intel_pm.c 219.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_fixed.h"
44
#include "i915_irq.h"
45
#include "i915_trace.h"
46
#include "intel_pm.h"
47
#include "intel_sideband.h"
48
#include "../../../platform/x86/intel_ips.h"
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

73
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
74
{
75 76 77
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
78
		 * Display WA #0390: skl,kbl
79 80 81 82 83 84 85 86 87
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

88
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
89 90 91
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

92
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
93 94
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
95

96 97
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
98 99 100
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
101

102
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
103 104
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
105 106 107 108 109 110

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
111 112
}

113
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
114
{
115
	gen9_init_clock_gating(dev_priv);
116

117 118 119 120
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

121 122
	/*
	 * FIXME:
123
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
124 125
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
126
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
127 128 129 130 131

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
132 133
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
134 135 136 137 138 139 140 141

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

157
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

195
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
196 197 198
{
	u16 ddrpll, csipll;

199 200
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
216 217
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
245 246
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
247 248 249 250 251
		dev_priv->fsb_freq = 0;
		break;
	}
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

290 291
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

318
	vlv_punit_get(dev_priv);
319 320 321 322 323 324 325 326 327 328 329 330

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
331 332
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
333

334
	vlv_punit_put(dev_priv);
335 336
}

337 338 339 340
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

341
	vlv_punit_get(dev_priv);
342

343
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
344 345 346 347
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
348
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
349

350
	vlv_punit_put(dev_priv);
351 352
}

353 354 355
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

356
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
357
{
358
	bool was_enabled;
359
	u32 val;
360

361
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
362
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
363
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
364
		POSTING_READ(FW_BLC_SELF_VLV);
365
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
366
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
367
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
368
		POSTING_READ(FW_BLC_SELF);
369
	} else if (IS_PINEVIEW(dev_priv)) {
370 371 372 373 374 375
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
376
		I915_WRITE(DSPFW3, val);
377
		POSTING_READ(DSPFW3);
378
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
379
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
380 381 382
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
383
		POSTING_READ(FW_BLC_SELF);
384
	} else if (IS_I915GM(dev_priv)) {
385 386 387 388 389
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
390
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
391 392 393
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
394
		POSTING_READ(INSTPM);
395
	} else {
396
		return false;
397
	}
398

399 400
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

401 402 403
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
404 405

	return was_enabled;
406 407
}

V
Ville Syrjälä 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
445
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
446
{
447 448
	bool ret;

449
	mutex_lock(&dev_priv->wm.wm_mutex);
450
	ret = _intel_set_memory_cxsr(dev_priv, enable);
451 452 453 454
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
455
	mutex_unlock(&dev_priv->wm.wm_mutex);
456 457

	return ret;
458
}
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
474
static const int pessimal_latency_ns = 5000;
475

476 477 478
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

479
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
480
{
481
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
482
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
483
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
484 485
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
486
	u32 dsparb, dsparb2, dsparb3;
487

488
	switch (pipe) {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
508 509
		MISSING_CASE(pipe);
		return;
510 511
	}

512 513 514 515
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
516 517
}

518 519
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
520
{
521
	u32 dsparb = I915_READ(DSPARB);
522 523 524
	int size;

	size = dsparb & 0x7f;
525
	if (i9xx_plane == PLANE_B)
526 527
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

528 529
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
530 531 532 533

	return size;
}

534 535
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
536
{
537
	u32 dsparb = I915_READ(DSPARB);
538 539 540
	int size;

	size = dsparb & 0x1ff;
541
	if (i9xx_plane == PLANE_B)
542 543 544
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

545 546
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
547 548 549 550

	return size;
}

551 552
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
553
{
554
	u32 dsparb = I915_READ(DSPARB);
555 556 557 558 559
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

560 561
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
562 563 564 565 566

	return size;
}

/* Pineview has different values for various configs */
567
static const struct intel_watermark_params pnv_display_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573
};
574 575

static const struct intel_watermark_params pnv_display_hplloff_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581
};
582 583

static const struct intel_watermark_params pnv_cursor_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589
};
590 591

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
592 593 594 595 596
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
597
};
598

599
static const struct intel_watermark_params i965_cursor_wm_info = {
600 601 602 603 604
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
605
};
606

607
static const struct intel_watermark_params i945_wm_info = {
608 609 610 611 612
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
613
};
614

615
static const struct intel_watermark_params i915_wm_info = {
616 617 618 619 620
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
621
};
622

623
static const struct intel_watermark_params i830_a_wm_info = {
624 625 626 627 628
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
629
};
630

631 632 633 634 635 636 637
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
638

639
static const struct intel_watermark_params i845_wm_info = {
640 641 642 643 644
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
645 646
};

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
684
	u64 ret;
685

686
	ret = mul_u32_u32(pixel_rate, cpp * latency);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

743 744
/**
 * intel_calculate_wm - calculate watermark level
745
 * @pixel_rate: pixel clock
746
 * @wm: chip FIFO params
747
 * @fifo_size: size of the FIFO buffer
748
 * @cpp: bytes per pixel
749 750 751 752 753 754 755 756 757 758 759 760 761
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
762 763 764 765
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
766
{
767
	int entries, wm_size;
768 769 770 771 772 773 774

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
775 776 777 778 779
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
780

781 782
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
783 784

	/* Don't promote wm_size to unsigned... */
785
	if (wm_size > wm->max_wm)
786 787 788
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
789 790 791 792 793 794 795 796 797 798 799

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

800 801 802
	return wm_size;
}

803 804 805 806 807 808 809 810 811 812
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

813 814 815 816 817
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

818 819 820
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
821
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
822 823

	/* FIXME check the 'enable' instead */
824
	if (!crtc_state->hw.active)
825 826 827 828 829 830 831 832 833 834 835
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
836
		return plane_state->hw.fb != NULL;
837
	else
838
		return plane_state->uapi.visible;
839 840
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

860
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
861
{
862
	struct intel_crtc *crtc, *enabled = NULL;
863

864
	for_each_intel_crtc(&dev_priv->drm, crtc) {
865
		if (intel_crtc_active(crtc)) {
866 867 868 869 870 871 872 873 874
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

875
static void pnv_update_wm(struct intel_crtc *unused_crtc)
876
{
877
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
878
	struct intel_crtc *crtc;
879 880
	const struct cxsr_latency *latency;
	u32 reg;
881
	unsigned int wm;
882

883
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
884 885 886
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
887
	if (!latency) {
888 889
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
890
		intel_set_memory_cxsr(dev_priv, false);
891 892 893
		return;
	}

894
	crtc = single_enabled_crtc(dev_priv);
895
	if (crtc) {
896
		const struct drm_display_mode *adjusted_mode =
897
			&crtc->config->hw.adjusted_mode;
898 899
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
900
		int cpp = fb->format->cpp[0];
901
		int clock = adjusted_mode->crtc_clock;
902 903

		/* Display SR */
904 905
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
906
					cpp, latency->display_sr);
907 908
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
909
		reg |= FW_WM(wm, SR);
910
		I915_WRITE(DSPFW1, reg);
911
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
912 913

		/* cursor SR */
914 915
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
916
					4, latency->cursor_sr);
917 918
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
919
		reg |= FW_WM(wm, CURSOR_SR);
920 921 922
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
923 924
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
925
					cpp, latency->display_hpll_disable);
926 927
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
928
		reg |= FW_WM(wm, HPLL_SR);
929 930 931
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
932 933
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
934
					4, latency->cursor_hpll_disable);
935 936
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
937
		reg |= FW_WM(wm, HPLL_CURSOR);
938
		I915_WRITE(DSPFW3, reg);
939
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
940

941
		intel_set_memory_cxsr(dev_priv, true);
942
	} else {
943
		intel_set_memory_cxsr(dev_priv, false);
944 945 946
	}
}

947 948 949 950 951 952 953 954 955 956
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
957
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
958 959 960 961 962 963
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

964 965
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
966
{
967 968 969 970 971
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
989

990
	POSTING_READ(DSPFW1);
991 992
}

993 994 995
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

996
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
997 998
				const struct vlv_wm_values *wm)
{
999 1000 1001
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1002 1003
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1004 1005 1006 1007 1008 1009
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

1022
	I915_WRITE(DSPFW1,
1023
		   FW_WM(wm->sr.plane, SR) |
1024 1025 1026
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1027
	I915_WRITE(DSPFW2,
1028 1029 1030
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1031
	I915_WRITE(DSPFW3,
1032
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1033 1034 1035

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1036 1037
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1038
		I915_WRITE(DSPFW8_CHV,
1039 1040
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1041
		I915_WRITE(DSPFW9_CHV,
1042 1043
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1044
		I915_WRITE(DSPHOWM,
1045
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1046 1047 1048 1049 1050 1051 1052 1053 1054
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1055 1056
	} else {
		I915_WRITE(DSPFW7,
1057 1058
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059
		I915_WRITE(DSPHOWM,
1060
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1061 1062 1063 1064 1065 1066
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1067 1068 1069
	}

	POSTING_READ(DSPFW1);
1070 1071
}

1072 1073
#undef FW_WM_VLV

1074 1075 1076 1077 1078
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1079
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1080

1081
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1126 1127 1128
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1129
{
1130
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1131 1132
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1133
		&crtc_state->hw.adjusted_mode;
1134 1135
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1136 1137 1138 1139 1140 1141 1142

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1143
	cpp = plane_state->hw.fb->format->cpp[0];
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1158
		cpp = max(cpp, 4u);
1159 1160 1161 1162

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1163
	width = drm_rect_width(&plane_state->uapi.dst);
1164 1165 1166 1167 1168 1169 1170

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1171
		unsigned int small, large;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1184
	return min_t(unsigned int, wm, USHRT_MAX);
1185 1186 1187 1188 1189
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1190
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1206
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1222 1223
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1224
			      u32 pri_val);
1225 1226 1227 1228

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1229
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1230
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1283 1284 1285 1286 1287 1288
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1289 1290

		if (plane_id == PLANE_PRIMARY)
1291 1292 1293 1294
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1311
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1349
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1350
	struct intel_atomic_state *state =
1351
		to_intel_atomic_state(crtc_state->uapi.state);
1352
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1353 1354
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1355
	const struct g4x_pipe_wm *raw;
1356 1357
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1358 1359 1360 1361 1362
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1363 1364 1365
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1366 1367
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1368 1369
			continue;

1370
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1436
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1437
{
1438
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1439 1440 1441
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1442
		to_intel_atomic_state(new_crtc_state->uapi.state);
1443 1444 1445
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1446 1447
	enum plane_id plane_id;

1448
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1449 1450 1451 1452 1453 1454 1455
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1456
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1457
		!new_crtc_state->disable_cxsr;
1458
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1459
		!new_crtc_state->disable_cxsr;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1501
out:
1502 1503 1504 1505 1506
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1507
		new_crtc_state->wm.need_postvbl_update = true;
1508 1509 1510 1511 1512 1513 1514 1515

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1516
	int num_active_pipes = 0;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1535
		num_active_pipes++;
1536 1537
	}

1538
	if (num_active_pipes != 1) {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1578
				   struct intel_crtc *crtc)
1579
{
1580 1581 1582
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1583 1584 1585 1586 1587 1588 1589 1590

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1591
				    struct intel_crtc *crtc)
1592
{
1593 1594 1595
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1596 1597 1598 1599 1600

