intel_pm.c 279.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/pm_runtime.h>
30
#include <drm/drm_plane_helper.h>
31 32
#include "i915_drv.h"
#include "intel_drv.h"
33 34
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
35
#include <drm/drm_atomic_helper.h>
36

B
Ben Widawsky 已提交
37
/**
38 39
 * DOC: RC6
 *
B
Ben Widawsky 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

57
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58
{
59 60 61
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62
		 * Display WA #0390: skl,kbl
63 64 65 66 67 68 69 70 71
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

72
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 74 75
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

76
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 78
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79

80 81
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 83 84
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
85

86
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 88
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
89 90 91 92 93 94

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
95 96
}

97
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98
{
99
	gen9_init_clock_gating(dev_priv);
100

101 102 103 104
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

105 106
	/*
	 * FIXME:
107
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 109
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
111 112 113 114 115

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
116 117
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

208
	dev_priv->ips.r_t = dev_priv->mem_freq;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
240
		dev_priv->ips.c_m = 0;
241
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242
		dev_priv->ips.c_m = 1;
243
	} else {
244
		dev_priv->ips.c_m = 2;
245 246 247
	}
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

286 287
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

310 311 312 313
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

314
	mutex_lock(&dev_priv->pcu_lock);
315 316 317 318 319 320 321 322 323 324 325 326 327 328

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

329
	mutex_unlock(&dev_priv->pcu_lock);
330 331
}

332 333 334 335
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

336
	mutex_lock(&dev_priv->pcu_lock);
337 338 339 340 341 342 343 344

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

345
	mutex_unlock(&dev_priv->pcu_lock);
346 347
}

348 349 350
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

351
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
352
{
353
	bool was_enabled;
354
	u32 val;
355

356
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359
		POSTING_READ(FW_BLC_SELF_VLV);
360
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363
		POSTING_READ(FW_BLC_SELF);
364
	} else if (IS_PINEVIEW(dev_priv)) {
365 366 367 368 369 370
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
371
		I915_WRITE(DSPFW3, val);
372
		POSTING_READ(DSPFW3);
373
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 376 377
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
378
		POSTING_READ(FW_BLC_SELF);
379
	} else if (IS_I915GM(dev_priv)) {
380 381 382 383 384
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
385
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
389
		POSTING_READ(INSTPM);
390
	} else {
391
		return false;
392
	}
393

394 395
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

396 397 398 399 400
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
401 402
}

V
Ville Syrjälä 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
440
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
441
{
442 443
	bool ret;

444
	mutex_lock(&dev_priv->wm.wm_mutex);
445
	ret = _intel_set_memory_cxsr(dev_priv, enable);
446 447 448 449
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
450
	mutex_unlock(&dev_priv->wm.wm_mutex);
451 452

	return ret;
453
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
469
static const int pessimal_latency_ns = 5000;
470

471 472 473
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

474
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475
{
476
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 480
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
481

482
	switch (pipe) {
483
		u32 dsparb, dsparb2, dsparb3;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
503 504
		MISSING_CASE(pipe);
		return;
505 506
	}

507 508 509 510
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
511 512
}

513 514
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
515
{
516
	u32 dsparb = I915_READ(DSPARB);
517 518 519
	int size;

	size = dsparb & 0x7f;
520
	if (i9xx_plane == PLANE_B)
521 522
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

523 524
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
525 526 527 528

	return size;
}

529 530
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
531
{
532
	u32 dsparb = I915_READ(DSPARB);
533 534 535
	int size;

	size = dsparb & 0x1ff;
536
	if (i9xx_plane == PLANE_B)
537 538 539
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

540 541
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
542 543 544 545

	return size;
}

546 547
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
548
{
549
	u32 dsparb = I915_READ(DSPARB);
550 551 552 553 554
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

555 556
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
557 558 559 560 561 562

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
563 564 565 566 567
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 571 572 573 574
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 576
};
static const struct intel_watermark_params pineview_cursor_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 583
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 590
};
static const struct intel_watermark_params i965_cursor_wm_info = {
591 592 593 594 595
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
596 597
};
static const struct intel_watermark_params i945_wm_info = {
598 599 600 601 602
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
603 604
};
static const struct intel_watermark_params i915_wm_info = {
605 606 607 608 609
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
610
};
611
static const struct intel_watermark_params i830_a_wm_info = {
612 613 614 615 616
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
617
};
618 619 620 621 622 623 624
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
625
static const struct intel_watermark_params i845_wm_info = {
626 627 628 629 630
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
631 632
};

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
670
	u64 ret;
671

672
	ret = (u64)pixel_rate * cpp * latency;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

729 730
/**
 * intel_calculate_wm - calculate watermark level
731
 * @pixel_rate: pixel clock
732
 * @wm: chip FIFO params
733
 * @fifo_size: size of the FIFO buffer
734
 * @cpp: bytes per pixel
735 736 737 738 739 740 741 742 743 744 745 746 747
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
748 749 750 751
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
752
{
753
	int entries, wm_size;
754 755 756 757 758 759 760

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
761 762 763 764 765
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766

767 768
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769 770

	/* Don't promote wm_size to unsigned... */
771
	if (wm_size > wm->max_wm)
772 773 774
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
775 776 777 778 779 780 781 782 783 784 785

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

786 787 788
	return wm_size;
}

789 790 791 792 793 794 795 796 797 798
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

799 800 801 802 803
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

827
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828
{
829
	struct intel_crtc *crtc, *enabled = NULL;
830

831
	for_each_intel_crtc(&dev_priv->drm, crtc) {
832
		if (intel_crtc_active(crtc)) {
833 834 835 836 837 838 839 840 841
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

842
static void pineview_update_wm(struct intel_crtc *unused_crtc)
843
{
844
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845
	struct intel_crtc *crtc;
846 847
	const struct cxsr_latency *latency;
	u32 reg;
848
	unsigned int wm;
849

850 851 852 853
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
854 855
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856
		intel_set_memory_cxsr(dev_priv, false);
857 858 859
		return;
	}

860
	crtc = single_enabled_crtc(dev_priv);
861
	if (crtc) {
862 863 864 865
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
866
		int cpp = fb->format->cpp[0];
867
		int clock = adjusted_mode->crtc_clock;
868 869 870 871

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
872
					cpp, latency->display_sr);
873 874
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
875
		reg |= FW_WM(wm, SR);
876 877 878 879 880 881
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
882
					4, latency->cursor_sr);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
885
		reg |= FW_WM(wm, CURSOR_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					cpp, latency->display_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
894
		reg |= FW_WM(wm, HPLL_SR);
895 896 897 898 899
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
900
					4, latency->cursor_hpll_disable);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
903
		reg |= FW_WM(wm, HPLL_CURSOR);
904 905 906
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

907
		intel_set_memory_cxsr(dev_priv, true);
908
	} else {
909
		intel_set_memory_cxsr(dev_priv, false);
910 911 912
	}
}

913 914 915 916 917 918 919 920 921 922
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
923
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 925 926 927 928 929
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

930 931
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
932
{
933 934 935 936 937
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
955

956
	POSTING_READ(DSPFW1);
957 958
}

959 960 961
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

962
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 964
				const struct vlv_wm_values *wm)
{
965 966 967
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
968 969
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

970 971 972 973 974 975
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
976

977 978 979 980 981 982 983 984 985 986 987
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

988
	I915_WRITE(DSPFW1,
989
		   FW_WM(wm->sr.plane, SR) |
990 991 992
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993
	I915_WRITE(DSPFW2,
994 995 996
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997
	I915_WRITE(DSPFW3,
998
		   FW_WM(wm->sr.cursor, CURSOR_SR));
999 1000 1001

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1002 1003
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004
		I915_WRITE(DSPFW8_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007
		I915_WRITE(DSPFW9_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010
		I915_WRITE(DSPHOWM,
1011
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 1013 1014 1015 1016 1017 1018 1019 1020
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1021 1022
	} else {
		I915_WRITE(DSPFW7,
1023 1024
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025
		I915_WRITE(DSPHOWM,
1026
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 1028 1029 1030 1031 1032
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1033 1034 1035
	}

	POSTING_READ(DSPFW1);
1036 1037
}

1038 1039
#undef FW_WM_VLV

1040 1041 1042 1043 1044
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046

1047
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1092 1093 1094
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1095 1096 1097 1098 1099
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1100 1101
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1140
		unsigned int small, large;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1153
	return min_t(unsigned int, wm, USHRT_MAX);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1191 1192 1193
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1322 1323
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1324 1325 1326 1327 1328
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1329 1330 1331 1332
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1333 1334 1335
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1336
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1402
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1403
{
1404
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1405 1406 1407 1408 1409 1410 1411
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 1413
	enum plane_id plane_id;

1414 1415 1416 1417 1418 1419 1420 1421
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1422
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423
		!new_crtc_state->disable_cxsr;
1424
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425
		!new_crtc_state->disable_cxsr;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1467
out:
1468 1469 1470 1471 1472
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473
		new_crtc_state->wm.need_postvbl_update = true;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1570 1571
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 1573
				   unsigned int htotal,
				   unsigned int width,
1574
				   unsigned int cpp,
1575 1576 1577 1578
				   unsigned int latency)
{
	unsigned int ret;

1579 1580
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1581 1582 1583 1584 1585
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1586
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 1588 1589 1590
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1591 1592
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1593 1594 1595
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596 1597

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 1599 1600
	}
}

1601 1602 1603
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1604
{
1605
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 1608
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1609
	unsigned int clock, htotal, cpp, width, wm;
1610 1611 1612 1613

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1614
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 1616
		return 0;

1617
	cpp = plane_state->base.fb->format->cpp[0];
1618 1619 1620
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1621

1622
	if (plane->id == PLANE_CURSOR) {
1623 1624 1625 1626 1627 1628 1629 1630
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1631
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 1633 1634
				    dev_priv->wm.pri_latency[level] * 10);
	}

1635
	return min_t(unsigned int, wm, USHRT_MAX);
1636 1637
}

1638 1639 1640 1641 1642 1643
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1644
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645
{
1646
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647
	const struct g4x_pipe_wm *raw =
1648
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 1651 1652
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1653
	int fifo_extra, fifo_left = fifo_size;
1654
	int sprite0_fifo_extra = 0;
1655 1656
	unsigned int total_rate;
	enum plane_id plane_id;
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1669 1670
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1671 1672
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1673

1674 1675
	if (total_rate > fifo_size)
		return -EINVAL;
1676

1677 1678
	if (total_rate == 0)
		total_rate = 1;
1679

1680
	for_each_plane_id_on_crtc(crtc, plane_id) {
1681 1682
		unsigned int rate;

1683 1684
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1685 1686 1687
			continue;
		}

1688 1689 1690
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1691 1692
	}

1693 1694 1695
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1696 1697 1698
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699 1700

	/* spread the remainder evenly */
1701
	for_each_plane_id_on_crtc(crtc, plane_id) {
1702 1703 1704 1705 1706
		int plane_extra;

		if (fifo_left == 0)
			break;

1707
		if ((active_planes & BIT(plane_id)) == 0)
1708 1709 1710
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1711
		fifo_state->plane[plane_id] += plane_extra;
1712 1713 1714
		fifo_left -= plane_extra;
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1724 1725
}

1726 1727 1728 1729 1730 1731
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1732
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1743 1744 1745 1746 1747 1748 1749 1750
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1751 1752 1753 1754
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1755
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756
				 int level, enum plane_id plane_id, u16 value)
1757
{
1758
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759
	int num_levels = intel_wm_num_levels(dev_priv);
1760
	bool dirty = false;
1761

1762
	for (; level < num_levels; level++) {
1763
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764

1765
		dirty |= raw->plane[plane_id] != value;
1766
		raw->plane[plane_id] = value;
1767
	}
1768 1769

	return dirty;
1770 1771
}

1772 1773
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1774
{
1775 1776
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1777
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778
	int level;
1779
	bool dirty = false;
1780

1781
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 1783
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1784
	}
1785

1786
	for (level = 0; level < num_levels; level++) {
1787
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 1789
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790

1791 1792
		if (wm > max_wm)
			break;
1793

1794
		dirty |= raw->plane[plane_id] != wm;
1795 1796
		raw->plane[plane_id] = wm;
	}
1797

1798
	/* mark all higher levels as invalid */
1799
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800

1801 1802
out:
	if (dirty)
1803
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 1805 1806 1807 1808 1809
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1810
}
1811

1812 1813
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1814
{
1815
	const struct g4x_pipe_wm *raw =
1816 1817 1818
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1819

1820 1821
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1822

1823
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824
{
1825 1826 1827 1828
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1842
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 1844
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1845 1846 1847
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1848
	unsigned int dirty = 0;
1849

1850 1851 1852 1853
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1854 1855
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1856

1857
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1876
			intel_atomic_get_old_crtc_state(state, crtc);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1888
	}
1889

1890
	/* initially allow all levels */
1891
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 1893 1894 1895 1896
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1897
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898

1899
	for (level = 0; level < wm_state->num_levels; level++) {
1900
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902

1903
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904
			break;
1905

1906 1907 1908 1909 1910 1911 1912 1913
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914
						 raw->plane[PLANE_SPRITE0],
1915 1916
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1917

1918 1919 1920
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1921 1922
	}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1933 1934
}

1935 1936 1937
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1938 1939
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1940
{
1941
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 1944
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1945
	int sprite0_start, sprite1_start, fifo_size;
1946

1947 1948 1949
	if (!crtc_state->fifo_changed)
		return;

1950 1951 1952
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953

1954 1955
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1956

1957 1958
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1969

1970
	switch (crtc->pipe) {
1971
		u32 dsparb, dsparb2, dsparb3;
1972
	case PIPE_A:
1973 1974
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1986 1987
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1988 1989
		break;
	case PIPE_B:
1990 1991
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2003 2004
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2005 2006
		break;
	case PIPE_C:
2007 2008
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2020 2021
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2022 2023 2024 2025
		break;
	default:
		break;
	}
2026

2027
	POSTING_READ_FW(DSPARB);
2028

2029
	spin_unlock(&dev_priv->uncore.lock);
2030 2031 2032 2033
}

#undef VLV_FIFO

2034
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2035
{
2036
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2037 2038 2039 2040 2041 2042 2043
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2044 2045
	int level;

