intel_pm.c 233.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_atomic_plane.h"
37
#include "display/intel_bw.h"
38
#include "display/intel_display_types.h"
39 40 41
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
42 43
#include "gt/intel_llc.h"

44
#include "i915_drv.h"
45
#include "i915_fixed.h"
46
#include "i915_irq.h"
47
#include "i915_trace.h"
48
#include "intel_pm.h"
49
#include "intel_sideband.h"
50
#include "../../../platform/x86/intel_ips.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

75
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
76
{
77 78 79
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
80
		 * Display WA #0390: skl,kbl
81 82 83 84
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
85 86
		intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
87 88 89
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

90
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
91 92
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
93

94
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
95 96
	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
97

98 99 100 101
	/*
	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
	 * Display WA #0859: skl,bxt,kbl,glk,cfl
	 */
102
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
103
		   DISP_FBC_MEMORY_WAKE);
104 105
}

106
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
107
{
108
	gen9_init_clock_gating(dev_priv);
109

110
	/* WaDisableSDEUnitClockGating:bxt */
111
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
112 113
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

114 115
	/*
	 * FIXME:
116
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
117
	 */
118
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
119
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
120 121 122 123 124

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
125
	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
126
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
127 128 129 130 131 132 133

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
134
	intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
135

136 137 138 139
	/*
	 * WaFbcTurnOffFbcWatermark:bxt
	 * Display WA #0562: bxt
	 */
140
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
141
		   DISP_FBC_WM_DIS);
142

143 144 145 146
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:bxt
	 * Display WA #0883: bxt
	 */
147
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
148
		   ILK_DPFC_DISABLE_DUMMY0);
149 150
}

151 152 153 154 155 156 157 158 159
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
160
	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
161 162 163
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

164
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
165 166 167
{
	u32 tmp;

168
	tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
198
	tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
199 200 201
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

202
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
203 204 205
{
	u16 ddrpll, csipll;

206 207
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
223 224
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
252 253
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
254 255 256 257 258
		dev_priv->fsb_freq = 0;
		break;
	}
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

297 298
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

321 322 323 324
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

325
	vlv_punit_get(dev_priv);
326 327 328 329 330 331 332 333 334 335 336 337

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
338 339
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
340

341
	vlv_punit_put(dev_priv);
342 343
}

344 345 346 347
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

348
	vlv_punit_get(dev_priv);
349

350
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
351 352 353 354
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
355
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
356

357
	vlv_punit_put(dev_priv);
358 359
}

360 361 362
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

363
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
364
{
365
	bool was_enabled;
366
	u32 val;
367

368
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
369 370 371
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
372
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
373 374 375
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
376
	} else if (IS_PINEVIEW(dev_priv)) {
377
		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
378 379 380 381 382
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
383 384
		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
385
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
386
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
387 388
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
389 390
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
391
	} else if (IS_I915GM(dev_priv)) {
392 393 394 395 396
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
397
		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
398 399
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
400 401
		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
402
	} else {
403
		return false;
404
	}
405

406 407
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

408 409 410
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
411 412

	return was_enabled;
413 414
}

V
Ville Syrjälä 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
452
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
453
{
454 455
	bool ret;

456
	mutex_lock(&dev_priv->wm.wm_mutex);
457
	ret = _intel_set_memory_cxsr(dev_priv, enable);
458 459 460 461
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
462
	mutex_unlock(&dev_priv->wm.wm_mutex);
463 464

	return ret;
465
}
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
481
static const int pessimal_latency_ns = 5000;
482

483 484 485
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

486
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
487
{
488
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
489
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
490
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
491 492
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
493
	u32 dsparb, dsparb2, dsparb3;
494

495
	switch (pipe) {
496
	case PIPE_A:
497 498
		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
499 500 501 502
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
503 504
		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
505 506 507 508
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
509 510
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
511 512 513 514
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
515 516
		MISSING_CASE(pipe);
		return;
517 518
	}

519 520 521 522
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
523 524
}

525 526
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
527
{
528
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
529 530 531
	int size;

	size = dsparb & 0x7f;
532
	if (i9xx_plane == PLANE_B)
533 534
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

535 536
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
537 538 539 540

	return size;
}

541 542
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
543
{
544
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
545 546 547
	int size;

	size = dsparb & 0x1ff;
548
	if (i9xx_plane == PLANE_B)
549 550 551
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

552 553
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
554 555 556 557

	return size;
}

558 559
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
560
{
561
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
562 563 564 565 566
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

567 568
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
569 570 571 572 573

	return size;
}

/* Pineview has different values for various configs */
574
static const struct intel_watermark_params pnv_display_wm = {
575 576 577 578 579
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
580
};
581 582

static const struct intel_watermark_params pnv_display_hplloff_wm = {
583 584 585 586 587
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588
};
589 590

static const struct intel_watermark_params pnv_cursor_wm = {
591 592 593 594 595
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
596
};
597 598

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
599 600 601 602 603
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
604
};
605

606
static const struct intel_watermark_params i965_cursor_wm_info = {
607 608 609 610 611
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
612
};
613

614
static const struct intel_watermark_params i945_wm_info = {
615 616 617 618 619
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
620
};
621

622
static const struct intel_watermark_params i915_wm_info = {
623 624 625 626 627
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
628
};
629

630
static const struct intel_watermark_params i830_a_wm_info = {
631 632 633 634 635
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
636
};
637

638 639 640 641 642 643 644
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
645

646
static const struct intel_watermark_params i845_wm_info = {
647 648 649 650 651
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
652 653
};

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
691
	u64 ret;
692

693
	ret = mul_u32_u32(pixel_rate, cpp * latency);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

750 751
/**
 * intel_calculate_wm - calculate watermark level
752
 * @pixel_rate: pixel clock
753
 * @wm: chip FIFO params
754
 * @fifo_size: size of the FIFO buffer
755
 * @cpp: bytes per pixel
756 757 758 759 760 761 762 763 764 765 766 767 768
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
769 770 771 772
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
773
{
774
	int entries, wm_size;
775 776 777 778 779 780 781

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
782 783 784 785 786
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
787

788 789
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
790 791

	/* Don't promote wm_size to unsigned... */
792
	if (wm_size > wm->max_wm)
793 794 795
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
796 797 798 799 800 801 802 803 804 805 806

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

807 808 809
	return wm_size;
}

810 811 812 813 814 815 816 817 818 819
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

820 821 822 823 824
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

825 826 827
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
828
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
829 830

	/* FIXME check the 'enable' instead */
831
	if (!crtc_state->hw.active)
832 833 834 835 836 837 838 839 840 841 842
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
843
		return plane_state->hw.fb != NULL;
844
	else
845
		return plane_state->uapi.visible;
846 847
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

867
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
868
{
869
	struct intel_crtc *crtc, *enabled = NULL;
870

871
	for_each_intel_crtc(&dev_priv->drm, crtc) {
872
		if (intel_crtc_active(crtc)) {
873 874 875 876 877 878 879 880 881
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

882
static void pnv_update_wm(struct intel_crtc *unused_crtc)
883
{
884
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
885
	struct intel_crtc *crtc;
886 887
	const struct cxsr_latency *latency;
	u32 reg;
888
	unsigned int wm;
889

890
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
891 892 893
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
894
	if (!latency) {
895 896
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
897
		intel_set_memory_cxsr(dev_priv, false);
898 899 900
		return;
	}

901
	crtc = single_enabled_crtc(dev_priv);
902
	if (crtc) {
903 904
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
905 906
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
907
		int cpp = fb->format->cpp[0];
908
		int clock = pipe_mode->crtc_clock;
909 910

		/* Display SR */
911 912
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
913
					cpp, latency->display_sr);
914
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
915
		reg &= ~DSPFW_SR_MASK;
916
		reg |= FW_WM(wm, SR);
917
		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
918
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
919 920

		/* cursor SR */
921 922
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
923
					4, latency->cursor_sr);
924
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
925
		reg &= ~DSPFW_CURSOR_SR_MASK;
926
		reg |= FW_WM(wm, CURSOR_SR);
927
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
928 929

		/* Display HPLL off SR */
930 931
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
932
					cpp, latency->display_hpll_disable);
933
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
934
		reg &= ~DSPFW_HPLL_SR_MASK;
935
		reg |= FW_WM(wm, HPLL_SR);
936
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
937 938

		/* cursor HPLL off SR */
939 940
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
941
					4, latency->cursor_hpll_disable);
942
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
943
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
944
		reg |= FW_WM(wm, HPLL_CURSOR);
945
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
946
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
947

948
		intel_set_memory_cxsr(dev_priv, true);
949
	} else {
950
		intel_set_memory_cxsr(dev_priv, false);
951 952 953
	}
}

954 955 956 957 958 959 960 961 962 963
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
964
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
965 966 967 968 969 970
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

971 972
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
973
{
974 975 976 977 978
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

979
	intel_uncore_write(&dev_priv->uncore, DSPFW1,
980 981 982 983
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
984
	intel_uncore_write(&dev_priv->uncore, DSPFW2,
985 986 987 988 989 990
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
991
	intel_uncore_write(&dev_priv->uncore, DSPFW3,
992 993 994 995
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
996

997
	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
998 999
}

1000 1001 1002
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

1003
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1004 1005
				const struct vlv_wm_values *wm)
{
1006 1007 1008
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1009 1010
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1011
		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1012 1013 1014 1015 1016
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1017

1018 1019 1020 1021 1022
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
1023 1024 1025 1026 1027
	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1028

1029
	intel_uncore_write(&dev_priv->uncore, DSPFW1,
1030
		   FW_WM(wm->sr.plane, SR) |
1031 1032 1033
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1034
	intel_uncore_write(&dev_priv->uncore, DSPFW2,
1035 1036 1037
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1038
	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1039
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1040 1041

	if (IS_CHERRYVIEW(dev_priv)) {
1042
		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1043 1044
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1045
		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1046 1047
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1048
		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1049 1050
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1051
		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1052
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1053 1054 1055 1056 1057 1058 1059 1060 1061
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1062
	} else {
1063
		intel_uncore_write(&dev_priv->uncore, DSPFW7,
1064 1065
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1066
		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1067
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1068 1069 1070 1071 1072 1073
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1074 1075
	}

1076
	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1077 1078
}

1079 1080
#undef FW_WM_VLV

1081 1082 1083 1084 1085
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1086
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1087

1088
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1133 1134 1135
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1136
{
1137
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1138
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1139 1140
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1141 1142
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1143 1144 1145 1146 1147 1148 1149

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1150
	cpp = plane_state->hw.fb->format->cpp[0];
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1165
		cpp = max(cpp, 4u);
1166

1167 1168
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1169

1170
	width = drm_rect_width(&plane_state->uapi.dst);
1171 1172 1173 1174 1175 1176 1177

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1178
		unsigned int small, large;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1191
	return min_t(unsigned int, wm, USHRT_MAX);
1192 1193 1194 1195 1196
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1197
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1213
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1229 1230
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1231
			      u32 pri_val);
1232 1233 1234 1235

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1236
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1237
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1290 1291 1292 1293 1294 1295
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1296 1297

		if (plane_id == PLANE_PRIMARY)
1298 1299 1300 1301
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1318
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
			       int level)
{
	if (level < G4X_WM_LEVEL_SR)
		return false;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		return false;

	if (level >= G4X_WM_LEVEL_HPLL &&
	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		return false;

	return true;
}

1371 1372
static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1373
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1374
	struct intel_atomic_state *state =
1375
		to_intel_atomic_state(crtc_state->uapi.state);
1376
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1377 1378
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1379
	const struct g4x_pipe_wm *raw;
1380 1381
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1382 1383 1384 1385 1386
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1387 1388 1389
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1390 1391
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1392 1393
			continue;

1394
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
1443 1444 1445
	 * watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely. 'level-1' is the highest valid
	 * level here.
1446
	 */
1447
	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1448 1449 1450 1451

	return 0;
}

1452
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1453
{
1454
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1455
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1456 1457 1458
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1459
		to_intel_atomic_state(new_crtc_state->uapi.state);
1460 1461 1462
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1463 1464
	enum plane_id plane_id;

1465
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1466 1467 1468 1469 1470 1471 1472
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1473
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1474
		!new_crtc_state->disable_cxsr;
1475
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1476
		!new_crtc_state->disable_cxsr;
1477 1478 1479 1480 1481 1482 1483
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

1484 1485
		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		    intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		    intermediate->hpll_en);

	drm_WARN_ON(&dev_priv->drm,
		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		    intermediate->fbc_en && intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		    intermediate->fbc_en && intermediate->hpll_en);
1521

1522
out:
1523 1524 1525 1526 1527
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1528
		new_crtc_state->wm.need_postvbl_update = true;
1529 1530 1531 1532 1533 1534 1535 1536

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1537
	int num_active_pipes = 0;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1556
		num_active_pipes++;
1557 1558
	}

1559
	if (num_active_pipes != 1) {
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1599
				   struct intel_crtc *crtc)
1600
{
1601 1602 1603
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1604 1605 1606 1607 1608 1609 1610 1611

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1612
				    struct intel_crtc *crtc)
1613
{
1614 1615 1616
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1617 1618 1619 1620 1621

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1622
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1623 1624 1625 1626
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1627 1628
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1629 1630
				   unsigned int htotal,
				   unsigned int width,
1631
				   unsigned int cpp,
1632 1633 1634 1635
				   unsigned int latency)
{
	unsigned int ret;

1636 1637
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1638 1639 1640 1641 1642
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1643
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1644 1645 1646 1647
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1648 1649
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1650 1651 1652
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1653 1654

