Enable RC6 */
7192

7193 7194 7195 7196
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7197

7198 7199 7200 7201 7202
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7203 7204
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7205 7206 7207
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
7208
	I915_WRITE(GEN6_RPNSWREQ,
7209
		   HSW_FREQUENCY(rps->rp1_freq));
7210
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7211
		   HSW_FREQUENCY(rps->rp1_freq));
7212 7213 7214 7215 7216
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7217 7218
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7219 7220 7221 7222 7223 7224 7225

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7226

7227
	/* 2: Enable RPS */
7228 7229 7230 7231 7232 7233 7234 7235
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7236
	reset_rps(dev_priv, gen6_set_rps);
7237

7238
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7239 7240
}

7241
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7242
{
7243
	struct intel_engine_cs *engine;
7244
	enum intel_engine_id id;
7245
	u32 rc6vids, rc6_mask;
7246
	u32 gtfifodbg;
7247
	int ret;
7248 7249 7250 7251

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7252 7253
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7254 7255 7256 7257
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7258
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7269
	for_each_engine(engine, dev_priv, id)
7270
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7271 7272 7273

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7274
	if (IS_IVYBRIDGE(dev_priv))
7275 7276 7277
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7278
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7279 7280
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7281
	/* We don't use those on Haswell */
7282 7283 7284 7285 7286
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7287 7288 7289 7290 7291
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7292 7293
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7294
	if (IS_GEN(dev_priv, 6) && ret) {
7295
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7296
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7297 7298 7299 7300 7301 7302 7303 7304 7305
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7306
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7307 7308
}

7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7328
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7329
{
7330
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7331 7332
	const int min_freq = 15;
	const int scaling_factor = 180;
7333 7334
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7335
	unsigned int max_gpu_freq, min_gpu_freq;
7336
	struct cpufreq_policy *policy;
7337

7338
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7339

7340 7341 7342
	if (rps->max_freq <= rps->min_freq)
		return;

7343 7344 7345 7346 7347 7348 7349 7350 7351
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7352
		max_ia_freq = tsc_khz;
7353
	}
7354 7355 7356 7357

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7358
	min_ring_freq = I915_READ(DCLK) & 0xf;
7359 7360
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7361

7362 7363
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7364
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7365
		/* Convert GT frequency to 50 HZ units */
7366 7367
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7368 7369
	}

7370 7371 7372 7373 7374
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7375
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7376
		const int diff = max_gpu_freq - gpu_freq;
7377 7378
		unsigned int ia_freq = 0, ring_freq = 0;

7379
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7380 7381 7382 7383 7384
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7385
		} else if (INTEL_GEN(dev_priv) >= 8) {
7386 7387
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7388
		} else if (IS_HASWELL(dev_priv)) {
7389
			ring_freq = mult_frac(gpu_freq, 5, 4);
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7406

B
Ben Widawsky 已提交
7407 7408
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7409 7410 7411
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7412 7413 7414
	}
}

7415
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7416 7417 7418
{
	u32 val, rp0;

7419
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7420

7421
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7436
	}
7437 7438 7439

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7453 7454 7455 7456
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7457 7458 7459
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7460 7461 7462
	return rp1;
}

7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7485
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7486 7487 7488
{
	u32 val, rp0;

7489
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7502
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7503
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7504
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7505 7506 7507 7508 7509
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7510
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7511
{
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7523 7524
}

7525 7526 7527 7528 7529
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7530
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7531 7532 7533
			     dev_priv->vlv_pctx->stolen->start);
}

7534 7535 7536 7537 7538 7539 7540 7541 7542

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7543
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7544
{
7545 7546
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7547 7548 7549 7550
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7551
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7552 7553
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7554 7555 7556 7557

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7558 7559

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7560 7561
}

7562
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7563 7564
{
	struct drm_i915_gem_object *pctx;
7565 7566
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7567 7568 7569 7570 7571
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7572
		resource_size_t pcbr_offset;
7573

7574
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7575
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7576
								      pcbr_offset,
7577
								      I915_GTT_OFFSET_NONE,
7578 7579 7580 7581
								      pctx_size);
		goto out;
	}

7582 7583
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7584 7585 7586 7587 7588 7589 7590 7591
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7592
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7593 7594
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7595
		goto out;
7596 7597
	}

7598 7599 7600 7601 7602
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7603 7604 7605
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7606
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7607 7608 7609
	dev_priv->vlv_pctx = pctx;
}