2046 2047 2048 2049 2050 2051 2052
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2053
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2054
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2055
		!new_crtc_state->disable_cxsr;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2074
out:
2075 2076 2077 2078
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2079
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2080
		new_crtc_state->wm.need_postvbl_update = true;
2081 2082 2083 2084

	return 0;
}

2085
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2086 2087 2088 2089 2090
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2091
	wm->level = dev_priv->wm.max_level;
2092 2093
	wm->cxsr = true;

2094
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2095
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2110 2111 2112
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2113
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2114
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2115 2116 2117
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2118
		if (crtc->active && wm->cxsr)
2119 2120
			wm->sr = wm_state->sr[wm->level];

2121 2122 2123 2124
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2125 2126 2127
	}
}

2128
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2129
{
2130 2131
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2132

2133
	vlv_merge_wm(dev_priv, &new_wm);
2134

2135
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2136 2137
		return;

2138
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2139 2140
		chv_set_memory_dvfs(dev_priv, false);

2141
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2142 2143
		chv_set_memory_pm5(dev_priv, false);

2144
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2145
		_intel_set_memory_cxsr(dev_priv, false);
2146

2147
	vlv_write_wm_values(dev_priv, &new_wm);
2148

2149
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2150
		_intel_set_memory_cxsr(dev_priv, true);
2151

2152
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2153 2154
		chv_set_memory_pm5(dev_priv, true);

2155
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2156 2157
		chv_set_memory_dvfs(dev_priv, true);

2158
	*old_wm = new_wm;
2159 2160
}

2161 2162 2163 2164 2165 2166 2167
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2184 2185 2186 2187
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2188
static void i965_update_wm(struct intel_crtc *unused_crtc)
2189
{
2190
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2191
	struct intel_crtc *crtc;
2192 2193
	int srwm = 1;
	int cursor_sr = 16;
2194
	bool cxsr_enabled;
2195 2196

	/* Calc sr entries for one plane configs */
2197
	crtc = single_enabled_crtc(dev_priv);
2198 2199 2200
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2201 2202 2203 2204
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2205
		int clock = adjusted_mode->crtc_clock;
2206
		int htotal = adjusted_mode->crtc_htotal;
2207
		int hdisplay = crtc->config->pipe_src_w;
2208
		int cpp = fb->format->cpp[0];
2209 2210
		int entries;

2211 2212
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2213 2214 2215 2216 2217 2218 2219 2220
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2221 2222 2223
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2224
		entries = DIV_ROUND_UP(entries,
2225 2226
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2227

2228
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2229 2230 2231 2232 2233 2234
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2235
		cxsr_enabled = true;
2236
	} else {
2237
		cxsr_enabled = false;
2238
		/* Turn off self refresh if both pipes are enabled */
2239
		intel_set_memory_cxsr(dev_priv, false);
2240 2241 2242 2243 2244 2245
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2246 2247 2248 2249 2250 2251
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2252
	/* update cursor SR watermark */
2253
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2254 2255 2256

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2257 2258
}

2259 2260
#undef FW_WM

2261
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2262
{
2263
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2264
	const struct intel_watermark_params *wm_info;
2265 2266
	u32 fwater_lo;
	u32 fwater_hi;
2267 2268 2269
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2270
	struct intel_crtc *crtc, *enabled = NULL;
2271

2272
	if (IS_I945GM(dev_priv))
2273
		wm_info = &i945_wm_info;
2274
	else if (!IS_GEN(dev_priv, 2))
2275 2276
		wm_info = &i915_wm_info;
	else
2277
		wm_info = &i830_a_wm_info;
2278

2279 2280
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2281 2282 2283 2284 2285 2286 2287
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2288
		if (IS_GEN(dev_priv, 2))
2289
			cpp = 4;
2290
		else
2291
			cpp = fb->format->cpp[0];
2292

2293
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2294
					       wm_info, fifo_size, cpp,
2295
					       pessimal_latency_ns);
2296
		enabled = crtc;
2297
	} else {
2298
		planea_wm = fifo_size - wm_info->guard_size;
2299 2300 2301 2302
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2303
	if (IS_GEN(dev_priv, 2))
2304
		wm_info = &i830_bc_wm_info;
2305

2306 2307
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2308 2309 2310 2311 2312 2313 2314
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2315
		if (IS_GEN(dev_priv, 2))
2316
			cpp = 4;
2317
		else
2318
			cpp = fb->format->cpp[0];
2319

2320
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2321
					       wm_info, fifo_size, cpp,
2322
					       pessimal_latency_ns);
2323 2324 2325 2326
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2327
	} else {
2328
		planeb_wm = fifo_size - wm_info->guard_size;
2329 2330 2331
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2332 2333 2334

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2335
	if (IS_I915GM(dev_priv) && enabled) {
2336
		struct drm_i915_gem_object *obj;
2337

2338
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2339 2340

		/* self-refresh seems busted with untiled */
2341
		if (!i915_gem_object_is_tiled(obj))
2342 2343 2344
			enabled = NULL;
	}

2345 2346 2347 2348 2349 2350
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2351
	intel_set_memory_cxsr(dev_priv, false);
2352 2353

	/* Calc sr entries for one plane configs */
2354
	if (HAS_FW_BLC(dev_priv) && enabled) {
2355 2356
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2357 2358 2359 2360
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2361
		int clock = adjusted_mode->crtc_clock;
2362
		int htotal = adjusted_mode->crtc_htotal;
2363 2364
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2365 2366
		int entries;

2367
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2368
			cpp = 4;
2369
		else
2370
			cpp = fb->format->cpp[0];
2371

2372 2373
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2374 2375 2376 2377 2378 2379
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2380
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2381 2382
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2383
		else
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2400 2401
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2402 2403
}

2404
static void i845_update_wm(struct intel_crtc *unused_crtc)
2405
{
2406
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2407
	struct intel_crtc *crtc;
2408
	const struct drm_display_mode *adjusted_mode;
2409
	u32 fwater_lo;
2410 2411
	int planea_wm;

2412
	crtc = single_enabled_crtc(dev_priv);
2413 2414 2415
	if (crtc == NULL)
		return;

2416
	adjusted_mode = &crtc->config->base.adjusted_mode;
2417
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2418
				       &i845_wm_info,
2419
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2420
				       4, pessimal_latency_ns);
2421 2422 2423 2424 2425 2426 2427 2428
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2429
/* latency must be in 0.1us units. */
2430 2431 2432
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2433
{
2434
	unsigned int ret;
2435

2436 2437
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2438 2439 2440 2441

	return ret;
}

2442
/* latency must be in 0.1us units. */
2443 2444 2445 2446 2447
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2448
{
2449
	unsigned int ret;
2450

2451 2452
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2453
	ret = DIV_ROUND_UP(ret, 64) + 2;
2454

2455 2456 2457
	return ret;
}

2458
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2459
{
2460 2461 2462 2463 2464 2465
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2466
	if (WARN_ON(!cpp))
2467 2468 2469 2470
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2471
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2472 2473
}

2474
struct ilk_wm_maximums {
2475 2476 2477 2478
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2479 2480
};

2481 2482 2483 2484
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2485 2486 2487
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value, bool is_lp)
2488
{
2489
	u32 method1, method2;
2490
	int cpp;
2491

2492 2493 2494
	if (mem_value == 0)
		return U32_MAX;

2495
	if (!intel_wm_plane_visible(cstate, pstate))
2496 2497
		return 0;

2498
	cpp = pstate->base.fb->format->cpp[0];
2499

2500
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501 2502 2503 2504

	if (!is_lp)
		return method1;

2505
	method2 = ilk_wm_method2(cstate->pixel_rate,
2506
				 cstate->base.adjusted_mode.crtc_htotal,
2507
				 drm_rect_width(&pstate->base.dst),
2508
				 cpp, mem_value);
2509 2510

	return min(method1, method2);
2511 2512
}

2513 2514 2515 2516
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2517 2518 2519
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2520
{
2521
	u32 method1, method2;
2522
	int cpp;
2523

2524 2525 2526
	if (mem_value == 0)
		return U32_MAX;

2527
	if (!intel_wm_plane_visible(cstate, pstate))
2528 2529
		return 0;

2530
	cpp = pstate->base.fb->format->cpp[0];
2531

2532 2533
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2534
				 cstate->base.adjusted_mode.crtc_htotal,
2535
				 drm_rect_width(&pstate->base.dst),
2536
				 cpp, mem_value);
2537 2538 2539
	return min(method1, method2);
}

2540 2541 2542 2543
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2544 2545 2546
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2547
{
2548 2549
	int cpp;

2550 2551 2552
	if (mem_value == 0)
		return U32_MAX;

2553
	if (!intel_wm_plane_visible(cstate, pstate))
2554 2555
		return 0;

2556 2557
	cpp = pstate->base.fb->format->cpp[0];

2558
	return ilk_wm_method2(cstate->pixel_rate,
2559
			      cstate->base.adjusted_mode.crtc_htotal,
2560
			      pstate->base.crtc_w, cpp, mem_value);
2561 2562
}

2563
/* Only for WM_LP. */
2564 2565 2566
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val)
2567
{
2568
	int cpp;
2569

2570
	if (!intel_wm_plane_visible(cstate, pstate))
2571 2572
		return 0;

2573
	cpp = pstate->base.fb->format->cpp[0];
2574

2575
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2576 2577
}

2578 2579
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2580
{
2581
	if (INTEL_GEN(dev_priv) >= 8)
2582
		return 3072;
2583
	else if (INTEL_GEN(dev_priv) >= 7)
2584 2585 2586 2587 2588
		return 768;
	else
		return 512;
}

2589 2590 2591
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2592
{
2593
	if (INTEL_GEN(dev_priv) >= 8)
2594 2595
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2596
	else if (INTEL_GEN(dev_priv) >= 7)
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2607 2608
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2609
{
2610
	if (INTEL_GEN(dev_priv) >= 7)
2611 2612 2613 2614 2615
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2616
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2617
{
2618
	if (INTEL_GEN(dev_priv) >= 8)
2619 2620 2621 2622 2623
		return 31;
	else
		return 15;
}

2624
/* Calculate the maximum primary/sprite plane watermark */
2625
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2626
				     int level,
2627
				     const struct intel_wm_config *config,
2628 2629 2630
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2631
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2632 2633

	/* if sprites aren't enabled, sprites get nothing */
2634
	if (is_sprite && !config->sprites_enabled)
2635 2636 2637
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2638
	if (level == 0 || config->num_pipes_active > 1) {
2639
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2640 2641 2642 2643 2644 2645

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2646
		if (INTEL_GEN(dev_priv) <= 6)
2647 2648 2649
			fifo_size /= 2;
	}

2650
	if (config->sprites_enabled) {
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2662
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2663 2664 2665
}

/* Calculate the maximum cursor plane watermark */
2666
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2667 2668
				      int level,
				      const struct intel_wm_config *config)
2669 2670
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2671
	if (level > 0 && config->num_pipes_active > 1)
2672 2673 2674
		return 64;

	/* otherwise just report max that registers can hold */
2675
	return ilk_cursor_wm_reg_max(dev_priv, level);
2676 2677
}

2678
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2679 2680 2681
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2682
				    struct ilk_wm_maximums *max)
2683
{
2684 2685 2686 2687
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2688 2689
}

2690
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2691 2692 2693
					int level,
					struct ilk_wm_maximums *max)
{
2694 2695 2696 2697
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2698 2699
}

2700
static bool ilk_validate_wm_level(int level,
2701
				  const struct ilk_wm_maximums *max,
2702
				  struct intel_wm_level *result)
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2732 2733 2734
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2735 2736 2737 2738 2739 2740
		result->enable = true;
	}

	return ret;
}

2741
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2742
				 const struct intel_crtc *intel_crtc,
2743
				 int level,
2744
				 struct intel_crtc_state *cstate,
2745 2746 2747
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2748
				 struct intel_wm_level *result)
2749
{
2750 2751 2752
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2753 2754 2755 2756 2757 2758 2759 2760

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2773 2774 2775
	result->enable = true;
}

2776
static u32
2777
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2778
{
2779 2780
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2781 2782
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2783
	u32 linetime, ips_linetime;
2784

2785 2786 2787 2788
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2789
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2790
		return 0;
2791

2792 2793 2794
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2795 2796 2797
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2798
					 intel_state->cdclk.logical.cdclk);
2799

2800 2801
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2802 2803
}

2804
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2805
				  u16 wm[8])
2806
{
2807
	if (INTEL_GEN(dev_priv) >= 9) {
2808
		u32 val;
2809
		int ret, i;
2810
		int level, max_level = ilk_wm_max_level(dev_priv);
2811 2812 2813

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2814
		mutex_lock(&dev_priv->pcu_lock);
2815 2816 2817
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2818
		mutex_unlock(&dev_priv->pcu_lock);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2835
		mutex_lock(&dev_priv->pcu_lock);
2836 2837 2838
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2839
		mutex_unlock(&dev_priv->pcu_lock);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2866
		/*
2867
		 * WaWmMemoryReadLatency:skl+,glk
2868
		 *
2869
		 * punit doesn't take into account the read latency so we need
2870 2871
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2872
		 */
2873 2874 2875 2876 2877
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2878
				wm[level] += 2;
2879
			}
2880 2881
		}

2882 2883 2884 2885 2886 2887
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2888
		if (dev_priv->dram_info.is_16gb_dimm)
2889 2890
			wm[0] += 1;

2891
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2892
		u64 sskpd = I915_READ64(MCH_SSKPD);
2893 2894 2895 2896

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2897 2898 2899 2900
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2901
	} else if (INTEL_GEN(dev_priv) >= 6) {
2902
		u32 sskpd = I915_READ(MCH_SSKPD);
2903 2904 2905 2906 2907

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2908
	} else if (INTEL_GEN(dev_priv) >= 5) {
2909
		u32 mltr = I915_READ(MLTR_ILK);
2910 2911 2912 2913 2914

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2915 2916
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2917 2918 2919
	}
}

2920
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2921
				       u16 wm[5])
2922 2923
{
	/* ILK sprite LP0 latency is 1300 ns */
2924
	if (IS_GEN(dev_priv, 5))
2925 2926 2927
		wm[0] = 13;
}

2928
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2929
				       u16 wm[5])
2930 2931
{
	/* ILK cursor LP0 latency is 1300 ns */
2932
	if (IS_GEN(dev_priv, 5))
2933 2934 2935
		wm[0] = 13;
}

2936
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2937 2938
{
	/* how many WM levels are we expecting */
2939
	if (INTEL_GEN(dev_priv) >= 9)
2940
		return 7;
2941
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2942
		return 4;
2943
	else if (INTEL_GEN(dev_priv) >= 6)
2944
		return 3;
2945
	else
2946 2947
		return 2;
}
2948

