intel_pm.c 212.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_irq.h"
44
#include "i915_trace.h"
45
#include "intel_pm.h"
46
#include "intel_sideband.h"
47
#include "../../../platform/x86/intel_ips.h"
48

49
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
50
{
51 52 53
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
54
		 * Display WA #0390: skl,kbl
55 56 57 58 59 60 61 62 63
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

64
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
65 66 67
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71

72 73
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77

78
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79 80
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82 83 84 85 86

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
87 88
}

89
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
90
{
91
	gen9_init_clock_gating(dev_priv);
92

93 94 95 96
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

97 98
	/*
	 * FIXME:
99
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
100 101
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
108 109
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
110 111 112 113 114 115 116 117

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184
{
	u16 ddrpll, csipll;

185 186
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

276 277
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

300 301 302 303
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

304
	vlv_punit_get(dev_priv);
305 306 307 308 309 310 311 312 313 314 315 316 317 318

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

319
	vlv_punit_put(dev_priv);
320 321
}

322 323 324 325
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

326
	vlv_punit_get(dev_priv);
327

328
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
329 330 331 332
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
333
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
334

335
	vlv_punit_put(dev_priv);
336 337
}

338 339 340
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

341
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
342
{
343
	bool was_enabled;
344
	u32 val;
345

346
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
348
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
349
		POSTING_READ(FW_BLC_SELF_VLV);
350
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
351
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
352
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
353
		POSTING_READ(FW_BLC_SELF);
354
	} else if (IS_PINEVIEW(dev_priv)) {
355 356 357 358 359 360
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
361
		I915_WRITE(DSPFW3, val);
362
		POSTING_READ(DSPFW3);
363
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
364
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
365 366 367
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
368
		POSTING_READ(FW_BLC_SELF);
369
	} else if (IS_I915GM(dev_priv)) {
370 371 372 373 374
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
375
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
376 377 378
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
379
		POSTING_READ(INSTPM);
380
	} else {
381
		return false;
382
	}
383

384 385
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

386 387 388 389 390
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
391 392
}

V
Ville Syrjälä 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
430
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
431
{
432 433
	bool ret;

434
	mutex_lock(&dev_priv->wm.wm_mutex);
435
	ret = _intel_set_memory_cxsr(dev_priv, enable);
436 437 438 439
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
440
	mutex_unlock(&dev_priv->wm.wm_mutex);
441 442

	return ret;
443
}
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
459
static const int pessimal_latency_ns = 5000;
460

461 462 463
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

464
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
465
{
466
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
467
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
468
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
469 470
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
471

472
	switch (pipe) {
473
		u32 dsparb, dsparb2, dsparb3;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
493 494
		MISSING_CASE(pipe);
		return;
495 496
	}

497 498 499 500
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
501 502
}

503 504
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
505
{
506
	u32 dsparb = I915_READ(DSPARB);
507 508 509
	int size;

	size = dsparb & 0x7f;
510
	if (i9xx_plane == PLANE_B)
511 512
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

513 514
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
515 516 517 518

	return size;
}

519 520
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
521
{
522
	u32 dsparb = I915_READ(DSPARB);
523 524 525
	int size;

	size = dsparb & 0x1ff;
526
	if (i9xx_plane == PLANE_B)
527 528 529
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

530 531
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
532 533 534 535

	return size;
}

536 537
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
538
{
539
	u32 dsparb = I915_READ(DSPARB);
540 541 542 543 544
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

545 546
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
547 548 549 550 551 552

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
553 554 555 556 557
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
558 559
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
560 561 562 563 564
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
565 566
};
static const struct intel_watermark_params pineview_cursor_wm = {
567 568 569 570 571
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
572 573
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
574 575 576 577 578
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
579 580
};
static const struct intel_watermark_params i965_cursor_wm_info = {
581 582 583 584 585
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
586 587
};
static const struct intel_watermark_params i945_wm_info = {
588 589 590 591 592
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
593 594
};
static const struct intel_watermark_params i915_wm_info = {
595 596 597 598 599
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
600
};
601
static const struct intel_watermark_params i830_a_wm_info = {
602 603 604 605 606
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
607
};
608 609 610 611 612 613 614
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
615
static const struct intel_watermark_params i845_wm_info = {
616 617 618 619 620
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
621 622
};

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
660
	u64 ret;
661

662
	ret = mul_u32_u32(pixel_rate, cpp * latency);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

719 720
/**
 * intel_calculate_wm - calculate watermark level
721
 * @pixel_rate: pixel clock
722
 * @wm: chip FIFO params
723
 * @fifo_size: size of the FIFO buffer
724
 * @cpp: bytes per pixel
725 726 727 728 729 730 731 732 733 734 735 736 737
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
738 739 740 741
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
742
{
743
	int entries, wm_size;
744 745 746 747 748 749 750

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
751 752 753 754 755
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
756

757 758
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
759 760

	/* Don't promote wm_size to unsigned... */
761
	if (wm_size > wm->max_wm)
762 763 764
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
765 766 767 768 769 770 771 772 773 774 775

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

776 777 778
	return wm_size;
}

779 780 781 782 783 784 785 786 787 788
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

789 790 791 792 793
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

794 795 796
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
797
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
798 799

	/* FIXME check the 'enable' instead */
800
	if (!crtc_state->hw.active)
801 802 803 804 805 806 807 808 809 810 811
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
812
		return plane_state->hw.fb != NULL;
813
	else
814
		return plane_state->uapi.visible;
815 816
}

817
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
818
{
819
	struct intel_crtc *crtc, *enabled = NULL;
820

821
	for_each_intel_crtc(&dev_priv->drm, crtc) {
822
		if (intel_crtc_active(crtc)) {
823 824 825 826 827 828 829 830 831
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

832
static void pineview_update_wm(struct intel_crtc *unused_crtc)
833
{
834
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
835
	struct intel_crtc *crtc;
836 837
	const struct cxsr_latency *latency;
	u32 reg;
838
	unsigned int wm;
839

840
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
841 842 843
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
844 845
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
846
		intel_set_memory_cxsr(dev_priv, false);
847 848 849
		return;
	}

850
	crtc = single_enabled_crtc(dev_priv);
851
	if (crtc) {
852
		const struct drm_display_mode *adjusted_mode =
853
			&crtc->config->hw.adjusted_mode;
854 855
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
856
		int cpp = fb->format->cpp[0];
857
		int clock = adjusted_mode->crtc_clock;
858 859 860 861

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
862
					cpp, latency->display_sr);
863 864
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
865
		reg |= FW_WM(wm, SR);
866 867 868 869 870 871
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
872
					4, latency->cursor_sr);
873 874
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
875
		reg |= FW_WM(wm, CURSOR_SR);
876 877 878 879 880
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
881
					cpp, latency->display_hpll_disable);
882 883
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
884
		reg |= FW_WM(wm, HPLL_SR);
885 886 887 888 889
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
890
					4, latency->cursor_hpll_disable);
891 892
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
893
		reg |= FW_WM(wm, HPLL_CURSOR);
894 895 896
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

897
		intel_set_memory_cxsr(dev_priv, true);
898
	} else {
899
		intel_set_memory_cxsr(dev_priv, false);
900 901 902
	}
}

903 904 905 906 907 908 909 910 911 912
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
913
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
914 915 916 917 918 919
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

920 921
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
922
{
923 924 925 926 927
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
945

946
	POSTING_READ(DSPFW1);
947 948
}

949 950 951
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

952
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
953 954
				const struct vlv_wm_values *wm)
{
955 956 957
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
958 959
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

960 961 962 963 964 965
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
966

967 968 969 970 971 972 973 974 975 976 977
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