7610
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7611
{
7612
	struct drm_i915_gem_object *pctx;
7613

7614 7615 7616
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7617 7618
}

7619 7620
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7621
	dev_priv->gt_pm.rps.gpll_ref_freq =
7622 7623 7624 7625 7626
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7627
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7628 7629
}

7630
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7631
{
7632
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7633
	u32 val;
7634

7635
	valleyview_setup_pctx(dev_priv);
7636

7637 7638
	vlv_init_gpll_ref_freq(dev_priv);

7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7652
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7653

7654 7655
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7656
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7657 7658
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7659

7660
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7661
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7662 7663
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7664

7665
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7666
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7667 7668
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7669

7670
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7671
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7672 7673
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7674 7675
}

7676
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7677
{
7678
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7679
	u32 val;
7680

7681
	cherryview_setup_pctx(dev_priv);
7682

7683 7684
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7685
	mutex_lock(&dev_priv->sb_lock);
7686
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7687
	mutex_unlock(&dev_priv->sb_lock);
7688

7689 7690 7691 7692
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7693
	default:
7694 7695 7696
		dev_priv->mem_freq = 1600;
		break;
	}
7697
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7698

7699 7700
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7701
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7702 7703
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7704

7705
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7706
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7707 7708
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7709

7710
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7711
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7712 7713
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7714

7715
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7716
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7717 7718
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7719

7720 7721
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7722
		  "Odd GPU freq values\n");
7723 7724
}

7725
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7726
{
7727
	valleyview_cleanup_pctx(dev_priv);
7728 7729
}

7730
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7731
{
7732
	struct intel_engine_cs *engine;
7733
	enum intel_engine_id id;
7734
	u32 gtfifodbg, rc6_mode, pcbr;
7735

7736 7737
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7748
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7749

7750 7751 7752
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7753 7754 7755 7756 7757
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7758
	for_each_engine(engine, dev_priv, id)
7759
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7760 7761
	I915_WRITE(GEN6_RC_SLEEP, 0);

7762 7763
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7764

7765
	/* Allows RC6 residency counter to work */
7766 7767 7768 7769 7770 7771 7772 7773 7774
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7775 7776
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7777
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7778 7779
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7790
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7791 7792 7793 7794 7795 7796 7797
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7798
	/* 2: Enable RPS */
7799 7800
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7801
		   GEN6_RP_MEDIA_IS_GFX |
7802 7803 7804 7805
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7806 7807 7808 7809 7810 7811
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7812 7813
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7814 7815 7816
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7817
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7818 7819
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7820
	reset_rps(dev_priv, valleyview_set_rps);
7821

7822
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7823 7824
}

7825
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7826
{
7827
	struct intel_engine_cs *engine;
7828
	enum intel_engine_id id;
7829
	u32 gtfifodbg;
7830

7831 7832
	valleyview_check_pctx(dev_priv);

7833 7834
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7835 7836
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7837 7838 7839
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7840
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7841

7842 7843 7844
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7845 7846 7847 7848
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7849
	for_each_engine(engine, dev_priv, id)
7850
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7851

7852
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7853

7854
	/* Allows RC6 residency counter to work */
7855
	I915_WRITE(VLV_COUNTER_CONTROL,
7856 7857
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7858
				      VLV_RENDER_RC0_COUNT_EN |
7859 7860
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7861

7862 7863
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7864

7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7890 7891 7892 7893 7894 7895
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7896
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7897

7898 7899 7900
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7901
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7902 7903
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7904
	reset_rps(dev_priv, valleyview_set_rps);
7905

7906
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7907 7908
}

7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7938
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7939 7940 7941 7942 7943 7944
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7945
	lockdep_assert_held(&mchdev_lock);
7946

7947
	diff1 = now - dev_priv->ips.last_time1;
7948 7949 7950 7951 7952 7953 7954

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7955
		return dev_priv->ips.chipset_power;
7956 7957 7958 7959 7960 7961 7962 7963

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7964 7965
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7966 7967
		diff += total_count;
	} else {
7968
		diff = total_count - dev_priv->ips.last_count1;
7969 7970 7971
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7972 7973
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7984 7985
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7986

7987
	dev_priv->ips.chipset_power = ret;
7988 7989 7990 7991

	return ret;
}

7992 7993
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
7994 7995
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7996

7997
	if (!IS_GEN(dev_priv, 5))
7998 7999
		return 0;

8000 8001 8002 8003 8004
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8005 8006 8007 8008

	return val;
}

8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8036
{
8037 8038 8039
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