2949
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2950
				   const char *name,
2951
				   const u16 wm[8])
2952
{
2953
	int level, max_level = ilk_wm_max_level(dev_priv);
2954 2955 2956 2957 2958

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2959 2960
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2961 2962 2963
			continue;
		}

2964 2965 2966 2967
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2968
		if (INTEL_GEN(dev_priv) >= 9)
2969 2970
			latency *= 10;
		else if (level > 0)
2971 2972 2973 2974 2975 2976 2977 2978
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2979
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2980
				    u16 wm[5], u16 min)
2981
{
2982
	int level, max_level = ilk_wm_max_level(dev_priv);
2983 2984 2985 2986 2987 2988

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2989
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2990 2991 2992 2993

	return true;
}

2994
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3010 3011 3012
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3013 3014
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3043
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3044
{
3045
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3046 3047 3048 3049 3050 3051

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3052
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3053
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3054

3055 3056 3057
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3058

3059
	if (IS_GEN(dev_priv, 6)) {
3060
		snb_wm_latency_quirk(dev_priv);
3061 3062
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3063 3064
}

3065
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3066
{
3067
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3068
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3069 3070
}

3071
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3083
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3094
/* Compute new watermarks for the pipe */
3095
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3096
{
3097 3098
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3099
	struct intel_pipe_wm *pipe_wm;
3100
	struct drm_device *dev = state->dev;
3101
	const struct drm_i915_private *dev_priv = to_i915(dev);
3102 3103 3104 3105 3106
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3107
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3108
	struct ilk_wm_maximums max;
3109

3110
	pipe_wm = &cstate->wm.ilk.optimal;
3111

3112 3113
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3114

3115
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3116
			pristate = ps;
3117
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3118
			sprstate = ps;
3119
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3120
			curstate = ps;
3121 3122
	}

3123
	pipe_wm->pipe_enabled = cstate->base.active;
3124
	if (sprstate) {
3125 3126 3127 3128
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3129 3130
	}

3131 3132
	usable_level = max_level;

3133
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3134
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3135
		usable_level = 1;
3136 3137

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3138
	if (pipe_wm->sprites_scaled)
3139
		usable_level = 0;
3140

3141
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3142 3143
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3144

3145
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3146
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3147

3148
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3149
		return -EINVAL;
3150

3151
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3152

3153 3154
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3155

3156
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3157
				     pristate, sprstate, curstate, wm);
3158 3159 3160 3161 3162 3163

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3164 3165 3166 3167
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3168 3169
	}

3170
	return 0;
3171 3172
}

3173 3174 3175 3176 3177
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3178
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3179
{
3180 3181
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3182
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3183 3184 3185 3186 3187
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3188
	int level, max_level = ilk_wm_max_level(dev_priv);
3189 3190 3191 3192 3193 3194

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3195
	*a = newstate->wm.ilk.optimal;
3196 3197
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3198 3199
		return 0;

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3221
	if (!ilk_validate_pipe_wm(dev_priv, a))
3222 3223 3224 3225 3226 3227
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3228 3229
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3230 3231 3232 3233

	return 0;
}

3234 3235 3236
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3237
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3238 3239 3240 3241 3242
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3243 3244
	ret_wm->enable = true;

3245
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3246
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3247 3248 3249 3250
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3251

3252 3253 3254 3255 3256
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3257
		if (!wm->enable)
3258
			ret_wm->enable = false;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3270
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3271
			 const struct intel_wm_config *config,
3272
			 const struct ilk_wm_maximums *max,
3273 3274
			 struct intel_pipe_wm *merged)
{
3275
	int level, max_level = ilk_wm_max_level(dev_priv);
3276
	int last_enabled_level = max_level;
3277

3278
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3279
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3280
	    config->num_pipes_active > 1)
3281
		last_enabled_level = 0;
3282

3283
	/* ILK: FBC WM must be disabled always */
3284
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3285 3286 3287 3288 3289

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3290
		ilk_merge_wm_level(dev_priv, level, wm);
3291

3292 3293 3294 3295 3296
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3297 3298 3299 3300 3301 3302

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3303 3304
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3305 3306 3307
			wm->fbc_val = 0;
		}
	}
3308 3309 3310 3311 3312 3313 3314

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3315
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3316
	    intel_fbc_is_active(dev_priv)) {
3317 3318 3319 3320 3321 3322
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3323 3324
}

3325 3326 3327 3328 3329 3330
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3331
/* The value we need to program into the WM_LPx latency field */
3332 3333
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3334
{
3335
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3336 3337 3338 3339 3340
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3341
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3342
				   const struct intel_pipe_wm *merged,
3343
				   enum intel_ddb_partitioning partitioning,
3344
				   struct ilk_wm_values *results)
3345
{
3346 3347
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3348

3349
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3350
	results->partitioning = partitioning;
3351

3352
	/* LP1+ register values */
3353
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3354
		const struct intel_wm_level *r;
3355

3356
		level = ilk_wm_lp_to_level(wm_lp, merged);
3357

3358
		r = &merged->wm[level];
3359

3360 3361 3362 3363 3364
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3365
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3366 3367 3368
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3369 3370 3371
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3372
		if (INTEL_GEN(dev_priv) >= 8)
3373 3374 3375 3376 3377 3378
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3379 3380 3381 3382
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3383
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3384 3385 3386 3387
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3388
	}
3389

3390
	/* LP0 register values */
3391
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3392
		enum pipe pipe = intel_crtc->pipe;
3393 3394
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3395 3396 3397 3398

		if (WARN_ON(!r->enable))
			continue;

3399
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3400

3401 3402 3403 3404
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3405 3406 3407
	}
}

3408 3409
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3410 3411 3412 3413
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3414
{
3415
	int level, max_level = ilk_wm_max_level(dev_priv);
3416
	int level1 = 0, level2 = 0;
3417

3418 3419 3420 3421 3422
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3423 3424
	}

3425 3426
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3427 3428 3429
			return r2;
		else
			return r1;
3430
	} else if (level1 > level2) {
3431 3432 3433 3434 3435 3436
		return r1;
	} else {
		return r2;
	}
}

3437 3438 3439 3440 3441 3442 3443 3444
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3445
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3446 3447
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3448 3449 3450 3451 3452
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3453
	for_each_pipe(dev_priv, pipe) {
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3497 3498
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3499
{
3500
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3501
	bool changed = false;
3502

3503 3504 3505
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3506
		changed = true;
3507 3508 3509 3510
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3511
		changed = true;
3512 3513 3514 3515
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3516
		changed = true;
3517
	}
3518

3519 3520 3521 3522
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3523

3524 3525 3526 3527 3528 3529 3530
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3531 3532
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3533
{
3534
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3535
	unsigned int dirty;
3536
	u32 val;
3537

3538
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3539 3540 3541 3542 3543
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3544
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3545
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3546
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3547
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3548
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3549 3550
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3551
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3552
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3553
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3554
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3555
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3556 3557
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3558
	if (dirty & WM_DIRTY_DDB) {
3559
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3574 3575
	}

3576
	if (dirty & WM_DIRTY_FBC) {
3577 3578 3579 3580 3581 3582 3583 3584
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3585 3586 3587 3588
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3589
	if (INTEL_GEN(dev_priv) >= 7) {
3590 3591 3592 3593 3594
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3595

3596
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3597
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3598
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3599
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3600
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3601
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3602 3603

	dev_priv->wm.hw = *results;
3604 3605
}

3606
bool ilk_disable_lp_wm(struct drm_device *dev)
3607
{
3608
	struct drm_i915_private *dev_priv = to_i915(dev);
3609 3610 3611 3612

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
		enabled_slices++;

	return enabled_slices;
}

3630 3631 3632 3633 3634 3635 3636 3637
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3638
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3639 3640 3641 3642 3643
		return true;

	return false;
}

3644 3645 3646
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3647 3648
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3649 3650
}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3663
intel_enable_sagv(struct drm_i915_private *dev_priv)
3664 3665 3666
{
	int ret;

3667 3668 3669 3670
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3671 3672 3673
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3674
	mutex_lock(&dev_priv->pcu_lock);
3675 3676 3677 3678 3679

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3680
	mutex_unlock(&dev_priv->pcu_lock);
3681 3682 3683 3684 3685

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3686
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3687
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3688
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3689 3690 3691 3692 3693 3694
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3695
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3696 3697 3698 3699
	return 0;
}

int
3700
intel_disable_sagv(struct drm_i915_private *dev_priv)
3701
{
3702
	int ret;
3703

3704 3705 3706 3707
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3708 3709 3710
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3711
	mutex_lock(&dev_priv->pcu_lock);
3712 3713

	/* bspec says to keep retrying for at least 1 ms */
3714 3715 3716 3717
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3718
	mutex_unlock(&dev_priv->pcu_lock);
3719 3720 3721 3722 3723

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3724
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3725
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3726
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3727
		return 0;
3728 3729 3730
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3731 3732
	}

3733
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3734 3735 3736
	return 0;
}

3737
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3738 3739 3740 3741
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3742 3743
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3744
	struct intel_crtc_state *cstate;
3745
	enum pipe pipe;
3746
	int level, latency;
3747
	int sagv_block_time_us;
3748

3749 3750 3751
	if (!intel_has_sagv(dev_priv))
		return false;

3752
	if (IS_GEN(dev_priv, 9))
3753
		sagv_block_time_us = 30;
3754
	else if (IS_GEN(dev_priv, 10))
3755 3756 3757 3758
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3759
	/*
3760
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3772
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3773
	cstate = to_intel_crtc_state(crtc->base.state);
3774

3775
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3776 3777
		return false;

3778
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3779 3780
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3781

3782
		/* Skip this plane if it's not enabled */
3783
		if (!wm->wm[0].plane_en)
3784 3785 3786
			continue;

		/* Find the highest enabled wm level for this plane */
3787
		for (level = ilk_wm_max_level(dev_priv);
3788
		     !wm->wm[level].plane_en; --level)
3789 3790
		     { }

3791 3792 3793
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3794
		    plane->base.state->fb->modifier ==
3795 3796 3797
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3798
		/*
3799 3800 3801
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3802
		 */
3803
		if (latency < sagv_block_time_us)
3804 3805 3806 3807 3808 3809
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3810 3811
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3812
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3813 3814
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3826
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3827 3828 3829 3830

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
	 */
3831
	if (num_active > 1 || total_data_bw >= GBps(12)) {
3832 3833 3834 3835 3836 3837 3838 3839 3840
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3841
static void
3842
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3843
				   const struct intel_crtc_state *cstate,
3844
				   const u64 total_data_rate,
3845
				   struct skl_ddb_allocation *ddb,
3846 3847
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3848
{
3849 3850
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3851
	struct drm_crtc *for_crtc = cstate->base.crtc;
3852 3853 3854 3855 3856 3857
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3858

3859
	if (WARN_ON(!state) || !cstate->base.active) {
3860 3861
		alloc->start = 0;
		alloc->end = 0;
3862
		*num_active = hweight32(dev_priv->active_crtcs);
3863 3864 3865
		return;
	}

3866 3867 3868 3869 3870
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3871 3872
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3873

3874
	/*
3875 3876 3877 3878 3879 3880
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3881
	 */
3882
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3883 3884 3885 3886 3887
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3888
		return;
3889
	}
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3917 3918
}

3919
static unsigned int skl_cursor_allocation(int num_active)
3920
{
3921
	if (num_active == 1)
3922 3923 3924 3925 3926
		return 32;

	return 8;
}

3927 3928
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3929
{
3930 3931 3932 3933 3934 3935 3936 3937 3938
	u16 mask;

	if (INTEL_GEN(dev_priv) >= 11)
		mask = ICL_DDB_ENTRY_MASK;
	else
		mask = SKL_DDB_ENTRY_MASK;
	entry->start = reg & mask;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;

3939 3940
	if (entry->end)
		entry->end += 1;
3941 3942
}

3943 3944 3945 3946
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3947 3948
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3949
{
3950 3951
	u32 val, val2;
	u32 fourcc = 0;
3952 3953 3954 3955

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3956
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3957 3958 3959 3960 3961 3962
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3963 3964 3965 3966
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3967

3968 3969 3970 3971 3972
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3973
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3974

3975 3976 3977 3978 3979
		if (fourcc == DRM_FORMAT_NV12)
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
3980 3981 3982
	}
}

3983 3984 3985
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
3986
{
3987 3988 3989
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
3990
	intel_wakeref_t wakeref;
3991
	enum plane_id plane_id;
3992

3993
	power_domain = POWER_DOMAIN_PIPE(pipe);
3994 3995
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
3996
		return;
3997

3998 3999 4000 4001 4002
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4003

4004
	intel_display_power_put(dev_priv, power_domain, wakeref);
4005
}
4006

4007 4008 4009 4010
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4011 4012
}

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4029
static uint_fixed_16_16_t
4030 4031
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4032
{
4033
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4034
	u32 src_w, src_h, dst_w, dst_h;
4035 4036
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4037

4038
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4039
		return u32_to_fixed16(0);
4040 4041

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4042
	if (plane->id == PLANE_CURSOR) {
4043 4044 4045 4046
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4047 4048
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4049 4050 4051
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4052 4053 4054 4055 4056
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4057 4058
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4059 4060 4061 4062
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4063 4064 4065 4066
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4067

4068
	return mul_fixed16(downscale_w, downscale_h);
4069 4070
}

4071 4072 4073
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4074
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4075 4076 4077 4078 4079

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4080 4081
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4093 4094 4095 4096
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4107
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4108 4109 4110 4111 4112
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4113
	int crtc_clock, dotclk;
4114
	u32 pipe_max_pixel_rate;
4115
	uint_fixed_16_16_t pipe_downscale;
4116
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4117 4118 4119 4120 4121 4122

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4123
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4141
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4142 4143 4144 4145 4146 4147
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4148 4149
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4150
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4151 4152 4153
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4154 4155

	if (pipe_max_pixel_rate < crtc_clock) {
4156
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4157 4158 4159 4160 4161 4162
		return -EINVAL;
	}

	return 0;
}

4163
static u64
4164
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4165
			     const struct intel_plane_state *intel_pstate,
4166
			     const int plane)
4167
{
4168 4169
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4170 4171
	u32 data_rate;
	u32 width = 0, height = 0;
4172 4173
	struct drm_framebuffer *fb;
	u32 format;
4174
	uint_fixed_16_16_t down_scale_amount;
4175
	u64 rate;
4176