978
	I915_WRITE(DSPFW1,
979
		   FW_WM(wm->sr.plane, SR) |
980 981 982
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
983
	I915_WRITE(DSPFW2,
984 985 986
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
987
	I915_WRITE(DSPFW3,
988
		   FW_WM(wm->sr.cursor, CURSOR_SR));
989 990 991

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
992 993
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
994
		I915_WRITE(DSPFW8_CHV,
995 996
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
997
		I915_WRITE(DSPFW9_CHV,
998 999
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1000
		I915_WRITE(DSPHOWM,
1001
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1002 1003 1004 1005 1006 1007 1008 1009 1010
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1011 1012
	} else {
		I915_WRITE(DSPFW7,
1013 1014
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1015
		I915_WRITE(DSPHOWM,
1016
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1017 1018 1019 1020 1021 1022
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1023 1024 1025
	}

	POSTING_READ(DSPFW1);
1026 1027
}

1028 1029
#undef FW_WM_VLV

1030 1031 1032 1033 1034
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1035
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1036

1037
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1082 1083 1084
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1085
{
1086
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1087 1088
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1089
		&crtc_state->hw.adjusted_mode;
1090 1091
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1092 1093 1094 1095 1096 1097 1098

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1099
	cpp = plane_state->hw.fb->format->cpp[0];
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1114
		cpp = max(cpp, 4u);
1115 1116 1117 1118

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1119
	width = drm_rect_width(&plane_state->uapi.dst);
1120 1121 1122 1123 1124 1125 1126

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1127
		unsigned int small, large;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1140
	return min_t(unsigned int, wm, USHRT_MAX);
1141 1142 1143 1144 1145
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1146
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1162
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1178 1179
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1180
			      u32 pri_val);
1181 1182 1183 1184

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1185
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1264
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1302
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1303
	struct intel_atomic_state *state =
1304
		to_intel_atomic_state(crtc_state->uapi.state);
1305
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1306 1307
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1308
	const struct g4x_pipe_wm *raw;
1309 1310
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1311 1312 1313 1314 1315
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1316 1317 1318
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1319 1320
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1321 1322
			continue;

1323
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1389
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1390
{
1391
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1392 1393 1394
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1395
		to_intel_atomic_state(new_crtc_state->uapi.state);
1396 1397 1398
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1399 1400
	enum plane_id plane_id;

1401
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1402 1403 1404 1405 1406 1407 1408
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1409
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1410
		!new_crtc_state->disable_cxsr;
1411
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1412
		!new_crtc_state->disable_cxsr;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1454
out:
1455 1456 1457 1458 1459
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1460
		new_crtc_state->wm.need_postvbl_update = true;
1461 1462 1463 1464 1465 1466 1467 1468

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1469
	int num_active_pipes = 0;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1488
		num_active_pipes++;
1489 1490
	}

1491
	if (num_active_pipes != 1) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1531
				   struct intel_crtc *crtc)
1532
{
1533 1534 1535
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1536 1537 1538 1539 1540 1541 1542 1543

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1544
				    struct intel_crtc *crtc)
1545
{
1546 1547 1548
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1549 1550 1551 1552 1553

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1554
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1555 1556 1557 1558
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1559 1560
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1561 1562
				   unsigned int htotal,
				   unsigned int width,
1563
				   unsigned int cpp,
1564 1565 1566 1567
				   unsigned int latency)
{
	unsigned int ret;

1568 1569
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1570 1571 1572 1573 1574
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1575
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1576 1577 1578 1579
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1580 1581
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1582 1583 1584
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1585 1586

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1587 1588 1589
	}
}

1590 1591 1592
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1593
{
1594
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1595
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1596
	const struct drm_display_mode *adjusted_mode =
1597
		&crtc_state->hw.adjusted_mode;
1598
	unsigned int clock, htotal, cpp, width, wm;
1599 1600 1601 1602

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1603
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1604 1605
		return 0;

1606
	cpp = plane_state->hw.fb->format->cpp[0];
1607 1608 1609
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1610

1611
	if (plane->id == PLANE_CURSOR) {
1612 1613 1614 1615 1616 1617 1618 1619
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1620
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1621 1622 1623
				    dev_priv->wm.pri_latency[level] * 10);
	}

1624
	return min_t(unsigned int, wm, USHRT_MAX);
1625 1626
}

1627 1628 1629 1630 1631 1632
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1633
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1634
{
1635
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1636
	const struct g4x_pipe_wm *raw =
1637
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1638
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1639
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1640
	int num_active_planes = hweight8(active_planes);
1641
	const int fifo_size = 511;
1642
	int fifo_extra, fifo_left = fifo_size;
1643
	int sprite0_fifo_extra = 0;
1644 1645
	unsigned int total_rate;
	enum plane_id plane_id;
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1658 1659
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1660 1661
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1662

1663 1664
	if (total_rate > fifo_size)
		return -EINVAL;
1665

1666 1667
	if (total_rate == 0)
		total_rate = 1;
1668

1669
	for_each_plane_id_on_crtc(crtc, plane_id) {
1670 1671
		unsigned int rate;

1672 1673
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1674 1675 1676
			continue;
		}

1677 1678 1679
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1680 1681
	}

1682 1683 1684
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1685 1686 1687
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1688 1689

	/* spread the remainder evenly */
1690
	for_each_plane_id_on_crtc(crtc, plane_id) {
1691 1692 1693 1694 1695
		int plane_extra;

		if (fifo_left == 0)
			break;

1696
		if ((active_planes & BIT(plane_id)) == 0)
1697 1698 1699
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1700
		fifo_state->plane[plane_id] += plane_extra;
1701 1702 1703
		fifo_left -= plane_extra;
	}

1704 1705 1706 1707 1708 1709 1710 1711 1712
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1713 1714
}

1715 1716 1717 1718 1719 1720
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1721
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1732 1733 1734 1735 1736 1737 1738 1739
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1740 1741 1742 1743
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1744
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1745
				 int level, enum plane_id plane_id, u16 value)
1746
{
1747
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1748
	int num_levels = intel_wm_num_levels(dev_priv);
1749
	bool dirty = false;
1750

1751
	for (; level < num_levels; level++) {
1752
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1753

1754
		dirty |= raw->plane[plane_id] != value;
1755
		raw->plane[plane_id] = value;
1756
	}
1757 1758

	return dirty;
1759 1760
}

1761 1762
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1763
{
1764
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1765
	enum plane_id plane_id = plane->id;
1766
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1767
	int level;
1768
	bool dirty = false;
1769

1770
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1771 1772
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1773
	}
1774

1775
	for (level = 0; level < num_levels; level++) {
1776
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1777 1778
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1779

1780 1781
		if (wm > max_wm)
			break;
1782

1783
		dirty |= raw->plane[plane_id] != wm;
1784 1785
		raw->plane[plane_id] = wm;
	}
1786

1787
	/* mark all higher levels as invalid */
1788
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1789

1790 1791
out:
	if (dirty)
1792
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1793 1794 1795 1796 1797 1798
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1799
}
1800

1801 1802
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1803
{
1804
	const struct g4x_pipe_wm *raw =
1805 1806 1807
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1808

1809 1810
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1811

1812
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1813
{
1814 1815 1816 1817
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1818 1819 1820 1821
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1822
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1823 1824
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1825
		to_intel_atomic_state(crtc_state->uapi.state);
1826 1827 1828
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1829 1830
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1831
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1832 1833
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1834 1835 1836
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1837
	unsigned int dirty = 0;
1838

1839 1840 1841
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1842 1843
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1844
			continue;
1845

1846
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1865
			intel_atomic_get_old_crtc_state(state, crtc);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1877
	}
1878