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1601
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1602 1603 1604 1605
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1606 1607
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1608 1609
				   unsigned int htotal,
				   unsigned int width,
1610
				   unsigned int cpp,
1611 1612 1613 1614
				   unsigned int latency)
{
	unsigned int ret;

1615 1616
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1617 1618 1619 1620 1621
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1622
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1623 1624 1625 1626
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1627 1628
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1629 1630 1631
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1632 1633

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1634 1635 1636
	}
}

1637 1638 1639
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1640
{
1641
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1642
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1643
	const struct drm_display_mode *adjusted_mode =
1644
		&crtc_state->hw.adjusted_mode;
1645
	unsigned int clock, htotal, cpp, width, wm;
1646 1647 1648 1649

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1650
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1651 1652
		return 0;

1653
	cpp = plane_state->hw.fb->format->cpp[0];
1654 1655 1656
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1657

1658
	if (plane->id == PLANE_CURSOR) {
1659 1660 1661 1662 1663 1664 1665 1666
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1667
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1668 1669 1670
				    dev_priv->wm.pri_latency[level] * 10);
	}

1671
	return min_t(unsigned int, wm, USHRT_MAX);
1672 1673
}

1674 1675 1676 1677 1678 1679
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1680
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1681
{
1682
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1683
	const struct g4x_pipe_wm *raw =
1684
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1685
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1686
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1687
	int num_active_planes = hweight8(active_planes);
1688
	const int fifo_size = 511;
1689
	int fifo_extra, fifo_left = fifo_size;
1690
	int sprite0_fifo_extra = 0;
1691 1692
	unsigned int total_rate;
	enum plane_id plane_id;
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1705 1706
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1707 1708
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1709

1710 1711
	if (total_rate > fifo_size)
		return -EINVAL;
1712

1713 1714
	if (total_rate == 0)
		total_rate = 1;
1715

1716
	for_each_plane_id_on_crtc(crtc, plane_id) {
1717 1718
		unsigned int rate;

1719 1720
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1721 1722 1723
			continue;
		}

1724 1725 1726
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1727 1728
	}

1729 1730 1731
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1732 1733 1734
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1735 1736

	/* spread the remainder evenly */
1737
	for_each_plane_id_on_crtc(crtc, plane_id) {
1738 1739 1740 1741 1742
		int plane_extra;

		if (fifo_left == 0)
			break;

1743
		if ((active_planes & BIT(plane_id)) == 0)
1744 1745 1746
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1747
		fifo_state->plane[plane_id] += plane_extra;
1748 1749 1750
		fifo_left -= plane_extra;
	}

1751 1752 1753 1754 1755 1756 1757 1758 1759
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1760 1761
}

1762 1763 1764 1765 1766 1767
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1768
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1779 1780 1781 1782 1783 1784 1785 1786
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1787 1788 1789 1790
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1791
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1792
				 int level, enum plane_id plane_id, u16 value)
1793
{
1794
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1795
	int num_levels = intel_wm_num_levels(dev_priv);
1796
	bool dirty = false;
1797

1798
	for (; level < num_levels; level++) {
1799
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1800

1801
		dirty |= raw->plane[plane_id] != value;
1802
		raw->plane[plane_id] = value;
1803
	}
1804 1805

	return dirty;
1806 1807
}

1808 1809
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1810
{
1811
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1812
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1813
	enum plane_id plane_id = plane->id;
1814
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1815
	int level;
1816
	bool dirty = false;
1817

1818
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1819 1820
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1821
	}
1822

1823
	for (level = 0; level < num_levels; level++) {
1824
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1825 1826
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1827

1828 1829
		if (wm > max_wm)
			break;
1830

1831
		dirty |= raw->plane[plane_id] != wm;
1832 1833
		raw->plane[plane_id] = wm;
	}
1834

1835
	/* mark all higher levels as invalid */
1836
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1837

1838 1839
out:
	if (dirty)
1840 1841 1842 1843 1844 1845
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1846 1847

	return dirty;
1848
}
1849

1850 1851
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1852
{
1853
	const struct g4x_pipe_wm *raw =
1854 1855 1856
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1857

1858 1859
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1860

1861
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1862
{
1863 1864 1865 1866
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1867 1868 1869 1870
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1871
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1872 1873
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1874
		to_intel_atomic_state(crtc_state->uapi.state);
1875 1876 1877
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1878 1879
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1880
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1881 1882
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1883 1884 1885
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1886
	unsigned int dirty = 0;
1887

1888 1889 1890
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1891 1892
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1893
			continue;
1894

1895
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1914
			intel_atomic_get_old_crtc_state(state, crtc);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1926
	}
1927

1928
	/* initially allow all levels */
1929
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1930 1931 1932 1933 1934
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1935
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1936

1937
	for (level = 0; level < wm_state->num_levels; level++) {
1938
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1939
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1940

1941
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1942
			break;
1943

1944 1945 1946 1947 1948 1949 1950 1951
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1952
						 raw->plane[PLANE_SPRITE0],
1953 1954
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1955

1956 1957 1958
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1959 1960
	}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1971 1972
}

1973 1974 1975
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1976
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1977
				   struct intel_crtc *crtc)
1978
{
1979
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1980
	struct intel_uncore *uncore = &dev_priv->uncore;
1981 1982
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1983 1984
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1985
	int sprite0_start, sprite1_start, fifo_size;
1986
	u32 dsparb, dsparb2, dsparb3;
1987

1988 1989 1990
	if (!crtc_state->fifo_changed)
		return;

1991 1992 1993
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1994

1995 1996
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1997

1998 1999
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2009
	spin_lock(&uncore->lock);
2010

2011 2012
	switch (crtc->pipe) {
	case PIPE_A:
2013 2014
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2026 2027
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2028 2029
		break;
	case PIPE_B:
2030 2031
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2043 2044
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2045 2046
		break;
	case PIPE_C:
2047 2048
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2060 2061
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2062 2063 2064 2065
		break;
	default:
		break;
	}
2066

2067
	intel_uncore_posting_read_fw(uncore, DSPARB);
2068

2069
	spin_unlock(&uncore->lock);
2070 2071 2072 2073
}

#undef VLV_FIFO

2074
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2075
{
2076
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2077 2078 2079
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2080
		to_intel_atomic_state(new_crtc_state->uapi.state);
2081 2082 2083
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2084 2085
	int level;

2086
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2087 2088 2089 2090 2091 2092
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2093
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2094
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2095
		!new_crtc_state->disable_cxsr;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2114
out:
2115 2116 2117 2118
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2119
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2120
		new_crtc_state->wm.need_postvbl_update = true;
2121 2122 2123 2124

	return 0;
}

2125
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2126 2127 2128
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2129
	int num_active_pipes = 0;
2130

2131
	wm->level = dev_priv->wm.max_level;
2132 2133
	wm->cxsr = true;

2134
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2135
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2136 2137 2138 2139 2140 2141 2142

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2143
		num_active_pipes++;
2144 2145 2146
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2147
	if (num_active_pipes != 1)
2148 2149
		wm->cxsr = false;

2150
	if (num_active_pipes > 1)
2151 2152
		wm->level = VLV_WM_LEVEL_PM2;

2153
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2154
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2155 2156 2157
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2158
		if (crtc->active && wm->cxsr)
2159 2160
			wm->sr = wm_state->sr[wm->level];

2161 2162 2163 2164
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2165 2166 2167
	}
}

2168
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2169
{
2170 2171
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2172

2173
	vlv_merge_wm(dev_priv, &new_wm);
2174

2175
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2176 2177
		return;

2178
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2179 2180
		chv_set_memory_dvfs(dev_priv, false);

2181
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2182 2183
		chv_set_memory_pm5(dev_priv, false);

2184
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2185
		_intel_set_memory_cxsr(dev_priv, false);
2186

2187
	vlv_write_wm_values(dev_priv, &new_wm);
2188

2189
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2190
		_intel_set_memory_cxsr(dev_priv, true);
2191

2192
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2193 2194
		chv_set_memory_pm5(dev_priv, true);

2195
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2196 2197
		chv_set_memory_dvfs(dev_priv, true);

2198
	*old_wm = new_wm;
2199 2200
}

2201
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2202
				   struct intel_crtc *crtc)
2203
{
2204 2205 2206
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2207 2208

	mutex_lock(&dev_priv->wm.wm_mutex);
2209 2210 2211 2212 2213 2214
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2215
				    struct intel_crtc *crtc)
2216
{
2217 2218 2219
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2220 2221 2222 2223 2224

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2225
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2226 2227 2228 2229
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2230
static void i965_update_wm(struct intel_crtc *unused_crtc)
2231
{
2232
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2233
	struct intel_crtc *crtc;
2234 2235
	int srwm = 1;
	int cursor_sr = 16;
2236
	bool cxsr_enabled;
2237 2238

	/* Calc sr entries for one plane configs */
2239
	crtc = single_enabled_crtc(dev_priv);
2240 2241 2242
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2243
		const struct drm_display_mode *adjusted_mode =
2244
			&crtc->config->hw.adjusted_mode;
2245 2246
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2247
		int clock = adjusted_mode->crtc_clock;
2248
		int htotal = adjusted_mode->crtc_htotal;
2249
		int hdisplay = crtc->config->pipe_src_w;
2250
		int cpp = fb->format->cpp[0];
2251 2252
		int entries;

2253 2254
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2255 2256 2257 2258 2259
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2260 2261 2262
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2263

2264 2265 2266
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2267
		entries = DIV_ROUND_UP(entries,
2268 2269
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2270

2271
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2272 2273 2274
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2275 2276 2277
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2278

2279
		cxsr_enabled = true;
2280
	} else {
2281
		cxsr_enabled = false;
2282
		/* Turn off self refresh if both pipes are enabled */
2283
		intel_set_memory_cxsr(dev_priv, false);
2284 2285
	}

2286 2287 2288
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2289 2290

	/* 965 has limitations... */
2291 2292 2293 2294 2295 2296
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2297
	/* update cursor SR watermark */
2298
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2299 2300 2301

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2302 2303
}

2304 2305
#undef FW_WM

2306
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2307
{
2308
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2309
	const struct intel_watermark_params *wm_info;
2310 2311
	u32 fwater_lo;
	u32 fwater_hi;
2312 2313 2314
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2315
	struct intel_crtc *crtc, *enabled = NULL;
2316

2317
	if (IS_I945GM(dev_priv))
2318
		wm_info = &i945_wm_info;
2319
	else if (!IS_GEN(dev_priv, 2))
2320 2321
		wm_info = &i915_wm_info;
	else
2322
		wm_info = &i830_a_wm_info;
2323

2324 2325
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2326 2327
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2328
			&crtc->config->hw.adjusted_mode;
2329 2330 2331 2332
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2333
		if (IS_GEN(dev_priv, 2))
2334
			cpp = 4;
2335
		else
2336
			cpp = fb->format->cpp[0];
2337

2338
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2339
					       wm_info, fifo_size, cpp,
2340
					       pessimal_latency_ns);
2341
		enabled = crtc;
2342
	} else {
2343
		planea_wm = fifo_size - wm_info->guard_size;
2344 2345 2346 2347
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2348
	if (IS_GEN(dev_priv, 2))
2349
		wm_info = &i830_bc_wm_info;
2350