4177
	if (!intel_pstate->base.visible)
4178
		return 0;
4179

4180
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4181
	format = fb->format->format;
4182

4183
	if (intel_plane->id == PLANE_CURSOR)
4184
		return 0;
4185
	if (plane == 1 && format != DRM_FORMAT_NV12)
4186
		return 0;
4187

4188 4189 4190 4191 4192
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4193 4194
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4195

4196 4197 4198 4199
	/* UV plane does 1/2 pixel sub-sampling */
	if (plane == 1 && format == DRM_FORMAT_NV12) {
		width /= 2;
		height /= 2;
4200 4201
	}

4202
	data_rate = width * height;
4203

4204
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4205

4206 4207 4208 4209
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4210 4211
}

4212
static u64
4213
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4214 4215
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4216
{
4217 4218
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4219 4220
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4221
	u64 total_data_rate = 0;
4222 4223 4224

	if (WARN_ON(!state))
		return 0;
4225

4226
	/* Calculate and cache data rate for each plane */
4227
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4228
		enum plane_id plane_id = to_intel_plane(plane)->id;
4229
		u64 rate;
4230 4231
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4232

4233
		/* packed/y */
4234
		rate = skl_plane_relative_data_rate(intel_cstate,
4235
						    intel_pstate, 0);
4236
		plane_data_rate[plane_id] = rate;
4237
		total_data_rate += rate;
4238

4239
		/* uv-plane */
4240
		rate = skl_plane_relative_data_rate(intel_cstate,
4241
						    intel_pstate, 1);
4242
		uv_plane_data_rate[plane_id] = rate;
4243
		total_data_rate += rate;
4244 4245 4246 4247 4248
	}

	return total_data_rate;
}

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4304
static int
4305
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4306 4307
		      struct skl_ddb_allocation *ddb /* out */)
{
4308
	struct drm_atomic_state *state = cstate->base.state;
4309
	struct drm_crtc *crtc = cstate->base.crtc;
4310
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4311
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4312
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4313
	struct skl_plane_wm *wm;
4314 4315 4316
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4317
	u64 total_data_rate;
4318
	enum plane_id plane_id;
4319
	int num_active;
4320 4321
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4322
	u16 blocks = 0;
4323
	int level;
4324

4325
	/* Clear the partitioning for disabled planes. */
4326 4327
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4328

4329 4330 4331
	if (WARN_ON(!state))
		return 0;

4332
	if (!cstate->base.active) {
4333
		alloc->start = alloc->end = 0;
4334 4335 4336
		return 0;
	}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	if (INTEL_GEN(dev_priv) < 11)
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
	else
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4349
	alloc_size = skl_ddb_entry_size(alloc);
4350
	if (alloc_size == 0)
4351
		return 0;
4352

4353 4354 4355 4356 4357 4358 4359 4360 4361
	/* Allocate fixed number of blocks for cursor. */
	total[PLANE_CURSOR] = skl_cursor_allocation(num_active);
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4362

4363
	/*
4364 4365
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4366
	 */
4367
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4368
		blocks = 0;
4369 4370 4371
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			if (plane_id == PLANE_CURSOR)
				continue;
4372

4373 4374 4375 4376 4377 4378 4379 4380 4381
			wm = &cstate->wm.skl.optimal.planes[plane_id];
			blocks += wm->wm[level].plane_res_b;
			blocks += wm->uv_wm[level].plane_res_b;
		}

		if (blocks < alloc_size) {
			alloc_size -= blocks;
			break;
		}
4382 4383
	}

4384
	if (level < 0) {
4385
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4386 4387
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4388 4389 4390
		return -EINVAL;
	}

4391
	/*
4392 4393 4394
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4395
	 */
4396
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4397 4398
		u64 rate;
		u16 extra;
4399

4400
		if (plane_id == PLANE_CURSOR)
4401 4402
			continue;

4403
		/*
4404 4405
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4406
		 */
4407 4408
		if (total_data_rate == 0)
			break;
4409

4410
		wm = &cstate->wm.skl.optimal.planes[plane_id];
4411

4412 4413 4414 4415 4416 4417 4418
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
		total[plane_id] = wm->wm[level].plane_res_b + extra;
		alloc_size -= extra;
		total_data_rate -= rate;
4419

4420 4421
		if (total_data_rate == 0)
			break;
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
		uv_total[plane_id] = wm->uv_wm[level].plane_res_b + extra;
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_ddb_entry *plane_alloc, *uv_plane_alloc;

		if (plane_id == PLANE_CURSOR)
			continue;

		plane_alloc = &cstate->wm.skl.plane_ddb_y[plane_id];
		uv_plane_alloc = &cstate->wm.skl.plane_ddb_uv[plane_id];
4443

4444
		/* Gen11+ uses a separate plane for UV watermarks */
4445 4446 4447 4448 4449 4450 4451 4452
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4453

4454 4455 4456 4457
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4458
		}
4459
	}
4460

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			wm = &cstate->wm.skl.optimal.planes[plane_id];
			memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		wm = &cstate->wm.skl.optimal.planes[plane_id];
		if (wm->trans_wm.plane_res_b > total[plane_id])
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4482 4483
	}

4484
	return 0;
4485 4486
}

4487 4488
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4489
 * for the read latency) and cpp should always be <= 8, so that
4490 4491 4492
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4493
static uint_fixed_16_16_t
4494 4495
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4496
{
4497
	u32 wm_intermediate_val;
4498
	uint_fixed_16_16_t ret;
4499 4500

	if (latency == 0)
4501
		return FP_16_16_MAX;
4502

4503
	wm_intermediate_val = latency * pixel_rate * cpp;
4504
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4505 4506 4507 4508

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4509 4510 4511
	return ret;
}

4512 4513 4514
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4515
{
4516
	u32 wm_intermediate_val;
4517
	uint_fixed_16_16_t ret;
4518 4519

	if (latency == 0)
4520
		return FP_16_16_MAX;
4521 4522

	wm_intermediate_val = latency * pixel_rate;
4523 4524
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4525
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4526 4527 4528
	return ret;
}

4529
static uint_fixed_16_16_t
4530
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4531
{
4532 4533
	u32 pixel_rate;
	u32 crtc_htotal;
4534 4535 4536
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4537
		return u32_to_fixed16(0);
4538 4539 4540 4541

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4542
		return u32_to_fixed16(0);
4543 4544

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4545
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4546 4547 4548 4549

	return linetime_us;
}

4550
static u32
4551 4552
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4553
{
4554
	u64 adjusted_pixel_rate;
4555
	uint_fixed_16_16_t downscale_amount;
4556 4557

	/* Shouldn't reach here on disabled planes... */
4558
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4559 4560 4561 4562 4563 4564
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4565
	adjusted_pixel_rate = cstate->pixel_rate;
4566
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4567

4568 4569
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4570 4571
}

4572
static int
4573
skl_compute_plane_wm_params(const struct intel_crtc_state *cstate,
4574
			    const struct intel_plane_state *intel_pstate,
4575
			    struct skl_wm_params *wp, int color_plane)
4576
{
4577
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4578
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4579 4580
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4581
	u32 interm_pbpl;
4582 4583 4584
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4585

4586
	/* only NV12 format has two planes */
4587
	if (color_plane == 1 && fb->format->format != DRM_FORMAT_NV12) {
4588 4589 4590 4591
		DRM_DEBUG_KMS("Non NV12 format have single plane\n");
		return -EINVAL;
	}

4592 4593 4594 4595 4596 4597 4598
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4599
	wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4600

4601
	if (plane->id == PLANE_CURSOR) {
4602
		wp->width = intel_pstate->base.crtc_w;
4603
	} else {
4604 4605 4606 4607 4608
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4609
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4610
	}
4611

4612
	if (color_plane == 1 && wp->is_planar)
4613 4614
		wp->width /= 2;

4615
	wp->cpp = fb->format->cpp[color_plane];
4616 4617
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4618

4619 4620 4621 4622 4623 4624
	if (INTEL_GEN(dev_priv) >= 11 &&
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4625
	if (drm_rotation_90_or_270(pstate->rotation)) {
4626

4627
		switch (wp->cpp) {
4628
		case 1:
4629
			wp->y_min_scanlines = 16;
4630 4631
			break;
		case 2:
4632
			wp->y_min_scanlines = 8;
4633 4634
			break;
		case 4:
4635
			wp->y_min_scanlines = 4;
4636
			break;
4637
		default:
4638
			MISSING_CASE(wp->cpp);
4639
			return -EINVAL;
4640 4641
		}
	} else {
4642
		wp->y_min_scanlines = 4;
4643 4644
	}

4645
	if (apply_memory_bw_wa)
4646
		wp->y_min_scanlines *= 2;
4647

4648 4649 4650
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4651 4652
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4653 4654 4655 4656

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4657 4658
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4659
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4660 4661
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4662
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4663
	} else {
4664 4665
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4666
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4667 4668
	}

4669 4670 4671 4672 4673 4674 4675 4676
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

4677 4678 4679 4680 4681 4682 4683 4684 4685
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4686 4687 4688 4689 4690 4691
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 const struct intel_plane_state *intel_pstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4692
{
4693 4694
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4695
	u32 latency = dev_priv->wm.skl_latency[level];
4696 4697
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4698
	u32 res_blocks, res_lines;
4699 4700 4701
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4702

4703
	/* Display WA #1141: kbl,cfl */
4704 4705
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4706 4707 4708 4709 4710 4711 4712
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4713
				 wp->cpp, latency, wp->dbuf_block_size);
4714
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4715
				 cstate->base.adjusted_mode.crtc_htotal,
4716
				 latency,
4717
				 wp->plane_blocks_per_line);
4718

4719 4720
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4721
	} else {
4722
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4723
		     wp->dbuf_block_size < 1) &&
4724
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4725
			selected_result = method2;
4726
		} else if (latency >= wp->linetime_us) {
4727
			if (IS_GEN(dev_priv, 9) &&
4728 4729 4730 4731 4732
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4733
			selected_result = method1;
4734
		}
4735
	}
4736

4737
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4738
	res_lines = div_round_up_fixed16(selected_result,
4739
					 wp->plane_blocks_per_line);
4740

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4756

4757 4758 4759 4760 4761 4762 4763 4764 4765
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4766
	}
4767

4768 4769 4770 4771
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

	if (res_lines > 31)
4772 4773 4774 4775 4776 4777 4778 4779
		return;

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4780 4781 4782
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
	result->plane_en = true;
4783 4784
}

4785
static void
4786
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4787
		      const struct intel_plane_state *intel_pstate,
4788
		      const struct skl_wm_params *wm_params,
4789
		      struct skl_wm_level *levels)
4790
{
4791 4792
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4793
	int level, max_level = ilk_wm_max_level(dev_priv);
4794
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4795

4796
	for (level = 0; level <= max_level; level++) {
4797
		struct skl_wm_level *result = &levels[level];
4798

4799 4800
		skl_compute_plane_wm(cstate, intel_pstate, level, wm_params,
				     result_prev, result);
4801 4802

		result_prev = result;
4803
	}
4804 4805
}

4806
static u32
4807
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4808
{
M
Mahesh Kumar 已提交
4809 4810
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4811
	uint_fixed_16_16_t linetime_us;
4812
	u32 linetime_wm;
4813

4814
	linetime_us = intel_get_linetime_us(cstate);
4815

4816
	if (is_fixed16_zero(linetime_us))
4817
		return 0;
4818

4819
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4820

4821 4822 4823 4824
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4825 4826

	return linetime_wm;
4827 4828
}

4829
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4830
				      const struct skl_wm_params *wp,
4831
				      struct skl_plane_wm *wm)
4832
{
4833 4834
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
4835 4836 4837
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4838 4839 4840

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4841
		return;
4842 4843 4844

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4845
		return;
4846

4847 4848
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4849 4850 4851 4852
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4863
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4864

4865
	if (wp->y_tiled) {
4866 4867
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4868
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4869 4870
				trans_offset_b;
	} else {
4871
		res_blocks = wm0_sel_res_b + trans_offset_b;
4872 4873 4874 4875 4876 4877 4878

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4879 4880 4881 4882 4883 4884 4885
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4886 4887
}

4888
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4889 4890
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4891
{
4892
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4893 4894 4895
	struct skl_wm_params wm_params;
	int ret;

4896
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4897 4898 4899 4900
					  &wm_params, color_plane);
	if (ret)
		return ret;

4901 4902
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->wm);
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4903 4904 4905 4906

	return 0;
}

4907
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4908 4909
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4910
{
4911
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4912 4913 4914
	struct skl_wm_params wm_params;
	int ret;

4915
	wm->is_planar = true;
4916 4917

	/* uv plane watermarks must also be validated for NV12/Planar */
4918
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4919 4920 4921
					  &wm_params, 1);
	if (ret)
		return ret;
4922

4923
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->uv_wm);
4924

4925
	return 0;
4926 4927
}

4928
static int skl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4929 4930
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4931
{
4932 4933 4934
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
4935 4936
	int ret;

4937 4938 4939
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4940
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4941
					plane_id, 0);
4942 4943 4944
	if (ret)
		return ret;

4945
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4946
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4947 4948 4949 4950 4951 4952 4953 4954
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4955
static int icl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

4974
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4975 4976 4977 4978
						y_plane_id, 0);
		if (ret)
			return ret;

4979
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4980 4981 4982 4983
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4984
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4985 4986 4987 4988 4989 4990
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
4991 4992
}

4993 4994
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_pipe_wm *pipe_wm)
4995
{
4996
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4997 4998 4999
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
5000
	int ret;
5001

L
Lyude 已提交
5002 5003 5004 5005 5006 5007
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5008 5009 5010 5011
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5012
		if (INTEL_GEN(dev_priv) >= 11)
5013
			ret = icl_build_plane_wm(pipe_wm,
5014
						 cstate, intel_pstate);
5015
		else
5016
			ret = skl_build_plane_wm(pipe_wm,
5017
						 cstate, intel_pstate);
5018 5019
		if (ret)
			return ret;
5020
	}
5021

5022
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5023

5024
	return 0;
5025 5026
}

5027 5028
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5029 5030 5031
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5032
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5033
	else
5034
		I915_WRITE_FW(reg, 0);
5035 5036
}

5037 5038 5039 5040
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5041
	u32 val = 0;
5042 5043 5044 5045 5046 5047 5048