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1655 1656 1657
	}
}

1658 1659 1660
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1661
{
1662
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1663
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1664 1665
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1666
	unsigned int clock, htotal, cpp, width, wm;
1667 1668 1669 1670

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1671
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1672 1673
		return 0;

1674
	cpp = plane_state->hw.fb->format->cpp[0];
1675 1676
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1677
	width = crtc_state->pipe_src_w;
1678

1679
	if (plane->id == PLANE_CURSOR) {
1680 1681 1682 1683 1684 1685 1686 1687
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1688
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1689 1690 1691
				    dev_priv->wm.pri_latency[level] * 10);
	}

1692
	return min_t(unsigned int, wm, USHRT_MAX);
1693 1694
}

1695 1696 1697 1698 1699 1700
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1701
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1702
{
1703
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1704
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1705
	const struct g4x_pipe_wm *raw =
1706
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1707
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1708
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1709
	int num_active_planes = hweight8(active_planes);
1710
	const int fifo_size = 511;
1711
	int fifo_extra, fifo_left = fifo_size;
1712
	int sprite0_fifo_extra = 0;
1713 1714
	unsigned int total_rate;
	enum plane_id plane_id;
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1727 1728
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1729 1730
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1731

1732 1733
	if (total_rate > fifo_size)
		return -EINVAL;
1734

1735 1736
	if (total_rate == 0)
		total_rate = 1;
1737

1738
	for_each_plane_id_on_crtc(crtc, plane_id) {
1739 1740
		unsigned int rate;

1741 1742
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1743 1744 1745
			continue;
		}

1746 1747 1748
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1749 1750
	}

1751 1752 1753
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1754 1755 1756
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1757 1758

	/* spread the remainder evenly */
1759
	for_each_plane_id_on_crtc(crtc, plane_id) {
1760 1761 1762 1763 1764
		int plane_extra;

		if (fifo_left == 0)
			break;

1765
		if ((active_planes & BIT(plane_id)) == 0)
1766 1767 1768
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1769
		fifo_state->plane[plane_id] += plane_extra;
1770 1771 1772
		fifo_left -= plane_extra;
	}

1773
	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1774 1775 1776

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
1777
		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1778 1779 1780 1781
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1782 1783
}

1784 1785 1786 1787 1788 1789
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1790
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1801 1802 1803 1804 1805 1806 1807 1808
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1809 1810 1811 1812
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1813
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1814
				 int level, enum plane_id plane_id, u16 value)
1815
{
1816
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1817
	int num_levels = intel_wm_num_levels(dev_priv);
1818
	bool dirty = false;
1819

1820
	for (; level < num_levels; level++) {
1821
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1822

1823
		dirty |= raw->plane[plane_id] != value;
1824
		raw->plane[plane_id] = value;
1825
	}
1826 1827

	return dirty;
1828 1829
}

1830 1831
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1832
{
1833
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1834
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1835
	enum plane_id plane_id = plane->id;
1836
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1837
	int level;
1838
	bool dirty = false;
1839

1840
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1841 1842
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1843
	}
1844

1845
	for (level = 0; level < num_levels; level++) {
1846
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1847 1848
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1849

1850 1851
		if (wm > max_wm)
			break;
1852

1853
		dirty |= raw->plane[plane_id] != wm;
1854 1855
		raw->plane[plane_id] = wm;
	}
1856

1857
	/* mark all higher levels as invalid */
1858
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1859

1860 1861
out:
	if (dirty)
1862 1863 1864 1865 1866 1867
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1868 1869

	return dirty;
1870
}
1871

1872 1873
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1874
{
1875
	const struct g4x_pipe_wm *raw =
1876 1877 1878
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1879

1880 1881
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1882

1883
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1884
{
1885 1886 1887 1888
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1889 1890 1891 1892
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1893
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1894 1895
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1896
		to_intel_atomic_state(crtc_state->uapi.state);
1897 1898 1899
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1900 1901
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1902
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1903 1904
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1905 1906 1907
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1908
	unsigned int dirty = 0;
1909

1910 1911 1912
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1913 1914
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1915
			continue;
1916

1917
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1936
			intel_atomic_get_old_crtc_state(state, crtc);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1948
	}
1949

1950
	/* initially allow all levels */
1951
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1952 1953 1954 1955 1956
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1957
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1958

1959
	for (level = 0; level < wm_state->num_levels; level++) {
1960
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1961
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1962

1963
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1964
			break;
1965

1966 1967 1968 1969 1970 1971 1972 1973
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1974
						 raw->plane[PLANE_SPRITE0],
1975 1976
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1977

1978 1979 1980
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1981 1982
	}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1993 1994
}

1995 1996 1997
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1998
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1999
				   struct intel_crtc *crtc)
2000
{
2001
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2002
	struct intel_uncore *uncore = &dev_priv->uncore;
2003 2004
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2005 2006
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
2007
	int sprite0_start, sprite1_start, fifo_size;
2008
	u32 dsparb, dsparb2, dsparb3;
2009

2010 2011 2012
	if (!crtc_state->fifo_changed)
		return;

2013 2014 2015
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2016

2017 2018
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2019

2020 2021
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2031
	spin_lock(&uncore->lock);
2032

2033 2034
	switch (crtc->pipe) {
	case PIPE_A:
2035 2036
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2048 2049
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2050 2051
		break;
	case PIPE_B:
2052 2053
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2065 2066
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2067 2068
		break;
	case PIPE_C:
2069 2070
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2082 2083
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2084 2085 2086 2087
		break;
	default:
		break;
	}
2088

2089
	intel_uncore_posting_read_fw(uncore, DSPARB);
2090

2091
	spin_unlock(&uncore->lock);
2092 2093 2094 2095
}

#undef VLV_FIFO

2096
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2097
{
2098
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2099 2100 2101
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2102
		to_intel_atomic_state(new_crtc_state->uapi.state);
2103 2104 2105
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2106 2107
	int level;

2108
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2109 2110 2111 2112 2113 2114
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2115
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2116
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2117
		!new_crtc_state->disable_cxsr;
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2136
out:
2137 2138 2139 2140
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2141
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2142
		new_crtc_state->wm.need_postvbl_update = true;
2143 2144 2145 2146

	return 0;
}

2147
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2148 2149 2150
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2151
	int num_active_pipes = 0;
2152

2153
	wm->level = dev_priv->wm.max_level;
2154 2155
	wm->cxsr = true;

2156
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2157
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2158 2159 2160 2161 2162 2163 2164

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2165
		num_active_pipes++;
2166 2167 2168
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2169
	if (num_active_pipes != 1)
2170 2171
		wm->cxsr = false;

2172
	if (num_active_pipes > 1)
2173 2174
		wm->level = VLV_WM_LEVEL_PM2;

2175
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2176
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2177 2178 2179
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2180
		if (crtc->active && wm->cxsr)
2181 2182
			wm->sr = wm_state->sr[wm->level];

2183 2184 2185 2186
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2187 2188 2189
	}
}

2190
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2191
{
2192 2193
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2194

2195
	vlv_merge_wm(dev_priv, &new_wm);
2196

2197
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2198 2199
		return;

2200
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2201 2202
		chv_set_memory_dvfs(dev_priv, false);

2203
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2204 2205
		chv_set_memory_pm5(dev_priv, false);

2206
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2207
		_intel_set_memory_cxsr(dev_priv, false);
2208

2209
	vlv_write_wm_values(dev_priv, &new_wm);
2210

2211
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2212
		_intel_set_memory_cxsr(dev_priv, true);
2213

2214
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2215 2216
		chv_set_memory_pm5(dev_priv, true);

2217
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2218 2219
		chv_set_memory_dvfs(dev_priv, true);

2220
	*old_wm = new_wm;
2221 2222
}

2223
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2224
				   struct intel_crtc *crtc)
2225
{
2226 2227 2228
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2229 2230

	mutex_lock(&dev_priv->wm.wm_mutex);
2231 2232 2233 2234 2235 2236
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2237
				    struct intel_crtc *crtc)
2238
{
2239 2240 2241
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2242 2243 2244 2245 2246

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2247
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2248 2249 2250 2251
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2252
static void i965_update_wm(struct intel_crtc *unused_crtc)
2253
{
2254
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2255
	struct intel_crtc *crtc;
2256 2257
	int srwm = 1;
	int cursor_sr = 16;
2258
	bool cxsr_enabled;
2259 2260

	/* Calc sr entries for one plane configs */
2261
	crtc = single_enabled_crtc(dev_priv);
2262 2263 2264
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2265 2266
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2267 2268
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2269 2270
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2271
		int hdisplay = crtc->config->pipe_src_w;
2272
		int cpp = fb->format->cpp[0];
2273 2274
		int entries;

2275 2276
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2277 2278 2279 2280 2281
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2282 2283 2284
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2285

2286 2287 2288
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2289
		entries = DIV_ROUND_UP(entries,
2290 2291
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2292

2293
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2294 2295 2296
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2297 2298 2299
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2300

2301
		cxsr_enabled = true;
2302
	} else {
2303
		cxsr_enabled = false;
2304
		/* Turn off self refresh if both pipes are enabled */
2305
		intel_set_memory_cxsr(dev_priv, false);
2306 2307
	}

2308 2309 2310
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2311 2312

	/* 965 has limitations... */
2313
	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2314 2315 2316
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
2317
	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2318
		   FW_WM(8, PLANEC_OLD));
2319
	/* update cursor SR watermark */
2320
	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2321 2322 2323

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2324 2325
}

2326 2327
#undef FW_WM

2328
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2329
{
2330
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2331
	const struct intel_watermark_params *wm_info;
2332 2333
	u32 fwater_lo;
	u32 fwater_hi;
2334 2335 2336
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2337
	struct intel_crtc *crtc, *enabled = NULL;
2338

2339
	if (IS_I945GM(dev_priv))
2340
		wm_info = &i945_wm_info;
2341
	else if (!IS_GEN(dev_priv, 2))
2342 2343
		wm_info = &i915_wm_info;
	else
2344
		wm_info = &i830_a_wm_info;
2345

2346 2347
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2348
	if (intel_crtc_active(crtc)) {
2349 2350
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2351 2352 2353 2354
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2355
		if (IS_GEN(dev_priv, 2))
2356
			cpp = 4;
2357
		else
2358
			cpp = fb->format->cpp[0];
2359

2360
		planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2361
					       wm_info, fifo_size, cpp,
2362
					       pessimal_latency_ns);
2363
		enabled = crtc;
2364
	} else {
2365
		planea_wm = fifo_size - wm_info->guard_size;
2366 2367 2368 2369
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2370
	if (IS_GEN(dev_priv, 2))
2371
		wm_info = &i830_bc_wm_info;
2372

2373 2374
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2375
	if (intel_crtc_active(crtc)) {
2376 2377
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2378 2379 2380 2381
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2382
		if (IS_GEN(dev_priv, 2))
2383
			cpp = 4;
2384
		else
2385
			cpp = fb->format->cpp[0];
2386

2387
		planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2388
					       wm_info, fifo_size, cpp,
2389
					       pessimal_latency_ns);
2390 2391 2392 2393
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2394
	} else {
2395
		planeb_wm = fifo_size - wm_info->guard_size;
2396 2397 2398
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2399

2400 2401
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2402

2403
	if (IS_I915GM(dev_priv) && enabled) {
2404
		struct drm_i915_gem_object *obj;
2405

2406
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2407 2408

		/* self-refresh seems busted with untiled */
2409
		if (!i915_gem_object_is_tiled(obj))
2410 2411 2412
			enabled = NULL;
	}

2413 2414 2415 2416 2417 2418
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2419
	intel_set_memory_cxsr(dev_priv, false);
2420 2421

	/* Calc sr entries for one plane configs */
2422
	if (HAS_FW_BLC(dev_priv) && enabled) {
2423 2424
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2425 2426
		const struct drm_display_mode *pipe_mode =
			&enabled->config->hw.pipe_mode;
2427 2428
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2429 2430
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2431 2432
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2433 2434
		int entries;

2435
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2436
			cpp = 4;
2437
		else
2438
			cpp = fb->format->cpp[0];
2439

2440 2441
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2442
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2443 2444
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2445 2446 2447 2448
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2449
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2450
			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2451
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2452
		else
2453
			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2454 2455
	}

2456 2457 2458
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2459 2460 2461 2462 2463 2464 2465 2466

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

2467 2468
	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2469

2470 2471
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2472 2473
}

2474
static void i845_update_wm(struct intel_crtc *unused_crtc)
2475
{
2476
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2477
	struct intel_crtc *crtc;
2478
	const struct drm_display_mode *pipe_mode;
2479
	u32 fwater_lo;
2480 2481
	int planea_wm;

2482
	crtc = single_enabled_crtc(dev_priv);
2483 2484 2485
	if (crtc == NULL)
		return;

2486 2487
	pipe_mode = &crtc->config->hw.pipe_mode;
	planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2488
				       &i845_wm_info,
2489
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2490
				       4, pessimal_latency_ns);
2491
	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2492 2493
	fwater_lo |= (3<<8) | planea_wm;

2494 2495
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2496

2497
	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2498 2499
}

2500
/* latency must be in 0.1us units. */
2501 2502 2503
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2504
{
2505
	unsigned int ret;
2506

2507 2508
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2509 2510 2511 2512

	return ret;
}

2513
/* latency must be in 0.1us units. */
2514 2515 2516 2517 2518
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2519
{
2520
	unsigned int ret;
2521

2522 2523
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2524
	ret = DIV_ROUND_UP(ret, 64) + 2;
2525

2526 2527 2528
	return ret;
}

2529
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2530
{
2531 2532 2533 2534 2535 2536
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2537
	if (WARN_ON(!cpp))
2538 2539 2540 2541
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2542
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2543 2544
}