2351 2352
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2353 2354
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2355
			&crtc->config->hw.adjusted_mode;
2356 2357 2358 2359
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2360
		if (IS_GEN(dev_priv, 2))
2361
			cpp = 4;
2362
		else
2363
			cpp = fb->format->cpp[0];
2364

2365
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2366
					       wm_info, fifo_size, cpp,
2367
					       pessimal_latency_ns);
2368 2369 2370 2371
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2372
	} else {
2373
		planeb_wm = fifo_size - wm_info->guard_size;
2374 2375 2376
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2377

2378 2379
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2380

2381
	if (IS_I915GM(dev_priv) && enabled) {
2382
		struct drm_i915_gem_object *obj;
2383

2384
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2385 2386

		/* self-refresh seems busted with untiled */
2387
		if (!i915_gem_object_is_tiled(obj))
2388 2389 2390
			enabled = NULL;
	}

2391 2392 2393 2394 2395 2396
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2397
	intel_set_memory_cxsr(dev_priv, false);
2398 2399

	/* Calc sr entries for one plane configs */
2400
	if (HAS_FW_BLC(dev_priv) && enabled) {
2401 2402
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2403
		const struct drm_display_mode *adjusted_mode =
2404
			&enabled->config->hw.adjusted_mode;
2405 2406
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2407
		int clock = adjusted_mode->crtc_clock;
2408
		int htotal = adjusted_mode->crtc_htotal;
2409 2410
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2411 2412
		int entries;

2413
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2414
			cpp = 4;
2415
		else
2416
			cpp = fb->format->cpp[0];
2417

2418 2419
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2420
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2421 2422
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2423 2424 2425 2426
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2427
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2428 2429
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2430
		else
2431 2432 2433
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

2434 2435 2436
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2448 2449
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2450 2451
}

2452
static void i845_update_wm(struct intel_crtc *unused_crtc)
2453
{
2454
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2455
	struct intel_crtc *crtc;
2456
	const struct drm_display_mode *adjusted_mode;
2457
	u32 fwater_lo;
2458 2459
	int planea_wm;

2460
	crtc = single_enabled_crtc(dev_priv);
2461 2462 2463
	if (crtc == NULL)
		return;

2464
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2465
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2466
				       &i845_wm_info,
2467
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2468
				       4, pessimal_latency_ns);
2469 2470 2471
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

2472 2473
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2474 2475 2476 2477

	I915_WRITE(FW_BLC, fwater_lo);
}

2478
/* latency must be in 0.1us units. */
2479 2480 2481
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2482
{
2483
	unsigned int ret;
2484

2485 2486
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2487 2488 2489 2490

	return ret;
}

2491
/* latency must be in 0.1us units. */
2492 2493 2494 2495 2496
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2497
{
2498
	unsigned int ret;
2499

2500 2501
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2502
	ret = DIV_ROUND_UP(ret, 64) + 2;
2503

2504 2505 2506
	return ret;
}

2507
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2508
{
2509 2510 2511 2512 2513 2514
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2515
	if (WARN_ON(!cpp))
2516 2517 2518 2519
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2520
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2521 2522
}

2523
struct ilk_wm_maximums {
2524 2525 2526 2527
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2528 2529
};

2530 2531 2532 2533
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2534 2535
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2536
			      u32 mem_value, bool is_lp)
2537
{
2538
	u32 method1, method2;
2539
	int cpp;
2540

2541 2542 2543
	if (mem_value == 0)
		return U32_MAX;

2544
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2545 2546
		return 0;

2547
	cpp = plane_state->hw.fb->format->cpp[0];
2548

2549
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2550 2551 2552 2553

	if (!is_lp)
		return method1;

2554
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2555
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2556
				 drm_rect_width(&plane_state->uapi.dst),
2557
				 cpp, mem_value);
2558 2559

	return min(method1, method2);
2560 2561
}

2562 2563 2564 2565
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2566 2567
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2568
			      u32 mem_value)
2569
{
2570
	u32 method1, method2;
2571
	int cpp;
2572

2573 2574 2575
	if (mem_value == 0)
		return U32_MAX;

2576
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2577 2578
		return 0;

2579
	cpp = plane_state->hw.fb->format->cpp[0];
2580

2581 2582
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2583
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2584
				 drm_rect_width(&plane_state->uapi.dst),
2585
				 cpp, mem_value);
2586 2587 2588
	return min(method1, method2);
}

2589 2590 2591 2592
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2593 2594
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2595
			      u32 mem_value)
2596
{
2597 2598
	int cpp;

2599 2600 2601
	if (mem_value == 0)
		return U32_MAX;

2602
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2603 2604
		return 0;

2605
	cpp = plane_state->hw.fb->format->cpp[0];
2606

2607
	return ilk_wm_method2(crtc_state->pixel_rate,
2608
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2609
			      drm_rect_width(&plane_state->uapi.dst),
2610
			      cpp, mem_value);
2611 2612
}

2613
/* Only for WM_LP. */
2614 2615
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2616
			      u32 pri_val)
2617
{
2618
	int cpp;
2619

2620
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2621 2622
		return 0;

2623
	cpp = plane_state->hw.fb->format->cpp[0];
2624

2625 2626
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2627 2628
}

2629 2630
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2631
{
2632
	if (INTEL_GEN(dev_priv) >= 8)
2633
		return 3072;
2634
	else if (INTEL_GEN(dev_priv) >= 7)
2635 2636 2637 2638 2639
		return 768;
	else
		return 512;
}

2640 2641 2642
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2643
{
2644
	if (INTEL_GEN(dev_priv) >= 8)
2645 2646
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2647
	else if (INTEL_GEN(dev_priv) >= 7)
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2658 2659
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2660
{
2661
	if (INTEL_GEN(dev_priv) >= 7)
2662 2663 2664 2665 2666
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2667
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2668
{
2669
	if (INTEL_GEN(dev_priv) >= 8)
2670 2671 2672 2673 2674
		return 31;
	else
		return 15;
}

2675
/* Calculate the maximum primary/sprite plane watermark */
2676
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2677
				     int level,
2678
				     const struct intel_wm_config *config,
2679 2680 2681
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2682
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2683 2684

	/* if sprites aren't enabled, sprites get nothing */
2685
	if (is_sprite && !config->sprites_enabled)
2686 2687 2688
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2689
	if (level == 0 || config->num_pipes_active > 1) {
2690
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2691 2692 2693 2694 2695 2696

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2697
		if (INTEL_GEN(dev_priv) <= 6)
2698 2699 2700
			fifo_size /= 2;
	}

2701
	if (config->sprites_enabled) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2713
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2714 2715 2716
}

/* Calculate the maximum cursor plane watermark */
2717
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2718 2719
				      int level,
				      const struct intel_wm_config *config)
2720 2721
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2722
	if (level > 0 && config->num_pipes_active > 1)
2723 2724 2725
		return 64;

	/* otherwise just report max that registers can hold */
2726
	return ilk_cursor_wm_reg_max(dev_priv, level);
2727 2728
}

2729
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2730 2731 2732
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2733
				    struct ilk_wm_maximums *max)
2734
{
2735 2736 2737 2738
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2739 2740
}

2741
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2742 2743 2744
					int level,
					struct ilk_wm_maximums *max)
{
2745 2746 2747 2748
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2749 2750
}

2751
static bool ilk_validate_wm_level(int level,
2752
				  const struct ilk_wm_maximums *max,
2753
				  struct intel_wm_level *result)
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2783 2784 2785
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2786 2787 2788 2789 2790 2791
		result->enable = true;
	}

	return ret;
}

2792
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2793
				 const struct intel_crtc *crtc,
2794
				 int level,
2795
				 struct intel_crtc_state *crtc_state,
2796 2797 2798
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2799
				 struct intel_wm_level *result)
2800
{
2801 2802 2803
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2804 2805 2806 2807 2808 2809 2810 2811

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2812
	if (pristate) {
2813
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2814
						     pri_latency, level);
2815
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2816 2817 2818
	}

	if (sprstate)
2819
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2820 2821

	if (curstate)
2822
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2823

2824 2825 2826
	result->enable = true;
}

2827
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2828
				  u16 wm[8])
2829
{
2830 2831
	struct intel_uncore *uncore = &dev_priv->uncore;

2832
	if (INTEL_GEN(dev_priv) >= 9) {
2833
		u32 val;
2834
		int ret, i;
2835
		int level, max_level = ilk_wm_max_level(dev_priv);
2836 2837 2838 2839 2840

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2841
					     &val, NULL);
2842 2843

		if (ret) {
2844 2845
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2861
					     &val, NULL);
2862
		if (ret) {
2863 2864
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2889
		/*
2890
		 * WaWmMemoryReadLatency:skl+,glk
2891
		 *
2892
		 * punit doesn't take into account the read latency so we need
2893 2894
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2895
		 */
2896 2897 2898 2899 2900
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2901
				wm[level] += 2;
2902
			}
2903 2904
		}

2905 2906 2907 2908 2909 2910
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2911
		if (dev_priv->dram_info.is_16gb_dimm)
2912 2913
			wm[0] += 1;

2914
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2915
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2916 2917 2918 2919

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2920 2921 2922 2923
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2924
	} else if (INTEL_GEN(dev_priv) >= 6) {
2925
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2926 2927 2928 2929 2930

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2931
	} else if (INTEL_GEN(dev_priv) >= 5) {
2932
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2933 2934 2935 2936 2937

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2938 2939
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2940 2941 2942
	}
}

2943
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2944
				       u16 wm[5])
2945 2946
{
	/* ILK sprite LP0 latency is 1300 ns */
2947
	if (IS_GEN(dev_priv, 5))
2948 2949 2950
		wm[0] = 13;
}

2951
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2952
				       u16 wm[5])
2953 2954
{
	/* ILK cursor LP0 latency is 1300 ns */
2955
	if (IS_GEN(dev_priv, 5))
2956 2957 2958
		wm[0] = 13;
}

2959
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2960 2961
{
	/* how many WM levels are we expecting */
2962
	if (INTEL_GEN(dev_priv) >= 9)
2963
		return 7;
2964
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2965
		return 4;
2966
	else if (INTEL_GEN(dev_priv) >= 6)
2967
		return 3;
2968
	else
2969 2970
		return 2;
}
2971

2972
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2973
				   const char *name,
2974
				   const u16 wm[8])
2975
{
2976
	int level, max_level = ilk_wm_max_level(dev_priv);
2977 2978 2979 2980 2981

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2982 2983 2984
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
2985 2986 2987
			continue;
		}

2988 2989 2990 2991
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2992
		if (INTEL_GEN(dev_priv) >= 9)
2993 2994
			latency *= 10;
		else if (level > 0)
2995 2996
			latency *= 5;

2997 2998 2999
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3000 3001 3002
	}
}

3003
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3004
				    u16 wm[5], u16 min)
3005
{
3006
	int level, max_level = ilk_wm_max_level(dev_priv);
3007 3008 3009 3010 3011 3012

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3013
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3014 3015 3016 3017

	return true;
}

3018
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3033 3034
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3035 3036 3037
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3038 3039
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3062 3063
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3064 3065 3066 3067 3068
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3069
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3070
{
3071
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3072 3073 3074 3075 3076 3077

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3078
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3079
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3080

3081 3082 3083
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3084

3085
	if (IS_GEN(dev_priv, 6)) {
3086
		snb_wm_latency_quirk(dev_priv);
3087 3088
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3089 3090
}

3091
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3092
{
3093
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3094
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3095 3096
}