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

5049
	I915_WRITE_FW(reg, val);
5050 5051
}

5052 5053
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5054
{
5055
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5056
	int level, max_level = ilk_wm_max_level(dev_priv);
5057 5058 5059 5060 5061 5062 5063 5064
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5065 5066

	for (level = 0; level <= max_level; level++) {
5067
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5068
				   &wm->wm[level]);
5069
	}
5070
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5071
			   &wm->trans_wm);
5072

5073
	if (INTEL_GEN(dev_priv) >= 11) {
5074
		skl_ddb_entry_write(dev_priv,
5075 5076
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5077
	}
5078 5079 5080 5081 5082 5083 5084 5085

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5086 5087
}

5088 5089
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5090
{
5091
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5092
	int level, max_level = ilk_wm_max_level(dev_priv);
5093 5094 5095 5096 5097 5098
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5099 5100

	for (level = 0; level <= max_level; level++) {
5101 5102
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5103
	}
5104
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5105

5106
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5107 5108
}

5109 5110 5111
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5112 5113 5114 5115
	return l1->plane_en == l2->plane_en &&
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5116

5117 5118 5119 5120 5121
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5122

5123 5124 5125 5126 5127 5128 5129
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5130 5131
}

5132 5133
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5134
{
5135
	return a->start < b->end && b->start < a->end;
5136 5137
}

5138 5139 5140
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
				 const struct skl_ddb_entry entries[],
				 int num_entries, int ignore_idx)
5141
{
5142
	int i;
5143

5144 5145 5146
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5147
			return true;
5148
	}
5149

5150
	return false;
5151 5152
}

5153
static int skl_update_pipe_wm(struct intel_crtc_state *cstate,
5154
			      const struct skl_pipe_wm *old_pipe_wm,
5155 5156
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
5157
{
5158
	int ret;
5159

5160
	ret = skl_build_pipe_wm(cstate, pipe_wm);
5161 5162
	if (ret)
		return ret;
5163

5164
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5165 5166 5167
		*changed = false;
	else
		*changed = true;
5168

5169
	return 0;
5170 5171
}

5172
static u32
5173
pipes_modified(struct intel_atomic_state *state)
5174
{
5175 5176
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5177
	u32 i, ret = 0;
5178

5179 5180
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5181 5182 5183 5184

	return ret;
}

5185
static int
5186 5187
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5188
{
5189 5190 5191 5192
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5193

5194 5195 5196
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5197

5198 5199 5200 5201
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5202 5203
			continue;

5204
		plane_state = intel_atomic_get_plane_state(state, plane);
5205 5206
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5207

5208
		new_crtc_state->update_planes |= BIT(plane_id);
5209 5210 5211 5212 5213 5214
	}

	return 0;
}

static int
5215
skl_compute_ddb(struct intel_atomic_state *state)
5216
{
5217 5218
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5219 5220
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5221 5222
	struct intel_crtc *crtc;
	int ret, i;
5223

5224 5225
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5226
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5227 5228
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5229 5230 5231
		if (ret)
			return ret;

5232 5233
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5234 5235
		if (ret)
			return ret;
5236 5237 5238 5239 5240
	}

	return 0;
}

5241
static void
5242
skl_print_wm_changes(struct intel_atomic_state *state)
5243
{
5244 5245 5246 5247 5248
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5249
	int i;
5250

5251 5252 5253 5254
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5255 5256
			const struct skl_ddb_entry *old, *new;

5257 5258
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5259 5260 5261 5262

			if (skl_ddb_entry_equal(old, new))
				continue;

5263
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5264
				      plane->base.base.id, plane->base.name,
5265 5266
				      old->start, old->end,
				      new->start, new->end);
5267 5268 5269 5270
		}
	}
}

5271
static int
5272
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5273
{
5274
	struct drm_device *dev = state->base.dev;
5275
	const struct drm_i915_private *dev_priv = to_i915(dev);
5276 5277
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5278
	u32 realloc_pipes = pipes_modified(state);
5279
	int ret, i;
5280

5281 5282 5283 5284
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5285 5286
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5287

5288 5289 5290 5291 5292 5293 5294 5295
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5296
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5297
		(*changed) = true;
5298

5299
	if (!*changed)
5300 5301
		return 0;

5302 5303 5304 5305 5306 5307 5308 5309
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5310
				       state->base.acquire_ctx);
5311 5312 5313
		if (ret)
			return ret;

5314
		state->active_pipe_changes = ~0;
5315 5316

		/*
5317
		 * We usually only initialize state->active_crtcs if we
5318 5319 5320 5321
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5322 5323
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5339
	if (state->active_pipe_changes || state->modeset) {
5340
		realloc_pipes = ~0;
5341
		state->wm_results.dirty_pipes = ~0;
5342 5343 5344 5345 5346 5347
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5348 5349 5350 5351
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5352 5353 5354 5355 5356
	}

	return 0;
}

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5417
static int
5418
skl_compute_wm(struct intel_atomic_state *state)
5419
{
5420 5421 5422 5423
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5424 5425 5426 5427
	struct skl_pipe_wm *pipe_wm;
	bool changed = false;
	int ret, i;

5428 5429 5430
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5431 5432 5433 5434
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5435 5436
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5437
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5438 5439 5440
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5441 5442
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    cstate, i) {
5443
		const struct skl_pipe_wm *old_pipe_wm =
5444
			&old_crtc_state->wm.skl.optimal;
5445

5446
		pipe_wm = &cstate->wm.skl.optimal;
5447 5448 5449 5450
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, &changed);
		if (ret)
			return ret;

5451
		ret = skl_wm_add_affected_planes(state, crtc);
5452 5453 5454 5455
		if (ret)
			return ret;

		if (changed)
5456
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5457 5458
	}

5459 5460 5461 5462
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5463
	skl_print_wm_changes(state);
5464

5465 5466 5467
	return 0;
}

5468 5469 5470 5471 5472 5473 5474
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5475 5476 5477

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5478 5479 5480 5481

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5482 5483
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5484
{
5485
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5486
	struct drm_device *dev = intel_crtc->base.dev;
5487
	struct drm_i915_private *dev_priv = to_i915(dev);
5488
	struct skl_ddb_values *results = &state->wm_results;
5489

5490
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5491 5492
		return;

5493
	mutex_lock(&dev_priv->wm.wm_mutex);
5494

5495 5496
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5497

5498
	mutex_unlock(&dev_priv->wm.wm_mutex);
5499 5500
}

5501
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5502 5503 5504 5505 5506
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5507
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5519
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5520
{
5521
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5522
	struct ilk_wm_maximums max;
5523
	struct intel_wm_config config = {};
5524
	struct ilk_wm_values results = {};
5525
	enum intel_ddb_partitioning partitioning;
5526

5527
	ilk_compute_wm_config(dev_priv, &config);
5528

5529 5530
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5531 5532

	/* 5/6 split only in single pipe config on IVB+ */
5533
	if (INTEL_GEN(dev_priv) >= 7 &&
5534
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5535 5536
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5537

5538
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5539
	} else {
5540
		best_lp_wm = &lp_wm_1_2;
5541 5542
	}

5543
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5544
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5545

5546
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5547

5548
	ilk_write_wm_values(dev_priv, &results);
5549 5550
}

5551 5552
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5553
{
5554 5555
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5556

5557
	mutex_lock(&dev_priv->wm.wm_mutex);
5558
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5559 5560 5561
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5562

5563 5564
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5565 5566 5567
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5568

5569 5570
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5571
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5572 5573 5574
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5575 5576
}

5577
static inline void skl_wm_level_from_reg_val(u32 val,
5578
					     struct skl_wm_level *level)
5579
{
5580 5581 5582 5583
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5584 5585
}

5586
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5587
			      struct skl_pipe_wm *out)
5588
{
5589 5590
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5591 5592
	int level, max_level;
	enum plane_id plane_id;
5593
	u32 val;
5594

5595
	max_level = ilk_wm_max_level(dev_priv);
5596

5597
	for_each_plane_id_on_crtc(crtc, plane_id) {
5598
		struct skl_plane_wm *wm = &out->planes[plane_id];
5599

5600
		for (level = 0; level <= max_level; level++) {
5601 5602
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5603 5604
			else
				val = I915_READ(CUR_WM(pipe, level));
5605

5606
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5607 5608
		}

5609 5610
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5611 5612 5613 5614
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5615 5616
	}

5617
	if (!crtc->active)
5618
		return;
5619

5620
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5621 5622
}

5623
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5624
{
5625
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5626
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5627
	struct intel_crtc *crtc;
5628
	struct intel_crtc_state *cstate;
5629

5630
	skl_ddb_get_hw_state(dev_priv, ddb);
5631 5632
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5633 5634 5635

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5636 5637
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5638
	}
5639

5640 5641 5642 5643
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5644 5645
}

5646
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5647
{
5648
	struct drm_device *dev = crtc->base.dev;
5649
	struct drm_i915_private *dev_priv = to_i915(dev);
5650
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5651
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5652
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5653
	enum pipe pipe = crtc->pipe;
5654
	static const i915_reg_t wm0_pipe_reg[] = {
5655 5656 5657 5658 5659 5660
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5661
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5662
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5663

5664 5665
	memset(active, 0, sizeof(*active));

5666
	active->pipe_enabled = crtc->active;
5667 5668

	if (active->pipe_enabled) {
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5683
		int level, max_level = ilk_wm_max_level(dev_priv);
5684 5685 5686 5687 5688 5689 5690 5691 5692

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5693

5694
	crtc->wm.active.ilk = *active;
5695 5696
}

5697 5698 5699 5700 5701
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5702 5703 5704
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5705
	u32 tmp;
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5728 5729 5730 5731
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5732
	u32 tmp;
5733 5734 5735 5736

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5737
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5738
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5739
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5740
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5741
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5742
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5743
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5744 5745 5746 5747 5748
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5749 5750 5751
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5752 5753

	tmp = I915_READ(DSPFW2);
5754 5755 5756
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5757 5758 5759 5760 5761 5762

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5763 5764
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5765 5766

		tmp = I915_READ(DSPFW8_CHV);
5767 5768
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5769 5770

		tmp = I915_READ(DSPFW9_CHV);
5771 5772
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5773 5774 5775

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5776 5777 5778 5779 5780 5781 5782 5783 5784
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5785 5786
	} else {
		tmp = I915_READ(DSPFW7);
5787 5788
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5789 5790 5791

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5792 5793 5794 5795 5796 5797
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5798 5799 5800 5801 5802 5803
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5804
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5805 5806 5807 5808 5809 5810 5811 5812
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5813
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5944
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
5945 5946
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5947
	struct intel_crtc *crtc;
5948 5949 5950 5951 5952 5953 5954 5955
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5956
		mutex_lock(&dev_priv->pcu_lock);
5957 5958 5959 5960 5961

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5962 5963 5964 5965 5966 5967 5968 5969 5970
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5971
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5985

5986
		mutex_unlock(&dev_priv->pcu_lock);
5987 5988
	}

5989
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6005
			struct g4x_pipe_wm *raw =
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6027
		crtc_state->wm.vlv.intermediate = *active;
6028

6029
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6030 6031 6032 6033 6034
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6035
	}
6036 6037 6038 6039 6040

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6065
			struct g4x_pipe_wm *raw =
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6106
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6107
{
6108
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6109
	struct intel_crtc *crtc;
6110

6111 6112
	ilk_init_lp_watermarks(dev_priv);

6113
	for_each_intel_crtc(&dev_priv->drm, crtc)
6114 6115 6116 6117 6118 6119 6120
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6121
	if (INTEL_GEN(dev_priv) >= 7) {
6122 6123 6124
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6125

6126
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6127 6128
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6129
	else if (IS_IVYBRIDGE(dev_priv))
6130 6131
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6132 6133 6134 6135 6136

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6137 6138
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6139
 * @crtc: the #intel_crtc on which to compute the WM
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6170
void intel_update_watermarks(struct intel_crtc *crtc)
6171
{
6172
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6173 6174

	if (dev_priv->display.update_wm)
6175
		dev_priv->display.update_wm(crtc);
6176 6177
}

6178 6179 6180 6181
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6182 6183 6184
	if (!HAS_IPC(dev_priv))
		return;

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6200 6201 6202 6203 6204 6205
	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
	else
		dev_priv->ipc_enabled = true;

6206 6207 6208
	intel_enable_ipc(dev_priv);
}

6209
/*
6210 6211 6212 6213
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

6214
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6215 6216 6217
{
	u16 rgvswctl;

6218
	lockdep_assert_held(&mchdev_lock);
6219

6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6237
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6238
{
6239
	u32 rgvmodectl;
6240 6241
	u8 fmax, fmin, fstart, vstart;

6242 6243
	spin_lock_irq(&mchdev_lock);

6244 6245
	rgvmodectl = I915_READ(MEMMODECTL);

6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6266
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6267 6268
		PXVFREQ_PX_SHIFT;

6269 6270
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6271

6272 6273 6274
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6291
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6292
		DRM_ERROR("stuck trying to change perf mode\n");
6293
	mdelay(1);
6294

6295
	ironlake_set_drps(dev_priv, fstart);
6296

6297 6298
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6299
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6300
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6301
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6302 6303

	spin_unlock_irq(&mchdev_lock);
6304 6305
}

6306
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6307
{
6308 6309 6310 6311 6312
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6313 6314 6315 6316 6317 6318 6319 6320 6321

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6322
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6323
	mdelay(1);
6324 6325
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6326
	mdelay(1);
6327

6328
	spin_unlock_irq(&mchdev_lock);
6329 6330
}

6331 6332 6333 6334 6335
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6336
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6337
{
6338
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6339
	u32 limits;
6340

6341 6342 6343 6344 6345 6346
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6347
	if (INTEL_GEN(dev_priv) >= 9) {
6348 6349 6350
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6351
	} else {
6352 6353 6354
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6355
	}
6356 6357 6358 6359

	return limits;
}

C
Chris Wilson 已提交
6360
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6361
{
6362
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6363 6364
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6365

C
Chris Wilson 已提交
6366
	lockdep_assert_held(&rps->power.mutex);
6367

C
Chris Wilson 已提交
6368
	if (new_power == rps->power.mode)
6369 6370 6371 6372 6373 6374
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6375 6376
		ei_up = 16000;
		threshold_up = 95;
6377 6378

		/* Downclock if less than 85% busy over 32ms */
6379 6380
		ei_down = 32000;
		threshold_down = 85;
6381 6382 6383 6384
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6385 6386
		ei_up = 13000;
		threshold_up = 90;
6387 6388