2545
struct ilk_wm_maximums {
2546 2547 2548 2549
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2550 2551
};

2552 2553 2554 2555
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2556 2557
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2558
			      u32 mem_value, bool is_lp)
2559
{
2560
	u32 method1, method2;
2561
	int cpp;
2562

2563 2564 2565
	if (mem_value == 0)
		return U32_MAX;

2566
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2567 2568
		return 0;

2569
	cpp = plane_state->hw.fb->format->cpp[0];
2570

2571
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2572 2573 2574 2575

	if (!is_lp)
		return method1;

2576
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2577
				 crtc_state->hw.pipe_mode.crtc_htotal,
2578
				 drm_rect_width(&plane_state->uapi.dst),
2579
				 cpp, mem_value);
2580 2581

	return min(method1, method2);
2582 2583
}

2584 2585 2586 2587
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2588 2589
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2590
			      u32 mem_value)
2591
{
2592
	u32 method1, method2;
2593
	int cpp;
2594

2595 2596 2597
	if (mem_value == 0)
		return U32_MAX;

2598
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2599 2600
		return 0;

2601
	cpp = plane_state->hw.fb->format->cpp[0];
2602

2603 2604
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2605
				 crtc_state->hw.pipe_mode.crtc_htotal,
2606
				 drm_rect_width(&plane_state->uapi.dst),
2607
				 cpp, mem_value);
2608 2609 2610
	return min(method1, method2);
}

2611 2612 2613 2614
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2615 2616
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2617
			      u32 mem_value)
2618
{
2619 2620
	int cpp;

2621 2622 2623
	if (mem_value == 0)
		return U32_MAX;

2624
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2625 2626
		return 0;

2627
	cpp = plane_state->hw.fb->format->cpp[0];
2628

2629
	return ilk_wm_method2(crtc_state->pixel_rate,
2630
			      crtc_state->hw.pipe_mode.crtc_htotal,
2631
			      drm_rect_width(&plane_state->uapi.dst),
2632
			      cpp, mem_value);
2633 2634
}

2635
/* Only for WM_LP. */
2636 2637
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2638
			      u32 pri_val)
2639
{
2640
	int cpp;
2641

2642
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2643 2644
		return 0;

2645
	cpp = plane_state->hw.fb->format->cpp[0];
2646

2647 2648
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2649 2650
}

2651 2652
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2653
{
2654
	if (INTEL_GEN(dev_priv) >= 8)
2655
		return 3072;
2656
	else if (INTEL_GEN(dev_priv) >= 7)
2657 2658 2659 2660 2661
		return 768;
	else
		return 512;
}

2662 2663 2664
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2665
{
2666
	if (INTEL_GEN(dev_priv) >= 8)
2667 2668
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2669
	else if (INTEL_GEN(dev_priv) >= 7)
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2680 2681
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2682
{
2683
	if (INTEL_GEN(dev_priv) >= 7)
2684 2685 2686 2687 2688
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2689
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2690
{
2691
	if (INTEL_GEN(dev_priv) >= 8)
2692 2693 2694 2695 2696
		return 31;
	else
		return 15;
}

2697
/* Calculate the maximum primary/sprite plane watermark */
2698
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2699
				     int level,
2700
				     const struct intel_wm_config *config,
2701 2702 2703
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2704
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2705 2706

	/* if sprites aren't enabled, sprites get nothing */
2707
	if (is_sprite && !config->sprites_enabled)
2708 2709 2710
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2711
	if (level == 0 || config->num_pipes_active > 1) {
2712
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2713 2714 2715 2716 2717 2718

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2719
		if (INTEL_GEN(dev_priv) <= 6)
2720 2721 2722
			fifo_size /= 2;
	}

2723
	if (config->sprites_enabled) {
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2735
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2736 2737 2738
}

/* Calculate the maximum cursor plane watermark */
2739
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2740 2741
				      int level,
				      const struct intel_wm_config *config)
2742 2743
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2744
	if (level > 0 && config->num_pipes_active > 1)
2745 2746 2747
		return 64;

	/* otherwise just report max that registers can hold */
2748
	return ilk_cursor_wm_reg_max(dev_priv, level);
2749 2750
}

2751
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2752 2753 2754
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2755
				    struct ilk_wm_maximums *max)
2756
{
2757 2758 2759 2760
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2761 2762
}

2763
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2764 2765 2766
					int level,
					struct ilk_wm_maximums *max)
{
2767 2768 2769 2770
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2771 2772
}

2773
static bool ilk_validate_wm_level(int level,
2774
				  const struct ilk_wm_maximums *max,
2775
				  struct intel_wm_level *result)
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2805 2806 2807
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2808 2809 2810 2811 2812 2813
		result->enable = true;
	}

	return ret;
}

2814
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2815
				 const struct intel_crtc *crtc,
2816
				 int level,
2817
				 struct intel_crtc_state *crtc_state,
2818 2819 2820
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2821
				 struct intel_wm_level *result)
2822
{
2823 2824 2825
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2826 2827 2828 2829 2830 2831 2832 2833

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2834
	if (pristate) {
2835
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2836
						     pri_latency, level);
2837
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2838 2839 2840
	}

	if (sprstate)
2841
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2842 2843

	if (curstate)
2844
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2845

2846 2847 2848
	result->enable = true;
}

2849
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2850
				  u16 wm[8])
2851
{
2852 2853
	struct intel_uncore *uncore = &dev_priv->uncore;

2854
	if (INTEL_GEN(dev_priv) >= 9) {
2855
		u32 val;
2856
		int ret, i;
2857
		int level, max_level = ilk_wm_max_level(dev_priv);
2858 2859 2860 2861 2862

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2863
					     &val, NULL);
2864 2865

		if (ret) {
2866 2867
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2883
					     &val, NULL);
2884
		if (ret) {
2885 2886
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2911
		/*
2912
		 * WaWmMemoryReadLatency:skl+,glk
2913
		 *
2914
		 * punit doesn't take into account the read latency so we need
2915 2916
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2917
		 */
2918 2919 2920 2921 2922
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2923
				wm[level] += 2;
2924
			}
2925 2926
		}

2927 2928 2929 2930 2931 2932
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2933
		if (dev_priv->dram_info.is_16gb_dimm)
2934 2935
			wm[0] += 1;

2936
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2937
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2938 2939 2940 2941

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2942 2943 2944 2945
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2946
	} else if (INTEL_GEN(dev_priv) >= 6) {
2947
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2948 2949 2950 2951 2952

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2953
	} else if (INTEL_GEN(dev_priv) >= 5) {
2954
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2955 2956 2957 2958 2959

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2960 2961
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2962 2963 2964
	}
}

2965
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2966
				       u16 wm[5])
2967 2968
{
	/* ILK sprite LP0 latency is 1300 ns */
2969
	if (IS_GEN(dev_priv, 5))
2970 2971 2972
		wm[0] = 13;
}

2973
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2974
				       u16 wm[5])
2975 2976
{
	/* ILK cursor LP0 latency is 1300 ns */
2977
	if (IS_GEN(dev_priv, 5))
2978 2979 2980
		wm[0] = 13;
}

2981
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2982 2983
{
	/* how many WM levels are we expecting */
2984
	if (INTEL_GEN(dev_priv) >= 9)
2985
		return 7;
2986
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2987
		return 4;
2988
	else if (INTEL_GEN(dev_priv) >= 6)
2989
		return 3;
2990
	else
2991 2992
		return 2;
}
2993

2994
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2995
				   const char *name,
2996
				   const u16 wm[8])
2997
{
2998
	int level, max_level = ilk_wm_max_level(dev_priv);
2999 3000 3001 3002 3003

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
3004 3005 3006
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
3007 3008 3009
			continue;
		}

3010 3011 3012 3013
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
3014
		if (INTEL_GEN(dev_priv) >= 9)
3015 3016
			latency *= 10;
		else if (level > 0)
3017 3018
			latency *= 5;

3019 3020 3021
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3022 3023 3024
	}
}

3025
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3026
				    u16 wm[5], u16 min)
3027
{
3028
	int level, max_level = ilk_wm_max_level(dev_priv);
3029 3030 3031 3032 3033 3034

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3035
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3036 3037 3038 3039

	return true;
}

3040
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3055 3056
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3057 3058 3059
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3060 3061
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3084 3085
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3086 3087 3088 3089 3090
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3091
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3092
{
3093
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3094 3095 3096 3097 3098 3099

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3100
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3101
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3102

3103 3104 3105
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3106

3107
	if (IS_GEN(dev_priv, 6)) {
3108
		snb_wm_latency_quirk(dev_priv);
3109 3110
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3111 3112
}

3113
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3114
{
3115
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3116
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3117 3118
}

3119
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3131
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3132 3133 3134

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3135
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3136 3137 3138 3139 3140 3141
		return false;
	}

	return true;
}

3142
/* Compute new watermarks for the pipe */
3143
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3144
{
3145
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3146
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3147
	struct intel_pipe_wm *pipe_wm;
3148 3149
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3150 3151 3152
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3153
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3154
	struct ilk_wm_maximums max;
3155

3156
	pipe_wm = &crtc_state->wm.ilk.optimal;
3157

3158 3159 3160 3161 3162 3163 3164
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3165 3166
	}

3167
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3168
	if (sprstate) {
3169 3170 3171 3172
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3173 3174
	}

3175 3176
	usable_level = max_level;

3177
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3178
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3179
		usable_level = 1;
3180 3181

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3182
	if (pipe_wm->sprites_scaled)
3183
		usable_level = 0;
3184

3185
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3186
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3187
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3188

3189
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3190
		return -EINVAL;
3191

3192
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3193

3194 3195
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3196

3197
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3198
				     pristate, sprstate, curstate, wm);
3199 3200 3201 3202 3203 3204

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3205 3206 3207 3208
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3209 3210
	}

3211
	return 0;
3212 3213
}

3214 3215 3216 3217 3218
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3219
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3220
{
3221
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3222
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3223
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3224
	struct intel_atomic_state *intel_state =
3225
		to_intel_atomic_state(newstate->uapi.state);
3226 3227 3228
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3229
	int level, max_level = ilk_wm_max_level(dev_priv);
3230 3231 3232 3233 3234 3235

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3236
	*a = newstate->wm.ilk.optimal;
3237
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3238
	    intel_state->skip_intermediate_wm)
3239 3240
		return 0;

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3262
	if (!ilk_validate_pipe_wm(dev_priv, a))
3263 3264 3265 3266 3267 3268
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3269 3270
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3271 3272 3273 3274

	return 0;
}

3275 3276 3277
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3278
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3279 3280 3281 3282 3283
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3284 3285
	ret_wm->enable = true;

3286
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3287
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3288 3289 3290 3291
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3292

3293 3294 3295 3296 3297
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3298
		if (!wm->enable)
3299
			ret_wm->enable = false;
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3311
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3312
			 const struct intel_wm_config *config,
3313
			 const struct ilk_wm_maximums *max,
3314 3315
			 struct intel_pipe_wm *merged)
{
3316
	int level, max_level = ilk_wm_max_level(dev_priv);
3317
	int last_enabled_level = max_level;
3318

3319
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3320
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3321
	    config->num_pipes_active > 1)
3322
		last_enabled_level = 0;
3323

3324
	/* ILK: FBC WM must be disabled always */
3325
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3326 3327 3328 3329 3330

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3331
		ilk_merge_wm_level(dev_priv, level, wm);
3332

3333 3334 3335 3336 3337
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3338 3339 3340 3341 3342 3343

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3344 3345
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3346 3347 3348
			wm->fbc_val = 0;
		}
	}
3349 3350 3351 3352 3353 3354 3355

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3356
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3357
	    intel_fbc_is_active(dev_priv)) {
3358 3359 3360 3361 3362 3363
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3364 3365
}

3366 3367 3368 3369 3370 3371
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3372
/* The value we need to program into the WM_LPx latency field */
3373 3374
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3375
{
3376
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3377 3378 3379 3380 3381
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3382
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3383
				   const struct intel_pipe_wm *merged,
3384
				   enum intel_ddb_partitioning partitioning,
3385
				   struct ilk_wm_values *results)
3386
{
3387 3388
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3389

3390
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3391
	results->partitioning = partitioning;
3392

3393
	/* LP1+ register values */
3394
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3395
		const struct intel_wm_level *r;
3396

3397
		level = ilk_wm_lp_to_level(wm_lp, merged);
3398

3399
		r = &merged->wm[level];
3400

3401 3402 3403 3404 3405
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3406
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3407 3408 3409
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3410 3411 3412
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3413
		if (INTEL_GEN(dev_priv) >= 8)
3414 3415 3416 3417 3418 3419
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3420 3421 3422 3423
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3424
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3425
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3426 3427 3428
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3429
	}
3430

3431
	/* LP0 register values */
3432
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3433
		enum pipe pipe = intel_crtc->pipe;
3434 3435
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3436

3437
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3438
			continue;
3439

3440 3441 3442 3443
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3444 3445 3446
	}
}

3447 3448
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3449 3450 3451 3452
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3453
{
3454
	int level, max_level = ilk_wm_max_level(dev_priv);
3455
	int level1 = 0, level2 = 0;
3456

3457 3458 3459 3460 3461
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3462 3463
	}

3464 3465
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3466 3467 3468
			return r2;
		else
			return r1;
3469
	} else if (level1 > level2) {
3470 3471 3472 3473 3474 3475
		return r1;
	} else {
		return r2;
	}
}

3476 3477 3478 3479 3480 3481 3482
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3483
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3484 3485
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3486 3487 3488 3489 3490
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3491
	for_each_pipe(dev_priv, pipe) {
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3529 3530
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3531
{
3532
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3533
	bool changed = false;
3534