3097
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3109
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3110 3111 3112

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3113
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3114 3115 3116 3117 3118 3119
		return false;
	}

	return true;
}

3120
/* Compute new watermarks for the pipe */
3121
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3122
{
3123
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3124
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3125
	struct intel_pipe_wm *pipe_wm;
3126 3127
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3128 3129 3130
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3131
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3132
	struct ilk_wm_maximums max;
3133

3134
	pipe_wm = &crtc_state->wm.ilk.optimal;
3135

3136 3137 3138 3139 3140 3141 3142
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3143 3144
	}

3145
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3146
	if (sprstate) {
3147 3148 3149 3150
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3151 3152
	}

3153 3154
	usable_level = max_level;

3155
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3156
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3157
		usable_level = 1;
3158 3159

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3160
	if (pipe_wm->sprites_scaled)
3161
		usable_level = 0;
3162

3163
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3164
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3165
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3166

3167
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3168
		return -EINVAL;
3169

3170
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3171

3172 3173
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3174

3175
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3176
				     pristate, sprstate, curstate, wm);
3177 3178 3179 3180 3181 3182

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3183 3184 3185 3186
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3187 3188
	}

3189
	return 0;
3190 3191
}

3192 3193 3194 3195 3196
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3197
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3198
{
3199
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3200
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3201
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3202
	struct intel_atomic_state *intel_state =
3203
		to_intel_atomic_state(newstate->uapi.state);
3204 3205 3206
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3207
	int level, max_level = ilk_wm_max_level(dev_priv);
3208 3209 3210 3211 3212 3213

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3214
	*a = newstate->wm.ilk.optimal;
3215
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3216
	    intel_state->skip_intermediate_wm)
3217 3218
		return 0;

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3240
	if (!ilk_validate_pipe_wm(dev_priv, a))
3241 3242 3243 3244 3245 3246
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3247 3248
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3249 3250 3251 3252

	return 0;
}

3253 3254 3255
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3256
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3257 3258 3259 3260 3261
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3262 3263
	ret_wm->enable = true;

3264
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3265
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3266 3267 3268 3269
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3270

3271 3272 3273 3274 3275
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3276
		if (!wm->enable)
3277
			ret_wm->enable = false;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3289
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3290
			 const struct intel_wm_config *config,
3291
			 const struct ilk_wm_maximums *max,
3292 3293
			 struct intel_pipe_wm *merged)
{
3294
	int level, max_level = ilk_wm_max_level(dev_priv);
3295
	int last_enabled_level = max_level;
3296

3297
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3298
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3299
	    config->num_pipes_active > 1)
3300
		last_enabled_level = 0;
3301

3302
	/* ILK: FBC WM must be disabled always */
3303
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3304 3305 3306 3307 3308

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3309
		ilk_merge_wm_level(dev_priv, level, wm);
3310

3311 3312 3313 3314 3315
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3316 3317 3318 3319 3320 3321

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3322 3323
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3324 3325 3326
			wm->fbc_val = 0;
		}
	}
3327 3328 3329 3330 3331 3332 3333

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3334
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3335
	    intel_fbc_is_active(dev_priv)) {
3336 3337 3338 3339 3340 3341
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3342 3343
}

3344 3345 3346 3347 3348 3349
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3350
/* The value we need to program into the WM_LPx latency field */
3351 3352
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3353
{
3354
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3355 3356 3357 3358 3359
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3360
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3361
				   const struct intel_pipe_wm *merged,
3362
				   enum intel_ddb_partitioning partitioning,
3363
				   struct ilk_wm_values *results)
3364
{
3365 3366
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3367

3368
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3369
	results->partitioning = partitioning;
3370

3371
	/* LP1+ register values */
3372
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3373
		const struct intel_wm_level *r;
3374

3375
		level = ilk_wm_lp_to_level(wm_lp, merged);
3376

3377
		r = &merged->wm[level];
3378

3379 3380 3381 3382 3383
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3384
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3385 3386 3387
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3388 3389 3390
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3391
		if (INTEL_GEN(dev_priv) >= 8)
3392 3393 3394 3395 3396 3397
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3398 3399 3400 3401
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3402
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3403
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3404 3405 3406
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3407
	}
3408

3409
	/* LP0 register values */
3410
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3411
		enum pipe pipe = intel_crtc->pipe;
3412 3413
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3414

3415
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3416
			continue;
3417

3418 3419 3420 3421
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3422 3423 3424
	}
}

3425 3426
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3427 3428 3429 3430
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3431
{
3432
	int level, max_level = ilk_wm_max_level(dev_priv);
3433
	int level1 = 0, level2 = 0;
3434

3435 3436 3437 3438 3439
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3440 3441
	}

3442 3443
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3444 3445 3446
			return r2;
		else
			return r1;
3447
	} else if (level1 > level2) {
3448 3449 3450 3451 3452 3453
		return r1;
	} else {
		return r2;
	}
}

3454 3455 3456 3457 3458 3459 3460
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3461
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3462 3463
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3464 3465 3466 3467 3468
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3469
	for_each_pipe(dev_priv, pipe) {
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3507 3508
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3509
{
3510
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3511
	bool changed = false;
3512

3513 3514 3515
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3516
		changed = true;
3517 3518 3519 3520
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3521
		changed = true;
3522 3523 3524 3525
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3526
		changed = true;
3527
	}
3528

3529 3530 3531 3532
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3533

3534 3535 3536 3537 3538 3539 3540
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3541 3542
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3543
{
3544
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3545
	unsigned int dirty;
3546
	u32 val;
3547

3548
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3549 3550 3551 3552 3553
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3554
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3555
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3556
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3557
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3558
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3559 3560
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3561
	if (dirty & WM_DIRTY_DDB) {
3562
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3577 3578
	}

3579
	if (dirty & WM_DIRTY_FBC) {
3580 3581 3582 3583 3584 3585 3586 3587
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3588 3589 3590 3591
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3592
	if (INTEL_GEN(dev_priv) >= 7) {
3593 3594 3595 3596 3597
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3598

3599
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3600
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3601
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3602
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3603
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3604
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3605 3606

	dev_priv->wm.hw = *results;
3607 3608
}

3609
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3610 3611 3612 3613
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3614
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3615
{
3616 3617 3618
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3619

3620 3621 3622 3623
	for (i = 0; i < max_slices; i++) {
		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
			enabled_slices_mask |= BIT(i);
	}
3624

3625
	return enabled_slices_mask;
3626 3627
}

3628 3629 3630 3631
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3632
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3633
{
3634
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3635 3636
}

3637 3638 3639
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3640 3641 3642 3643
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3644 3645
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3646 3647
}

3648 3649 3650
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3663
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3664
	} else if (IS_GEN(dev_priv, 11)) {
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3693
intel_enable_sagv(struct drm_i915_private *dev_priv)
3694 3695 3696
{
	int ret;

3697 3698 3699 3700
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3701 3702
		return 0;

3703
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3704 3705 3706
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3707
	/* We don't need to wait for SAGV when enabling */
3708 3709 3710

	/*
	 * Some skl systems, pre-release machines in particular,
3711
	 * don't actually have SAGV.
3712
	 */
3713
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3714
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3715
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3716 3717
		return 0;
	} else if (ret < 0) {
3718
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3719 3720 3721
		return ret;
	}

3722
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3723 3724 3725 3726
	return 0;
}

int
3727
intel_disable_sagv(struct drm_i915_private *dev_priv)
3728
{
3729
	int ret;
3730

3731 3732 3733 3734
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3735 3736
		return 0;

3737
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3738
	/* bspec says to keep retrying for at least 1 ms */
3739 3740 3741 3742
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3743 3744
	/*
	 * Some skl systems, pre-release machines in particular,
3745
	 * don't actually have SAGV.
3746
	 */
3747
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3748
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3749
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3750
		return 0;
3751
	} else if (ret < 0) {
3752
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3753
		return ret;
3754 3755
	}

3756
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3757 3758 3759
	return 0;
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (!intel_can_enable_sagv(state))
		intel_disable_sagv(dev_priv);
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (intel_can_enable_sagv(state))
		intel_enable_sagv(dev_priv);
}

3776
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3777
{
3778
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
3779
	struct drm_i915_private *dev_priv = to_i915(dev);
3780
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3781
	struct intel_plane *plane;
3782
	int level, latency;
3783

3784
	if (!crtc_state->hw.active)
3785
		return true;
3786

3787
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3788 3789
		return false;

3790
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3791
		const struct skl_plane_wm *wm =
3792
			&crtc_state->wm.skl.optimal.planes[plane->id];
3793

3794
		/* Skip this plane if it's not enabled */
3795
		if (!wm->wm[0].plane_en)
3796 3797 3798
			continue;

		/* Find the highest enabled wm level for this plane */
3799
		for (level = ilk_wm_max_level(dev_priv);
3800
		     !wm->wm[level].plane_en; --level)
3801 3802
		     { }

3803 3804
		latency = dev_priv->wm.skl_latency[level];

3805
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3806
		    plane->base.state->fb->modifier ==
3807 3808 3809
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3810
		/*
3811 3812
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3813
		 * can't enable SAGV.
3814
		 */
3815
		if (latency < dev_priv->sagv_block_time_us)
3816 3817 3818 3819 3820 3821
			return false;
	}

	return true;
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
bool intel_can_enable_sagv(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;
	const struct intel_crtc_state *crtc_state;
	enum pipe pipe;

	if (!intel_has_sagv(dev_priv))
		return false;

	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight8(state->active_pipes) == 0)
		return true;

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
	if (hweight8(state->active_pipes) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(state->active_pipes) - 1;
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
	crtc_state = to_intel_crtc_state(crtc->base.state);

	return intel_crtc_can_enable_sagv(crtc_state);
}

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3875 3876 3877
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

3878
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3879 3880 3881 3882 3883 3884 3885

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

3886
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
3887
				  u8 active_pipes);
3888

3889
static void
3890
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3891
				   const struct intel_crtc_state *crtc_state,
3892
				   const u64 total_data_rate,
3893 3894
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3895
{
3896
	struct drm_atomic_state *state = crtc_state->uapi.state;
3897
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3898
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3899
	const struct intel_crtc *crtc;
3900
	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3901 3902
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
3903
	u32 ddb_range_size;
3904
	u32 i;
3905 3906 3907 3908 3909 3910
	u32 dbuf_slice_mask;
	u32 active_pipes;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
3911

3912
	if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3913 3914
		alloc->start = 0;
		alloc->end = 0;
3915
		*num_active = hweight8(dev_priv->active_pipes);
3916 3917 3918
		return;
	}

3919
	if (intel_state->active_pipe_changes)
3920
		active_pipes = intel_state->active_pipes;
3921
	else
3922 3923 3924 3925 3926
		active_pipes = dev_priv->active_pipes;

	*num_active = hweight8(active_pipes);

	ddb_size = intel_get_ddb_size(dev_priv);
3927

3928
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3929

3930
	/*
3931 3932 3933 3934 3935 3936
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3937
	 */
3938
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3939 3940 3941 3942 3943
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3944
		return;
3945
	}
3946

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);

	DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
		      dbuf_slice_mask,
		      pipe_name(for_pipe), active_pipes);