8040
	if (INTEL_INFO(dev_priv)->is_mobile)
8041 8042 8043
		return vm > 0 ? vm : 0;

	return vd;
8044 8045
}

8046
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8047
{
8048
	u64 now, diff, diffms;
8049 8050
	u32 count;

8051
	lockdep_assert_held(&mchdev_lock);
8052

8053 8054 8055
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
8056 8057 8058 8059 8060 8061 8062

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

8063 8064
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
8065 8066
		diff += count;
	} else {
8067
		diff = count - dev_priv->ips.last_count2;
8068 8069
	}

8070 8071
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
8072 8073 8074 8075

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
8076
	dev_priv->ips.gfx_power = diff;
8077 8078
}

8079 8080
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
8081 8082
	intel_wakeref_t wakeref;

8083
	if (!IS_GEN(dev_priv, 5))
8084 8085
		return;

8086 8087 8088 8089 8090
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8091 8092
}

8093
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8094 8095 8096 8097
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

8098
	lockdep_assert_held(&mchdev_lock);
8099

8100
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
8120
	corr2 = (corr * dev_priv->ips.corr);
8121 8122 8123 8124

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

8125
	__i915_update_gfx_val(dev_priv);
8126

8127
	return dev_priv->ips.gfx_power + state2;
8128 8129
}

8130 8131
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
8132 8133
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8134

8135
	if (!IS_GEN(dev_priv, 5))
8136 8137
		return 0;

8138 8139 8140 8141 8142
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8143

8144 8145
	return val;
}
8146

8147
static struct drm_i915_private *i915_mch_dev;
8148

8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
	i915 = i915_mch_dev;
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
8160 8161
}

8162 8163 8164 8165 8166 8167 8168 8169
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
8170 8171 8172 8173
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
8174

8175 8176 8177
	i915 = mchdev_get();
	if (!i915)
		return 0;
8178

8179 8180 8181 8182 8183 8184
	with_intel_runtime_pm(i915, wakeref) {
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
8185

8186 8187
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
8198
	struct drm_i915_private *i915;
8199

8200 8201 8202
	i915 = mchdev_get();
	if (!i915)
		return false;
8203

8204 8205 8206
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
8207
	spin_unlock_irq(&mchdev_lock);
8208

8209 8210
	drm_dev_put(&i915->drm);
	return true;
8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
8222
	struct drm_i915_private *i915;
8223

8224 8225 8226
	i915 = mchdev_get();
	if (!i915)
		return false;
8227

8228 8229 8230
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
8231
	spin_unlock_irq(&mchdev_lock);
8232

8233 8234
	drm_dev_put(&i915->drm);
	return true;
8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
8245 8246
	struct drm_i915_private *i915;
	bool ret;
8247

8248 8249 8250
	i915 = mchdev_get();
	if (!i915)
		return false;
8251

8252 8253 8254
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
8267 8268
	struct drm_i915_private *i915;
	bool ret;
8269

8270 8271 8272
	i915 = mchdev_get();
	if (!i915)
		return false;
8273

8274 8275 8276
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
8277
	spin_unlock_irq(&mchdev_lock);
8278

8279
	drm_dev_put(&i915->drm);
8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8306 8307
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8308
	rcu_assign_pointer(i915_mch_dev, dev_priv);
8309 8310 8311 8312 8313 8314

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8315
	rcu_assign_pointer(i915_mch_dev, NULL);
8316
}
8317

8318
static void intel_init_emon(struct drm_i915_private *dev_priv)
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8335
		I915_WRITE(PEW(i), 0);
8336
	for (i = 0; i < 3; i++)
8337
		I915_WRITE(DEW(i), 0);
8338 8339 8340

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8341
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8362
		I915_WRITE(PXW(i), val);
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8378
		I915_WRITE(PXWL(i), 0);
8379 8380 8381 8382 8383 8384

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8385
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8386 8387
}

8388
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8389
{
8390 8391
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8392 8393 8394 8395
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8396
	if (!sanitize_rc6(dev_priv)) {
8397
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8398
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8399
	}
I
Imre Deak 已提交
8400

8401
	mutex_lock(&dev_priv->pcu_lock);
8402 8403

	/* Initialize RPS limits (for userspace) */
8404 8405 8406 8407
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8408
	else if (INTEL_GEN(dev_priv) >= 6)
8409 8410 8411
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8412 8413
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8414