1879
	/* initially allow all levels */
1880
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1881 1882 1883 1884 1885
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1886
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1887

1888
	for (level = 0; level < wm_state->num_levels; level++) {
1889
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1890
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1891

1892
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1893
			break;
1894

1895 1896 1897 1898 1899 1900 1901 1902
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1903
						 raw->plane[PLANE_SPRITE0],
1904 1905
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1906

1907 1908 1909
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1910 1911
	}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1922 1923
}

1924 1925 1926
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1927
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1928
				   struct intel_crtc *crtc)
1929
{
1930
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1931
	struct intel_uncore *uncore = &dev_priv->uncore;
1932 1933
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1934 1935
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1936
	int sprite0_start, sprite1_start, fifo_size;
1937

1938 1939 1940
	if (!crtc_state->fifo_changed)
		return;

1941 1942 1943
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1944

1945 1946
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1947

1948 1949
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1950 1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1959
	spin_lock(&uncore->lock);
1960

1961
	switch (crtc->pipe) {
1962
		u32 dsparb, dsparb2, dsparb3;
1963
	case PIPE_A:
1964 1965
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1977 1978
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1979 1980
		break;
	case PIPE_B:
1981 1982
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1994 1995
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1996 1997
		break;
	case PIPE_C:
1998 1999
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2011 2012
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2013 2014 2015 2016
		break;
	default:
		break;
	}
2017

2018
	intel_uncore_posting_read_fw(uncore, DSPARB);
2019

2020
	spin_unlock(&uncore->lock);
2021 2022 2023 2024
}

#undef VLV_FIFO

2025
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2026
{
2027
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2028 2029 2030
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2031
		to_intel_atomic_state(new_crtc_state->uapi.state);
2032 2033 2034
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2035 2036
	int level;

2037
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2038 2039 2040 2041 2042 2043
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2044
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2045
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2046
		!new_crtc_state->disable_cxsr;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2065
out:
2066 2067 2068 2069
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2070
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2071
		new_crtc_state->wm.need_postvbl_update = true;
2072 2073 2074 2075

	return 0;
}

2076
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2077 2078 2079
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2080
	int num_active_pipes = 0;
2081

2082
	wm->level = dev_priv->wm.max_level;
2083 2084
	wm->cxsr = true;

2085
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2086
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2087 2088 2089 2090 2091 2092 2093

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2094
		num_active_pipes++;
2095 2096 2097
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2098
	if (num_active_pipes != 1)
2099 2100
		wm->cxsr = false;

2101
	if (num_active_pipes > 1)
2102 2103
		wm->level = VLV_WM_LEVEL_PM2;

2104
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2105
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2106 2107 2108
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2109
		if (crtc->active && wm->cxsr)
2110 2111
			wm->sr = wm_state->sr[wm->level];

2112 2113 2114 2115
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2116 2117 2118
	}
}

2119
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2120
{
2121 2122
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2123

2124
	vlv_merge_wm(dev_priv, &new_wm);
2125

2126
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2127 2128
		return;

2129
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2130 2131
		chv_set_memory_dvfs(dev_priv, false);

2132
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2133 2134
		chv_set_memory_pm5(dev_priv, false);

2135
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2136
		_intel_set_memory_cxsr(dev_priv, false);
2137

2138
	vlv_write_wm_values(dev_priv, &new_wm);
2139

2140
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2141
		_intel_set_memory_cxsr(dev_priv, true);
2142

2143
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2144 2145
		chv_set_memory_pm5(dev_priv, true);

2146
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2147 2148
		chv_set_memory_dvfs(dev_priv, true);

2149
	*old_wm = new_wm;
2150 2151
}

2152
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2153
				   struct intel_crtc *crtc)
2154
{
2155 2156 2157
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2158 2159

	mutex_lock(&dev_priv->wm.wm_mutex);
2160 2161 2162 2163 2164 2165
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2166
				    struct intel_crtc *crtc)
2167
{
2168 2169 2170
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2171 2172 2173 2174 2175

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2176
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2177 2178 2179 2180
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2181
static void i965_update_wm(struct intel_crtc *unused_crtc)
2182
{
2183
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2184
	struct intel_crtc *crtc;
2185 2186
	int srwm = 1;
	int cursor_sr = 16;
2187
	bool cxsr_enabled;
2188 2189

	/* Calc sr entries for one plane configs */
2190
	crtc = single_enabled_crtc(dev_priv);
2191 2192 2193
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2194
		const struct drm_display_mode *adjusted_mode =
2195
			&crtc->config->hw.adjusted_mode;
2196 2197
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2198
		int clock = adjusted_mode->crtc_clock;
2199
		int htotal = adjusted_mode->crtc_htotal;
2200
		int hdisplay = crtc->config->pipe_src_w;
2201
		int cpp = fb->format->cpp[0];
2202 2203
		int entries;

2204 2205
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2206 2207 2208 2209 2210 2211 2212 2213
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2214 2215 2216
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2217
		entries = DIV_ROUND_UP(entries,
2218 2219
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2220

2221
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2222 2223 2224 2225 2226 2227
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2228
		cxsr_enabled = true;
2229
	} else {
2230
		cxsr_enabled = false;
2231
		/* Turn off self refresh if both pipes are enabled */
2232
		intel_set_memory_cxsr(dev_priv, false);
2233 2234 2235 2236 2237 2238
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2239 2240 2241 2242 2243 2244
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2245
	/* update cursor SR watermark */
2246
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2247 2248 2249

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2250 2251
}

2252 2253
#undef FW_WM

2254
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2255
{
2256
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2257
	const struct intel_watermark_params *wm_info;
2258 2259
	u32 fwater_lo;
	u32 fwater_hi;
2260 2261 2262
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2263
	struct intel_crtc *crtc, *enabled = NULL;
2264

2265
	if (IS_I945GM(dev_priv))
2266
		wm_info = &i945_wm_info;
2267
	else if (!IS_GEN(dev_priv, 2))
2268 2269
		wm_info = &i915_wm_info;
	else
2270
		wm_info = &i830_a_wm_info;
2271

2272 2273
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2274 2275
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2276
			&crtc->config->hw.adjusted_mode;
2277 2278 2279 2280
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2281
		if (IS_GEN(dev_priv, 2))
2282
			cpp = 4;
2283
		else
2284
			cpp = fb->format->cpp[0];
2285

2286
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2287
					       wm_info, fifo_size, cpp,
2288
					       pessimal_latency_ns);
2289
		enabled = crtc;
2290
	} else {
2291
		planea_wm = fifo_size - wm_info->guard_size;
2292 2293 2294 2295
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2296
	if (IS_GEN(dev_priv, 2))
2297
		wm_info = &i830_bc_wm_info;
2298

2299 2300
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2301 2302
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2303
			&crtc->config->hw.adjusted_mode;
2304 2305 2306 2307
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2308
		if (IS_GEN(dev_priv, 2))
2309
			cpp = 4;
2310
		else
2311
			cpp = fb->format->cpp[0];
2312

2313
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2314
					       wm_info, fifo_size, cpp,
2315
					       pessimal_latency_ns);
2316 2317 2318 2319
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2320
	} else {
2321
		planeb_wm = fifo_size - wm_info->guard_size;
2322 2323 2324
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2325 2326 2327

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2328
	if (IS_I915GM(dev_priv) && enabled) {
2329
		struct drm_i915_gem_object *obj;
2330

2331
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2332 2333

		/* self-refresh seems busted with untiled */
2334
		if (!i915_gem_object_is_tiled(obj))
2335 2336 2337
			enabled = NULL;
	}

2338 2339 2340 2341 2342 2343
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2344
	intel_set_memory_cxsr(dev_priv, false);
2345 2346