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

3971 3972 3973 3974 3975
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3976
	total_slice_mask = dbuf_slice_mask;
3977 3978
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
3979
			&crtc_state->hw.adjusted_mode;
3980
		enum pipe pipe = crtc->pipe;
3981
		int hdisplay, vdisplay;
3982
		u32 pipe_dbuf_slice_mask;
3983

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
		if (!crtc_state->hw.active)
			continue;

		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
							       active_pipes);

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4007 4008 4009
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4010 4011

		total_width_in_range += hdisplay;
4012 4013

		if (pipe < for_pipe)
4014
			width_before_pipe_in_range += hdisplay;
4015 4016 4017 4018
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
	intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);

	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
	end = ddb_range_size *
		(width_before_pipe_in_range + pipe_width) / total_width_in_range;

	alloc->start = offset + start;
	alloc->end = offset + end;

	DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
		      alloc->start, alloc->end);
	DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
		      intel_state->enabled_dbuf_slices_mask,
		      INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4037 4038
}

4039 4040 4041 4042 4043
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4044
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4045
				 int level,
4046
				 unsigned int latency,
4047 4048 4049 4050 4051 4052 4053
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4054
{
4055
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4066
	drm_WARN_ON(&dev_priv->drm, ret);
4067 4068

	for (level = 0; level <= max_level; level++) {
4069 4070 4071
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4072 4073 4074 4075 4076
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4077

4078
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4079 4080
}

4081 4082
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4083
{
4084

4085 4086
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4087

4088 4089
	if (entry->end)
		entry->end += 1;
4090 4091
}

4092 4093 4094 4095
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4096 4097
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4098
{
4099 4100
	u32 val, val2;
	u32 fourcc = 0;
4101 4102 4103 4104

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4105
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4106 4107 4108 4109 4110 4111
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4112 4113 4114 4115
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4116

4117 4118 4119 4120 4121
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4122
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4123

4124 4125
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4126 4127 4128 4129
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4130 4131 4132
	}
}

4133 4134 4135
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4136
{
4137 4138 4139
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4140
	intel_wakeref_t wakeref;
4141
	enum plane_id plane_id;
4142

4143
	power_domain = POWER_DOMAIN_PIPE(pipe);
4144 4145
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4146
		return;
4147

4148 4149 4150 4151 4152
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4153

4154
	intel_display_power_put(dev_priv, power_domain, wakeref);
4155
}
4156

4157
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4158
{
4159 4160
	dev_priv->enabled_dbuf_slices_mask =
				intel_enabled_dbuf_slices_mask(dev_priv);
4161 4162
}

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4179
static uint_fixed_16_16_t
4180 4181
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4182
{
4183
	u32 src_w, src_h, dst_w, dst_h;
4184 4185
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4186

4187
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4188
		return u32_to_fixed16(0);
4189

4190 4191 4192 4193 4194 4195 4196
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4197 4198 4199 4200
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4201

4202 4203 4204 4205
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4206

4207
	return mul_fixed16(downscale_w, downscale_h);
4208 4209
}

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4225
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4226 4227 4228 4229 4230
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4231 4232
			[PIPE_A] = BIT(DBUF_S1),
		},
4233 4234 4235 4236
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4237 4238
			[PIPE_B] = BIT(DBUF_S1),
		},
4239 4240 4241 4242 4243
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4244 4245
			[PIPE_B] = BIT(DBUF_S2),
		},
4246 4247 4248 4249
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4250 4251
			[PIPE_C] = BIT(DBUF_S2),
		},
4252 4253 4254 4255 4256
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4257 4258
			[PIPE_C] = BIT(DBUF_S2),
		},
4259 4260 4261 4262 4263
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4264 4265
			[PIPE_C] = BIT(DBUF_S2),
		},
4266 4267 4268 4269 4270 4271
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4272 4273
			[PIPE_C] = BIT(DBUF_S2),
		},
4274
	},
4275
	{}
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4288
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4289 4290 4291 4292 4293
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4294 4295
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4296 4297 4298 4299
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4300 4301
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4302 4303 4304 4305 4306
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4307 4308
			[PIPE_B] = BIT(DBUF_S1),
		},
4309 4310 4311 4312
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4313 4314
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4315 4316 4317 4318 4319
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4320 4321
			[PIPE_C] = BIT(DBUF_S2),
		},
4322 4323 4324 4325 4326
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4327 4328
			[PIPE_C] = BIT(DBUF_S2),
		},
4329 4330 4331 4332 4333 4334
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4335 4336
			[PIPE_C] = BIT(DBUF_S2),
		},
4337 4338 4339 4340
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4341 4342
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4343 4344 4345 4346 4347
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4348 4349
			[PIPE_D] = BIT(DBUF_S2),
		},
4350 4351 4352 4353 4354
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4355 4356
			[PIPE_D] = BIT(DBUF_S2),
		},
4357 4358 4359 4360 4361 4362
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4363 4364
			[PIPE_D] = BIT(DBUF_S2),
		},
4365 4366 4367 4368 4369
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4370 4371
			[PIPE_D] = BIT(DBUF_S2),
		},
4372 4373 4374 4375 4376 4377
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4378 4379
			[PIPE_D] = BIT(DBUF_S2),
		},
4380 4381 4382 4383 4384 4385
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4386 4387
			[PIPE_D] = BIT(DBUF_S2),
		},
4388 4389 4390 4391 4392 4393 4394
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4395 4396
			[PIPE_D] = BIT(DBUF_S2),
		},
4397
	},
4398
	{}
4399 4400
};

4401 4402
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4403 4404 4405
{
	int i;

4406
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4418
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4432
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4433 4434
}

4435
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4436
{
4437
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4438 4439 4440
}

static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4441
				  u8 active_pipes)
4442 4443 4444 4445 4446 4447
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4448
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4449
	else if (IS_GEN(dev_priv, 11))
4450
		return icl_compute_dbuf_slices(pipe, active_pipes);
4451 4452 4453 4454 4455 4456 4457
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
	return BIT(DBUF_S1);
}

4458
static u64
4459 4460
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4461
			     int color_plane)
4462
{
4463
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4464
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4465 4466
	u32 data_rate;
	u32 width = 0, height = 0;
4467
	uint_fixed_16_16_t down_scale_amount;
4468
	u64 rate;
4469

4470
	if (!plane_state->uapi.visible)
4471
		return 0;
4472

4473
	if (plane->id == PLANE_CURSOR)
4474
		return 0;
4475 4476

	if (color_plane == 1 &&
4477
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4478
		return 0;
4479

4480 4481 4482 4483 4484
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4485 4486
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4487

4488
	/* UV plane does 1/2 pixel sub-sampling */
4489
	if (color_plane == 1) {
4490 4491
		width /= 2;
		height /= 2;
4492 4493
	}

4494
	data_rate = width * height;
4495

4496
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4497

4498 4499
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4500
	rate *= fb->format->cpp[color_plane];
4501
	return rate;
4502 4503
}

4504
static u64
4505
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4506 4507
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4508
{
4509 4510
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4511
	u64 total_data_rate = 0;
4512

4513
	/* Calculate and cache data rate for each plane */
4514 4515
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4516
		u64 rate;
4517

4518
		/* packed/y */
4519
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4520
		plane_data_rate[plane_id] = rate;
4521
		total_data_rate += rate;
4522

4523
		/* uv-plane */
4524
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4525
		uv_plane_data_rate[plane_id] = rate;
4526
		total_data_rate += rate;
4527 4528 4529 4530 4531
	}

	return total_data_rate;
}

4532
static u64
4533
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4534 4535
				 u64 *plane_data_rate)
{
4536 4537
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4538 4539 4540
	u64 total_data_rate = 0;

	/* Calculate and cache data rate for each plane */
4541 4542
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4543 4544
		u64 rate;

4545
		if (!plane_state->planar_linked_plane) {
4546
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4547 4548 4549 4550 4551 4552 4553
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4554
			 * intel_atomic_crtc_state_for_each_plane_state(),
4555 4556 4557 4558
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4559
			if (plane_state->planar_slave)
4560 4561 4562
				continue;

			/* Y plane rate is calculated on the slave */
4563
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4564
			y_plane_id = plane_state->planar_linked_plane->id;
4565 4566 4567
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4568
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4569 4570 4571 4572 4573 4574 4575 4576
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4577
static int
4578
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4579
{
4580 4581
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4582
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4583 4584 4585
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4586
	u64 total_data_rate;
4587
	enum plane_id plane_id;
4588
	int num_active;
4589 4590
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4591
	u32 blocks;
4592
	int level;
4593

4594
	/* Clear the partitioning for disabled planes. */
4595 4596
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4597

4598
	if (!crtc_state->hw.active) {
4599
		alloc->start = alloc->end = 0;
4600 4601 4602
		return 0;
	}

4603 4604
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4605
			icl_get_total_relative_data_rate(crtc_state,
4606 4607
							 plane_data_rate);
	else
4608
		total_data_rate =
4609
			skl_get_total_relative_data_rate(crtc_state,
4610 4611
							 plane_data_rate,
							 uv_plane_data_rate);
4612

4613

4614
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4615
					   alloc, &num_active);
4616
	alloc_size = skl_ddb_entry_size(alloc);
4617
	if (alloc_size == 0)
4618
		return 0;
4619

4620
	/* Allocate fixed number of blocks for cursor. */
4621
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4622
	alloc_size -= total[PLANE_CURSOR];
4623
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4624
		alloc->end - total[PLANE_CURSOR];
4625
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4626 4627 4628

	if (total_data_rate == 0)
		return 0;
4629

4630
	/*
4631 4632
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4633
	 */
4634
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4635
		blocks = 0;
4636
		for_each_plane_id_on_crtc(crtc, plane_id) {
4637
			const struct skl_plane_wm *wm =
4638
				&crtc_state->wm.skl.optimal.planes[plane_id];
4639 4640

			if (plane_id == PLANE_CURSOR) {
4641
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4642 4643
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4644 4645 4646
					blocks = U32_MAX;
					break;
				}
4647
				continue;
4648
			}
4649

4650 4651
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4652 4653
		}

4654
		if (blocks <= alloc_size) {
4655 4656 4657
			alloc_size -= blocks;
			break;
		}
4658 4659
	}

4660
	if (level < 0) {
4661 4662 4663 4664
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4665 4666 4667
		return -EINVAL;
	}

4668
	/*
4669 4670 4671
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4672
	 */
4673
	for_each_plane_id_on_crtc(crtc, plane_id) {
4674
		const struct skl_plane_wm *wm =
4675
			&crtc_state->wm.skl.optimal.planes[plane_id];
4676 4677
		u64 rate;
		u16 extra;
4678

4679
		if (plane_id == PLANE_CURSOR)
4680 4681
			continue;

4682
		/*
4683 4684
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4685
		 */
4686 4687
		if (total_data_rate == 0)
			break;
4688

4689 4690 4691 4692
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4693
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4694 4695
		alloc_size -= extra;
		total_data_rate -= rate;
4696

4697 4698
		if (total_data_rate == 0)
			break;
4699

4700 4701 4702 4703
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4704
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4705 4706 4707
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4708
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4709 4710 4711

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4712
	for_each_plane_id_on_crtc(crtc, plane_id) {
4713
		struct skl_ddb_entry *plane_alloc =
4714
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4715
		struct skl_ddb_entry *uv_plane_alloc =
4716
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4717 4718 4719 4720

		if (plane_id == PLANE_CURSOR)
			continue;