8415 8416
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8417 8418

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8419
		rps->min_freq_softlimit =
8420
			max_t(int,
8421
			      rps->efficient_freq,
8422 8423
			      intel_freq_opcode(dev_priv, 450));

8424
	/* After setting max-softlimit, find the overclock max freq */
8425
	if (IS_GEN(dev_priv, 6) ||
8426 8427 8428 8429 8430 8431
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8432
					 (rps->max_freq & 0xff) * 50,
8433
					 (params & 0xff) * 50);
8434
			rps->max_freq = params & 0xff;
8435 8436 8437
		}
	}

8438
	/* Finally allow us to boost to max by default */
8439
	rps->boost_freq = rps->max_freq;
8440

8441
	mutex_unlock(&dev_priv->pcu_lock);
8442 8443
}

8444
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8445
{
8446
	if (IS_VALLEYVIEW(dev_priv))
8447
		valleyview_cleanup_gt_powersave(dev_priv);
8448

8449
	if (!HAS_RC6(dev_priv))
8450
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8451 8452
}

8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8469 8470
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8471 8472
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8473
	intel_disable_gt_powersave(dev_priv);
8474

8475 8476
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8477
	else if (INTEL_GEN(dev_priv) >= 6)
8478
		gen6_reset_rps_interrupts(dev_priv);
8479 8480
}

8481 8482 8483 8484
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8485 8486 8487
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8488
	/* Currently there is no HW configuration to be done to disable. */
8489 8490

	i915->gt_pm.llc_pstate.enabled = false;
8491 8492
}

8493
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8494
{
8495
	lockdep_assert_held(&dev_priv->pcu_lock);
8496

8497 8498 8499
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8500 8501 8502 8503 8504 8505 8506 8507
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8508 8509

	dev_priv->gt_pm.rc6.enabled = false;
8510
}
8511

8512 8513 8514
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8515

8516 8517 8518
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8519
	if (INTEL_GEN(dev_priv) >= 9)
8520
		gen9_disable_rps(dev_priv);
8521
	else if (IS_CHERRYVIEW(dev_priv))
8522
		cherryview_disable_rps(dev_priv);
8523
	else if (IS_VALLEYVIEW(dev_priv))
8524
		valleyview_disable_rps(dev_priv);
8525
	else if (INTEL_GEN(dev_priv) >= 6)
8526
		gen6_disable_rps(dev_priv);
8527
	else if (IS_IRONLAKE_M(dev_priv))
8528
		ironlake_disable_drps(dev_priv);
8529 8530

	dev_priv->gt_pm.rps.enabled = false;
8531 8532 8533 8534 8535
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8536

8537 8538
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8539 8540 8541
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8542
	mutex_unlock(&dev_priv->pcu_lock);
8543 8544
}

8545 8546 8547 8548
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8549 8550 8551
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8552
	gen6_update_ring_freq(i915);
8553 8554

	i915->gt_pm.llc_pstate.enabled = true;
8555 8556
}

8557
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8558
{
8559
	lockdep_assert_held(&dev_priv->pcu_lock);
8560

8561 8562 8563
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8564 8565 8566 8567 8568 8569 8570 8571 8572 8573
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8574 8575

	dev_priv->gt_pm.rc6.enabled = true;
8576
}
8577

8578 8579 8580
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8581

8582
	lockdep_assert_held(&dev_priv->pcu_lock);
8583

8584 8585 8586
	if (rps->enabled)
		return;

8587 8588 8589 8590
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8591
	} else if (INTEL_GEN(dev_priv) >= 9) {
8592 8593 8594
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8595
	} else if (INTEL_GEN(dev_priv) >= 6) {
8596
		gen6_enable_rps(dev_priv);
8597 8598 8599
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8600
	}
8601

8602 8603
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8604

8605 8606
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8607 8608

	rps->enabled = true;
8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8619 8620
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8621 8622 8623
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8624

8625
	mutex_unlock(&dev_priv->pcu_lock);
8626
}
I
Imre Deak 已提交
8627

8628
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8629 8630 8631 8632 8633 8634 8635 8636 8637
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8638
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8639
{
8640
	enum pipe pipe;
8641

8642
	for_each_pipe(dev_priv, pipe) {
8643 8644 8645
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8646 8647 8648

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8649 8650 8651
	}
}

8652
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8653
{
8654
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8655

8656 8657 8658 8659
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8660 8661 8662
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8680
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8681 8682 8683
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8684