3535 3536
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3537
		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3538
		changed = true;
3539 3540 3541
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3542
		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3543
		changed = true;
3544 3545 3546
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3547
		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3548
		changed = true;
3549
	}
3550

3551 3552 3553 3554
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3555

3556 3557 3558 3559 3560 3561 3562
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3563 3564
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3565
{
3566
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3567
	unsigned int dirty;
3568
	u32 val;
3569

3570
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3571 3572 3573 3574 3575
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3576
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3577
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3578
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3579
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3580
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3581
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3582

3583
	if (dirty & WM_DIRTY_DDB) {
3584
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3585
			val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3586 3587 3588 3589
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
3590
			intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3591
		} else {
3592
			val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3593 3594 3595 3596
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
3597
			intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3598
		}
3599 3600
	}

3601
	if (dirty & WM_DIRTY_FBC) {
3602
		val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3603 3604 3605 3606
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
3607
		intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3608 3609
	}

3610 3611
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3612
		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3613

3614
	if (INTEL_GEN(dev_priv) >= 7) {
3615
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3616
			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3617
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3618
			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3619
	}
3620

3621
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3622
		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3623
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3624
		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3625
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3626
		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3627 3628

	dev_priv->wm.hw = *results;
3629 3630
}

3631
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3632 3633 3634 3635
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3636
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3637
{
3638 3639 3640
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3641

3642
	for (i = 0; i < max_slices; i++) {
3643
		if (intel_uncore_read(&dev_priv->uncore, DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3644 3645
			enabled_slices_mask |= BIT(i);
	}
3646

3647
	return enabled_slices_mask;
3648 3649
}

3650 3651 3652 3653
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3654
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3655
{
3656
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3657 3658
}

3659 3660 3661
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3662 3663
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3664 3665
}

3666 3667 3668
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3681
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3682
	} else if (IS_GEN(dev_priv, 11)) {
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
3710
static int
3711
intel_enable_sagv(struct drm_i915_private *dev_priv)
3712 3713 3714
{
	int ret;

3715 3716 3717 3718
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3719 3720
		return 0;

3721
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3722 3723 3724
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3725
	/* We don't need to wait for SAGV when enabling */
3726 3727 3728

	/*
	 * Some skl systems, pre-release machines in particular,
3729
	 * don't actually have SAGV.
3730
	 */
3731
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3732
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3733
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3734 3735
		return 0;
	} else if (ret < 0) {
3736
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3737 3738 3739
		return ret;
	}

3740
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3741 3742 3743
	return 0;
}

3744
static int
3745
intel_disable_sagv(struct drm_i915_private *dev_priv)
3746
{
3747
	int ret;
3748

3749 3750 3751 3752
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3753 3754
		return 0;

3755
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3756
	/* bspec says to keep retrying for at least 1 ms */
3757 3758 3759 3760
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3761 3762
	/*
	 * Some skl systems, pre-release machines in particular,
3763
	 * don't actually have SAGV.
3764
	 */
3765
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3766
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3767
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3768
		return 0;
3769
	} else if (ret < 0) {
3770
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3771
		return ret;
3772 3773
	}

3774
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3775 3776 3777
	return 0;
}

3778 3779 3780
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3781
	const struct intel_bw_state *new_bw_state;
3782 3783
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3784

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;

	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3799
	if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3800
		intel_disable_sagv(dev_priv);
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to mask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;

	/*
	 * If new mask is zero - means there is nothing to mask,
	 * we can only unmask, which should be done in unmask.
	 */
	if (!new_mask)
		return;

	/*
	 * Restrict required qgv points before updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3827 3828 3829 3830 3831
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3832
	const struct intel_bw_state *new_bw_state;
3833 3834
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;
3845

3846 3847 3848 3849
	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3850
	if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3851
		intel_enable_sagv(dev_priv);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to unmask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = new_bw_state->qgv_points_mask;

	/*
	 * Allow required qgv points after updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3871 3872
}

3873
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3874
{
3875
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3876
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3877
	enum plane_id plane_id;
3878

3879 3880 3881
	if (!intel_has_sagv(dev_priv))
		return false;

3882
	if (!crtc_state->hw.active)
3883
		return true;
3884

3885
	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3886 3887
		return false;

3888
	for_each_plane_id_on_crtc(crtc, plane_id) {
3889
		const struct skl_plane_wm *wm =
3890 3891
			&crtc_state->wm.skl.optimal.planes[plane_id];
		int level;
3892

3893
		/* Skip this plane if it's not enabled */
3894
		if (!wm->wm[0].plane_en)
3895 3896 3897
			continue;

		/* Find the highest enabled wm level for this plane */
3898
		for (level = ilk_wm_max_level(dev_priv);
3899
		     !wm->wm[level].plane_en; --level)
3900 3901 3902
		     { }

		/*
3903 3904
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3905
		 * can't enable SAGV.
3906
		 */
3907
		if (!wm->wm[level].can_sagv)
3908 3909 3910 3911 3912 3913
			return false;
	}

	return true;
}

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum plane_id plane_id;

	if (!crtc_state->hw.active)
		return true;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		const struct skl_ddb_entry *plane_alloc =
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
		const struct skl_plane_wm *wm =
			&crtc_state->wm.skl.optimal.planes[plane_id];

		if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
			return false;
	}

	return true;
}

3935 3936
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
3937 3938 3939 3940 3941 3942 3943
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	if (INTEL_GEN(dev_priv) >= 12)
		return tgl_crtc_can_enable_sagv(crtc_state);
	else
		return skl_crtc_can_enable_sagv(crtc_state);
3944 3945
}

3946 3947
bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
			   const struct intel_bw_state *bw_state)
3948
{
3949 3950
	if (INTEL_GEN(dev_priv) < 11 &&
	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3951 3952
		return false;

3953 3954 3955 3956 3957
	return bw_state->pipe_sagv_reject == 0;
}

static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
3958
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3959
	int ret;
3960
	struct intel_crtc *crtc;
3961
	struct intel_crtc_state *new_crtc_state;
3962 3963 3964
	struct intel_bw_state *new_bw_state = NULL;
	const struct intel_bw_state *old_bw_state = NULL;
	int i;
3965

3966 3967 3968 3969 3970
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
3971

3972
		old_bw_state = intel_atomic_get_old_bw_state(state);
3973

3974 3975 3976 3977 3978
		if (intel_crtc_can_enable_sagv(new_crtc_state))
			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
		else
			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
	}
3979

3980 3981
	if (!new_bw_state)
		return 0;
3982

3983 3984
	new_bw_state->active_pipes =
		intel_calc_active_pipes(state, old_bw_state->active_pipes);
3985

3986 3987 3988 3989 3990 3991
	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;

		/*
		 * We store use_sagv_wm in the crtc state rather than relying on
		 * that bw state since we have no convenient way to get at the
		 * latter from the plane commit hooks (especially in the legacy
		 * cursor case)
		 */
		pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
				       intel_can_enable_sagv(dev_priv, new_bw_state);
	}

4006 4007
	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

	return 0;
4018 4019
}

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

4041
u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
4042 4043
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
4044
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
4045 4046 4047 4048 4049 4050 4051

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
			    const struct skl_ddb_entry *entry)
{
	u32 slice_mask = 0;
	u16 ddb_size = intel_get_ddb_size(dev_priv);
	u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u16 slice_size = ddb_size / num_supported_slices;
	u16 start_slice;
	u16 end_slice;

	if (!skl_ddb_entry_size(entry))
		return 0;

	start_slice = entry->start / slice_size;
	end_slice = (entry->end - 1) / slice_size;

	/*
	 * Per plane DDB entry can in a really worst case be on multiple slices
	 * but single entry is anyway contigious.
	 */
	while (start_slice <= end_slice) {
		slice_mask |= BIT(start_slice);
		start_slice++;
	}

	return slice_mask;
}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
{
	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
	int hdisplay, vdisplay;

	if (!crtc_state->hw.active)
		return 0;

	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);

	return hdisplay;
}

4098
static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc,
4099
				  u8 active_pipes);
4100

4101
static int
4102
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
4103
				   const struct intel_crtc_state *crtc_state,
4104
				   const u64 total_data_rate,
4105 4106
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
4107
{
4108
	struct drm_atomic_state *state = crtc_state->uapi.state;
4109
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4110 4111
	struct intel_crtc *for_crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct intel_crtc *crtc;
4112
	unsigned int pipe_weight = 0, total_weight = 0, weight_before_pipe = 0;
4113
	enum pipe for_pipe = for_crtc->pipe;
4114 4115 4116 4117 4118
	struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(intel_state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(intel_state);
	u8 active_pipes = new_dbuf_state->active_pipes;
4119
	u16 ddb_size;
4120
	u32 ddb_range_size;
4121
	u32 i;
4122 4123 4124 4125 4126
	u32 dbuf_slice_mask;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
4127 4128 4129
	int ret;

	*num_active = hweight8(active_pipes);
4130

4131
	if (!crtc_state->hw.active) {
4132 4133
		alloc->start = 0;
		alloc->end = 0;
4134
		return 0;
4135 4136
	}

4137
	ddb_size = intel_get_ddb_size(dev_priv);
4138

4139
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4140

4141
	/*
4142 4143 4144 4145 4146 4147
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
4148
	 */
4149 4150
	if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes &&
	    !dev_priv->wm.distrust_bios_wm) {
4151 4152 4153
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
4154 4155
		 *
		 * FIXME get rid of this mess
4156
		 */
4157
		*alloc = to_intel_crtc_state(for_crtc->base.state)->wm.skl.ddb;
4158
		return 0;
4159
	}
4160

4161 4162 4163
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
4164
	dbuf_slice_mask = skl_compute_dbuf_slices(for_crtc, active_pipes);
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

	total_slice_mask = dbuf_slice_mask;
4182 4183
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		enum pipe pipe = crtc->pipe;
4184 4185
		unsigned int weight;
		u8 pipe_dbuf_slice_mask;
4186

4187 4188 4189
		if (!crtc_state->hw.active)
			continue;

4190 4191
		pipe_dbuf_slice_mask =
			skl_compute_dbuf_slices(crtc, active_pipes);
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4210 4211
			continue;

4212 4213
		weight = intel_crtc_ddb_weight(crtc_state);
		total_weight += weight;
4214 4215

		if (pipe < for_pipe)
4216
			weight_before_pipe += weight;
4217
		else if (pipe == for_pipe)
4218
			pipe_weight = weight;
4219 4220
	}

4221 4222 4223 4224
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
4225 4226 4227 4228 4229 4230 4231
	new_dbuf_state->enabled_slices = total_slice_mask | BIT(DBUF_S1);

	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
	}
4232

4233 4234
	start = ddb_range_size * weight_before_pipe / total_weight;
	end = ddb_range_size * (weight_before_pipe + pipe_weight) / total_weight;
4235 4236 4237 4238

	alloc->start = offset + start;
	alloc->end = offset + end;

4239 4240
	drm_dbg_kms(&dev_priv->drm,
		    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
4241
		    for_crtc->base.base.id, for_crtc->base.name,
4242
		    dbuf_slice_mask, alloc->start, alloc->end, active_pipes);
4243 4244

	return 0;
4245 4246
}

4247 4248 4249 4250 4251
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4252
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4253
				 int level,
4254
				 unsigned int latency,
4255 4256 4257 4258 4259 4260 4261
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4262
{
4263
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4274
	drm_WARN_ON(&dev_priv->drm, ret);
4275 4276

	for (level = 0; level <= max_level; level++) {
4277 4278 4279
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4280 4281 4282 4283 4284
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4285

4286
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4287 4288
}

4289 4290
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4291
{
4292

4293 4294
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4295

4296 4297
	if (entry->end)
		entry->end += 1;
4298 4299
}

4300 4301 4302 4303
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4304 4305
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4306
{
4307 4308
	u32 val, val2;
	u32 fourcc = 0;
4309 4310 4311

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
4312
		val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4313
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4314 4315 4316
		return;
	}

4317
	val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
4318 4319

	/* No DDB allocated for disabled planes */
4320 4321 4322 4323
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4324

4325
	if (INTEL_GEN(dev_priv) >= 11) {
4326
		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4327 4328
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
4329 4330
		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
		val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4331

4332 4333
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4334 4335 4336 4337
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4338 4339 4340
	}
}

4341 4342 4343
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4344
{
4345 4346 4347
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4348
	intel_wakeref_t wakeref;
4349
	enum plane_id plane_id;
4350

4351
	power_domain = POWER_DOMAIN_PIPE(pipe);
4352 4353
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4354
		return;
4355

4356 4357 4358 4359 4360
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4361

4362
	intel_display_power_put(dev_priv, power_domain, wakeref);
4363
}
4364

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4381
static uint_fixed_16_16_t
4382 4383
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4384
{
4385
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4386
	u32 src_w, src_h, dst_w, dst_h;
4387 4388
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4389

4390 4391
	if (drm_WARN_ON(&dev_priv->drm,
			!intel_wm_plane_visible(crtc_state, plane_state)))
4392
		return u32_to_fixed16(0);
4393

4394 4395 4396 4397 4398 4399 4400
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4401 4402 4403 4404
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4405