	/* Calc sr entries for one plane configs */
2347
	if (HAS_FW_BLC(dev_priv) && enabled) {
2348 2349
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2350
		const struct drm_display_mode *adjusted_mode =
2351
			&enabled->config->hw.adjusted_mode;
2352 2353
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2354
		int clock = adjusted_mode->crtc_clock;
2355
		int htotal = adjusted_mode->crtc_htotal;
2356 2357
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2358 2359
		int entries;

2360
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2361
			cpp = 4;
2362
		else
2363
			cpp = fb->format->cpp[0];
2364

2365 2366
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2367 2368 2369 2370 2371 2372
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2373
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2374 2375
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2376
		else
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2393 2394
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2395 2396
}

2397
static void i845_update_wm(struct intel_crtc *unused_crtc)
2398
{
2399
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2400
	struct intel_crtc *crtc;
2401
	const struct drm_display_mode *adjusted_mode;
2402
	u32 fwater_lo;
2403 2404
	int planea_wm;

2405
	crtc = single_enabled_crtc(dev_priv);
2406 2407 2408
	if (crtc == NULL)
		return;

2409
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2410
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2411
				       &i845_wm_info,
2412
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2413
				       4, pessimal_latency_ns);
2414 2415 2416 2417 2418 2419 2420 2421
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2422
/* latency must be in 0.1us units. */
2423 2424 2425
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2426
{
2427
	unsigned int ret;
2428

2429 2430
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2431 2432 2433 2434

	return ret;
}

2435
/* latency must be in 0.1us units. */
2436 2437 2438 2439 2440
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2441
{
2442
	unsigned int ret;
2443

2444 2445
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2446
	ret = DIV_ROUND_UP(ret, 64) + 2;
2447

2448 2449 2450
	return ret;
}

2451
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2452
{
2453 2454 2455 2456 2457 2458
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2459
	if (WARN_ON(!cpp))
2460 2461 2462 2463
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2464
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2465 2466
}

2467
struct ilk_wm_maximums {
2468 2469 2470 2471
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2472 2473
};

2474 2475 2476 2477
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2478 2479
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2480
			      u32 mem_value, bool is_lp)
2481
{
2482
	u32 method1, method2;
2483
	int cpp;
2484

2485 2486 2487
	if (mem_value == 0)
		return U32_MAX;

2488
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2489 2490
		return 0;

2491
	cpp = plane_state->hw.fb->format->cpp[0];
2492

2493
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2494 2495 2496 2497

	if (!is_lp)
		return method1;

2498
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2499
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2500
				 drm_rect_width(&plane_state->uapi.dst),
2501
				 cpp, mem_value);
2502 2503

	return min(method1, method2);
2504 2505
}

2506 2507 2508 2509
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2510 2511
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2512
			      u32 mem_value)
2513
{
2514
	u32 method1, method2;
2515
	int cpp;
2516

2517 2518 2519
	if (mem_value == 0)
		return U32_MAX;

2520
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2521 2522
		return 0;

2523
	cpp = plane_state->hw.fb->format->cpp[0];
2524

2525 2526
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2527
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2528
				 drm_rect_width(&plane_state->uapi.dst),
2529
				 cpp, mem_value);
2530 2531 2532
	return min(method1, method2);
}

2533 2534 2535 2536
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2537 2538
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2539
			      u32 mem_value)
2540
{
2541 2542
	int cpp;

2543 2544 2545
	if (mem_value == 0)
		return U32_MAX;

2546
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2547 2548
		return 0;

2549
	cpp = plane_state->hw.fb->format->cpp[0];
2550

2551
	return ilk_wm_method2(crtc_state->pixel_rate,
2552
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2553
			      drm_rect_width(&plane_state->uapi.dst),
2554
			      cpp, mem_value);
2555 2556
}

2557
/* Only for WM_LP. */
2558 2559
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2560
			      u32 pri_val)
2561
{
2562
	int cpp;
2563

2564
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2565 2566
		return 0;

2567
	cpp = plane_state->hw.fb->format->cpp[0];
2568

2569 2570
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2571 2572
}

2573 2574
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2575
{
2576
	if (INTEL_GEN(dev_priv) >= 8)
2577
		return 3072;
2578
	else if (INTEL_GEN(dev_priv) >= 7)
2579 2580 2581 2582 2583
		return 768;
	else
		return 512;
}

2584 2585 2586
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2587
{
2588
	if (INTEL_GEN(dev_priv) >= 8)
2589 2590
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2591
	else if (INTEL_GEN(dev_priv) >= 7)
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2602 2603
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2604
{
2605
	if (INTEL_GEN(dev_priv) >= 7)
2606 2607 2608 2609 2610
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2611
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2612
{
2613
	if (INTEL_GEN(dev_priv) >= 8)
2614 2615 2616 2617 2618
		return 31;
	else
		return 15;
}

2619
/* Calculate the maximum primary/sprite plane watermark */
2620
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2621
				     int level,
2622
				     const struct intel_wm_config *config,
2623 2624 2625
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2626
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627 2628

	/* if sprites aren't enabled, sprites get nothing */
2629
	if (is_sprite && !config->sprites_enabled)
2630 2631 2632
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2633
	if (level == 0 || config->num_pipes_active > 1) {
2634
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2635 2636 2637 2638 2639 2640

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2641
		if (INTEL_GEN(dev_priv) <= 6)
2642 2643 2644
			fifo_size /= 2;
	}

2645
	if (config->sprites_enabled) {
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2657
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658 2659 2660
}

/* Calculate the maximum cursor plane watermark */
2661
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2662 2663
				      int level,
				      const struct intel_wm_config *config)
2664 2665
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2666
	if (level > 0 && config->num_pipes_active > 1)
2667 2668 2669
		return 64;

	/* otherwise just report max that registers can hold */
2670
	return ilk_cursor_wm_reg_max(dev_priv, level);
2671 2672
}

2673
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2674 2675 2676
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2677
				    struct ilk_wm_maximums *max)
2678
{
2679 2680 2681 2682
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2683 2684
}

2685
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686 2687 2688
					int level,
					struct ilk_wm_maximums *max)
{
2689 2690 2691 2692
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693 2694
}

2695
static bool ilk_validate_wm_level(int level,
2696
				  const struct ilk_wm_maximums *max,
2697
				  struct intel_wm_level *result)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2727 2728 2729
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2730 2731 2732 2733 2734 2735
		result->enable = true;
	}

	return ret;
}

2736
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737
				 const struct intel_crtc *intel_crtc,
2738
				 int level,
2739
				 struct intel_crtc_state *crtc_state,
2740 2741 2742
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2743
				 struct intel_wm_level *result)
2744
{
2745 2746 2747
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2748 2749 2750 2751 2752 2753 2754 2755

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2756
	if (pristate) {
2757
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2758
						     pri_latency, level);
2759
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2760 2761 2762
	}

	if (sprstate)
2763
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2764 2765

	if (curstate)
2766
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2767

2768 2769 2770
	result->enable = true;
}

2771
static u32
2772
hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2773
{
2774
	const struct intel_atomic_state *intel_state =
2775
		to_intel_atomic_state(crtc_state->uapi.state);
2776
	const struct drm_display_mode *adjusted_mode =
2777
		&crtc_state->hw.adjusted_mode;
2778
	u32 linetime, ips_linetime;
2779

2780
	if (!crtc_state->hw.active)
2781 2782 2783
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2784
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785
		return 0;
2786

2787 2788 2789
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2790 2791 2792
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793
					 intel_state->cdclk.logical.cdclk);
2794

2795 2796
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2797 2798
}

2799
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2800
				  u16 wm[8])
2801
{
2802 2803
	struct intel_uncore *uncore = &dev_priv->uncore;