8685 8686 8687 8688 8689 8690 8691
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8692
	if (IS_IRONLAKE_M(dev_priv)) {
8693
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8694 8695 8696 8697 8698 8699 8700 8701
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8702 8703
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8704 8705 8706 8707 8708 8709
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8710

8711
	/* WaDisableRenderCachePipelinedFlush:ilk */
8712 8713
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8714

8715 8716 8717
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8718
	g4x_disable_trickle_feed(dev_priv);
8719

8720
	ibx_init_clock_gating(dev_priv);
8721 8722
}

8723
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8724 8725
{
	int pipe;
8726
	u32 val;
8727 8728 8729 8730 8731 8732

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8733 8734 8735
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8736 8737
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8738 8739 8740
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8741
	for_each_pipe(dev_priv, pipe) {
8742 8743 8744
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8745
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8746
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8747 8748 8749
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8750 8751
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8752
	/* WADP0ClockGatingDisable */
8753
	for_each_pipe(dev_priv, pipe) {
8754 8755 8756
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8757 8758
}

8759
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8760
{
8761
	u32 tmp;
8762 8763

	tmp = I915_READ(MCH_SSKPD);
8764 8765 8766
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8767 8768
}

8769
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8770
{
8771
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8772

8773
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8774 8775 8776 8777 8778

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8779
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8780 8781 8782
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8783 8784 8785
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8786 8787 8788
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8789 8790 8791 8792
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8793 8794
	 */
	I915_WRITE(GEN6_GT_MODE,
8795
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8796

8797
	I915_WRITE(CACHE_MODE_0,
8798
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8814
	 *
8815 8816
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8817 8818 8819 8820 8821
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8822
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8823 8824
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8825

8826 8827 8828 8829 8830 8831 8832 8833
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8834 8835 8836 8837 8838 8839 8840 8841
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8842 8843
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8844 8845 8846 8847 8848 8849 8850
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8851 8852 8853 8854
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8855

8856
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8857

8858
	cpt_init_clock_gating(dev_priv);
8859

8860
	gen6_check_mch_setup(dev_priv);
8861 8862 8863 8864
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8865
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8866

8867
	/*
8868
	 * WaVSThreadDispatchOverride:ivb,vlv
8869 8870 8871 8872
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8873 8874 8875 8876 8877 8878 8879 8880
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8881
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8882 8883 8884 8885 8886
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8887
	if (HAS_PCH_LPT_LP(dev_priv))
8888 8889 8890
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8891 8892

	/* WADPOClockGatingDisable:hsw */
8893 8894
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8895
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8896 8897
}

8898
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8899
{
8900
	if (HAS_PCH_LPT_LP(dev_priv)) {
8901
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8902 8903 8904 8905 8906 8907

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8908 8909 8910 8911 8912
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8913
	u32 val;
8914 8915 8916 8917 8918

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8919 8920 8921 8922 8923
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8924 8925 8926 8927 8928 8929 8930 8931 8932 8933

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8934 8935 8936 8937 8938
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8939 8940 8941 8942

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8943 8944
}

8945 8946 8947 8948 8949
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8950
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8951 8952
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8953 8954
}

8955
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8956
{
8957
	u32 val;
8958 8959
	cnp_init_clock_gating(dev_priv);

8960 8961 8962 8963
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8964 8965 8966 8967 8968 8969 8970 8971
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8972 8973 8974
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8975 8976
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8977 8978
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8979

R
Rodrigo Vivi 已提交
8980 8981 8982 8983 8984
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8985
	/* WaDisableVFclkgate:cnl */
8986
	/* WaVFUnitClockGatingDisable:cnl */
8987 8988 8989
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8990 8991
}

8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

9002
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9003
{
9004
	gen9_init_clock_gating(dev_priv);
9005 9006 9007 9008 9009

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9010 9011 9012 9013 9014

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9015

9016
	/* WaFbcNukeOnHostModify:kbl */
9017 9018
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9019 9020
}

9021
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9022
{
9023
	gen9_init_clock_gating(dev_priv);
9024 9025 9026 9027

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
9028 9029 9030 9031

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9032 9033
}

9034
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
9035
{
9036 9037 9038
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
9039
	enum pipe pipe;
B
Ben Widawsky 已提交
9040

9041
	/* WaSwitchSolVfFArbitrationPriority:bdw */
9042
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9043

9044
	/* WaPsrDPAMaskVBlankInSRD:bdw */
9045 9046 9047
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