4721
		/* Gen11+ uses a separate plane for UV watermarks */
4722 4723
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4724 4725 4726 4727 4728 4729 4730

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4731

4732 4733 4734 4735
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4736
		}
4737
	}
4738

4739 4740 4741 4742 4743 4744 4745
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4746
		for_each_plane_id_on_crtc(crtc, plane_id) {
4747
			struct skl_plane_wm *wm =
4748
				&crtc_state->wm.skl.optimal.planes[plane_id];
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4765

4766
			/*
4767
			 * Wa_1408961008:icl, ehl
4768 4769
			 * Underruns with WM1+ disabled
			 */
4770
			if (IS_GEN(dev_priv, 11) &&
4771 4772
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4773 4774
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4775
			}
4776 4777 4778 4779 4780 4781 4782
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
4783
	for_each_plane_id_on_crtc(crtc, plane_id) {
4784
		struct skl_plane_wm *wm =
4785
			&crtc_state->wm.skl.optimal.planes[plane_id];
4786

4787
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4788
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4789 4790
	}

4791
	return 0;
4792 4793
}

4794 4795
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4796
 * for the read latency) and cpp should always be <= 8, so that
4797 4798 4799
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4800
static uint_fixed_16_16_t
4801 4802
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4803
{
4804
	u32 wm_intermediate_val;
4805
	uint_fixed_16_16_t ret;
4806 4807

	if (latency == 0)
4808
		return FP_16_16_MAX;
4809

4810
	wm_intermediate_val = latency * pixel_rate * cpp;
4811
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4812 4813 4814 4815

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4816 4817 4818
	return ret;
}

4819 4820 4821
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4822
{
4823
	u32 wm_intermediate_val;
4824
	uint_fixed_16_16_t ret;
4825 4826

	if (latency == 0)
4827
		return FP_16_16_MAX;
4828 4829

	wm_intermediate_val = latency * pixel_rate;
4830 4831
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4832
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4833 4834 4835
	return ret;
}

4836
static uint_fixed_16_16_t
4837
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4838
{
4839 4840
	u32 pixel_rate;
	u32 crtc_htotal;
4841 4842
	uint_fixed_16_16_t linetime_us;

4843
	if (!crtc_state->hw.active)
4844
		return u32_to_fixed16(0);
4845

4846
	pixel_rate = crtc_state->pixel_rate;
4847 4848

	if (WARN_ON(pixel_rate == 0))
4849
		return u32_to_fixed16(0);
4850

4851
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4852
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4853 4854 4855 4856

	return linetime_us;
}

4857
static u32
4858 4859
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4860
{
4861
	u64 adjusted_pixel_rate;
4862
	uint_fixed_16_16_t downscale_amount;
4863 4864

	/* Shouldn't reach here on disabled planes... */
4865
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4866 4867 4868 4869 4870 4871
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4872 4873
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4874

4875 4876
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4877 4878
}

4879
static int
4880 4881 4882 4883 4884
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4885
{
4886
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4887
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4888
	u32 interm_pbpl;
4889

4890
	/* only planar format has two planes */
4891 4892
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4893 4894
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
4895 4896 4897
		return -EINVAL;
	}

4898 4899 4900 4901 4902 4903 4904
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4905
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4906

4907
	wp->width = width;
4908
	if (color_plane == 1 && wp->is_planar)
4909 4910
		wp->width /= 2;

4911 4912
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4913

4914
	if (INTEL_GEN(dev_priv) >= 11 &&
4915
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4916 4917 4918 4919
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4920
	if (drm_rotation_90_or_270(rotation)) {
4921
		switch (wp->cpp) {
4922
		case 1:
4923
			wp->y_min_scanlines = 16;
4924 4925
			break;
		case 2:
4926
			wp->y_min_scanlines = 8;
4927 4928
			break;
		case 4:
4929
			wp->y_min_scanlines = 4;
4930
			break;
4931
		default:
4932
			MISSING_CASE(wp->cpp);
4933
			return -EINVAL;
4934 4935
		}
	} else {
4936
		wp->y_min_scanlines = 4;
4937 4938
	}

4939
	if (skl_needs_memory_bw_wa(dev_priv))
4940
		wp->y_min_scanlines *= 2;
4941

4942 4943 4944
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4945 4946
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4947 4948 4949 4950

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4951 4952
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4953
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4954 4955
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4956
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4957
	} else {
4958 4959
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4960
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4961 4962
	}

4963 4964
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4965

4966
	wp->linetime_us = fixed16_to_u32_round_up(
4967
					intel_get_linetime_us(crtc_state));
4968 4969 4970 4971

	return 0;
}

4972 4973 4974 4975 4976
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
4977
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4978 4979
	int width;

4980 4981 4982 4983 4984
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4985
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4986 4987 4988

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
4989
				     plane_state->hw.rotation,
4990 4991 4992 4993
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4994 4995 4996 4997 4998 4999 5000 5001 5002
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5003
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5004
				 int level,
5005
				 unsigned int latency,
5006 5007 5008
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5009
{
5010
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5011 5012
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5013
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5014

5015 5016 5017
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5018
		return;
5019
	}
5020

5021 5022 5023 5024
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5025
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
5026 5027 5028
	    dev_priv->ipc_enabled)
		latency += 4;

5029
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5030 5031 5032
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5033
				 wp->cpp, latency, wp->dbuf_block_size);
5034
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5035
				 crtc_state->hw.adjusted_mode.crtc_htotal,
5036
				 latency,
5037
				 wp->plane_blocks_per_line);
5038

5039 5040
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5041
	} else {
5042
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5043
		     wp->dbuf_block_size < 1) &&
5044
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5045
			selected_result = method2;
5046
		} else if (latency >= wp->linetime_us) {
5047
			if (IS_GEN(dev_priv, 9) &&
5048 5049 5050 5051 5052
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5053
			selected_result = method1;
5054
		}
5055
	}
5056

5057
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5058
	res_lines = div_round_up_fixed16(selected_result,
5059
					 wp->plane_blocks_per_line);
5060

5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5076

5077 5078 5079 5080 5081 5082 5083 5084 5085
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5086
	}
5087

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5106 5107 5108
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5109 5110 5111
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5112
		return;
5113
	}
5114 5115 5116 5117 5118 5119 5120

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5121 5122
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5123 5124
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5125
	result->plane_en = true;
5126 5127
}

5128
static void
5129
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5130
		      const struct skl_wm_params *wm_params,
5131
		      struct skl_wm_level *levels)
5132
{
5133
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5134
	int level, max_level = ilk_wm_max_level(dev_priv);
5135
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5136

5137
	for (level = 0; level <= max_level; level++) {
5138
		struct skl_wm_level *result = &levels[level];
5139
		unsigned int latency = dev_priv->wm.skl_latency[level];
5140

5141 5142
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5143 5144

		result_prev = result;
5145
	}
5146 5147
}

5148
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5149
				      const struct skl_wm_params *wp,
5150
				      struct skl_plane_wm *wm)
5151
{
5152
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5153
	const struct drm_i915_private *dev_priv = to_i915(dev);
5154
	u16 trans_min, trans_amount, trans_y_tile_min;
5155
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5156 5157 5158

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5159
		return;
5160

5161 5162 5163 5164 5165 5166 5167
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5168
	if (INTEL_GEN(dev_priv) >= 11)
5169
		trans_min = 4;
5170 5171 5172 5173 5174 5175 5176 5177
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5178 5179 5180

	trans_offset_b = trans_min + trans_amount;

5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5191
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5192

5193
	if (wp->y_tiled) {
5194 5195
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5196
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5197 5198
				trans_offset_b;
	} else {
5199
		res_blocks = wm0_sel_res_b + trans_offset_b;
5200 5201 5202 5203 5204 5205

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;
	}

5206 5207 5208 5209 5210 5211 5212
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5213 5214
}

5215
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5216 5217
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5218
{
5219
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5220 5221 5222
	struct skl_wm_params wm_params;
	int ret;

5223
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5224 5225 5226 5227
					  &wm_params, color_plane);
	if (ret)
		return ret;

5228
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5229
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5230 5231 5232 5233

	return 0;
}

5234
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5235 5236
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5237
{
5238
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5239 5240 5241
	struct skl_wm_params wm_params;
	int ret;

5242
	wm->is_planar = true;
5243 5244

	/* uv plane watermarks must also be validated for NV12/Planar */
5245
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5246 5247 5248
					  &wm_params, 1);
	if (ret)
		return ret;
5249

5250
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5251

5252
	return 0;
5253 5254
}

5255
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5256
			      const struct intel_plane_state *plane_state)
5257
{
5258
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5259
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5260
	enum plane_id plane_id = plane->id;
5261 5262
	int ret;

5263 5264 5265
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5266
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5267
					plane_id, 0);
5268 5269 5270
	if (ret)
		return ret;

5271
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5272
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5273 5274 5275 5276 5277 5278 5279 5280
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5281
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5282 5283
			      const struct intel_plane_state *plane_state)
{
5284
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5285 5286 5287
	int ret;

	/* Watermarks calculated in master */
5288
	if (plane_state->planar_slave)
5289 5290
		return 0;

5291
	if (plane_state->planar_linked_plane) {
5292
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5293
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5294 5295 5296 5297 5298

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5299
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5300 5301 5302 5303
						y_plane_id, 0);
		if (ret)
			return ret;

5304
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5305 5306 5307 5308
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5309
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5310 5311 5312 5313 5314 5315
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5316 5317
}

5318
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5319
{
5320
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5321
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5322 5323
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5324
	int ret;
5325

L
Lyude 已提交
5326 5327 5328 5329 5330 5331
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5332 5333
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5334

5335
		if (INTEL_GEN(dev_priv) >= 11)
5336
			ret = icl_build_plane_wm(crtc_state, plane_state);
5337
		else
5338
			ret = skl_build_plane_wm(crtc_state, plane_state);
5339 5340
		if (ret)
			return ret;
5341
	}
5342

5343
	return 0;
5344 5345
}

5346 5347
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5348 5349 5350
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5351 5352
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5353
	else
5354
		intel_de_write_fw(dev_priv, reg, 0);
5355 5356
}

5357 5358 5359 5360
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5361
	u32 val = 0;
5362

5363
	if (level->plane_en)
5364
		val |= PLANE_WM_EN;
5365 5366 5367 5368
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5369

5370
	intel_de_write_fw(dev_priv, reg, val);
5371 5372
}

5373 5374
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5375
{
5376
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5377
	int level, max_level = ilk_wm_max_level(dev_priv);
5378 5379 5380 5381 5382 5383 5384 5385
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5386 5387

	for (level = 0; level <= max_level; level++) {
5388
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5389
				   &wm->wm[level]);
5390
	}
5391
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5392
			   &wm->trans_wm);
5393

5394
	if (INTEL_GEN(dev_priv) >= 11) {
5395
		skl_ddb_entry_write(dev_priv,
5396 5397
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5398
	}
5399 5400 5401 5402 5403 5404 5405 5406

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5407 5408
}

5409 5410
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5411
{
5412
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5413
	int level, max_level = ilk_wm_max_level(dev_priv);
5414 5415 5416 5417 5418 5419
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5420 5421

	for (level = 0; level <= max_level; level++) {
5422 5423
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5424
	}
5425
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5426

5427
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5428 5429
}

5430 5431 5432
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5433
	return l1->plane_en == l2->plane_en &&
5434
		l1->ignore_lines == l2->ignore_lines &&
5435 5436 5437
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5438