2804
	if (INTEL_GEN(dev_priv) >= 9) {
2805
		u32 val;
2806
		int ret, i;
2807
		int level, max_level = ilk_wm_max_level(dev_priv);
2808 2809 2810 2811 2812

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2813
					     &val, NULL);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2832
					     &val, NULL);
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2859
		/*
2860
		 * WaWmMemoryReadLatency:skl+,glk
2861
		 *
2862
		 * punit doesn't take into account the read latency so we need
2863 2864
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2865
		 */
2866 2867 2868 2869 2870
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2871
				wm[level] += 2;
2872
			}
2873 2874
		}

2875 2876 2877 2878 2879 2880
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2881
		if (dev_priv->dram_info.is_16gb_dimm)
2882 2883
			wm[0] += 1;

2884
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2885
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2886 2887 2888 2889

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2890 2891 2892 2893
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2894
	} else if (INTEL_GEN(dev_priv) >= 6) {
2895
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2896 2897 2898 2899 2900

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2901
	} else if (INTEL_GEN(dev_priv) >= 5) {
2902
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2903 2904 2905 2906 2907

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2908 2909
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2910 2911 2912
	}
}

2913
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2914
				       u16 wm[5])
2915 2916
{
	/* ILK sprite LP0 latency is 1300 ns */
2917
	if (IS_GEN(dev_priv, 5))
2918 2919 2920
		wm[0] = 13;
}

2921
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2922
				       u16 wm[5])
2923 2924
{
	/* ILK cursor LP0 latency is 1300 ns */
2925
	if (IS_GEN(dev_priv, 5))
2926 2927 2928
		wm[0] = 13;
}

2929
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2930 2931
{
	/* how many WM levels are we expecting */
2932
	if (INTEL_GEN(dev_priv) >= 9)
2933
		return 7;
2934
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2935
		return 4;
2936
	else if (INTEL_GEN(dev_priv) >= 6)
2937
		return 3;
2938
	else
2939 2940
		return 2;
}
2941

2942
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2943
				   const char *name,
2944
				   const u16 wm[8])
2945
{
2946
	int level, max_level = ilk_wm_max_level(dev_priv);
2947 2948 2949 2950 2951

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2952 2953
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2954 2955 2956
			continue;
		}

2957 2958 2959 2960
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2961
		if (INTEL_GEN(dev_priv) >= 9)
2962 2963
			latency *= 10;
		else if (level > 0)
2964 2965 2966 2967 2968 2969 2970 2971
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2972
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2973
				    u16 wm[5], u16 min)
2974
{
2975
	int level, max_level = ilk_wm_max_level(dev_priv);
2976 2977 2978 2979 2980 2981

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2982
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2983 2984 2985 2986

	return true;
}

2987
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3003 3004 3005
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3006 3007
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3036
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3037
{
3038
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3039 3040 3041 3042 3043 3044

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3045
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3046
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3047

3048 3049 3050
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3051

3052
	if (IS_GEN(dev_priv, 6)) {
3053
		snb_wm_latency_quirk(dev_priv);
3054 3055
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3056 3057
}

3058
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3059
{
3060
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3061
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3062 3063
}

3064
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3076
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3087
/* Compute new watermarks for the pipe */
3088
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3089
{
3090 3091
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
3092
	struct intel_pipe_wm *pipe_wm;
3093 3094
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3095 3096 3097
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3098
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3099
	struct ilk_wm_maximums max;
3100

3101
	pipe_wm = &crtc_state->wm.ilk.optimal;
3102

3103 3104 3105 3106 3107 3108 3109
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3110 3111
	}

3112
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3113
	if (sprstate) {
3114 3115 3116 3117
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3118 3119
	}

3120 3121
	usable_level = max_level;

3122
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3123
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3124
		usable_level = 1;
3125 3126

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3127
	if (pipe_wm->sprites_scaled)
3128
		usable_level = 0;
3129

3130
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3131
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3132
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3133

3134
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3135
		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3136

3137
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3138
		return -EINVAL;
3139

3140
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3141

3142 3143
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3144

3145
		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3146
				     pristate, sprstate, curstate, wm);
3147 3148 3149 3150 3151 3152

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3153 3154 3155 3156
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3157 3158
	}

3159
	return 0;
3160 3161
}

3162 3163 3164 3165 3166
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3167
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3168
{
3169
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3170
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3171
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3172
	struct intel_atomic_state *intel_state =
3173
		to_intel_atomic_state(newstate->uapi.state);
3174 3175 3176
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3177
	int level, max_level = ilk_wm_max_level(dev_priv);
3178 3179 3180 3181 3182 3183

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3184
	*a = newstate->wm.ilk.optimal;
3185
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3186
	    intel_state->skip_intermediate_wm)
3187 3188
		return 0;

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3210
	if (!ilk_validate_pipe_wm(dev_priv, a))
3211 3212 3213 3214 3215 3216
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3217 3218
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3219 3220 3221 3222

	return 0;
}

3223 3224 3225
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3226
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3227 3228 3229 3230 3231
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3232 3233
	ret_wm->enable = true;

3234
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3235
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3236 3237 3238 3239
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3240

3241 3242 3243 3244 3245
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3246
		if (!wm->enable)
3247
			ret_wm->enable = false;
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3259
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3260
			 const struct intel_wm_config *config,
3261
			 const struct ilk_wm_maximums *max,
3262 3263
			 struct intel_pipe_wm *merged)
{
3264
	int level, max_level = ilk_wm_max_level(dev_priv);
3265
	int last_enabled_level = max_level;
3266

3267
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3268
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3269
	    config->num_pipes_active > 1)
3270
		last_enabled_level = 0;
3271

3272
	/* ILK: FBC WM must be disabled always */
3273
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3274 3275 3276 3277 3278

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3279
		ilk_merge_wm_level(dev_priv, level, wm);
3280

3281 3282 3283 3284 3285
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3286 3287 3288 3289 3290 3291

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3292 3293
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3294 3295 3296
			wm->fbc_val = 0;
		}
	}
3297 3298 3299 3300 3301 3302 3303

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3304
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3305
	    intel_fbc_is_active(dev_priv)) {
3306 3307 3308 3309 3310 3311
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3312 3313
}

3314 3315 3316 3317 3318 3319
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3320
/* The value we need to program into the WM_LPx latency field */
3321 3322
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3323
{
3324
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3325 3326 3327 3328 3329
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3330
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3331
				   const struct intel_pipe_wm *merged,
3332
				   enum intel_ddb_partitioning partitioning,
3333
				   struct ilk_wm_values *results)
3334
{
3335 3336
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3337

3338
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3339
	results->partitioning = partitioning;
3340

3341
	/* LP1+ register values */
3342
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3343
		const struct intel_wm_level *r;
3344

3345
		level = ilk_wm_lp_to_level(wm_lp, merged);
3346

3347
		r = &merged->wm[level];
3348

3349 3350 3351 3352 3353
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3354
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3355 3356 3357
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3358 3359 3360
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3361
		if (INTEL_GEN(dev_priv) >= 8)
3362 3363 3364 3365 3366 3367
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3368 3369 3370 3371
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3372
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3373 3374 3375 3376
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3377
	}
3378

3379
	/* LP0 register values */
3380
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3381
		enum pipe pipe = intel_crtc->pipe;
3382 3383
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3384 3385 3386 3387

		if (WARN_ON(!r->enable))
			continue;

3388
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3389

3390 3391 3392 3393
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3394 3395 3396
	}
}

3397 3398
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3399 3400 3401 3402
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3403
{
3404
	int level, max_level = ilk_wm_max_level(dev_priv);
3405
	int level1 = 0, level2 = 0;
3406