		/* Downclock if less than 75% busy over 32ms */
6389 6390
		ei_down = 32000;
		threshold_down = 75;
6391 6392 6393 6394
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6395 6396
		ei_up = 10000;
		threshold_up = 85;
6397 6398

		/* Downclock if less than 60% busy over 32ms */
6399 6400
		ei_down = 32000;
		threshold_down = 60;
6401 6402 6403
		break;
	}

6404 6405 6406 6407 6408 6409
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6410
	I915_WRITE(GEN6_RP_UP_EI,
6411
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6412
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6413 6414
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6415 6416

	I915_WRITE(GEN6_RP_DOWN_EI,
6417
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6418
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6429

6430
skip_hw_write:
C
Chris Wilson 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6475 6476
}

C
Chris Wilson 已提交
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6495 6496
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6497
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6498 6499
	u32 mask = 0;

6500
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6501
	if (val > rps->min_freq_softlimit)
6502
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6503
	if (val < rps->max_freq_softlimit)
6504
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6505

6506 6507
	mask &= dev_priv->pm_rps_events;

6508
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6509 6510
}

6511 6512 6513
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6514
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6515
{
6516 6517
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6518 6519 6520
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6521
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6522
		gen6_set_rps_thresholds(dev_priv, val);
6523

6524
		if (INTEL_GEN(dev_priv) >= 9)
6525 6526
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6527
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6528 6529 6530 6531 6532 6533 6534
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6535
	}
6536 6537 6538 6539

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6540
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6541
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6542

6543
	rps->cur_freq = val;
6544
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6545 6546

	return 0;
6547 6548
}

6549
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6550
{
6551 6552
	int err;

6553
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6554 6555 6556
		      "Odd GPU freq value\n"))
		val &= ~1;

6557 6558
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6559
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6560 6561 6562 6563
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6564
		gen6_set_rps_thresholds(dev_priv, val);
6565
	}
6566

6567
	dev_priv->gt_pm.rps.cur_freq = val;
6568
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6569 6570

	return 0;
6571 6572
}

6573
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6574 6575
 *
 * * If Gfx is Idle, then
6576 6577 6578
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6579 6580 6581
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6582 6583
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6584
	int err;
6585

6586
	if (rps->cur_freq <= val)
6587 6588
		return;

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6601
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6602
	err = valleyview_set_rps(dev_priv, val);
6603
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6604 6605 6606

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6607 6608
}

6609 6610
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6611 6612
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6613
	mutex_lock(&dev_priv->pcu_lock);
6614
	if (rps->enabled) {
6615 6616
		u8 freq;

6617
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6618 6619
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6620
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6621

6622 6623
		gen6_enable_rps_interrupts(dev_priv);

6624 6625 6626
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6627 6628
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6629

6630
		if (intel_set_rps(dev_priv,
6631
				  clamp(freq,
6632 6633
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6634
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6635
	}
6636
	mutex_unlock(&dev_priv->pcu_lock);
6637 6638
}

6639 6640
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6641 6642
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6643 6644 6645 6646 6647 6648 6649
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6650
	mutex_lock(&dev_priv->pcu_lock);
6651
	if (rps->enabled) {
6652
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6653
			vlv_set_rps_idle(dev_priv);
6654
		else
6655 6656
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6657 6658
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6659
	}
6660
	mutex_unlock(&dev_priv->pcu_lock);
6661 6662
}

6663
void gen6_rps_boost(struct i915_request *rq,
6664
		    struct intel_rps_client *rps_client)
6665
{
6666
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6667
	unsigned long flags;
6668 6669
	bool boost;

6670 6671 6672
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6673
	if (!rps->enabled)
6674
		return;
6675

6676
	if (i915_request_signaled(rq))
6677 6678
		return;

6679
	/* Serializes with i915_request_retire() */
6680
	boost = false;
6681
	spin_lock_irqsave(&rq->lock, flags);
6682 6683
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6684
		rq->waitboost = true;
6685
	}
6686
	spin_unlock_irqrestore(&rq->lock, flags);
6687 6688 6689
	if (!boost)
		return;

6690 6691
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6692

6693
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6694 6695
}

6696
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6697
{
6698
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6699 6700
	int err;

6701
	lockdep_assert_held(&dev_priv->pcu_lock);
6702 6703
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6704

6705 6706
	if (!rps->enabled) {
		rps->cur_freq = val;
6707 6708 6709
		return 0;
	}

6710
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6711
		err = valleyview_set_rps(dev_priv, val);
6712
	else
6713 6714 6715
		err = gen6_set_rps(dev_priv, val);

	return err;
6716 6717
}

6718
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6719 6720
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6721
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6722 6723
}

6724
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6725 6726 6727 6728
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6729
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6730 6731
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6732 6733 6734 6735
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6736
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6737
	I915_WRITE(GEN6_RP_CONTROL, 0);
6738 6739
}

6740
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6741 6742 6743 6744
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6745 6746 6747 6748 6749
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6750
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6751
{
6752
	/* We're doing forcewake before Disabling RC6,
6753
	 * This what the BIOS expects when going into suspend */
6754
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6755

6756
	I915_WRITE(GEN6_RC_CONTROL, 0);
6757

6758
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6759 6760
}

6761 6762 6763 6764 6765
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6766
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6767 6768 6769
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6781 6782

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6783
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6784 6785 6786 6787 6788 6789 6790 6791
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6792 6793
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6794
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6795 6796 6797 6798 6799 6800 6801
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6802
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6803 6804 6805
		enable_rc6 = false;
	}

6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6820 6821 6822 6823 6824 6825
		enable_rc6 = false;
	}

	return enable_rc6;
}

6826
static bool sanitize_rc6(struct drm_i915_private *i915)
6827
{
6828
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6829

6830 6831 6832
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6833

6834 6835
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6836
		DRM_INFO("RC6 disabled by BIOS\n");
6837
		info->has_rc6 = 0;
6838 6839
	}

6840 6841 6842 6843 6844 6845 6846 6847
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6848

6849
	return info->has_rc6;
6850 6851
}

6852
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6853
{
6854 6855
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6856
	/* All of these values are in units of 50MHz */
6857

6858
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6859
	if (IS_GEN9_LP(dev_priv)) {
6860
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6861 6862 6863
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6864
	} else {
6865
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6866 6867 6868
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6869
	}
6870
	/* hw_max = RP0 until we check for overclocking */
6871
	rps->max_freq = rps->rp0_freq;
6872

6873
	rps->efficient_freq = rps->rp1_freq;
6874
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6875
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6876 6877 6878 6879 6880
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6881
			rps->efficient_freq =
6882 6883
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6884 6885
					rps->min_freq,
					rps->max_freq);
6886 6887
	}

6888
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6889
		/* Store the frequency values in 16.66 MHZ units, which is
6890 6891
		 * the natural hardware unit for SKL
		 */
6892 6893 6894 6895 6896
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6897
	}
6898 6899
}

6900
static void reset_rps(struct drm_i915_private *dev_priv,
6901
		      int (*set)(struct drm_i915_private *, u8))
6902
{
6903 6904
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6905 6906

	/* force a reset */
C
Chris Wilson 已提交
6907
	rps->power.mode = -1;
6908
	rps->cur_freq = -1;
6909

6910 6911
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6912 6913
}

J
Jesse Barnes 已提交
6914
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6915
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6916 6917 6918
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6919
	/* Program defaults and thresholds for RPS */
6920
	if (IS_GEN(dev_priv, 9))
6921 6922
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6923 6924 6925 6926 6927

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6928 6929
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6930 6931 6932
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6933
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6934 6935 6936 6937

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6938
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6939
{
6940
	struct intel_engine_cs *engine;
6941
	enum intel_engine_id id;
6942
	u32 rc6_mode;
Z
Zhe Wang 已提交
6943 6944 6945 6946 6947 6948

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6949
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6950 6951 6952 6953 6954

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6955 6956 6957 6958 6959 6960 6961 6962
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6963
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6964
	} else {
6965
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6966 6967
	}

Z
Zhe Wang 已提交
6968 6969
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6970
	for_each_engine(engine, dev_priv, id)
6971
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6972

6973
	if (HAS_GUC(dev_priv))
6974 6975
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6976 6977
	I915_WRITE(GEN6_RC_SLEEP, 0);

6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7001

Z
Zhe Wang 已提交
7002
	/* 3a: Enable RC6 */
7003
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
7004 7005 7006 7007 7008 7009 7010

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7011
	I915_WRITE(GEN6_RC_CONTROL,
7012 7013 7014
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7015

7016 7017
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7018
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7019
	 */
7020
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7021 7022
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7023 7024
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7025

7026
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7027 7028
}

7029
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7030
{
7031
	struct intel_engine_cs *engine;
7032
	enum intel_engine_id id;
7033 7034 7035 7036

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7037
	/* 1b: Get forcewake during program sequence. Although the driver
7038
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7039
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7040 7041 7042 7043 7044 7045 7046 7047

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7048
	for_each_engine(engine, dev_priv, id)
7049
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7050
	I915_WRITE(GEN6_RC_SLEEP, 0);
7051
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7052 7053

	/* 3: Enable RC6 */
7054

7055 7056 7057 7058
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7059

7060 7061 7062 7063 7064
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7065 7066
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7067 7068 7069
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
7070
	I915_WRITE(GEN6_RPNSWREQ,
7071
		   HSW_FREQUENCY(rps->rp1_freq));
7072
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7073
		   HSW_FREQUENCY(rps->rp1_freq));
7074 7075 7076 7077 7078
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7079 7080
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7081 7082 7083 7084 7085 7086 7087

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7088

7089
	/* 2: Enable RPS */
7090 7091 7092 7093 7094 7095 7096 7097
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7098
	reset_rps(dev_priv, gen6_set_rps);
7099

7100
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7101 7102
}

7103
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7104
{
7105
	struct intel_engine_cs *engine;
7106
	enum intel_engine_id id;
7107
	u32 rc6vids, rc6_mask;
7108
	u32 gtfifodbg;
7109
	int ret;
7110 7111 7112 7113

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7114 7115
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7116 7117 7118 7119
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7120
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7121 7122 7123 7124 7125 7126 7127 7128 7129 7130

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7131
	for_each_engine(engine, dev_priv, id)
7132
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7133 7134 7135

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7136
	if (IS_IVYBRIDGE(dev_priv))
7137 7138 7139
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7140
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7141 7142
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7143
	/* We don't use those on Haswell */
7144 7145 7146 7147 7148
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7149 7150 7151 7152 7153
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7154 7155
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7156
	if (IS_GEN(dev_priv, 6) && ret) {
7157
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7158
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7159 7160 7161 7162 7163 7164 7165 7166 7167
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7168
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7169 7170
}

7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7190
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7191
{
7192
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7193 7194
	const int min_freq = 15;
	const int scaling_factor = 180;
7195 7196
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7197
	unsigned int max_gpu_freq, min_gpu_freq;
7198
	struct cpufreq_policy *policy;
7199

7200
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7201

7202 7203 7204
	if (rps->max_freq <= rps->min_freq)
		return;

7205 7206 7207 7208 7209 7210 7211 7212 7213
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7214
		max_ia_freq = tsc_khz;
7215
	}
7216 7217 7218 7219

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7220
	min_ring_freq = I915_READ(DCLK) & 0xf;
7221 7222
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7223

7224 7225
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7226
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7227
		/* Convert GT frequency to 50 HZ units */
7228 7229
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7230 7231
	}

7232 7233 7234 7235 7236
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7237
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7238
		const int diff = max_gpu_freq - gpu_freq;
7239 7240
		unsigned int ia_freq = 0, ring_freq = 0;

7241
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7242 7243 7244 7245 7246
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7247
		} else if (INTEL_GEN(dev_priv) >= 8) {
7248 7249
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7250
		} else if (IS_HASWELL(dev_priv)) {
7251
			ring_freq = mult_frac(gpu_freq, 5, 4);
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7268

B
Ben Widawsky 已提交
7269 7270
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7271 7272 7273
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7274 7275 7276
	}
}

7277
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7278 7279 7280
{
	u32 val, rp0;

7281
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7282

7283
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7298
	}
7299 7300 7301

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7315 7316 7317 7318
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7319 7320 7321
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7322 7323 7324
	return rp1;
}

7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7347
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7348 7349 7350
{
	u32 val, rp0;

7351
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7364
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7365
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7366
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7367 7368 7369 7370 7371
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7372
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7373
{
7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7385 7386
}

7387 7388 7389 7390 7391
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7392
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7393 7394 7395
			     dev_priv->vlv_pctx->stolen->start);
}

7396 7397 7398 7399 7400 7401 7402 7403 7404

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7405
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7406
{
7407 7408
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7409 7410 7411 7412
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7413
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7414 7415
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7416 7417 7418 7419

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7420 7421

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7422 7423
}

7424
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7425 7426
{
	struct drm_i915_gem_object *pctx;
7427 7428
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7429 7430 7431 7432 7433
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7434
		resource_size_t pcbr_offset;
7435

7436
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7437
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7438
								      pcbr_offset,
7439
								      I915_GTT_OFFSET_NONE,
7440 7441 7442 7443
								      pctx_size);
		goto out;
	}

7444 7445
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7446 7447 7448 7449 7450 7451 7452 7453
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7454
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7455 7456
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7457
		goto out;
7458 7459
	}

7460 7461 7462 7463 7464
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7465 7466 7467
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7468
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7469 7470 7471
	dev_priv->vlv_pctx = pctx;
}

7472
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7473
{
7474
	struct drm_i915_gem_object *pctx;
7475

7476 7477 7478
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7479 7480
}

7481 7482
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7483
	dev_priv->gt_pm.rps.gpll_ref_freq =
7484 7485 7486 7487 7488
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7489
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7490 7491
}

7492
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7493
{
7494
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7495
	u32 val;
7496

7497
	valleyview_setup_pctx(dev_priv);
7498

7499 7500
	vlv_init_gpll_ref_freq(dev_priv);

7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7514
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7515

7516 7517
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7518
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7519 7520
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7521

7522
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7523
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7524 7525
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7526

7527
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7528
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7529 7530
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7531

7532
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7533
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7534 7535
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7536 7537
}

7538
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7539
{
7540
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7541
	u32 val;
7542

7543
	cherryview_setup_pctx(dev_priv);
7544

7545 7546
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7547
	mutex_lock(&dev_priv->sb_lock);
7548
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7549
	mutex_unlock(&dev_priv->sb_lock);
7550

7551 7552 7553 7554
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7555
	default:
7556 7557 7558
		dev_priv->mem_freq = 1600;
		break;
	}
7559
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7560