9048
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9049
	for_each_pipe(dev_priv, pipe) {
9050
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
9051
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
9052
			   BDW_DPRS_MASK_VBLANK_SRD);
9053
	}
9054

9055 9056 9057 9058 9059
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9060

9061 9062
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9063 9064 9065 9066

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9067

9068 9069
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
9070

9071 9072
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9073

9074 9075 9076 9077
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

9078
	lpt_init_clock_gating(dev_priv);
9079 9080 9081 9082 9083 9084 9085 9086

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
9087 9088
}

9089
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9090
{
9091 9092 9093 9094 9095
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

9096
	/* This is required by WaCatErrorRejectionIssue:hsw */
9097 9098 9099 9100
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9101 9102 9103
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9104

9105 9106 9107
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9108 9109 9110 9111
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

9112
	/* WaDisable4x2SubspanOptimization:hsw */
9113 9114
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9115

9116 9117 9118
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9119 9120 9121 9122
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9123 9124
	 */
	I915_WRITE(GEN7_GT_MODE,
9125
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9126

9127 9128 9129 9130
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

9131
	/* WaSwitchSolVfFArbitrationPriority:hsw */
9132 9133
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

9134
	lpt_init_clock_gating(dev_priv);
9135 9136
}

9137
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9138
{
9139
	u32 snpcr;
9140

9141
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9142

9143
	/* WaDisableEarlyCull:ivb */
9144 9145 9146
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9147
	/* WaDisableBackToBackFlipFix:ivb */
9148 9149 9150 9151
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9152
	/* WaDisablePSDDualDispatchEnable:ivb */
9153
	if (IS_IVB_GT1(dev_priv))
9154 9155 9156
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9157 9158 9159
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9160
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9161 9162 9163
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9164
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9165 9166 9167
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9168
		   GEN7_WA_L3_CHICKEN_MODE);
9169
	if (IS_IVB_GT1(dev_priv))
9170 9171
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9172 9173 9174 9175
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9176 9177
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9178
	}
9179

9180
	/* WaForceL3Serialization:ivb */
9181 9182 9183
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9184
	/*
9185
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9186
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9187 9188
	 */
	I915_WRITE(GEN6_UCGCTL2,
9189
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9190

9191
	/* This is required by WaCatErrorRejectionIssue:ivb */
9192 9193 9194 9195
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9196
	g4x_disable_trickle_feed(dev_priv);
9197 9198

	gen7_setup_fixed_func_scheduler(dev_priv);
9199

9200 9201 9202 9203 9204
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9205

9206
	/* WaDisable4x2SubspanOptimization:ivb */
9207 9208
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9209

9210 9211 9212
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9213 9214 9215 9216
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9217 9218
	 */
	I915_WRITE(GEN7_GT_MODE,
9219
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9220

9221 9222 9223 9224
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9225

9226
	if (!HAS_PCH_NOP(dev_priv))
9227
		cpt_init_clock_gating(dev_priv);
9228

9229
	gen6_check_mch_setup(dev_priv);
9230 9231
}

9232
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9233
{
9234
	/* WaDisableEarlyCull:vlv */
9235 9236 9237
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9238
	/* WaDisableBackToBackFlipFix:vlv */
9239 9240 9241 9242
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9243
	/* WaPsdDispatchEnable:vlv */
9244
	/* WaDisablePSDDualDispatchEnable:vlv */
9245
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9246 9247
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9248

9249 9250 9251
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9252
	/* WaForceL3Serialization:vlv */
9253 9254 9255
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9256
	/* WaDisableDopClockGating:vlv */
9257 9258 9259
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9260
	/* This is required by WaCatErrorRejectionIssue:vlv */
9261 9262 9263 9264
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9265 9266
	gen7_setup_fixed_func_scheduler(dev_priv);

9267
	/*
9268
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9269
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9270 9271
	 */
	I915_WRITE(GEN6_UCGCTL2,
9272
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9273

9274 9275 9276 9277 9278
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9279

9280 9281 9282 9283
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9284 9285
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9286

9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9298 9299 9300 9301 9302 9303
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9304
	/*
9305
	 * WaDisableVLVClockGating_VBIIssue:vlv
9306 9307 9308
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9309
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9310 9311
}

9312
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9313
{
9314 9315 9316 9317 9318
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9319 9320 9321 9322

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9323 9324 9325 9326

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9327 9328 9329 9330

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9331

9332 9333 9334 9335 9336 9337 9338
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9339 9340 9341 9342 9343
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9344 9345
}