5439 5440 5441 5442 5443
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5444

5445
	for (level = 0; level <= max_level; level++) {
5446 5447 5448 5449 5450 5451
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5452 5453 5454 5455
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5456 5457
}

5458 5459
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5460
{
5461
	return a->start < b->end && b->start < a->end;
5462 5463
}

5464
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5465
				 const struct skl_ddb_entry *entries,
5466
				 int num_entries, int ignore_idx)
5467
{
5468
	int i;
5469

5470 5471 5472
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5473
			return true;
5474
	}
5475

5476
	return false;
5477 5478
}

5479
static int
5480 5481
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5482
{
5483 5484
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5485 5486
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5487

5488 5489 5490
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5491

5492 5493 5494 5495
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5496 5497
			continue;

5498
		plane_state = intel_atomic_get_plane_state(state, plane);
5499 5500
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5501

5502
		new_crtc_state->update_planes |= BIT(plane_id);
5503 5504 5505 5506 5507 5508
	}

	return 0;
}

static int
5509
skl_compute_ddb(struct intel_atomic_state *state)
5510
{
5511
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5512 5513
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5514 5515
	struct intel_crtc *crtc;
	int ret, i;
5516

5517
	state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5518

5519
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5520
					    new_crtc_state, i) {
5521
		ret = skl_allocate_pipe_ddb(new_crtc_state);
5522 5523 5524
		if (ret)
			return ret;

5525 5526
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5527 5528
		if (ret)
			return ret;
5529 5530 5531 5532 5533
	}

	return 0;
}

5534 5535 5536 5537 5538
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5539
static void
5540
skl_print_wm_changes(struct intel_atomic_state *state)
5541
{
5542 5543 5544 5545 5546
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5547
	int i;
5548

5549
	if (!drm_debug_enabled(DRM_UT_KMS))
5550 5551
		return;

5552 5553
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5554 5555 5556 5557 5558
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5559 5560
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5561 5562
			const struct skl_ddb_entry *old, *new;

5563 5564
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5565 5566 5567 5568

			if (skl_ddb_entry_equal(old, new))
				continue;

5569 5570 5571 5572 5573
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				    enast(new_wm->trans_wm.plane_en));

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5603
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				    new_wm->trans_wm.plane_res_b);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				    new_wm->trans_wm.min_ddb_alloc);
5654 5655 5656 5657
		}
	}
}

V
Ville Syrjälä 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5674
static int
5675
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5676
{
V
Ville Syrjälä 已提交
5677
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5678
	int ret;
5679

5680 5681 5682 5683 5684 5685 5686
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5687
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5688
				       state->base.acquire_ctx);
5689 5690 5691
		if (ret)
			return ret;

5692
		state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5693 5694

		/*
5695
		 * We usually only initialize state->active_pipes if we
5696 5697 5698 5699
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5700
		if (!state->modeset)
5701
			state->active_pipes = dev_priv->active_pipes;
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5717
	if (state->active_pipe_changes || state->modeset) {
V
Ville Syrjälä 已提交
5718 5719 5720
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5721 5722 5723 5724 5725
	}

	return 0;
}

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5770
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5786
static int
5787
skl_compute_wm(struct intel_atomic_state *state)
5788
{
5789
	struct intel_crtc *crtc;
5790
	struct intel_crtc_state *new_crtc_state;
5791
	struct intel_crtc_state *old_crtc_state;
5792 5793
	int ret, i;

5794 5795
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5796 5797
		return ret;

5798 5799
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5800
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5801
	 * weren't otherwise being modified if pipe allocations had to change.
5802
	 */
5803
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5804 5805
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5806 5807
		if (ret)
			return ret;
5808 5809
	}

5810 5811 5812 5813
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

5826
	skl_print_wm_changes(state);
5827

5828 5829 5830
	return 0;
}

5831
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5832 5833 5834 5835 5836
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5837
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5849
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5850
{
5851
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5852
	struct ilk_wm_maximums max;
5853
	struct intel_wm_config config = {};
5854
	struct ilk_wm_values results = {};
5855
	enum intel_ddb_partitioning partitioning;
5856

5857
	ilk_compute_wm_config(dev_priv, &config);
5858

5859 5860
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5861 5862

	/* 5/6 split only in single pipe config on IVB+ */
5863
	if (INTEL_GEN(dev_priv) >= 7 &&
5864
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5865 5866
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5867

5868
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5869
	} else {
5870
		best_lp_wm = &lp_wm_1_2;
5871 5872
	}

5873
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5874
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5875

5876
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5877

5878
	ilk_write_wm_values(dev_priv, &results);
5879 5880
}

5881
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5882
				   struct intel_crtc *crtc)
5883
{
5884 5885 5886
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5887

5888
	mutex_lock(&dev_priv->wm.wm_mutex);
5889
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5890 5891 5892
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5893

5894
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5895
				    struct intel_crtc *crtc)
5896
{
5897 5898 5899
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5900 5901 5902

	if (!crtc_state->wm.need_postvbl_update)
		return;
5903

5904
	mutex_lock(&dev_priv->wm.wm_mutex);
5905 5906
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5907
	mutex_unlock(&dev_priv->wm.wm_mutex);
5908 5909
}

5910
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
5911
{
5912
	level->plane_en = val & PLANE_WM_EN;
5913
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5914 5915 5916
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5917 5918
}

5919
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5920
			      struct skl_pipe_wm *out)
5921
{
5922 5923
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5924 5925
	int level, max_level;
	enum plane_id plane_id;
5926
	u32 val;
5927

5928
	max_level = ilk_wm_max_level(dev_priv);
5929

5930
	for_each_plane_id_on_crtc(crtc, plane_id) {
5931
		struct skl_plane_wm *wm = &out->planes[plane_id];
5932

5933
		for (level = 0; level <= max_level; level++) {
5934 5935
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5936 5937
			else
				val = I915_READ(CUR_WM(pipe, level));
5938

5939
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5940 5941
		}

5942 5943
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5944 5945 5946 5947
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5948 5949
	}

5950
	if (!crtc->active)
5951
		return;
5952 5953
}

5954
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5955
{
5956
	struct intel_crtc *crtc;
5957
	struct intel_crtc_state *crtc_state;
5958

5959
	skl_ddb_get_hw_state(dev_priv);
5960
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5961
		crtc_state = to_intel_crtc_state(crtc->base.state);
5962

5963
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5964
	}
5965

5966
	if (dev_priv->active_pipes) {
5967 5968 5969
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5970 5971
}

5972
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5973
{
5974
	struct drm_device *dev = crtc->base.dev;
5975
	struct drm_i915_private *dev_priv = to_i915(dev);
5976
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5977 5978
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5979
	enum pipe pipe = crtc->pipe;
5980
	static const i915_reg_t wm0_pipe_reg[] = {
5981 5982 5983 5984 5985 5986 5987
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);

5988 5989
	memset(active, 0, sizeof(*active));

5990
	active->pipe_enabled = crtc->active;
5991 5992

	if (active->pipe_enabled) {
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6006
		int level, max_level = ilk_wm_max_level(dev_priv);
6007 6008 6009 6010 6011 6012 6013 6014 6015

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6016

6017
	crtc->wm.active.ilk = *active;
6018 6019
}

6020 6021 6022 6023 6024
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6025 6026 6027
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6028
	u32 tmp;
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6051 6052 6053 6054
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6055
	u32 tmp;
6056 6057 6058 6059

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

6060
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6061
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6062
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6063
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6064
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6065
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6066
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6067 6068 6069 6070 6071
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
6072 6073 6074
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6075 6076

	tmp = I915_READ(DSPFW2);
6077 6078 6079
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6080 6081 6082 6083 6084 6085

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
6086 6087
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6088 6089

		tmp = I915_READ(DSPFW8_CHV);
6090 6091
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6092 6093

		tmp = I915_READ(DSPFW9_CHV);
6094 6095
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6096 6097 6098

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6099 6100 6101 6102 6103 6104 6105 6106 6107
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6108 6109
	} else {
		tmp = I915_READ(DSPFW7);
6110 6111
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6112 6113 6114

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6115 6116 6117 6118 6119 6120
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6121 6122 6123 6124 6125 6126
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6127
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6128 6129 6130 6131 6132 6133 6134 6135
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

6136
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6196 6197 6198 6199 6200 6201
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6202 6203
	}

6204 6205 6206 6207 6208 6209 6210 6211
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6232
		if (plane_state->uapi.visible)
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6270
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6271 6272
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6273
	struct intel_crtc *crtc;
6274 6275 6276 6277 6278 6279 6280 6281
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6282
		vlv_punit_get(dev_priv);
6283

6284
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6285 6286 6287
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6288 6289 6290 6291 6292 6293 6294 6295 6296
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6297
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6298 6299 6300 6301 6302
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6303 6304 6305
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6306 6307 6308 6309 6310 6311
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6312

6313
		vlv_punit_put(dev_priv);
6314 6315
	}

6316
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6332
			struct g4x_pipe_wm *raw =
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6354
		crtc_state->wm.vlv.intermediate = *active;
6355

6356 6357 6358 6359 6360 6361 6362
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6363
	}
6364

6365 6366 6367
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6368 6369
}

6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6390
		if (plane_state->uapi.visible)
6391 6392 6393
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6394
			struct g4x_pipe_wm *raw =
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6435
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6436
{
6437
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6438
	struct intel_crtc *crtc;
6439

6440 6441
	ilk_init_lp_watermarks(dev_priv);

6442
	for_each_intel_crtc(&dev_priv->drm, crtc)
6443 6444 6445 6446 6447 6448 6449
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6450
	if (INTEL_GEN(dev_priv) >= 7) {
6451 6452 6453
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6454

6455
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6456 6457
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6458
	else if (IS_IVYBRIDGE(dev_priv))
6459 6460
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6461 6462 6463 6464 6465

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6466 6467
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6468
 * @crtc: the #intel_crtc on which to compute the WM
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6499
void intel_update_watermarks(struct intel_crtc *crtc)
6500
{
6501
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6502 6503

	if (dev_priv->display.update_wm)
6504
		dev_priv->display.update_wm(crtc);
6505 6506
}

6507 6508 6509 6510
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6511 6512 6513
	if (!HAS_IPC(dev_priv))
		return;

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6537 6538 6539 6540 6541
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6542
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6543

6544 6545 6546
	intel_enable_ipc(dev_priv);
}

6547 6548 6549 6550 6551 6552 6553 6554 6555
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6556

6557
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6558
{
6559
	enum pipe pipe;
6560

6561 6562 6563 6564
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6565

6566 6567
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6568 6569 6570
	}
}

6571
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6572
{
6573
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6574

6575 6576 6577 6578 6579 6580 6581
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6582

6583 6584 6585 6586 6587
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6588

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6603 6604

	/*
6605 6606 6607 6608 6609
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6610
	 */
6611 6612 6613 6614 6615 6616 6617 6618 6619
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6620

6621
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6622

6623 6624 6625 6626 6627 6628
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6629

6630 6631 6632
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6633

6634 6635
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6636

6637
	g4x_disable_trickle_feed(dev_priv);
6638

6639
	ibx_init_clock_gating(dev_priv);
6640 6641
}

6642
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6643
{
6644 6645
	enum pipe pipe;
	u32 val;
6646

6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6675 6676
}

6677
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6678
{
6679
	u32 tmp;
6680