4406 4407 4408 4409
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4410

4411
	return mul_fixed16(downscale_w, downscale_h);
4412 4413
}

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4429
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4430 4431 4432 4433 4434
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4435 4436
			[PIPE_A] = BIT(DBUF_S1),
		},
4437 4438 4439 4440
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4441 4442
			[PIPE_B] = BIT(DBUF_S1),
		},
4443 4444 4445 4446 4447
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4448 4449
			[PIPE_B] = BIT(DBUF_S2),
		},
4450 4451 4452 4453
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4454 4455
			[PIPE_C] = BIT(DBUF_S2),
		},
4456 4457 4458 4459 4460
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4461 4462
			[PIPE_C] = BIT(DBUF_S2),
		},
4463 4464 4465 4466 4467
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4468 4469
			[PIPE_C] = BIT(DBUF_S2),
		},
4470 4471 4472 4473 4474 4475
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4476 4477
			[PIPE_C] = BIT(DBUF_S2),
		},
4478
	},
4479
	{}
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4492
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4493 4494 4495 4496 4497
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4498 4499
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4500 4501 4502 4503
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4504 4505
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4506 4507 4508 4509 4510
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4511 4512
			[PIPE_B] = BIT(DBUF_S1),
		},
4513 4514 4515 4516
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4517 4518
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4519 4520 4521 4522 4523
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4524 4525
			[PIPE_C] = BIT(DBUF_S2),
		},
4526 4527 4528 4529 4530
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4531 4532
			[PIPE_C] = BIT(DBUF_S2),
		},
4533 4534 4535 4536 4537 4538
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4539 4540
			[PIPE_C] = BIT(DBUF_S2),
		},
4541 4542 4543 4544
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4545 4546
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4547 4548 4549 4550 4551
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4552 4553
			[PIPE_D] = BIT(DBUF_S2),
		},
4554 4555 4556 4557 4558
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4559 4560
			[PIPE_D] = BIT(DBUF_S2),
		},
4561 4562 4563 4564 4565 4566
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4567 4568
			[PIPE_D] = BIT(DBUF_S2),
		},
4569 4570 4571 4572 4573
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4574 4575
			[PIPE_D] = BIT(DBUF_S2),
		},
4576 4577 4578 4579 4580 4581
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4582 4583
			[PIPE_D] = BIT(DBUF_S2),
		},
4584 4585 4586 4587 4588 4589
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4590 4591
			[PIPE_D] = BIT(DBUF_S2),
		},
4592 4593 4594 4595 4596 4597 4598
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4599 4600
			[PIPE_D] = BIT(DBUF_S2),
		},
4601
	},
4602
	{}
4603 4604
};

4605 4606
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4607 4608 4609
{
	int i;

4610
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4622
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4636
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4637 4638
}

4639
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4640
{
4641
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4642 4643
}

4644
static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes)
4645 4646 4647 4648 4649
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4650
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4651
	else if (IS_GEN(dev_priv, 11))
4652
		return icl_compute_dbuf_slices(pipe, active_pipes);
4653 4654 4655 4656
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
4657
	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4658 4659
}

4660
static u64
4661 4662
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4663
			     int color_plane)
4664
{
4665
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4666
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4667 4668
	u32 data_rate;
	u32 width = 0, height = 0;
4669
	uint_fixed_16_16_t down_scale_amount;
4670
	u64 rate;
4671

4672
	if (!plane_state->uapi.visible)
4673
		return 0;
4674

4675
	if (plane->id == PLANE_CURSOR)
4676
		return 0;
4677 4678

	if (color_plane == 1 &&
4679
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4680
		return 0;
4681

4682 4683 4684 4685 4686
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4687 4688
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4689

4690
	/* UV plane does 1/2 pixel sub-sampling */
4691
	if (color_plane == 1) {
4692 4693
		width /= 2;
		height /= 2;
4694 4695
	}

4696
	data_rate = width * height;
4697

4698
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4699

4700 4701
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4702
	rate *= fb->format->cpp[color_plane];
4703
	return rate;
4704 4705
}

4706
static u64
4707 4708
skl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4709
{
4710 4711
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4712
	const struct intel_plane_state *plane_state;
4713
	struct intel_plane *plane;
4714
	u64 total_data_rate = 0;
4715 4716
	enum plane_id plane_id;
	int i;
4717

4718
	/* Calculate and cache data rate for each plane */
4719 4720 4721 4722 4723
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4724

4725
		/* packed/y */
4726 4727
		crtc_state->plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4728

4729
		/* uv-plane */
4730 4731 4732 4733 4734 4735 4736
		crtc_state->uv_plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 1);
	}

	for_each_plane_id_on_crtc(crtc, plane_id) {
		total_data_rate += crtc_state->plane_data_rate[plane_id];
		total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
4737 4738 4739 4740 4741
	}

	return total_data_rate;
}

4742
static u64
4743 4744
icl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4745
{
4746 4747
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4748
	const struct intel_plane_state *plane_state;
4749
	struct intel_plane *plane;
4750
	u64 total_data_rate = 0;
4751 4752
	enum plane_id plane_id;
	int i;
4753 4754

	/* Calculate and cache data rate for each plane */
4755 4756 4757 4758 4759
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4760

4761
		if (!plane_state->planar_linked_plane) {
4762 4763
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4764 4765 4766 4767 4768
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4769
			 * intel_atomic_crtc_state_for_each_plane_state(),
4770 4771 4772 4773
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4774
			if (plane_state->planar_slave)
4775 4776 4777
				continue;

			/* Y plane rate is calculated on the slave */
4778
			y_plane_id = plane_state->planar_linked_plane->id;
4779 4780
			crtc_state->plane_data_rate[y_plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4781

4782 4783
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4784 4785 4786
		}
	}

4787 4788 4789
	for_each_plane_id_on_crtc(crtc, plane_id)
		total_data_rate += crtc_state->plane_data_rate[plane_id];

4790 4791 4792
	return total_data_rate;
}

4793 4794 4795 4796 4797
static const struct skl_wm_level *
skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
		   enum plane_id plane_id,
		   int level)
{
4798 4799 4800 4801 4802
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];

	if (level == 0 && pipe_wm->use_sagv_wm)
		return &wm->sagv_wm0;
4803 4804 4805 4806

	return &wm->wm[level];
}

4807
static int
4808 4809
skl_allocate_pipe_ddb(struct intel_atomic_state *state,
		      struct intel_crtc *crtc)
4810
{
4811 4812
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4813
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4814
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4815 4816 4817
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4818
	u64 total_data_rate;
4819
	enum plane_id plane_id;
4820
	int num_active;
4821
	u32 blocks;
4822
	int level;
4823
	int ret;
4824

4825
	/* Clear the partitioning for disabled planes. */
4826 4827
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4828

4829
	if (!crtc_state->hw.active) {
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
		struct intel_atomic_state *state =
			to_intel_atomic_state(crtc_state->uapi.state);
		struct intel_dbuf_state *new_dbuf_state =
			intel_atomic_get_new_dbuf_state(state);
		const struct intel_dbuf_state *old_dbuf_state =
			intel_atomic_get_old_dbuf_state(state);

		/*
		 * FIXME hack to make sure we compute this sensibly when
		 * turning off all the pipes. Otherwise we leave it at
		 * whatever we had previously, and then runtime PM will
		 * mess it up by turning off all but S1. Remove this
		 * once the dbuf state computation flow becomes sane.
		 */
		if (new_dbuf_state->active_pipes == 0) {
			new_dbuf_state->enabled_slices = BIT(DBUF_S1);

			if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
				ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
				if (ret)
					return ret;
			}
		}

4854
		alloc->start = alloc->end = 0;
4855 4856 4857
		return 0;
	}

4858 4859
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4860
			icl_get_total_relative_data_rate(state, crtc);
4861
	else
4862
		total_data_rate =
4863
			skl_get_total_relative_data_rate(state, crtc);
4864

4865 4866 4867 4868 4869 4870
	ret = skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state,
						 total_data_rate,
						 alloc, &num_active);
	if (ret)
		return ret;

4871
	alloc_size = skl_ddb_entry_size(alloc);
4872
	if (alloc_size == 0)
4873
		return 0;
4874

4875
	/* Allocate fixed number of blocks for cursor. */
4876
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4877
	alloc_size -= total[PLANE_CURSOR];
4878
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4879
		alloc->end - total[PLANE_CURSOR];
4880
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4881 4882 4883

	if (total_data_rate == 0)
		return 0;
4884

4885
	/*
4886 4887
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4888
	 */
4889
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4890
		blocks = 0;
4891
		for_each_plane_id_on_crtc(crtc, plane_id) {
4892
			const struct skl_plane_wm *wm =
4893
				&crtc_state->wm.skl.optimal.planes[plane_id];
4894 4895

			if (plane_id == PLANE_CURSOR) {
4896
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4897 4898
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4899 4900 4901
					blocks = U32_MAX;
					break;
				}
4902
				continue;
4903
			}
4904

4905 4906
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4907 4908
		}

4909
		if (blocks <= alloc_size) {
4910 4911 4912
			alloc_size -= blocks;
			break;
		}
4913 4914
	}

4915
	if (level < 0) {
4916 4917 4918 4919
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4920 4921 4922
		return -EINVAL;
	}

4923
	/*
4924 4925 4926
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4927
	 */
4928
	for_each_plane_id_on_crtc(crtc, plane_id) {
4929
		const struct skl_plane_wm *wm =
4930
			&crtc_state->wm.skl.optimal.planes[plane_id];
4931 4932
		u64 rate;
		u16 extra;
4933

4934
		if (plane_id == PLANE_CURSOR)
4935 4936
			continue;

4937
		/*
4938 4939
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4940
		 */
4941 4942
		if (total_data_rate == 0)
			break;
4943

4944
		rate = crtc_state->plane_data_rate[plane_id];
4945 4946 4947
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4948
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4949 4950
		alloc_size -= extra;
		total_data_rate -= rate;
4951

4952 4953
		if (total_data_rate == 0)
			break;
4954

4955
		rate = crtc_state->uv_plane_data_rate[plane_id];
4956 4957 4958
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4959
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4960 4961 4962
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4963
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4964 4965 4966

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4967
	for_each_plane_id_on_crtc(crtc, plane_id) {
4968
		struct skl_ddb_entry *plane_alloc =
4969
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4970
		struct skl_ddb_entry *uv_plane_alloc =
4971
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4972 4973 4974 4975

		if (plane_id == PLANE_CURSOR)
			continue;

4976
		/* Gen11+ uses a separate plane for UV watermarks */
4977 4978
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4979 4980 4981 4982 4983 4984 4985

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4986

4987 4988 4989 4990
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4991
		}
4992
	}
4993

4994 4995 4996 4997 4998 4999 5000
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
5001
		for_each_plane_id_on_crtc(crtc, plane_id) {
5002
			struct skl_plane_wm *wm =
5003
				&crtc_state->wm.skl.optimal.planes[plane_id];
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
5020

5021
			/*
5022
			 * Wa_1408961008:icl, ehl
5023 5024
			 * Underruns with WM1+ disabled
			 */
5025
			if (IS_GEN(dev_priv, 11) &&
5026 5027
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
5028 5029
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5030
			}
5031 5032 5033 5034 5035 5036 5037
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
5038
	for_each_plane_id_on_crtc(crtc, plane_id) {
5039
		struct skl_plane_wm *wm =
5040
			&crtc_state->wm.skl.optimal.planes[plane_id];
5041

5042
		if (wm->trans_wm.plane_res_b >= total[plane_id])
5043
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
5044 5045
	}

5046
	return 0;
5047 5048
}

5049 5050
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5051
 * for the read latency) and cpp should always be <= 8, so that
5052 5053 5054
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
5055
static uint_fixed_16_16_t
5056 5057
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
5058
{
5059
	u32 wm_intermediate_val;
5060
	uint_fixed_16_16_t ret;
5061 5062

	if (latency == 0)
5063
		return FP_16_16_MAX;
5064

5065
	wm_intermediate_val = latency * pixel_rate * cpp;
5066
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5067

5068
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5069 5070
		ret = add_fixed16_u32(ret, 1);

5071 5072 5073
	return ret;
}

5074 5075 5076
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
5077
{
5078
	u32 wm_intermediate_val;
5079
	uint_fixed_16_16_t ret;
5080 5081

	if (latency == 0)
5082
		return FP_16_16_MAX;
5083 5084

	wm_intermediate_val = latency * pixel_rate;
5085 5086
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
5087
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5088 5089 5090
	return ret;
}

5091
static uint_fixed_16_16_t
5092
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5093
{
5094
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5095 5096
	u32 pixel_rate;
	u32 crtc_htotal;
5097 5098
	uint_fixed_16_16_t linetime_us;

5099
	if (!crtc_state->hw.active)
5100
		return u32_to_fixed16(0);
5101

5102
	pixel_rate = crtc_state->pixel_rate;
5103

5104
	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5105
		return u32_to_fixed16(0);
5106

5107
	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5108
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5109 5110 5111 5112

	return linetime_us;
}

5113
static int
5114 5115 5116 5117 5118
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
5119
{
5120
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5121
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5122
	u32 interm_pbpl;
5123

5124
	/* only planar format has two planes */
5125 5126
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5127 5128
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
5129 5130 5131
		return -EINVAL;
	}

5132 5133 5134 5135 5136 5137 5138
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5139
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5140

5141
	wp->width = width;
5142
	if (color_plane == 1 && wp->is_planar)
5143 5144
		wp->width /= 2;

5145 5146
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
5147

5148
	if (INTEL_GEN(dev_priv) >= 11 &&
5149
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5150 5151 5152 5153
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

5154
	if (drm_rotation_90_or_270(rotation)) {
5155
		switch (wp->cpp) {
5156
		case 1:
5157
			wp->y_min_scanlines = 16;
5158 5159
			break;
		case 2:
5160
			wp->y_min_scanlines = 8;
5161 5162
			break;
		case 4:
5163
			wp->y_min_scanlines = 4;
5164
			break;
5165
		default:
5166
			MISSING_CASE(wp->cpp);
5167
			return -EINVAL;
5168 5169
		}
	} else {
5170
		wp->y_min_scanlines = 4;
5171 5172
	}