9346
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9347
{
9348
	u32 dspclk_gate;
9349 9350 9351 9352 9353 9354 9355 9356 9357

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9358
	if (IS_GM45(dev_priv))
9359 9360
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9361 9362 9363 9364

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9365

9366 9367 9368
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9369
	g4x_disable_trickle_feed(dev_priv);
9370 9371
}

9372
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9373 9374 9375 9376 9377 9378
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9379 9380
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9381 9382 9383

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9384 9385
}

9386
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9387 9388 9389 9390 9391 9392 9393
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9394 9395
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9396 9397 9398

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9399 9400
}

9401
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9402 9403 9404 9405 9406 9407
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9408

9409
	if (IS_PINEVIEW(dev_priv))
9410
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9411 9412 9413

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9414 9415

	/* interrupts should cause a wake up from C3 */
9416
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9417 9418 9419

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9420 9421 9422

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9423 9424
}

9425
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9426 9427
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9428 9429 9430 9431

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9432 9433 9434

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9435 9436
}

9437
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9438
{
9439 9440 9441
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9442 9443
}

9444
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9445
{
9446
	dev_priv->display.init_clock_gating(dev_priv);
9447 9448
}

9449
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9450
{
9451 9452
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9453 9454
}

9455
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9471
	if (IS_ICELAKE(dev_priv))
O
Oscar Mateo 已提交
9472
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9473
	else if (IS_CANNONLAKE(dev_priv))
9474
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9475 9476
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9477
	else if (IS_SKYLAKE(dev_priv))
9478
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9479
	else if (IS_KABYLAKE(dev_priv))
9480
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9481
	else if (IS_BROXTON(dev_priv))
9482
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9483 9484
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9485
	else if (IS_BROADWELL(dev_priv))
9486
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9487
	else if (IS_CHERRYVIEW(dev_priv))
9488
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9489
	else if (IS_HASWELL(dev_priv))
9490
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9491
	else if (IS_IVYBRIDGE(dev_priv))
9492
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9493
	else if (IS_VALLEYVIEW(dev_priv))
9494
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9495
	else if (IS_GEN(dev_priv, 6))
9496
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9497
	else if (IS_GEN(dev_priv, 5))
9498
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9499 9500
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9501
	else if (IS_I965GM(dev_priv))
9502
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9503
	else if (IS_I965G(dev_priv))
9504
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9505
	else if (IS_GEN(dev_priv, 3))
9506 9507 9508
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9509
	else if (IS_GEN(dev_priv, 2))
9510 9511 9512 9513 9514 9515 9516
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9517
/* Set up chip specific power management-related functions */
9518
void intel_init_pm(struct drm_i915_private *dev_priv)
9519
{
9520
	/* For cxsr */
9521
	if (IS_PINEVIEW(dev_priv))
9522
		i915_pineview_get_mem_freq(dev_priv);
9523
	else if (IS_GEN(dev_priv, 5))
9524
		i915_ironlake_get_mem_freq(dev_priv);
9525

9526
	/* For FIFO watermark updates */
9527
	if (INTEL_GEN(dev_priv) >= 9) {
9528
		skl_setup_wm_latency(dev_priv);
9529
		dev_priv->display.initial_watermarks = skl_initial_wm;
9530
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9531
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9532
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9533
		ilk_setup_wm_latency(dev_priv);
9534

9535
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9536
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9537
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9538
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9539
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9540 9541 9542 9543 9544 9545
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9546 9547 9548 9549
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9550
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9551
		vlv_setup_wm_latency(dev_priv);
9552
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9553
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9554
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9555
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9556
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9557 9558 9559 9560 9561 9562
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9563
	} else if (IS_PINEVIEW(dev_priv)) {
9564
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9565 9566 9567 9568 9569 9570 9571 9572 9573
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9574
			intel_set_memory_cxsr(dev_priv, false);
9575 9576 9577
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9578
	} else if (IS_GEN(dev_priv, 4)) {
9579
		dev_priv->display.update_wm = i965_update_wm;
9580
	} else if (IS_GEN(dev_priv, 3)) {
9581 9582
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9583
	} else if (IS_GEN(dev_priv, 2)) {
9584
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9585
			dev_priv->display.update_wm = i845_update_wm;
9586
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9587 9588
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9589
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9590 9591 9592
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9593 9594 9595
	}
}