7561 7562
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7563
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7564 7565
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7566

7567
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7568
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7569 7570
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7571

7572
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7573
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7574 7575
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7576

7577
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7578
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7579 7580
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7581

7582 7583
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7584
		  "Odd GPU freq values\n");
7585 7586
}

7587
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7588
{
7589
	valleyview_cleanup_pctx(dev_priv);
7590 7591
}

7592
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7593
{
7594
	struct intel_engine_cs *engine;
7595
	enum intel_engine_id id;
7596
	u32 gtfifodbg, rc6_mode, pcbr;
7597

7598 7599
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7610
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7611

7612 7613 7614
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7615 7616 7617 7618 7619
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7620
	for_each_engine(engine, dev_priv, id)
7621
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7622 7623
	I915_WRITE(GEN6_RC_SLEEP, 0);

7624 7625
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7626

7627
	/* Allows RC6 residency counter to work */
7628 7629 7630 7631 7632 7633 7634 7635 7636
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7637 7638
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7639
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7640 7641
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7652
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7653 7654 7655 7656 7657 7658 7659
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7660
	/* 2: Enable RPS */
7661 7662
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7663
		   GEN6_RP_MEDIA_IS_GFX |
7664 7665 7666 7667
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7668 7669 7670 7671 7672 7673
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7674 7675
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7676 7677 7678
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7679
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7680 7681
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7682
	reset_rps(dev_priv, valleyview_set_rps);
7683

7684
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7685 7686
}

7687
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7688
{
7689
	struct intel_engine_cs *engine;
7690
	enum intel_engine_id id;
7691
	u32 gtfifodbg;
7692

7693 7694
	valleyview_check_pctx(dev_priv);

7695 7696
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7697 7698
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7699 7700 7701
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7702
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7703

7704 7705 7706
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7707 7708 7709 7710
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7711
	for_each_engine(engine, dev_priv, id)
7712
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7713

7714
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7715

7716
	/* Allows RC6 residency counter to work */
7717
	I915_WRITE(VLV_COUNTER_CONTROL,
7718 7719
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7720
				      VLV_RENDER_RC0_COUNT_EN |
7721 7722
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7723

7724 7725
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7726

7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7752 7753 7754 7755 7756 7757
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7758
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7759

7760 7761 7762
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7763
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7764 7765
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7766
	reset_rps(dev_priv, valleyview_set_rps);
7767

7768
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7769 7770
}

7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7800
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7801 7802 7803 7804 7805 7806
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7807
	lockdep_assert_held(&mchdev_lock);
7808

7809
	diff1 = now - dev_priv->ips.last_time1;
7810 7811 7812 7813 7814 7815 7816

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7817
		return dev_priv->ips.chipset_power;
7818 7819 7820 7821 7822 7823 7824 7825

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7826 7827
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7828 7829
		diff += total_count;
	} else {
7830
		diff = total_count - dev_priv->ips.last_count1;
7831 7832 7833
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7834 7835
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7846 7847
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7848

7849
	dev_priv->ips.chipset_power = ret;
7850 7851 7852 7853

	return ret;
}

7854 7855
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
7856 7857
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7858

7859
	if (!IS_GEN(dev_priv, 5))
7860 7861
		return 0;

7862 7863 7864 7865 7866
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7867 7868 7869 7870

	return val;
}

7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7898
{
7899 7900 7901
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7902
	if (INTEL_INFO(dev_priv)->is_mobile)
7903 7904 7905
		return vm > 0 ? vm : 0;

	return vd;
7906 7907
}

7908
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7909
{
7910
	u64 now, diff, diffms;
7911 7912
	u32 count;

7913
	lockdep_assert_held(&mchdev_lock);
7914

7915 7916 7917
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7918 7919 7920 7921 7922 7923 7924

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7925 7926
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7927 7928
		diff += count;
	} else {
7929
		diff = count - dev_priv->ips.last_count2;
7930 7931
	}

7932 7933
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7934 7935 7936 7937

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7938
	dev_priv->ips.gfx_power = diff;
7939 7940
}

7941 7942
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7943 7944
	intel_wakeref_t wakeref;

7945
	if (!IS_GEN(dev_priv, 5))
7946 7947
		return;

7948 7949 7950 7951 7952
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7953 7954
}

7955
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7956 7957 7958 7959
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7960
	lockdep_assert_held(&mchdev_lock);
7961

7962
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7982
	corr2 = (corr * dev_priv->ips.corr);
7983 7984 7985 7986

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7987
	__i915_update_gfx_val(dev_priv);
7988

7989
	return dev_priv->ips.gfx_power + state2;
7990 7991
}

7992 7993
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
7994 7995
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7996

7997
	if (!IS_GEN(dev_priv, 5))
7998 7999
		return 0;

8000 8001 8002 8003 8004
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8005

8006 8007
	return val;
}
8008

8009
static struct drm_i915_private *i915_mch_dev;
8010

8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
	i915 = i915_mch_dev;
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
8022 8023
}

8024 8025 8026 8027 8028 8029 8030 8031
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
8032 8033 8034 8035
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
8036

8037 8038 8039
	i915 = mchdev_get();
	if (!i915)
		return 0;
8040

8041 8042 8043 8044 8045 8046
	with_intel_runtime_pm(i915, wakeref) {
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
8047

8048 8049
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
8060
	struct drm_i915_private *i915;
8061

8062 8063 8064
	i915 = mchdev_get();
	if (!i915)
		return false;
8065

8066 8067 8068
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
8069
	spin_unlock_irq(&mchdev_lock);
8070

8071 8072
	drm_dev_put(&i915->drm);
	return true;
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
8084
	struct drm_i915_private *i915;
8085

8086 8087 8088
	i915 = mchdev_get();
	if (!i915)
		return false;
8089

8090 8091 8092
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
8093
	spin_unlock_irq(&mchdev_lock);
8094

8095 8096
	drm_dev_put(&i915->drm);
	return true;
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
8107 8108
	struct drm_i915_private *i915;
	bool ret;
8109

8110 8111 8112
	i915 = mchdev_get();
	if (!i915)
		return false;
8113

8114 8115 8116
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
8129 8130
	struct drm_i915_private *i915;
	bool ret;
8131

8132 8133 8134
	i915 = mchdev_get();
	if (!i915)
		return false;
8135

8136 8137 8138
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
8139
	spin_unlock_irq(&mchdev_lock);
8140

8141
	drm_dev_put(&i915->drm);
8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8168 8169
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8170
	rcu_assign_pointer(i915_mch_dev, dev_priv);
8171 8172 8173 8174 8175 8176

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8177
	rcu_assign_pointer(i915_mch_dev, NULL);
8178
}
8179

8180
static void intel_init_emon(struct drm_i915_private *dev_priv)
8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8197
		I915_WRITE(PEW(i), 0);
8198
	for (i = 0; i < 3; i++)
8199
		I915_WRITE(DEW(i), 0);
8200 8201 8202

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8203
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8224
		I915_WRITE(PXW(i), val);
8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8240
		I915_WRITE(PXWL(i), 0);
8241 8242 8243 8244 8245 8246

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8247
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8248 8249
}

8250
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8251
{
8252 8253
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8254 8255 8256 8257
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8258
	if (!sanitize_rc6(dev_priv)) {
8259
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8260
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8261
	}
I
Imre Deak 已提交
8262

8263
	mutex_lock(&dev_priv->pcu_lock);
8264 8265

	/* Initialize RPS limits (for userspace) */
8266 8267 8268 8269
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8270
	else if (INTEL_GEN(dev_priv) >= 6)
8271 8272 8273
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8274 8275
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8276

8277 8278
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8279 8280

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8281
		rps->min_freq_softlimit =
8282
			max_t(int,
8283
			      rps->efficient_freq,
8284 8285
			      intel_freq_opcode(dev_priv, 450));

8286
	/* After setting max-softlimit, find the overclock max freq */
8287
	if (IS_GEN(dev_priv, 6) ||
8288 8289 8290 8291 8292 8293
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8294
					 (rps->max_freq & 0xff) * 50,
8295
					 (params & 0xff) * 50);
8296
			rps->max_freq = params & 0xff;
8297 8298 8299
		}
	}

8300
	/* Finally allow us to boost to max by default */
8301
	rps->boost_freq = rps->max_freq;
8302

8303
	mutex_unlock(&dev_priv->pcu_lock);
8304 8305
}

8306
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8307
{
8308
	if (IS_VALLEYVIEW(dev_priv))
8309
		valleyview_cleanup_gt_powersave(dev_priv);
8310

8311
	if (!HAS_RC6(dev_priv))
8312
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8313 8314
}

8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8331 8332
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8333 8334
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8335
	intel_disable_gt_powersave(dev_priv);
8336

8337 8338
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8339
	else if (INTEL_GEN(dev_priv) >= 6)
8340
		gen6_reset_rps_interrupts(dev_priv);
8341 8342
}

8343 8344 8345 8346
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8347 8348 8349
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8350
	/* Currently there is no HW configuration to be done to disable. */
8351 8352

	i915->gt_pm.llc_pstate.enabled = false;
8353 8354
}

8355
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8356
{
8357
	lockdep_assert_held(&dev_priv->pcu_lock);
8358

8359 8360 8361
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8362 8363 8364 8365 8366 8367 8368 8369
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8370 8371

	dev_priv->gt_pm.rc6.enabled = false;
8372
}
8373

8374 8375 8376
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8377

8378 8379 8380
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8381
	if (INTEL_GEN(dev_priv) >= 9)
8382
		gen9_disable_rps(dev_priv);
8383
	else if (IS_CHERRYVIEW(dev_priv))
8384
		cherryview_disable_rps(dev_priv);
8385
	else if (IS_VALLEYVIEW(dev_priv))
8386
		valleyview_disable_rps(dev_priv);
8387
	else if (INTEL_GEN(dev_priv) >= 6)
8388
		gen6_disable_rps(dev_priv);
8389
	else if (IS_IRONLAKE_M(dev_priv))
8390
		ironlake_disable_drps(dev_priv);
8391 8392

	dev_priv->gt_pm.rps.enabled = false;
8393 8394 8395 8396 8397
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8398

8399 8400
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8401 8402 8403
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8404
	mutex_unlock(&dev_priv->pcu_lock);
8405 8406
}

8407 8408 8409 8410
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8411 8412 8413
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8414
	gen6_update_ring_freq(i915);
8415 8416

	i915->gt_pm.llc_pstate.enabled = true;
8417 8418
}

8419
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8420
{
8421
	lockdep_assert_held(&dev_priv->pcu_lock);
8422

8423 8424 8425
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8436 8437

	dev_priv->gt_pm.rc6.enabled = true;
8438
}
8439

8440 8441 8442
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8443

8444
	lockdep_assert_held(&dev_priv->pcu_lock);
8445

8446 8447 8448
	if (rps->enabled)
		return;

8449 8450 8451 8452
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8453
	} else if (INTEL_GEN(dev_priv) >= 9) {
8454 8455 8456
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8457
	} else if (INTEL_GEN(dev_priv) >= 6) {
8458
		gen6_enable_rps(dev_priv);
8459 8460 8461
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8462
	}
8463

8464 8465
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8466

8467 8468
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8469 8470

	rps->enabled = true;
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8481 8482
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8483 8484 8485
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8486

8487
	mutex_unlock(&dev_priv->pcu_lock);
8488
}
I
Imre Deak 已提交
8489

8490
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8491 8492 8493 8494 8495 8496 8497 8498 8499
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8500
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8501
{
8502
	enum pipe pipe;
8503

8504
	for_each_pipe(dev_priv, pipe) {
8505 8506 8507
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8508 8509 8510

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8511 8512 8513
	}
}

8514
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8515
{
8516
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8517

8518 8519 8520 8521
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8522 8523 8524
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8542
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8543 8544 8545
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8546

8547 8548 8549 8550 8551 8552 8553
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8554
	if (IS_IRONLAKE_M(dev_priv)) {
8555
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8556 8557 8558 8559 8560 8561 8562 8563
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8564 8565
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8566 8567 8568 8569 8570 8571
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8572

8573
	/* WaDisableRenderCachePipelinedFlush:ilk */
8574 8575
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8576

8577 8578 8579
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8580
	g4x_disable_trickle_feed(dev_priv);
8581

8582
	ibx_init_clock_gating(dev_priv);
8583 8584
}

8585
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8586 8587
{
	int pipe;
8588
	u32 val;
8589 8590 8591 8592 8593 8594

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8595 8596 8597
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8598 8599
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8600 8601 8602
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8603
	for_each_pipe(dev_priv, pipe) {
8604 8605 8606
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8607
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8608
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8609 8610 8611
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8612 8613
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8614
	/* WADP0ClockGatingDisable */
8615
	for_each_pipe(dev_priv, pipe) {
8616 8617 8618
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8619 8620
}

8621
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8622
{
8623
	u32 tmp;
8624 8625

	tmp = I915_READ(MCH_SSKPD);
8626 8627 8628
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8629 8630
}

8631
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8632
{
8633
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8634

8635
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8636 8637 8638 8639 8640

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8641
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8642 8643 8644
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8645 8646 8647
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8648 8649 8650
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8651 8652 8653 8654
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8655 8656
	 */
	I915_WRITE(GEN6_GT_MODE,
8657
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8658

8659
	I915_WRITE(CACHE_MODE_0,
8660
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8676
	 *
8677 8678
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8679 8680 8681 8682 8683
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8684
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8685 8686
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8687

8688 8689 8690 8691 8692 8693 8694 8695
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8696 8697 8698 8699 8700 8701 8702 8703
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8704 8705
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8706 8707 8708 8709 8710 8711 8712
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8713 8714 8715 8716
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8717

8718
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8719

8720
	cpt_init_clock_gating(dev_priv);
8721

8722
	gen6_check_mch_setup(dev_priv);
8723 8724 8725 8726
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8727
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8728

8729
	/*
8730
	 * WaVSThreadDispatchOverride:ivb,vlv
8731 8732 8733 8734
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8735 8736 8737 8738 8739 8740 8741 8742
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8743
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8744 8745 8746 8747 8748
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8749
	if (HAS_PCH_LPT_LP(dev_priv))
8750 8751 8752
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8753 8754

	/* WADPOClockGatingDisable:hsw */
8755 8756
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8757
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8758 8759
}

8760
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8761
{
8762
	if (HAS_PCH_LPT_LP(dev_priv)) {
8763
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8764 8765 8766 8767 8768 8769