5173
	if (skl_needs_memory_bw_wa(dev_priv))
5174
		wp->y_min_scanlines *= 2;
5175

5176 5177 5178
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5179 5180
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
5181

5182
		if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5183 5184
			interm_pbpl++;

5185 5186
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
5187
	} else {
5188
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5189 5190 5191 5192 5193 5194
					   wp->dbuf_block_size);

		if (!wp->x_tiled ||
		    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
			interm_pbpl++;

5195
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5196 5197
	}

5198 5199
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
5200

5201
	wp->linetime_us = fixed16_to_u32_round_up(
5202
					intel_get_linetime_us(crtc_state));
5203 5204 5205 5206

	return 0;
}

5207 5208 5209 5210 5211
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
5212
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5213 5214
	int width;

5215 5216 5217 5218 5219
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
5220
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5221 5222 5223

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
5224
				     plane_state->hw.rotation,
5225
				     intel_plane_pixel_rate(crtc_state, plane_state),
5226 5227 5228
				     wp, color_plane);
}

5229 5230 5231 5232 5233 5234 5235 5236 5237
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5238
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5239
				 int level,
5240
				 unsigned int latency,
5241 5242 5243
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5244
{
5245
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5246 5247
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5248
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5249

5250 5251 5252
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5253
		return;
5254
	}
5255

5256 5257 5258 5259
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5260 5261 5262
	if ((IS_KABYLAKE(dev_priv) ||
	     IS_COFFEELAKE(dev_priv) ||
	     IS_COMETLAKE(dev_priv)) &&
5263 5264 5265
	    dev_priv->ipc_enabled)
		latency += 4;

5266
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5267 5268 5269
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5270
				 wp->cpp, latency, wp->dbuf_block_size);
5271
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5272
				 crtc_state->hw.pipe_mode.crtc_htotal,
5273
				 latency,
5274
				 wp->plane_blocks_per_line);
5275

5276 5277
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5278
	} else {
5279
		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5280
		     wp->dbuf_block_size < 1) &&
5281
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5282
			selected_result = method2;
5283
		} else if (latency >= wp->linetime_us) {
5284
			if (IS_GEN(dev_priv, 9) &&
5285 5286 5287 5288 5289
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5290
			selected_result = method1;
5291
		}
5292
	}
5293

5294
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5295
	res_lines = div_round_up_fixed16(selected_result,
5296
					 wp->plane_blocks_per_line);
5297

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5313

5314 5315 5316 5317 5318 5319 5320 5321 5322
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5323
	}
5324

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5343 5344 5345
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5346 5347 5348
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5349
		return;
5350
	}
5351 5352 5353 5354 5355 5356 5357

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5358 5359
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5360 5361
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5362
	result->plane_en = true;
5363 5364 5365

	if (INTEL_GEN(dev_priv) < 12)
		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5366 5367
}

5368
static void
5369
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5370
		      const struct skl_wm_params *wm_params,
5371
		      struct skl_wm_level *levels)
5372
{
5373
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5374
	int level, max_level = ilk_wm_max_level(dev_priv);
5375
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5376

5377
	for (level = 0; level <= max_level; level++) {
5378
		struct skl_wm_level *result = &levels[level];
5379
		unsigned int latency = dev_priv->wm.skl_latency[level];
5380

5381 5382
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5383 5384

		result_prev = result;
5385
	}
5386 5387
}

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
				const struct skl_wm_params *wm_params,
				struct skl_plane_wm *plane_wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
	struct skl_wm_level *levels = plane_wm->wm;
	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;

	skl_compute_plane_wm(crtc_state, 0, latency,
			     wm_params, &levels[0],
			     sagv_wm);
}

5402
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5403
				      const struct skl_wm_params *wp,
5404
				      struct skl_plane_wm *wm)
5405
{
5406
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5407
	const struct drm_i915_private *dev_priv = to_i915(dev);
5408
	u16 trans_min, trans_amount, trans_y_tile_min;
5409
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5410 5411 5412

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5413
		return;
5414

5415 5416 5417 5418 5419 5420 5421
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5422
	if (INTEL_GEN(dev_priv) >= 11)
5423
		trans_min = 4;
5424 5425 5426 5427 5428 5429 5430 5431
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5432 5433 5434

	trans_offset_b = trans_min + trans_amount;

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5445
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5446

5447
	if (wp->y_tiled) {
5448 5449
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5450
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5451 5452
				trans_offset_b;
	} else {
5453
		res_blocks = wm0_sel_res_b + trans_offset_b;
5454 5455
	}

5456 5457 5458 5459 5460 5461 5462
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5463 5464
}

5465
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5466 5467
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5468
{
5469 5470
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5471
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5472 5473 5474
	struct skl_wm_params wm_params;
	int ret;

5475
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5476 5477 5478 5479
					  &wm_params, color_plane);
	if (ret)
		return ret;

5480
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5481 5482 5483 5484

	if (INTEL_GEN(dev_priv) >= 12)
		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);

5485
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5486 5487 5488 5489

	return 0;
}

5490
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5491 5492
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5493
{
5494
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5495 5496 5497
	struct skl_wm_params wm_params;
	int ret;

5498
	wm->is_planar = true;
5499 5500

	/* uv plane watermarks must also be validated for NV12/Planar */
5501
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5502 5503 5504
					  &wm_params, 1);
	if (ret)
		return ret;
5505

5506
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5507

5508
	return 0;
5509 5510
}

5511
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5512
			      const struct intel_plane_state *plane_state)
5513
{
5514
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5515
	enum plane_id plane_id = plane->id;
5516 5517
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5518 5519
	int ret;

5520 5521
	memset(wm, 0, sizeof(*wm));

5522 5523 5524
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5525
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5526
					plane_id, 0);
5527 5528 5529
	if (ret)
		return ret;

5530
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5531
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5532 5533 5534 5535 5536 5537 5538 5539
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5540
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5541 5542
			      const struct intel_plane_state *plane_state)
{
5543 5544 5545 5546
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	enum plane_id plane_id = plane->id;
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5547 5548
	int ret;

5549 5550
	memset(wm, 0, sizeof(*wm));

5551
	/* Watermarks calculated in master */
5552
	if (plane_state->planar_slave)
5553 5554
		return 0;

5555
	if (plane_state->planar_linked_plane) {
5556
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5557
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5558

5559 5560 5561 5562
		drm_WARN_ON(&dev_priv->drm,
			    !intel_wm_plane_visible(crtc_state, plane_state));
		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
			    fb->format->num_planes == 1);
5563

5564
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5565 5566 5567 5568
						y_plane_id, 0);
		if (ret)
			return ret;

5569
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5570 5571 5572 5573
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5574
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5575 5576 5577 5578 5579 5580
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5581 5582
}

5583 5584
static int skl_build_pipe_wm(struct intel_atomic_state *state,
			     struct intel_crtc *crtc)
5585
{
5586 5587 5588
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5589
	const struct intel_plane_state *plane_state;
5590 5591
	struct intel_plane *plane;
	int ret, i;
L
Lyude 已提交
5592

5593 5594 5595 5596 5597 5598 5599 5600
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		/*
		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
		 * instead but we don't populate that correctly for NV12 Y
		 * planes so for now hack this.
		 */
		if (plane->pipe != crtc->pipe)
			continue;
5601

5602
		if (INTEL_GEN(dev_priv) >= 11)
5603
			ret = icl_build_plane_wm(crtc_state, plane_state);
5604
		else
5605
			ret = skl_build_plane_wm(crtc_state, plane_state);
5606 5607
		if (ret)
			return ret;
5608
	}
5609

5610 5611
	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;

5612
	return 0;
5613 5614
}

5615 5616
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5617 5618 5619
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5620 5621
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5622
	else
5623
		intel_de_write_fw(dev_priv, reg, 0);
5624 5625
}

5626 5627 5628 5629
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5630
	u32 val = 0;
5631

5632
	if (level->plane_en)
5633
		val |= PLANE_WM_EN;
5634 5635 5636 5637
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5638

5639
	intel_de_write_fw(dev_priv, reg, val);
5640 5641
}

5642 5643
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5644
{
5645
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5646
	int level, max_level = ilk_wm_max_level(dev_priv);
5647 5648 5649 5650 5651 5652 5653 5654
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5655 5656

	for (level = 0; level <= max_level; level++) {
5657 5658 5659 5660
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5661
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5662
				   wm_level);
5663
	}
5664
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5665
			   &wm->trans_wm);
5666

5667
	if (INTEL_GEN(dev_priv) >= 11) {
5668
		skl_ddb_entry_write(dev_priv,
5669 5670
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5671
	}
5672 5673 5674 5675 5676 5677 5678 5679

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5680 5681
}

5682 5683
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5684
{
5685
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5686
	int level, max_level = ilk_wm_max_level(dev_priv);
5687 5688 5689 5690 5691 5692
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5693 5694

	for (level = 0; level <= max_level; level++) {
5695 5696 5697 5698
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5699
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5700
				   wm_level);
5701
	}
5702
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5703

5704
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5705 5706
}

5707 5708 5709
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5710
	return l1->plane_en == l2->plane_en &&
5711
		l1->ignore_lines == l2->ignore_lines &&
5712 5713 5714
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5715

5716 5717 5718 5719 5720
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5721

5722
	for (level = 0; level <= max_level; level++) {
5723 5724 5725 5726 5727 5728
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5729 5730 5731 5732
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5733 5734
}

5735 5736
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5737
{
5738
	return a->start < b->end && b->start < a->end;
5739 5740
}

5741
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5742
				 const struct skl_ddb_entry *entries,
5743
				 int num_entries, int ignore_idx)
5744
{
5745
	int i;
5746

5747 5748 5749
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5750
			return true;
5751
	}
5752

5753
	return false;
5754 5755
}

5756
static int
5757 5758
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5759
{
5760 5761
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5762 5763
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5764

5765 5766 5767
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5768

5769 5770 5771 5772
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5773 5774
			continue;

5775
		plane_state = intel_atomic_get_plane_state(state, plane);
5776 5777
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5778

5779
		new_crtc_state->update_planes |= BIT(plane_id);
5780 5781 5782 5783 5784 5785
	}

	return 0;
}

static int
5786
skl_compute_ddb(struct intel_atomic_state *state)
5787
{
5788 5789 5790 5791
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *old_dbuf_state;
	const struct intel_dbuf_state *new_dbuf_state;
	const struct intel_crtc_state *old_crtc_state;
5792
	struct intel_crtc_state *new_crtc_state;
5793 5794
	struct intel_crtc *crtc;
	int ret, i;
5795

5796
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5797
					    new_crtc_state, i) {
5798
		ret = skl_allocate_pipe_ddb(state, crtc);
5799 5800 5801
		if (ret)
			return ret;

5802 5803
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5804 5805
		if (ret)
			return ret;
5806 5807
	}

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);

	if (new_dbuf_state &&
	    new_dbuf_state->enabled_slices != old_dbuf_state->enabled_slices)
		drm_dbg_kms(&dev_priv->drm,
			    "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
			    old_dbuf_state->enabled_slices,
			    new_dbuf_state->enabled_slices,
			    INTEL_INFO(dev_priv)->num_supported_dbuf_slices);

5819 5820 5821
	return 0;
}

5822 5823 5824 5825 5826
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5827
static void
5828
skl_print_wm_changes(struct intel_atomic_state *state)
5829
{
5830 5831 5832 5833 5834
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5835
	int i;
5836

5837
	if (!drm_debug_enabled(DRM_UT_KMS))
5838 5839
		return;

5840 5841
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5842 5843 5844 5845 5846
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5847 5848
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5849 5850
			const struct skl_ddb_entry *old, *new;

5851 5852
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5853 5854 5855 5856

			if (skl_ddb_entry_equal(old, new))
				continue;

5857 5858 5859 5860 5861
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5874
			drm_dbg_kms(&dev_priv->drm,
5875 5876
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5877 5878 5879 5880 5881 5882
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
5883
				    enast(old_wm->sagv_wm0.plane_en),
5884 5885 5886 5887
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5888 5889
				    enast(new_wm->trans_wm.plane_en),
				    enast(new_wm->sagv_wm0.plane_en));
5890 5891

			drm_dbg_kms(&dev_priv->drm,
5892 5893
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5904
				    enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5905 5906 5907 5908 5909 5910 5911 5912 5913

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5914 5915
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
				    enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5916 5917

			drm_dbg_kms(&dev_priv->drm,
5918 5919
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5920 5921 5922 5923 5924 5925
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
5926
				    old_wm->sagv_wm0.plane_res_b,
5927 5928 5929 5930
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5931 5932
				    new_wm->trans_wm.plane_res_b,
				    new_wm->sagv_wm0.plane_res_b);
5933 5934

			drm_dbg_kms(&dev_priv->drm,
5935 5936
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5937 5938 5939 5940 5941 5942
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
5943
				    old_wm->sagv_wm0.min_ddb_alloc,
5944 5945 5946 5947
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5948 5949
				    new_wm->trans_wm.min_ddb_alloc,
				    new_wm->sagv_wm0.min_ddb_alloc);
5950 5951 5952 5953
		}
	}
}

5954 5955
static int intel_add_affected_pipes(struct intel_atomic_state *state,
				    u8 pipe_mask)
V
Ville Syrjälä 已提交
5956 5957 5958 5959 5960 5961 5962
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

5963 5964 5965
		if ((pipe_mask & BIT(crtc->pipe)) == 0)
			continue;

V
Ville Syrjälä 已提交
5966 5967 5968 5969 5970 5971 5972 5973
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5974
static int
5975
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5976
{
V
Ville Syrjälä 已提交
5977
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5978 5979 5980
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int i, ret;
5981