3407 3408 3409 3410 3411
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3412 3413
	}

3414 3415
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3416 3417 3418
			return r2;
		else
			return r1;
3419
	} else if (level1 > level2) {
3420 3421 3422 3423 3424 3425
		return r1;
	} else {
		return r2;
	}
}

3426 3427 3428 3429 3430 3431 3432 3433
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3434
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3435 3436
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3437 3438 3439 3440 3441
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3442
	for_each_pipe(dev_priv, pipe) {
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3486 3487
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3488
{
3489
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3490
	bool changed = false;
3491

3492 3493 3494
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3495
		changed = true;
3496 3497 3498 3499
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3500
		changed = true;
3501 3502 3503 3504
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3505
		changed = true;
3506
	}
3507

3508 3509 3510 3511
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3512

3513 3514 3515 3516 3517 3518 3519
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3520 3521
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3522
{
3523
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3524
	unsigned int dirty;
3525
	u32 val;
3526

3527
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3528 3529 3530 3531 3532
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3533
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3534
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3535
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3536
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3537
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3538 3539
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3540
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3541
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3542
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3543
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3544
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3545 3546
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3547
	if (dirty & WM_DIRTY_DDB) {
3548
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3563 3564
	}

3565
	if (dirty & WM_DIRTY_FBC) {
3566 3567 3568 3569 3570 3571 3572 3573
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3574 3575 3576 3577
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3578
	if (INTEL_GEN(dev_priv) >= 7) {
3579 3580 3581 3582 3583
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3584

3585
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3586
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3587
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3588
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3589
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3590
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3591 3592

	dev_priv->wm.hw = *results;
3593 3594
}

3595
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3596 3597 3598 3599
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3611 3612 3613 3614 3615 3616
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3617 3618 3619 3620 3621
		enabled_slices++;

	return enabled_slices;
}

3622 3623 3624 3625
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3626
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3627
{
3628
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3629 3630
}

3631 3632 3633
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3634 3635 3636 3637
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3638 3639
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3640 3641
}

3642 3643 3644
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

		DRM_DEBUG_DRIVER("Couldn't read SAGV block time!\n");
	} else if (IS_GEN(dev_priv, 11)) {
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3687
intel_enable_sagv(struct drm_i915_private *dev_priv)
3688 3689 3690
{
	int ret;

3691 3692 3693 3694
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3695 3696
		return 0;

3697
	DRM_DEBUG_KMS("Enabling SAGV\n");
3698 3699 3700
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3701
	/* We don't need to wait for SAGV when enabling */
3702 3703 3704

	/*
	 * Some skl systems, pre-release machines in particular,
3705
	 * don't actually have SAGV.
3706
	 */
3707
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3708
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3709
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3710 3711
		return 0;
	} else if (ret < 0) {
3712
		DRM_ERROR("Failed to enable SAGV\n");
3713 3714 3715
		return ret;
	}

3716
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3717 3718 3719 3720
	return 0;
}

int
3721
intel_disable_sagv(struct drm_i915_private *dev_priv)
3722
{
3723
	int ret;
3724

3725 3726 3727 3728
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3729 3730
		return 0;

3731
	DRM_DEBUG_KMS("Disabling SAGV\n");
3732
	/* bspec says to keep retrying for at least 1 ms */
3733 3734 3735 3736
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3737 3738
	/*
	 * Some skl systems, pre-release machines in particular,
3739
	 * don't actually have SAGV.
3740
	 */
3741
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3742
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3743
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3744
		return 0;
3745
	} else if (ret < 0) {
3746
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3747
		return ret;
3748 3749
	}

3750
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3751 3752 3753
	return 0;
}

3754
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3755
{
3756
	struct drm_device *dev = state->base.dev;
3757
	struct drm_i915_private *dev_priv = to_i915(dev);
3758 3759
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3760
	struct intel_crtc_state *crtc_state;
3761
	enum pipe pipe;
3762
	int level, latency;
3763

3764 3765 3766
	if (!intel_has_sagv(dev_priv))
		return false;

3767 3768 3769
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3770
	if (hweight8(state->active_pipes) == 0)
3771
		return true;
3772 3773 3774 3775 3776

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3777
	if (hweight8(state->active_pipes) > 1)
3778 3779 3780
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3781
	pipe = ffs(state->active_pipes) - 1;
3782
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3783
	crtc_state = to_intel_crtc_state(crtc->base.state);
3784

3785
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3786 3787
		return false;

3788
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3789
		struct skl_plane_wm *wm =
3790
			&crtc_state->wm.skl.optimal.planes[plane->id];
3791

3792
		/* Skip this plane if it's not enabled */
3793
		if (!wm->wm[0].plane_en)
3794 3795 3796
			continue;

		/* Find the highest enabled wm level for this plane */
3797
		for (level = ilk_wm_max_level(dev_priv);
3798
		     !wm->wm[level].plane_en; --level)
3799 3800
		     { }

3801 3802
		latency = dev_priv->wm.skl_latency[level];

3803
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3804
		    plane->base.state->fb->modifier ==
3805 3806 3807
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3808
		/*
3809 3810
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3811
		 * can't enable SAGV.
3812
		 */
3813
		if (latency < dev_priv->sagv_block_time_us)
3814 3815 3816 3817 3818 3819
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3820
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3821
			      const struct intel_crtc_state *crtc_state,
3822
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3823 3824
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

3835
	adjusted_mode = &crtc_state->hw.adjusted_mode;
3836
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3837 3838 3839

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3840 3841 3842 3843 3844
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3845
	 */
3846
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3847 3848 3849 3850 3851 3852 3853 3854 3855
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3856
static void
3857
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3858
				   const struct intel_crtc_state *crtc_state,
3859
				   const u64 total_data_rate,
3860
				   struct skl_ddb_allocation *ddb,
3861 3862
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3863
{
3864
	struct drm_atomic_state *state = crtc_state->uapi.state;
3865
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3866
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3867
	const struct intel_crtc *crtc;
3868 3869 3870 3871
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3872

3873
	if (WARN_ON(!state) || !crtc_state->hw.active) {
3874 3875
		alloc->start = 0;
		alloc->end = 0;
3876
		*num_active = hweight8(dev_priv->active_pipes);
3877 3878 3879
		return;
	}

3880
	if (intel_state->active_pipe_changes)
3881
		*num_active = hweight8(intel_state->active_pipes);
3882
	else
3883
		*num_active = hweight8(dev_priv->active_pipes);
3884

3885
	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3886
				      *num_active, ddb);
3887

3888
	/*
3889 3890 3891 3892 3893 3894
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3895
	 */
3896
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3897 3898 3899 3900 3901
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3902
		return;
3903
	}
3904

3905 3906 3907 3908 3909
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3910 3911
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
3912
			&crtc_state->hw.adjusted_mode;
3913
		enum pipe pipe = crtc->pipe;
3914 3915
		int hdisplay, vdisplay;

3916
		if (!crtc_state->hw.enable)
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3930 3931
}

3932 3933 3934 3935 3936
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3937
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3938 3939 3940 3941 3942 3943 3944 3945
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3946
{
3947
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3961
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3962 3963 3964 3965 3966
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3967

3968
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3969 3970
}

3971 3972
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3973
{
3974

3975 3976
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3977

3978 3979
	if (entry->end)
		entry->end += 1;
3980 3981
}

3982 3983 3984 3985
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3986 3987
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3988
{
3989 3990
	u32 val, val2;
	u32 fourcc = 0;
3991 3992 3993 3994

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3995
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3996 3997 3998 3999 4000 4001
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4002 4003 4004 4005
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4006