9596 9597
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9598
	u32 flags =
9599 9600 9601 9602 9603 9604
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9605
		return -ENODEV;
9606 9607 9608
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9609
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9610 9611 9612 9613
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9614
		MISSING_CASE(flags);
9615 9616 9617 9618 9619 9620
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9621
	u32 flags =
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9641
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9642
{
9643 9644
	int status;

9645
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9646

9647 9648 9649 9650 9651 9652
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9653 9654
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9655 9656 9657
		return -EAGAIN;
	}

9658 9659 9660
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9661

9662 9663 9664
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9665 9666
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9667 9668 9669
		return -ETIMEDOUT;
	}

9670 9671
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9672

9673 9674 9675 9676 9677 9678
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9679 9680
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9681 9682 9683
		return status;
	}

B
Ben Widawsky 已提交
9684 9685 9686
	return 0;
}

9687
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9688 9689
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9690
{
9691 9692
	int status;

9693
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9694

9695 9696 9697 9698 9699 9700
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9701 9702
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9703 9704 9705
		return -EAGAIN;
	}

9706
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9707
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9708
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9709

9710 9711
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9712 9713
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9714 9715
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9716 9717 9718
		return -ETIMEDOUT;
	}

9719
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9720

9721 9722 9723 9724 9725 9726
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9727 9728
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9729 9730 9731
		return status;
	}

B
Ben Widawsky 已提交
9732 9733
	return 0;
}
9734

9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9756
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9757 9758
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9759
 * for @timeout_base_ms and if this times out for another 50 ms with
9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9771
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9786
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9787 9788 9789 9790 9791 9792 9793 9794
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9795
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9796
	 * account for interrupts that could reduce the number of these
9797 9798
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9799 9800 9801 9802
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9803
	ret = wait_for_atomic(COND, 50);
9804 9805 9806 9807 9808 9809 9810
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9811 9812
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9813 9814
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9815 9816 9817 9818
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9819
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9820 9821
}

9822
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9823
{
9824 9825 9826
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9827 9828
}

9829
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9830
{
9831 9832
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9833 9834 9835 9836
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9837
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9838 9839
}

9840
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9841
{
9842 9843
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9844
	/* CHV needs even values */
9845
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9846 9847
}

9848
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9849
{
9850
	if (INTEL_GEN(dev_priv) >= 9)
9851 9852
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9853
	else if (IS_CHERRYVIEW(dev_priv))
9854
		return chv_gpu_freq(dev_priv, val);
9855
	else if (IS_VALLEYVIEW(dev_priv))
9856 9857 9858
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9859 9860
}

9861 9862
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9863
	if (INTEL_GEN(dev_priv) >= 9)
9864 9865
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9866
	else if (IS_CHERRYVIEW(dev_priv))
9867
		return chv_freq_opcode(dev_priv, val);
9868
	else if (IS_VALLEYVIEW(dev_priv))
9869 9870
		return byt_freq_opcode(dev_priv, val);
	else
9871
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9872
}
9873

9874
void intel_pm_setup(struct drm_i915_private *dev_priv)
9875
{
9876
	mutex_init(&dev_priv->pcu_lock);
C
Chris Wilson 已提交
9877
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9878

9879
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9880

9881 9882
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9883
}
9884

9885 9886 9887
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9888
	u32 lower, upper, tmp;
9889
	int loop = 2;
9890

9891 9892
	/*
	 * The register accessed do not need forcewake. We borrow
9893 9894
	 * uncore lock to prevent concurrent access to range reg.
	 */
9895
	lockdep_assert_held(&dev_priv->uncore.lock);
9896

9897 9898
	/*
	 * vlv and chv residency counters are 40 bits in width.
9899 9900
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9901 9902 9903 9904 9905
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9906
	 */
9907 9908
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9920
	} while (upper != tmp && --loop);
9921

9922 9923
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9924 9925 9926 9927
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9928 9929 9930
	return lower | (u64)upper << 8;
}

9931
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9932
			   const i915_reg_t reg)
9933
{
9934 9935 9936 9937
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9938
	u32 mul, div;
9939

9940
	if (!HAS_RC6(dev_priv))
9941 9942
		return 0;

9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9960 9961
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9962
		mul = 1000000;
9963
		div = dev_priv->czclk_freq;
9964
		overflow_hw = BIT_ULL(40);
9965 9966
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9967 9968 9969 9970 9971 9972 9973 9974
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9975

9976 9977
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9978
	}
9979

9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
10003
}
T
Tvrtko Ursulin 已提交
10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}