5982
	if (dev_priv->wm.distrust_bios_wm) {
5983 5984 5985 5986 5987 5988 5989 5990
		/*
		 * skl_ddb_get_pipe_allocation_limits() currently requires
		 * all active pipes to be included in the state so that
		 * it can redistribute the dbuf among them, and it really
		 * wants to recompute things when distrust_bios_wm is set
		 * so we add all the pipes to the state.
		 */
		ret = intel_add_affected_pipes(state, ~0);
5991 5992
		if (ret)
			return ret;
5993
	}
5994

5995 5996 5997 5998 5999 6000
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		struct intel_dbuf_state *new_dbuf_state;
		const struct intel_dbuf_state *old_dbuf_state;

		new_dbuf_state = intel_atomic_get_dbuf_state(state);
		if (IS_ERR(new_dbuf_state))
6001
			return PTR_ERR(new_dbuf_state);
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013

		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);

		new_dbuf_state->active_pipes =
			intel_calc_active_pipes(state, old_dbuf_state->active_pipes);

		if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes)
			break;

		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
6014 6015

		/*
6016 6017 6018
		 * skl_ddb_get_pipe_allocation_limits() currently requires
		 * all active pipes to be included in the state so that
		 * it can redistribute the dbuf among them.
6019
		 */
6020 6021
		ret = intel_add_affected_pipes(state,
					       new_dbuf_state->active_pipes);
V
Ville Syrjälä 已提交
6022 6023
		if (ret)
			return ret;
6024 6025

		break;
6026 6027 6028 6029 6030
	}

	return 0;
}

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
6075
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

6091
static int
6092
skl_compute_wm(struct intel_atomic_state *state)
6093
{
6094
	struct intel_crtc *crtc;
6095
	struct intel_crtc_state *new_crtc_state;
6096 6097
	int ret, i;

6098 6099
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
6100 6101
		return ret;

6102 6103
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
6104
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6105
	 * weren't otherwise being modified if pipe allocations had to change.
6106
	 */
6107 6108
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		ret = skl_build_pipe_wm(state, crtc);
6109 6110
		if (ret)
			return ret;
6111 6112
	}

6113 6114 6115 6116
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

6117 6118 6119
	ret = intel_compute_sagv_mask(state);
	if (ret)
		return ret;
6120

6121 6122 6123 6124 6125
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
6126
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6127 6128 6129 6130 6131
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

6132
	skl_print_wm_changes(state);
6133

6134 6135 6136
	return 0;
}

6137
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6138 6139 6140 6141 6142
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
6143
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

6155
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6156
{
6157
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6158
	struct ilk_wm_maximums max;
6159
	struct intel_wm_config config = {};
6160
	struct ilk_wm_values results = {};
6161
	enum intel_ddb_partitioning partitioning;
6162

6163
	ilk_compute_wm_config(dev_priv, &config);
6164

6165 6166
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6167 6168

	/* 5/6 split only in single pipe config on IVB+ */
6169
	if (INTEL_GEN(dev_priv) >= 7 &&
6170
	    config.num_pipes_active == 1 && config.sprites_enabled) {
6171 6172
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6173

6174
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6175
	} else {
6176
		best_lp_wm = &lp_wm_1_2;
6177 6178
	}

6179
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6180
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6181

6182
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6183

6184
	ilk_write_wm_values(dev_priv, &results);
6185 6186
}

6187
static void ilk_initial_watermarks(struct intel_atomic_state *state,
6188
				   struct intel_crtc *crtc)
6189
{
6190 6191 6192
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6193

6194
	mutex_lock(&dev_priv->wm.wm_mutex);
6195
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6196 6197 6198
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
6199

6200
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6201
				    struct intel_crtc *crtc)
6202
{
6203 6204 6205
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6206 6207 6208

	if (!crtc_state->wm.need_postvbl_update)
		return;
6209

6210
	mutex_lock(&dev_priv->wm.wm_mutex);
6211 6212
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
6213
	mutex_unlock(&dev_priv->wm.wm_mutex);
6214 6215
}

6216
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6217
{
6218
	level->plane_en = val & PLANE_WM_EN;
6219
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6220 6221 6222
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
6223 6224
}

6225
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6226
			      struct skl_pipe_wm *out)
6227
{
6228 6229
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
6230 6231
	int level, max_level;
	enum plane_id plane_id;
6232
	u32 val;
6233

6234
	max_level = ilk_wm_max_level(dev_priv);
6235

6236
	for_each_plane_id_on_crtc(crtc, plane_id) {
6237
		struct skl_plane_wm *wm = &out->planes[plane_id];
6238

6239
		for (level = 0; level <= max_level; level++) {
6240
			if (plane_id != PLANE_CURSOR)
6241
				val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6242
			else
6243
				val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6244

6245
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6246 6247
		}

6248 6249 6250
		if (INTEL_GEN(dev_priv) >= 12)
			wm->sagv_wm0 = wm->wm[0];

6251
		if (plane_id != PLANE_CURSOR)
6252
			val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6253
		else
6254
			val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6255 6256

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6257 6258
	}

6259
	if (!crtc->active)
6260
		return;
6261 6262
}

6263
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6264
{
6265
	struct intel_crtc *crtc;
6266
	struct intel_crtc_state *crtc_state;
6267

6268
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6269
		crtc_state = to_intel_crtc_state(crtc->base.state);
6270

6271
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6272
		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6273
	}
6274

6275
	if (dev_priv->active_pipes) {
6276 6277 6278
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
6279 6280
}

6281
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6282
{
6283
	struct drm_device *dev = crtc->base.dev;
6284
	struct drm_i915_private *dev_priv = to_i915(dev);
6285
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6286 6287
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6288
	enum pipe pipe = crtc->pipe;
6289

6290
	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6291

6292 6293
	memset(active, 0, sizeof(*active));

6294
	active->pipe_enabled = crtc->active;
6295 6296

	if (active->pipe_enabled) {
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6310
		int level, max_level = ilk_wm_max_level(dev_priv);
6311 6312 6313 6314 6315 6316 6317 6318 6319

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6320

6321
	crtc->wm.active.ilk = *active;
6322 6323
}

6324 6325 6326 6327 6328
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6329 6330 6331
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6332
	u32 tmp;
6333

6334
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6335 6336 6337 6338 6339
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

6340
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6341 6342 6343 6344 6345 6346 6347
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

6348
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6349 6350 6351 6352 6353 6354
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6355 6356 6357 6358
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6359
	u32 tmp;
6360 6361

	for_each_pipe(dev_priv, pipe) {
6362
		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6363

6364
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6365
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6366
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6367
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6368
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6369
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6370
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6371 6372 6373
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

6374
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6375
	wm->sr.plane = _FW_WM(tmp, SR);
6376 6377 6378
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6379

6380
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6381 6382 6383
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6384

6385
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6386 6387 6388
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
6389
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6390 6391
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6392

6393
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6394 6395
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6396

6397
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6398 6399
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6400

6401
		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6402
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6403 6404 6405 6406 6407 6408 6409 6410 6411
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6412
	} else {
6413
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6414 6415
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6416

6417
		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6418
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6419 6420 6421 6422 6423 6424
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6425 6426 6427 6428 6429 6430
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6431
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6432 6433 6434 6435 6436 6437
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

6438
	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6439

6440
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6500 6501 6502 6503 6504 6505
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6506 6507
	}

6508 6509 6510 6511 6512 6513 6514 6515
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6536
		if (plane_state->uapi.visible)
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6574
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6575 6576
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6577
	struct intel_crtc *crtc;
6578 6579 6580 6581
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

6582
	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6583 6584 6585
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6586
		vlv_punit_get(dev_priv);
6587

6588
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6589 6590 6591
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6592 6593 6594 6595 6596 6597 6598 6599 6600
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6601
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6602 6603 6604 6605 6606
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6607 6608 6609
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6610 6611 6612 6613 6614 6615
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6616

6617
		vlv_punit_put(dev_priv);
6618 6619
	}

6620
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6636
			struct g4x_pipe_wm *raw =
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6658
		crtc_state->wm.vlv.intermediate = *active;
6659

6660 6661 6662 6663 6664 6665 6666
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6667
	}
6668

6669 6670 6671
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6672 6673
}

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6694
		if (plane_state->uapi.visible)
6695 6696 6697
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6698
			struct g4x_pipe_wm *raw =
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6723 6724 6725 6726 6727 6728
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
6729 6730 6731
	intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
	intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
	intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
6732 6733 6734 6735 6736 6737 6738

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6739
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6740
{
6741
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6742
	struct intel_crtc *crtc;
6743

6744 6745
	ilk_init_lp_watermarks(dev_priv);

6746
	for_each_intel_crtc(&dev_priv->drm, crtc)
6747 6748
		ilk_pipe_wm_get_hw_state(crtc);

6749 6750 6751
	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
6752

6753
	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
6754
	if (INTEL_GEN(dev_priv) >= 7) {
6755 6756
		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
6757
	}
6758

6759
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6760
		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6761
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6762
	else if (IS_IVYBRIDGE(dev_priv))
6763
		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6764
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6765 6766

	hw->enable_fbc_wm =
6767
		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6768 6769
}

6770 6771
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6772
 * @crtc: the #intel_crtc on which to compute the WM
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6803
void intel_update_watermarks(struct intel_crtc *crtc)
6804
{
6805
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6806 6807

	if (dev_priv->display.update_wm)
6808
		dev_priv->display.update_wm(crtc);
6809 6810
}

6811 6812 6813 6814
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6815 6816 6817
	if (!HAS_IPC(dev_priv))
		return;

6818
	val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
6819 6820 6821 6822 6823 6824

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

6825
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
6826 6827
}

6828 6829 6830 6831 6832 6833 6834
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
6835 6836 6837
	if (IS_KABYLAKE(dev_priv) ||
	    IS_COFFEELAKE(dev_priv) ||
	    IS_COMETLAKE(dev_priv))
6838 6839 6840 6841 6842
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6843 6844 6845 6846 6847
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6848
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6849

6850 6851 6852
	intel_enable_ipc(dev_priv);
}

6853 6854 6855 6856 6857 6858 6859
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6860
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6861
}
6862

6863
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6864
{
6865
	enum pipe pipe;
6866

6867
	for_each_pipe(dev_priv, pipe) {
6868 6869
		intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
			   intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
6870
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6871

6872 6873
		intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
		intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
6874 6875 6876
	}
}

6877
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6878
{
6879
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6880

6881 6882 6883 6884 6885 6886 6887
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6888

6889
	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
6890 6891
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6892
	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
6893
		   VFMUNIT_CLOCK_GATE_DISABLE);
6894

6895 6896 6897 6898 6899 6900 6901
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
6902 6903
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6904 6905
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6906 6907
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
		   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
6908
		    DISP_FBC_WM_DIS));
6909 6910

	/*
6911 6912 6913 6914 6915
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6916
	 */
6917 6918
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6919 6920
		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
6921
			   ILK_FBCQ_DIS);
6922 6923
		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6924 6925
			   ILK_DPARB_GATE);
	}
6926

6927
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
6928

6929 6930
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6931
		   ILK_ELPIN_409_SELECT);
6932

6933
	g4x_disable_trickle_feed(dev_priv);
6934

6935
	ibx_init_clock_gating(dev_priv);
6936 6937
}

6938
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6939
{
6940 6941
	enum pipe pipe;
	u32 val;
6942

6943 6944 6945 6946 6947
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6948
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6949 6950
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6951
	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
6952 6953 6954 6955 6956
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
6957
		val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
6958 6959 6960 6961 6962 6963
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6964
		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
6965 6966 6967
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
6968
		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
6969 6970
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6971 6972
}

6973
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6974
{
6975
	u32 tmp;
6976

6977
	tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
6978
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6979 6980 6981
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6982 6983
}

6984
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6985
{
6986
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6987

6988
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
6989

6990 6991
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6992
		   ILK_ELPIN_409_SELECT);
6993

6994 6995
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
6996 6997
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6998

6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7011
	 */
7012
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7013 7014
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
7015

7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
7027 7028
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7029
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7030 7031
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7032
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7033 7034
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
		   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7035 7036
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7037

7038
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
7039

7040
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
7041

7042
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
7043 7044
}

7045
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7046
{
7047 7048 7049
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
7050
	 */
7051
	if (HAS_PCH_LPT_LP(dev_priv))
7052 7053
		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
			   intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7054
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7055 7056

	/* WADPOClockGatingDisable:hsw */
7057 7058
	intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7059
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7060 7061
}

7062
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7063
{
7064
	if (HAS_PCH_LPT_LP(dev_priv)) {
7065
		u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7066 7067

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7068
		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7069 7070 7071
	}
}

7072 7073 7074 7075 7076
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
7077
	u32 val;
7078 7079

	/* WaTempDisableDOPClkGating:bdw */
7080 7081
	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7082

7083
	val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7084 7085 7086
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7087
	intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7088 7089 7090 7091 7092

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
7093
	intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7094
	udelay(1);
7095
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7096 7097
}

O
Oscar Mateo 已提交
7098 7099
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
7100
	/* Wa_1409120013:icl,ehl */
7101
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7102 7103
		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);

O
Oscar Mateo 已提交
7104
	/* This is not an Wa. Enable to reduce Sampler power */
7105 7106
	intel_uncore_write(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   intel_uncore_read(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7107

7108 7109 7110
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
7111 7112
}

7113
static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7114
{
7115
	/* Wa_1409120013:tgl,rkl,adl_s,dg1 */
7116
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7117
			   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7118