4007 4008 4009 4010 4011
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4012
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4013

4014 4015
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4016 4017 4018 4019
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4020 4021 4022
	}
}

4023 4024 4025
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4026
{
4027 4028 4029
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4030
	intel_wakeref_t wakeref;
4031
	enum plane_id plane_id;
4032

4033
	power_domain = POWER_DOMAIN_PIPE(pipe);
4034 4035
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4036
		return;
4037

4038 4039 4040 4041 4042
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4043

4044
	intel_display_power_put(dev_priv, power_domain, wakeref);
4045
}
4046

4047 4048 4049 4050
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4051 4052
}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4069
static uint_fixed_16_16_t
4070 4071
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4072
{
4073
	u32 src_w, src_h, dst_w, dst_h;
4074 4075
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4076

4077
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4078
		return u32_to_fixed16(0);
4079

4080 4081 4082 4083 4084 4085 4086
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4087 4088 4089 4090
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4091

4092 4093 4094 4095
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4096

4097
	return mul_fixed16(downscale_w, downscale_h);
4098 4099
}

4100
static u64
4101 4102
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4103
			     int color_plane)
4104
{
4105
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4106
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4107 4108
	u32 data_rate;
	u32 width = 0, height = 0;
4109
	uint_fixed_16_16_t down_scale_amount;
4110
	u64 rate;
4111

4112
	if (!plane_state->uapi.visible)
4113
		return 0;
4114

4115
	if (plane->id == PLANE_CURSOR)
4116
		return 0;
4117 4118 4119

	if (color_plane == 1 &&
	    !drm_format_info_is_yuv_semiplanar(fb->format))
4120
		return 0;
4121

4122 4123 4124 4125 4126
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4127 4128
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4129

4130
	/* UV plane does 1/2 pixel sub-sampling */
4131
	if (color_plane == 1) {
4132 4133
		width /= 2;
		height /= 2;
4134 4135
	}

4136
	data_rate = width * height;
4137

4138
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4139

4140 4141
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4142
	rate *= fb->format->cpp[color_plane];
4143
	return rate;
4144 4145
}

4146
static u64
4147
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4148 4149
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4150
{
4151
	struct drm_atomic_state *state = crtc_state->uapi.state;
4152 4153
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4154
	u64 total_data_rate = 0;
4155 4156 4157

	if (WARN_ON(!state))
		return 0;
4158

4159
	/* Calculate and cache data rate for each plane */
4160 4161
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4162
		u64 rate;
4163

4164
		/* packed/y */
4165
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4166
		plane_data_rate[plane_id] = rate;
4167
		total_data_rate += rate;
4168

4169
		/* uv-plane */
4170
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4171
		uv_plane_data_rate[plane_id] = rate;
4172
		total_data_rate += rate;
4173 4174 4175 4176 4177
	}

	return total_data_rate;
}

4178
static u64
4179
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4180 4181
				 u64 *plane_data_rate)
{
4182 4183
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4184 4185
	u64 total_data_rate = 0;

4186
	if (WARN_ON(!crtc_state->uapi.state))
4187 4188 4189
		return 0;

	/* Calculate and cache data rate for each plane */
4190 4191
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4192 4193
		u64 rate;

4194
		if (!plane_state->planar_linked_plane) {
4195
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4196 4197 4198 4199 4200 4201 4202
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4203
			 * intel_atomic_crtc_state_for_each_plane_state(),
4204 4205 4206 4207
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4208
			if (plane_state->planar_slave)
4209 4210 4211
				continue;

			/* Y plane rate is calculated on the slave */
4212
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4213
			y_plane_id = plane_state->planar_linked_plane->id;
4214 4215 4216
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4217
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4218 4219 4220 4221 4222 4223 4224 4225
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4226
static int
4227
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4228 4229
		      struct skl_ddb_allocation *ddb /* out */)
{
4230 4231
	struct drm_atomic_state *state = crtc_state->uapi.state;
	struct drm_crtc *crtc = crtc_state->uapi.crtc;
4232
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4233
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4234
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4235 4236 4237
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4238
	u64 total_data_rate;
4239
	enum plane_id plane_id;
4240
	int num_active;
4241 4242
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4243
	u32 blocks;
4244
	int level;
4245

4246
	/* Clear the partitioning for disabled planes. */
4247 4248
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4249

4250 4251 4252
	if (WARN_ON(!state))
		return 0;

4253
	if (!crtc_state->hw.active) {
4254
		alloc->start = alloc->end = 0;
4255 4256 4257
		return 0;
	}

4258 4259
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4260
			icl_get_total_relative_data_rate(crtc_state,
4261 4262
							 plane_data_rate);
	else
4263
		total_data_rate =
4264
			skl_get_total_relative_data_rate(crtc_state,
4265 4266
							 plane_data_rate,
							 uv_plane_data_rate);
4267

4268

4269
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4270
					   ddb, alloc, &num_active);
4271
	alloc_size = skl_ddb_entry_size(alloc);
4272
	if (alloc_size == 0)
4273
		return 0;
4274

4275
	/* Allocate fixed number of blocks for cursor. */
4276
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4277
	alloc_size -= total[PLANE_CURSOR];
4278
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4279
		alloc->end - total[PLANE_CURSOR];
4280
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4281 4282 4283

	if (total_data_rate == 0)
		return 0;
4284

4285
	/*
4286 4287
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4288
	 */
4289
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4290
		blocks = 0;
4291
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4292
			const struct skl_plane_wm *wm =
4293
				&crtc_state->wm.skl.optimal.planes[plane_id];
4294 4295 4296 4297 4298 4299 4300

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4301
				continue;
4302
			}
4303

4304 4305
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4306 4307
		}

4308
		if (blocks <= alloc_size) {
4309 4310 4311
			alloc_size -= blocks;
			break;
		}
4312 4313
	}

4314
	if (level < 0) {
4315
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4316 4317
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4318 4319 4320
		return -EINVAL;
	}

4321
	/*
4322 4323 4324
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4325
	 */
4326
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4327
		const struct skl_plane_wm *wm =
4328
			&crtc_state->wm.skl.optimal.planes[plane_id];
4329 4330
		u64 rate;
		u16 extra;
4331

4332
		if (plane_id == PLANE_CURSOR)
4333 4334
			continue;

4335
		/*
4336 4337
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4338
		 */
4339 4340
		if (total_data_rate == 0)
			break;
4341

4342 4343 4344 4345
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4346
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4347 4348
		alloc_size -= extra;
		total_data_rate -= rate;
4349

4350 4351
		if (total_data_rate == 0)
			break;
4352

4353 4354 4355 4356
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4357
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4358 4359 4360 4361 4362 4363 4364 4365
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4366
		struct skl_ddb_entry *plane_alloc =
4367
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4368
		struct skl_ddb_entry *uv_plane_alloc =
4369
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4370 4371 4372 4373

		if (plane_id == PLANE_CURSOR)
			continue;

4374
		/* Gen11+ uses a separate plane for UV watermarks */
4375 4376 4377 4378 4379 4380 4381 4382
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4383

4384 4385 4386 4387
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4388
		}
4389
	}
4390

4391 4392 4393 4394 4395 4396 4397 4398
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4399
			struct skl_plane_wm *wm =
4400
				&crtc_state->wm.skl.optimal.planes[plane_id];
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4417

4418
			/*
4419
			 * Wa_1408961008:icl, ehl
4420 4421
			 * Underruns with WM1+ disabled
			 */
4422
			if (IS_GEN(dev_priv, 11) &&
4423 4424
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4425 4426
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4427
			}
4428 4429 4430 4431 4432 4433 4434 4435
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4436
		struct skl_plane_wm *wm =
4437
			&crtc_state->wm.skl.optimal.planes[plane_id];
4438