6681 6682
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6683 6684 6685
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6686 6687
}

6688
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6689
{
6690
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6691

6692
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6693

6694 6695 6696
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6697

6698 6699 6700
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6701

6702 6703
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6704

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6715

6716 6717
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6718

6719 6720 6721 6722
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6723

6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6736
	 */
6737 6738 6739
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6740

6741 6742 6743
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6744

6745 6746 6747 6748 6749 6750 6751
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6752

6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6774

6775
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6776

6777
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6778

6779
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6780 6781
}

6782
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6783
{
6784
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6785

6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6796

6797
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6798 6799
}

6800
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6801
{
6802 6803 6804
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6805
	 */
6806
	if (HAS_PCH_LPT_LP(dev_priv))
6807 6808 6809
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6810 6811

	/* WADPOClockGatingDisable:hsw */
6812 6813
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6814
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6815 6816
}

6817
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6818
{
6819
	if (HAS_PCH_LPT_LP(dev_priv)) {
6820
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6821 6822 6823 6824 6825 6826

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6827 6828 6829 6830 6831
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6832
	u32 val;
6833 6834 6835 6836 6837

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6838 6839 6840 6841 6842
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6853 6854 6855 6856 6857
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6858

6859 6860 6861
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
6862 6863
}

6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6878 6879 6880 6881 6882

	/* Wa_1409825376:tgl (pre-prod)*/
	if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   TGL_VRH_GATING_DIS);
6883 6884
}

6885 6886 6887 6888 6889
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6890
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6891 6892
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6893 6894
}

6895
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6896
{
6897
	u32 val;
6898 6899
	cnp_init_clock_gating(dev_priv);

6900 6901 6902 6903
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6904 6905 6906 6907 6908 6909 6910 6911
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6912 6913 6914
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
6915 6916
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6917 6918
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6919

R
Rodrigo Vivi 已提交
6920 6921 6922 6923 6924
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6925
	/* WaDisableVFclkgate:cnl */
6926
	/* WaVFUnitClockGatingDisable:cnl */
6927 6928 6929
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6930 6931
}

6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

6942
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6943
{
6944
	gen9_init_clock_gating(dev_priv);
6945 6946 6947 6948 6949

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6950 6951 6952 6953 6954

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6955

6956
	/* WaFbcNukeOnHostModify:kbl */
6957 6958
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6959 6960
}

6961
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6962
{
6963
	gen9_init_clock_gating(dev_priv);
6964 6965 6966 6967

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
6968 6969 6970 6971

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6972 6973
}

6974
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
6975
{
6976
	enum pipe pipe;
B
Ben Widawsky 已提交
6977

6978
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6979
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6980

6981
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6982 6983 6984
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6985
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6986
	for_each_pipe(dev_priv, pipe) {
6987
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6988
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6989
			   BDW_DPRS_MASK_VBLANK_SRD);
6990
	}
6991

6992 6993 6994 6995 6996
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6997

6998 6999
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7000 7001 7002 7003

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7004

7005 7006
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7007

7008 7009 7010 7011
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7012
	lpt_init_clock_gating(dev_priv);
7013 7014 7015 7016 7017 7018 7019 7020

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7021 7022
}

7023
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7024
{
7025 7026 7027 7028 7029
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7030
	/* This is required by WaCatErrorRejectionIssue:hsw */
7031 7032 7033 7034
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7035 7036 7037
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7038

7039 7040 7041
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7042 7043 7044 7045
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7046
	/* WaDisable4x2SubspanOptimization:hsw */
7047 7048
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7049

7050 7051 7052
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7053 7054 7055 7056
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7057 7058
	 */
	I915_WRITE(GEN7_GT_MODE,
7059
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7060

7061 7062 7063 7064
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7065
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7066 7067
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7068
	lpt_init_clock_gating(dev_priv);
7069 7070
}

7071
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7072
{
7073
	u32 snpcr;
7074

7075
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7076

7077
	/* WaDisableEarlyCull:ivb */
7078 7079 7080
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7081
	/* WaDisableBackToBackFlipFix:ivb */
7082 7083 7084 7085
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7086
	/* WaDisablePSDDualDispatchEnable:ivb */
7087
	if (IS_IVB_GT1(dev_priv))
7088 7089 7090
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7091 7092 7093
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7094
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7095 7096 7097
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7098
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7099 7100 7101
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7102
		   GEN7_WA_L3_CHICKEN_MODE);
7103
	if (IS_IVB_GT1(dev_priv))
7104 7105
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7106 7107 7108 7109
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7110 7111
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7112
	}
7113

7114
	/* WaForceL3Serialization:ivb */
7115 7116 7117
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7118
	/*
7119
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7120
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7121 7122
	 */
	I915_WRITE(GEN6_UCGCTL2,
7123
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7124

7125
	/* This is required by WaCatErrorRejectionIssue:ivb */
7126 7127 7128 7129
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7130
	g4x_disable_trickle_feed(dev_priv);
7131 7132

	gen7_setup_fixed_func_scheduler(dev_priv);
7133

7134 7135 7136 7137 7138
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7139

7140
	/* WaDisable4x2SubspanOptimization:ivb */
7141 7142
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7143

7144 7145 7146
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7147 7148 7149 7150
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7151 7152
	 */
	I915_WRITE(GEN7_GT_MODE,
7153
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7154

7155 7156 7157 7158
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7159

7160
	if (!HAS_PCH_NOP(dev_priv))
7161
		cpt_init_clock_gating(dev_priv);
7162

7163
	gen6_check_mch_setup(dev_priv);
7164 7165
}

7166
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7167
{
7168
	/* WaDisableEarlyCull:vlv */
7169 7170 7171
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7172
	/* WaDisableBackToBackFlipFix:vlv */
7173 7174 7175 7176
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7177
	/* WaPsdDispatchEnable:vlv */
7178
	/* WaDisablePSDDualDispatchEnable:vlv */
7179
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7180 7181
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7182

7183 7184 7185
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7186
	/* WaForceL3Serialization:vlv */
7187 7188 7189
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7190
	/* WaDisableDopClockGating:vlv */
7191 7192 7193
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7194
	/* This is required by WaCatErrorRejectionIssue:vlv */
7195 7196 7197 7198
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7199 7200
	gen7_setup_fixed_func_scheduler(dev_priv);

7201
	/*
7202
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7203
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7204 7205
	 */
	I915_WRITE(GEN6_UCGCTL2,
7206
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7207

7208 7209 7210 7211 7212
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7213

7214 7215 7216 7217
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7218 7219
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7220

7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7232 7233 7234 7235 7236 7237
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7238
	/*
7239
	 * WaDisableVLVClockGating_VBIIssue:vlv
7240 7241 7242
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7243
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7244 7245
}

7246
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7247
{
7248 7249 7250 7251 7252
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7253 7254 7255 7256

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7257 7258 7259 7260

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7261 7262 7263 7264

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7265

7266 7267 7268 7269 7270 7271
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7272 7273
}

7274
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7275
{
7276
	u32 dspclk_gate;
7277 7278 7279 7280 7281 7282 7283 7284 7285

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7286
	if (IS_GM45(dev_priv))
7287 7288
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7289 7290 7291 7292

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7293

7294 7295 7296
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7297
	g4x_disable_trickle_feed(dev_priv);
7298 7299
}

7300
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7301
{
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7312 7313

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7314 7315 7316
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7317 7318
}

7319
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7320 7321 7322 7323 7324 7325 7326
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7327 7328
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7329 7330 7331

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7332 7333
}

7334
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7335 7336 7337 7338 7339 7340
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7341

7342
	if (IS_PINEVIEW(dev_priv))
7343
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7344 7345 7346

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7347 7348

	/* interrupts should cause a wake up from C3 */
7349
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7350 7351 7352

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7353 7354 7355

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7356 7357
}

7358
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7359 7360
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7361 7362 7363 7364

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7365 7366 7367

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7368 7369
}

7370
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7371
{
7372 7373 7374
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7375 7376
}

7377
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7378
{
7379
	dev_priv->display.init_clock_gating(dev_priv);
7380 7381
}

7382
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7383
{
7384 7385
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7386 7387
}

7388
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7389
{
7390 7391
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7405
	if (IS_GEN(dev_priv, 12))
7406
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7407
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7408
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7409
	else if (IS_CANNONLAKE(dev_priv))
7410
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7411 7412
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7413
	else if (IS_SKYLAKE(dev_priv))
7414
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7415
	else if (IS_KABYLAKE(dev_priv))
7416
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7417
	else if (IS_BROXTON(dev_priv))
7418
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7419 7420
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7421
	else if (IS_BROADWELL(dev_priv))
7422
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7423
	else if (IS_CHERRYVIEW(dev_priv))
7424
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7425
	else if (IS_HASWELL(dev_priv))
7426
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7427
	else if (IS_IVYBRIDGE(dev_priv))
7428
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7429
	else if (IS_VALLEYVIEW(dev_priv))
7430
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7431
	else if (IS_GEN(dev_priv, 6))
7432
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7433
	else if (IS_GEN(dev_priv, 5))
7434
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7435 7436
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7437
	else if (IS_I965GM(dev_priv))
7438
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7439
	else if (IS_I965G(dev_priv))
7440
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7441
	else if (IS_GEN(dev_priv, 3))
7442 7443 7444
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7445
	else if (IS_GEN(dev_priv, 2))
7446 7447 7448 7449 7450 7451 7452
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7453
/* Set up chip specific power management-related functions */
7454
void intel_init_pm(struct drm_i915_private *dev_priv)
7455
{
7456
	/* For cxsr */
7457
	if (IS_PINEVIEW(dev_priv))
7458
		pnv_get_mem_freq(dev_priv);
7459
	else if (IS_GEN(dev_priv, 5))
7460
		ilk_get_mem_freq(dev_priv);
7461

7462 7463 7464
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7465
	/* For FIFO watermark updates */
7466
	if (INTEL_GEN(dev_priv) >= 9) {
7467
		skl_setup_wm_latency(dev_priv);
7468
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7469
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7470
		ilk_setup_wm_latency(dev_priv);
7471

7472
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7473
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7474
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7475
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7476
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7477 7478 7479 7480 7481 7482
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7483
		} else {
7484 7485 7486
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7487
		}
7488
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7489
		vlv_setup_wm_latency(dev_priv);
7490
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7491
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7492
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7493
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7494
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7495 7496 7497 7498 7499 7500
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7501
	} else if (IS_PINEVIEW(dev_priv)) {
7502
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7503 7504 7505
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7506 7507
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7508 7509 7510 7511 7512
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7513
			intel_set_memory_cxsr(dev_priv, false);
7514 7515
			dev_priv->display.update_wm = NULL;
		} else
7516
			dev_priv->display.update_wm = pnv_update_wm;
7517
	} else if (IS_GEN(dev_priv, 4)) {
7518
		dev_priv->display.update_wm = i965_update_wm;
7519
	} else if (IS_GEN(dev_priv, 3)) {
7520 7521
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7522
	} else if (IS_GEN(dev_priv, 2)) {
7523
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7524
			dev_priv->display.update_wm = i845_update_wm;
7525
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7526 7527
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7528
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7529 7530
		}
	} else {
7531 7532
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7533 7534 7535
	}
}

7536
void intel_pm_setup(struct drm_i915_private *dev_priv)
7537
{
7538 7539
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7540
}