7119
	/* Wa_1409825376:tgl (pre-prod)*/
7120
	if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_B1))
7121
		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7122
			   TGL_VRH_GATING_DIS);
M
Matt Atwood 已提交
7123

7124
	/* Wa_14011059788:tgl,rkl,adl_s,dg1 */
M
Matt Atwood 已提交
7125 7126
	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
			 0, DFR_DISABLE);
7127 7128
}

7129 7130
static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
{
7131 7132
	gen12lp_init_clock_gating(dev_priv);

7133 7134
	/* Wa_1409836686:dg1[a0] */
	if (IS_DG1_REVID(dev_priv, DG1_REVID_A0, DG1_REVID_A0))
7135
		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7136 7137 7138
			   DPT_GATING_DIS);
}

7139 7140 7141 7142 7143
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

7144
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7145
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7146
		   CNP_PWM_CGE_GATING_DISABLE);
7147 7148
}

7149
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7150
{
7151
	u32 val;
7152 7153
	cnp_init_clock_gating(dev_priv);

7154
	/* This is not an Wa. Enable for better image quality */
7155
	intel_uncore_write(&dev_priv->uncore, _3D_CHICKEN3,
7156 7157
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

7158
	/* WaEnableChickenDCPR:cnl */
7159 7160
	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7161

7162 7163 7164 7165
	/*
	 * WaFbcWakeMemOn:cnl
	 * Display WA #0859: cnl
	 */
7166
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7167 7168
		   DISP_FBC_MEMORY_WAKE);

7169
	val = intel_uncore_read(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE);
7170 7171
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
7172
	intel_uncore_write(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE, val);
7173

R
Rodrigo Vivi 已提交
7174
	/* Wa_2201832410:cnl */
7175
	val = intel_uncore_read(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE);
R
Rodrigo Vivi 已提交
7176
	val |= GWUNIT_CLKGATE_DIS;
7177
	intel_uncore_write(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE, val);
R
Rodrigo Vivi 已提交
7178

7179
	/* WaDisableVFclkgate:cnl */
7180
	/* WaVFUnitClockGatingDisable:cnl */
7181
	val = intel_uncore_read(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE);
7182
	val |= VFUNIT_CLKGATE_DIS;
7183
	intel_uncore_write(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE, val);
7184 7185
}

7186 7187 7188 7189 7190
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

7191
	/* WAC6entrylatency:cfl */
7192
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7193 7194
		   FBC_LLC_FULLY_OPEN);

7195 7196 7197 7198
	/*
	 * WaFbcTurnOffFbcWatermark:cfl
	 * Display WA #0562: cfl
	 */
7199
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7200 7201
		   DISP_FBC_WM_DIS);

7202 7203 7204 7205
	/*
	 * WaFbcNukeOnHostModify:cfl
	 * Display WA #0873: cfl
	 */
7206
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7207 7208 7209
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

7210
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7211
{
7212
	gen9_init_clock_gating(dev_priv);
7213

7214
	/* WAC6entrylatency:kbl */
7215
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7216 7217
		   FBC_LLC_FULLY_OPEN);

7218
	/* WaDisableSDEUnitClockGating:kbl */
7219
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7220
		intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7221
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7222 7223

	/* WaDisableGamClockGating:kbl */
7224
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7225
		intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7226
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7227

7228 7229 7230 7231
	/*
	 * WaFbcTurnOffFbcWatermark:kbl
	 * Display WA #0562: kbl
	 */
7232
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7233 7234
		   DISP_FBC_WM_DIS);

7235 7236 7237 7238
	/*
	 * WaFbcNukeOnHostModify:kbl
	 * Display WA #0873: kbl
	 */
7239
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7240
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7241 7242
}

7243
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7244
{
7245
	gen9_init_clock_gating(dev_priv);
7246

7247
	/* WaDisableDopClockGating:skl */
7248
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7249 7250
		   ~GEN7_DOP_CLOCK_GATE_ENABLE);

7251
	/* WAC6entrylatency:skl */
7252
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7253
		   FBC_LLC_FULLY_OPEN);
7254

7255 7256 7257 7258
	/*
	 * WaFbcTurnOffFbcWatermark:skl
	 * Display WA #0562: skl
	 */
7259
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7260 7261
		   DISP_FBC_WM_DIS);

7262 7263 7264 7265
	/*
	 * WaFbcNukeOnHostModify:skl
	 * Display WA #0873: skl
	 */
7266
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7267
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7268

7269 7270 7271 7272
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:skl
	 * Display WA #0883: skl
	 */
7273
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7274
		   ILK_DPFC_DISABLE_DUMMY0);
7275 7276
}

7277
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7278
{
7279
	enum pipe pipe;
B
Ben Widawsky 已提交
7280

7281
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7282 7283
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7284 7285
		   HSW_FBCQ_DIS);

7286
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7287
	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7288

7289
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7290 7291
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7292

7293
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7294
	for_each_pipe(dev_priv, pipe) {
7295 7296
		intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7297
			   BDW_DPRS_MASK_VBLANK_SRD);
7298
	}
7299

7300 7301
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
7302 7303
	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7304
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7305

7306
	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7307
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7308 7309

	/* WaDisableSDEUnitClockGating:bdw */
7310
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7311
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7312

7313 7314
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7315

7316
	/* WaKVMNotificationOnConfigChange:bdw */
7317
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7318 7319
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7320
	lpt_init_clock_gating(dev_priv);
7321 7322 7323 7324 7325 7326

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
7327 7328
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7329 7330
}

7331
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7332
{
7333
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7334 7335
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7336 7337
		   HSW_FBCQ_DIS);

7338
	/* This is required by WaCatErrorRejectionIssue:hsw */
7339 7340
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7341
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7342

7343
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7344
	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7345

7346
	lpt_init_clock_gating(dev_priv);
7347 7348
}

7349
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7350
{
7351
	u32 snpcr;
7352

7353
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7354

7355
	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
7356 7357
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7358 7359
		   ILK_FBCQ_DIS);

7360
	/* WaDisableBackToBackFlipFix:ivb */
7361
	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7362 7363 7364
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7365
	if (IS_IVB_GT1(dev_priv))
7366
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7367
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7368 7369
	else {
		/* must write both registers */
7370
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7371
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7372
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7373
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7374
	}
7375

7376
	/*
7377
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7378
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7379
	 */
7380
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7381
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7382

7383
	/* This is required by WaCatErrorRejectionIssue:ivb */
7384 7385
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7386 7387
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7388
	g4x_disable_trickle_feed(dev_priv);
7389

7390
	snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7391 7392
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
7393
	intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7394

7395
	if (!HAS_PCH_NOP(dev_priv))
7396
		cpt_init_clock_gating(dev_priv);
7397

7398
	gen6_check_mch_setup(dev_priv);
7399 7400
}

7401
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7402
{
7403
	/* WaDisableBackToBackFlipFix:vlv */
7404
	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7405 7406 7407
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7408
	/* WaDisableDopClockGating:vlv */
7409
	intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7410 7411
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7412
	/* This is required by WaCatErrorRejectionIssue:vlv */
7413 7414
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7415 7416
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7417
	/*
7418
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7419
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7420
	 */
7421
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7422
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7423

7424 7425 7426
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7427 7428
	intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
		   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7429

7430
	/*
7431
	 * WaDisableVLVClockGating_VBIIssue:vlv
7432 7433 7434
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7435
	intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7436 7437
}

7438
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7439
{
7440 7441
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
7442 7443
	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7444
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7445 7446

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7447
	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7448
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7449 7450

	/* WaDisableCSUnitClockGating:chv */
7451
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7452
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7453 7454

	/* WaDisableSDEUnitClockGating:chv */
7455
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7456
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7457

7458 7459 7460 7461 7462 7463
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7464 7465
}

7466
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7467
{
7468
	u32 dspclk_gate;
7469

7470 7471
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7472 7473
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
7474
	intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7475 7476 7477
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7478
	if (IS_GM45(dev_priv))
7479
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7480
	intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7481

7482
	g4x_disable_trickle_feed(dev_priv);
7483 7484
}

7485
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7486
{
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7497 7498
}

7499
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7500
{
7501
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7502 7503 7504 7505
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
7506 7507
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7508
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7509 7510
}

7511
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7512
{
7513
	u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7514 7515 7516

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
7517
	intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7518

7519
	if (IS_PINEVIEW(dev_priv))
7520
		intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7521 7522

	/* IIR "flip pending" means done if this bit is set */
7523
	intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7524 7525

	/* interrupts should cause a wake up from C3 */
7526
	intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7527 7528

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7529
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7530

7531
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7532
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7533 7534
}

7535
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7536
{
7537
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7538 7539

	/* interrupts should cause a wake up from C3 */
7540
	intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7541
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7542

7543
	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7544
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7545 7546 7547 7548 7549 7550 7551 7552

	/*
	 * Have FBC ignore 3D activity since we use software
	 * render tracking, and otherwise a pure 3D workload
	 * (even if it just renders a single frame and then does
	 * abosultely nothing) would not allow FBC to recompress
	 * until a 2D blit occurs.
	 */
7553
	intel_uncore_write(&dev_priv->uncore, SCPD0,
7554
		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7555 7556
}

7557
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7558
{
7559
	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7560 7561
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7562 7563
}

7564
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7565
{
7566
	dev_priv->display.init_clock_gating(dev_priv);
7567 7568
}

7569
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7570
{
7571 7572
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7573 7574
}

7575
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7576
{
7577 7578
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7592 7593 7594
	if (IS_DG1(dev_priv))
		dev_priv->display.init_clock_gating = dg1_init_clock_gating;
	else if (IS_GEN(dev_priv, 12))
7595
		dev_priv->display.init_clock_gating = gen12lp_init_clock_gating;
7596
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7597
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7598
	else if (IS_CANNONLAKE(dev_priv))
7599
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7600
	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7601
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7602
	else if (IS_SKYLAKE(dev_priv))
7603
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7604
	else if (IS_KABYLAKE(dev_priv))
7605
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7606
	else if (IS_BROXTON(dev_priv))
7607
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7608 7609
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7610
	else if (IS_BROADWELL(dev_priv))
7611
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7612
	else if (IS_CHERRYVIEW(dev_priv))
7613
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7614
	else if (IS_HASWELL(dev_priv))
7615
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7616
	else if (IS_IVYBRIDGE(dev_priv))
7617
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7618
	else if (IS_VALLEYVIEW(dev_priv))
7619
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7620
	else if (IS_GEN(dev_priv, 6))
7621
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7622
	else if (IS_GEN(dev_priv, 5))
7623
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7624 7625
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7626
	else if (IS_I965GM(dev_priv))
7627
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7628
	else if (IS_I965G(dev_priv))
7629
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7630
	else if (IS_GEN(dev_priv, 3))
7631 7632 7633
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7634
	else if (IS_GEN(dev_priv, 2))
7635 7636 7637 7638 7639 7640 7641
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7642
/* Set up chip specific power management-related functions */
7643
void intel_init_pm(struct drm_i915_private *dev_priv)
7644
{
7645
	/* For cxsr */
7646
	if (IS_PINEVIEW(dev_priv))
7647
		pnv_get_mem_freq(dev_priv);
7648
	else if (IS_GEN(dev_priv, 5))
7649
		ilk_get_mem_freq(dev_priv);
7650

7651 7652 7653
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7654
	/* For FIFO watermark updates */
7655
	if (INTEL_GEN(dev_priv) >= 9) {
7656
		skl_setup_wm_latency(dev_priv);
7657
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7658
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7659
		ilk_setup_wm_latency(dev_priv);
7660

7661
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7662
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7663
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7664
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7665
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7666 7667 7668 7669 7670 7671
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7672
		} else {
7673 7674 7675
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7676
		}
7677
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7678
		vlv_setup_wm_latency(dev_priv);
7679
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7680
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7681
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7682
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7683
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7684 7685 7686 7687 7688 7689
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7690
	} else if (IS_PINEVIEW(dev_priv)) {
7691
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7692 7693 7694
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7695 7696
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7697 7698 7699 7700 7701
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7702
			intel_set_memory_cxsr(dev_priv, false);
7703 7704
			dev_priv->display.update_wm = NULL;
		} else
7705
			dev_priv->display.update_wm = pnv_update_wm;
7706
	} else if (IS_GEN(dev_priv, 4)) {
7707
		dev_priv->display.update_wm = i965_update_wm;
7708
	} else if (IS_GEN(dev_priv, 3)) {
7709 7710
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7711
	} else if (IS_GEN(dev_priv, 2)) {
7712
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7713
			dev_priv->display.update_wm = i845_update_wm;
7714
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7715 7716
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7717
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7718 7719
		}
	} else {
7720 7721
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7722 7723 7724
	}
}

7725
void intel_pm_setup(struct drm_i915_private *dev_priv)
7726
{
7727 7728
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7729
}
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778

static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return NULL;

	return &dbuf_state->base;
}

static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
				     struct intel_global_state *state)
{
	kfree(state);
}

static const struct intel_global_state_funcs intel_dbuf_funcs = {
	.atomic_duplicate_state = intel_dbuf_duplicate_state,
	.atomic_destroy_state = intel_dbuf_destroy_state,
};

struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *dbuf_state;

	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
	if (IS_ERR(dbuf_state))
		return ERR_CAST(dbuf_state);

	return to_intel_dbuf_state(dbuf_state);
}

int intel_dbuf_init(struct drm_i915_private *dev_priv)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return -ENOMEM;

	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
				     &dbuf_state->base, &intel_dbuf_funcs);

	return 0;
}
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815

void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				old_dbuf_state->enabled_slices |
				new_dbuf_state->enabled_slices);
}

void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				new_dbuf_state->enabled_slices);
}