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8770 8771 8772 8773 8774
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8775
	u32 val;
8776 8777 8778 8779 8780

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8781 8782 8783 8784 8785
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8796 8797 8798 8799 8800
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8801 8802 8803 8804

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8805 8806
}

8807 8808 8809 8810 8811
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8812
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8813 8814
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8815 8816
}

8817
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8818
{
8819
	u32 val;
8820 8821
	cnp_init_clock_gating(dev_priv);

8822 8823 8824 8825
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8826 8827 8828 8829 8830 8831 8832 8833
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8834 8835 8836
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8837 8838
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8839 8840
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8841

R
Rodrigo Vivi 已提交
8842 8843 8844 8845 8846
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8847
	/* WaDisableVFclkgate:cnl */
8848
	/* WaVFUnitClockGatingDisable:cnl */
8849 8850 8851
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8852 8853
}

8854 8855 8856 8857 8858 8859 8860 8861 8862 8863
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8864
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8865
{
8866
	gen9_init_clock_gating(dev_priv);
8867 8868 8869 8870 8871

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8872 8873 8874 8875 8876

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8877

8878
	/* WaFbcNukeOnHostModify:kbl */
8879 8880
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8881 8882
}

8883
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8884
{
8885
	gen9_init_clock_gating(dev_priv);
8886 8887 8888 8889

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8890 8891 8892 8893

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8894 8895
}

8896
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8897
{
8898 8899 8900
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8901
	enum pipe pipe;
B
Ben Widawsky 已提交
8902

8903
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8904
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8905

8906
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8907 8908 8909
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8910
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8911
	for_each_pipe(dev_priv, pipe) {
8912
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8913
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8914
			   BDW_DPRS_MASK_VBLANK_SRD);
8915
	}
8916

8917 8918 8919 8920 8921
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8922

8923 8924
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8925 8926 8927 8928

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8929

8930 8931
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8932

8933 8934
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8935

8936 8937 8938 8939
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8940
	lpt_init_clock_gating(dev_priv);
8941 8942 8943 8944 8945 8946 8947 8948

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8949 8950
}

8951
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8952
{
8953 8954 8955 8956 8957
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8958
	/* This is required by WaCatErrorRejectionIssue:hsw */
8959 8960 8961 8962
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8963 8964 8965
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8966

8967 8968 8969
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8970 8971 8972 8973
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8974
	/* WaDisable4x2SubspanOptimization:hsw */
8975 8976
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8977

8978 8979 8980
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8981 8982 8983 8984
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8985 8986
	 */
	I915_WRITE(GEN7_GT_MODE,
8987
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8988

8989 8990 8991 8992
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8993
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8994 8995
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8996
	lpt_init_clock_gating(dev_priv);
8997 8998
}

8999
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9000
{
9001
	u32 snpcr;
9002

9003
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9004

9005
	/* WaDisableEarlyCull:ivb */
9006 9007 9008
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9009
	/* WaDisableBackToBackFlipFix:ivb */
9010 9011 9012 9013
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9014
	/* WaDisablePSDDualDispatchEnable:ivb */
9015
	if (IS_IVB_GT1(dev_priv))
9016 9017 9018
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9019 9020 9021
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9022
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9023 9024 9025
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9026
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9027 9028 9029
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9030
		   GEN7_WA_L3_CHICKEN_MODE);
9031
	if (IS_IVB_GT1(dev_priv))
9032 9033
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9034 9035 9036 9037
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9038 9039
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9040
	}
9041

9042
	/* WaForceL3Serialization:ivb */
9043 9044 9045
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9046
	/*
9047
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9048
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9049 9050
	 */
	I915_WRITE(GEN6_UCGCTL2,
9051
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9052

9053
	/* This is required by WaCatErrorRejectionIssue:ivb */
9054 9055 9056 9057
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9058
	g4x_disable_trickle_feed(dev_priv);
9059 9060

	gen7_setup_fixed_func_scheduler(dev_priv);
9061

9062 9063 9064 9065 9066
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9067

9068
	/* WaDisable4x2SubspanOptimization:ivb */
9069 9070
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9071

9072 9073 9074
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9075 9076 9077 9078
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9079 9080
	 */
	I915_WRITE(GEN7_GT_MODE,
9081
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9082

9083 9084 9085 9086
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9087

9088
	if (!HAS_PCH_NOP(dev_priv))
9089
		cpt_init_clock_gating(dev_priv);
9090

9091
	gen6_check_mch_setup(dev_priv);
9092 9093
}

9094
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9095
{
9096
	/* WaDisableEarlyCull:vlv */
9097 9098 9099
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9100
	/* WaDisableBackToBackFlipFix:vlv */
9101 9102 9103 9104
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9105
	/* WaPsdDispatchEnable:vlv */
9106
	/* WaDisablePSDDualDispatchEnable:vlv */
9107
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9108 9109
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9110

9111 9112 9113
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9114
	/* WaForceL3Serialization:vlv */
9115 9116 9117
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9118
	/* WaDisableDopClockGating:vlv */
9119 9120 9121
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9122
	/* This is required by WaCatErrorRejectionIssue:vlv */
9123 9124 9125 9126
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9127 9128
	gen7_setup_fixed_func_scheduler(dev_priv);

9129
	/*
9130
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9131
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9132 9133
	 */
	I915_WRITE(GEN6_UCGCTL2,
9134
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9135

9136 9137 9138 9139 9140
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9141

9142 9143 9144 9145
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9146 9147
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9148

9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9160 9161 9162 9163 9164 9165
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9166
	/*
9167
	 * WaDisableVLVClockGating_VBIIssue:vlv
9168 9169 9170
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9171
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9172 9173
}

9174
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9175
{
9176 9177 9178 9179 9180
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9181 9182 9183 9184

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9185 9186 9187 9188

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9189 9190 9191 9192

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9193

9194 9195 9196 9197 9198 9199 9200
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9201 9202 9203 9204 9205
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9206 9207
}

9208
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9209
{
9210
	u32 dspclk_gate;
9211 9212 9213 9214 9215 9216 9217 9218 9219

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9220
	if (IS_GM45(dev_priv))
9221 9222
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9223 9224 9225 9226

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9227

9228 9229 9230
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9231
	g4x_disable_trickle_feed(dev_priv);
9232 9233
}

9234
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9235 9236 9237 9238 9239 9240
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9241 9242
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9243 9244 9245

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9246 9247
}

9248
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9249 9250 9251 9252 9253 9254 9255
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9256 9257
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9258 9259 9260

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9261 9262
}

9263
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9264 9265 9266 9267 9268 9269
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9270

9271
	if (IS_PINEVIEW(dev_priv))
9272
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9273 9274 9275

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9276 9277

	/* interrupts should cause a wake up from C3 */
9278
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9279 9280 9281

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9282 9283 9284

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9285 9286
}

9287
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9288 9289
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9290 9291 9292 9293

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9294 9295 9296

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9297 9298
}

9299
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9300
{
9301 9302 9303
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9304 9305
}

9306
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9307
{
9308
	dev_priv->display.init_clock_gating(dev_priv);
9309 9310
}

9311
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9312
{
9313 9314
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9315 9316
}

9317
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9333
	if (IS_ICELAKE(dev_priv))
O
Oscar Mateo 已提交
9334
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9335
	else if (IS_CANNONLAKE(dev_priv))
9336
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9337 9338
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9339
	else if (IS_SKYLAKE(dev_priv))
9340
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9341
	else if (IS_KABYLAKE(dev_priv))
9342
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9343
	else if (IS_BROXTON(dev_priv))
9344
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9345 9346
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9347
	else if (IS_BROADWELL(dev_priv))
9348
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9349
	else if (IS_CHERRYVIEW(dev_priv))
9350
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9351
	else if (IS_HASWELL(dev_priv))
9352
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9353
	else if (IS_IVYBRIDGE(dev_priv))
9354
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9355
	else if (IS_VALLEYVIEW(dev_priv))
9356
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9357
	else if (IS_GEN(dev_priv, 6))
9358
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9359
	else if (IS_GEN(dev_priv, 5))
9360
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9361 9362
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9363
	else if (IS_I965GM(dev_priv))
9364
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9365
	else if (IS_I965G(dev_priv))
9366
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9367
	else if (IS_GEN(dev_priv, 3))
9368 9369 9370
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9371
	else if (IS_GEN(dev_priv, 2))
9372 9373 9374 9375 9376 9377 9378
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9379
/* Set up chip specific power management-related functions */
9380
void intel_init_pm(struct drm_i915_private *dev_priv)
9381
{
9382
	/* For cxsr */
9383
	if (IS_PINEVIEW(dev_priv))
9384
		i915_pineview_get_mem_freq(dev_priv);
9385
	else if (IS_GEN(dev_priv, 5))
9386
		i915_ironlake_get_mem_freq(dev_priv);
9387

9388
	/* For FIFO watermark updates */
9389
	if (INTEL_GEN(dev_priv) >= 9) {
9390
		skl_setup_wm_latency(dev_priv);
9391
		dev_priv->display.initial_watermarks = skl_initial_wm;
9392
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9393
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9394
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9395
		ilk_setup_wm_latency(dev_priv);
9396

9397
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9398
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9399
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9400
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9401
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9402 9403 9404 9405 9406 9407
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9408 9409 9410 9411
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9412
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9413
		vlv_setup_wm_latency(dev_priv);
9414
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9415
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9416
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9417
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9418
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9419 9420 9421 9422 9423 9424
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9425
	} else if (IS_PINEVIEW(dev_priv)) {
9426
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9427 9428 9429 9430 9431 9432 9433 9434 9435
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9436
			intel_set_memory_cxsr(dev_priv, false);
9437 9438 9439
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9440
	} else if (IS_GEN(dev_priv, 4)) {
9441
		dev_priv->display.update_wm = i965_update_wm;
9442
	} else if (IS_GEN(dev_priv, 3)) {
9443 9444
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9445
	} else if (IS_GEN(dev_priv, 2)) {
9446
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9447
			dev_priv->display.update_wm = i845_update_wm;
9448
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9449 9450
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9451
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9452 9453 9454
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9455 9456 9457
	}
}

9458 9459
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9460
	u32 flags =
9461 9462 9463 9464 9465 9466
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9467
		return -ENODEV;
9468 9469 9470
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9471
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9472 9473 9474 9475
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9476
		MISSING_CASE(flags);
9477 9478 9479 9480 9481 9482
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9483
	u32 flags =
9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9503
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9504
{
9505 9506
	int status;

9507
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9508

9509 9510 9511 9512 9513 9514
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9515 9516
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9517 9518 9519
		return -EAGAIN;
	}

9520 9521 9522
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9523

9524 9525 9526
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9527 9528
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9529 9530 9531
		return -ETIMEDOUT;
	}

9532 9533
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9534

9535 9536 9537 9538 9539 9540
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9541 9542
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9543 9544 9545
		return status;
	}

B
Ben Widawsky 已提交
9546 9547 9548
	return 0;
}

9549
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9550 9551
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9552
{
9553 9554
	int status;

9555
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9556

9557 9558 9559 9560 9561 9562
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9563 9564
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9565 9566 9567
		return -EAGAIN;
	}

9568
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9569
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9570
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9571

9572 9573
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9574 9575
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9576 9577
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9578 9579 9580
		return -ETIMEDOUT;
	}

9581
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9582

9583 9584 9585 9586 9587 9588
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9589 9590
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9591 9592 9593
		return status;
	}

B
Ben Widawsky 已提交
9594 9595
	return 0;
}
9596

9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9618
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9619 9620
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9621
 * for @timeout_base_ms and if this times out for another 50 ms with
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9633
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9648
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9649 9650 9651 9652 9653 9654 9655 9656
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9657
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9658
	 * account for interrupts that could reduce the number of these
9659 9660
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9661 9662 9663 9664
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9665
	ret = wait_for_atomic(COND, 50);
9666 9667 9668 9669 9670 9671 9672
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9673 9674
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9675 9676
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9677 9678 9679 9680
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9681
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9682 9683
}

9684
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9685
{
9686 9687 9688
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9689 9690
}

9691
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9692
{
9693 9694
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9695 9696 9697 9698
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9699
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9700 9701
}

9702
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9703
{
9704 9705
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9706
	/* CHV needs even values */
9707
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9708 9709
}

9710
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9711
{
9712
	if (INTEL_GEN(dev_priv) >= 9)
9713 9714
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9715
	else if (IS_CHERRYVIEW(dev_priv))
9716
		return chv_gpu_freq(dev_priv, val);
9717
	else if (IS_VALLEYVIEW(dev_priv))
9718 9719 9720
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9721 9722
}

9723 9724
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9725
	if (INTEL_GEN(dev_priv) >= 9)
9726 9727
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9728
	else if (IS_CHERRYVIEW(dev_priv))
9729
		return chv_freq_opcode(dev_priv, val);
9730
	else if (IS_VALLEYVIEW(dev_priv))
9731 9732
		return byt_freq_opcode(dev_priv, val);
	else
9733
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9734
}
9735

9736
void intel_pm_setup(struct drm_i915_private *dev_priv)
9737
{
9738
	mutex_init(&dev_priv->pcu_lock);
C
Chris Wilson 已提交
9739
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9740

9741
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9742

9743 9744
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9745
}
9746

9747 9748 9749
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9750
	u32 lower, upper, tmp;
9751
	int loop = 2;
9752

9753 9754
	/*
	 * The register accessed do not need forcewake. We borrow
9755 9756
	 * uncore lock to prevent concurrent access to range reg.
	 */
9757
	lockdep_assert_held(&dev_priv->uncore.lock);
9758

9759 9760
	/*
	 * vlv and chv residency counters are 40 bits in width.
9761 9762
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9763 9764 9765 9766 9767
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9768
	 */
9769 9770
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9782
	} while (upper != tmp && --loop);
9783

9784 9785
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9786 9787 9788 9789
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9790 9791 9792
	return lower | (u64)upper << 8;
}

9793
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9794
			   const i915_reg_t reg)
9795
{
9796 9797 9798 9799
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9800
	u32 mul, div;
9801

9802
	if (!HAS_RC6(dev_priv))
9803 9804
		return 0;

9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9822 9823
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9824
		mul = 1000000;
9825
		div = dev_priv->czclk_freq;
9826
		overflow_hw = BIT_ULL(40);
9827 9828
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9829 9830 9831 9832 9833 9834 9835 9836
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9837

9838 9839
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9840
	}
9841

9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9865
}
T
Tvrtko Ursulin 已提交
9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}