4439
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4440
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4441 4442
	}

4443
	return 0;
4444 4445
}

4446 4447
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4448
 * for the read latency) and cpp should always be <= 8, so that
4449 4450 4451
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4452
static uint_fixed_16_16_t
4453 4454
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4455
{
4456
	u32 wm_intermediate_val;
4457
	uint_fixed_16_16_t ret;
4458 4459

	if (latency == 0)
4460
		return FP_16_16_MAX;
4461

4462
	wm_intermediate_val = latency * pixel_rate * cpp;
4463
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4464 4465 4466 4467

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4468 4469 4470
	return ret;
}

4471 4472 4473
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4474
{
4475
	u32 wm_intermediate_val;
4476
	uint_fixed_16_16_t ret;
4477 4478

	if (latency == 0)
4479
		return FP_16_16_MAX;
4480 4481

	wm_intermediate_val = latency * pixel_rate;
4482 4483
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4484
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4485 4486 4487
	return ret;
}

4488
static uint_fixed_16_16_t
4489
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4490
{
4491 4492
	u32 pixel_rate;
	u32 crtc_htotal;
4493 4494
	uint_fixed_16_16_t linetime_us;

4495
	if (!crtc_state->hw.active)
4496
		return u32_to_fixed16(0);
4497

4498
	pixel_rate = crtc_state->pixel_rate;
4499 4500

	if (WARN_ON(pixel_rate == 0))
4501
		return u32_to_fixed16(0);
4502

4503
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4504
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4505 4506 4507 4508

	return linetime_us;
}

4509
static u32
4510 4511
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4512
{
4513
	u64 adjusted_pixel_rate;
4514
	uint_fixed_16_16_t downscale_amount;
4515 4516

	/* Shouldn't reach here on disabled planes... */
4517
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4518 4519 4520 4521 4522 4523
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4524 4525
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4526

4527 4528
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4529 4530
}

4531
static int
4532 4533 4534 4535 4536
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4537
{
4538
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4539
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4540
	u32 interm_pbpl;
4541

4542
	/* only planar format has two planes */
4543
	if (color_plane == 1 && !drm_format_info_is_yuv_semiplanar(format)) {
4544
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4545 4546 4547
		return -EINVAL;
	}

4548 4549 4550 4551 4552 4553 4554
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4555
	wp->is_planar = drm_format_info_is_yuv_semiplanar(format);
4556

4557
	wp->width = width;
4558
	if (color_plane == 1 && wp->is_planar)
4559 4560
		wp->width /= 2;

4561 4562
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4563

4564
	if (INTEL_GEN(dev_priv) >= 11 &&
4565
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4566 4567 4568 4569
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4570
	if (drm_rotation_90_or_270(rotation)) {
4571
		switch (wp->cpp) {
4572
		case 1:
4573
			wp->y_min_scanlines = 16;
4574 4575
			break;
		case 2:
4576
			wp->y_min_scanlines = 8;
4577 4578
			break;
		case 4:
4579
			wp->y_min_scanlines = 4;
4580
			break;
4581
		default:
4582
			MISSING_CASE(wp->cpp);
4583
			return -EINVAL;
4584 4585
		}
	} else {
4586
		wp->y_min_scanlines = 4;
4587 4588
	}

4589
	if (skl_needs_memory_bw_wa(dev_priv))
4590
		wp->y_min_scanlines *= 2;
4591

4592 4593 4594
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4595 4596
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4597 4598 4599 4600

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4601 4602
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4603
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4604 4605
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4606
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4607
	} else {
4608 4609
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4610
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4611 4612
	}

4613 4614
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4615

4616
	wp->linetime_us = fixed16_to_u32_round_up(
4617
					intel_get_linetime_us(crtc_state));
4618 4619 4620 4621

	return 0;
}

4622 4623 4624 4625 4626
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
4627
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4628 4629
	int width;

4630 4631 4632 4633 4634
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4635
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4636 4637 4638

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
4639
				     plane_state->hw.rotation,
4640 4641 4642 4643
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4644 4645 4646 4647 4648 4649 4650 4651 4652
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4653
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4654 4655 4656 4657
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4658
{
4659
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4660
	u32 latency = dev_priv->wm.skl_latency[level];
4661 4662
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4663
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4664

4665 4666 4667
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4668
		return;
4669
	}
4670

4671 4672 4673 4674
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4675
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4676 4677 4678
	    dev_priv->ipc_enabled)
		latency += 4;

4679
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4680 4681 4682
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4683
				 wp->cpp, latency, wp->dbuf_block_size);
4684
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4685
				 crtc_state->hw.adjusted_mode.crtc_htotal,
4686
				 latency,
4687
				 wp->plane_blocks_per_line);
4688

4689 4690
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4691
	} else {
4692
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
4693
		     wp->dbuf_block_size < 1) &&
4694
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4695
			selected_result = method2;
4696
		} else if (latency >= wp->linetime_us) {
4697
			if (IS_GEN(dev_priv, 9) &&
4698 4699 4700 4701 4702
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4703
			selected_result = method1;
4704
		}
4705
	}
4706

4707
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4708
	res_lines = div_round_up_fixed16(selected_result,
4709
					 wp->plane_blocks_per_line);
4710

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4726

4727 4728 4729 4730 4731 4732 4733 4734 4735
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4736
	}
4737

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4756 4757 4758
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4759 4760 4761
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4762
		return;
4763
	}
4764 4765 4766 4767 4768 4769 4770

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4771 4772
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4773 4774
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4775
	result->plane_en = true;
4776 4777
}

4778
static void
4779
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4780
		      const struct skl_wm_params *wm_params,
4781
		      struct skl_wm_level *levels)
4782
{
4783
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4784
	int level, max_level = ilk_wm_max_level(dev_priv);
4785
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4786

4787
	for (level = 0; level <= max_level; level++) {
4788
		struct skl_wm_level *result = &levels[level];
4789

4790
		skl_compute_plane_wm(crtc_state, level, wm_params,
4791
				     result_prev, result);
4792 4793

		result_prev = result;
4794
	}
4795 4796
}

4797
static u32
4798
skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4799
{
4800
	struct drm_atomic_state *state = crtc_state->uapi.state;
M
Mahesh Kumar 已提交
4801
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4802
	uint_fixed_16_16_t linetime_us;
4803
	u32 linetime_wm;
4804

4805
	linetime_us = intel_get_linetime_us(crtc_state);
4806
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4807

4808 4809
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4810
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4811 4812

	return linetime_wm;
4813 4814
}

4815
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4816
				      const struct skl_wm_params *wp,
4817
				      struct skl_plane_wm *wm)
4818
{
4819
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
4820
	const struct drm_i915_private *dev_priv = to_i915(dev);
4821 4822 4823
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4824 4825 4826

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4827
		return;
4828 4829 4830

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4831
		return;
4832

4833 4834
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4835 4836 4837 4838
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4849
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4850

4851
	if (wp->y_tiled) {
4852 4853
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4854
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4855 4856
				trans_offset_b;
	} else {
4857
		res_blocks = wm0_sel_res_b + trans_offset_b;
4858 4859 4860 4861 4862 4863 4864

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4865 4866 4867 4868 4869 4870 4871
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4872 4873
}

4874
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4875 4876
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4877
{
4878
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4879 4880 4881
	struct skl_wm_params wm_params;
	int ret;

4882
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4883 4884 4885 4886
					  &wm_params, color_plane);
	if (ret)
		return ret;

4887
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4888
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4889 4890 4891 4892

	return 0;
}

4893
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4894 4895
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4896
{
4897
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4898 4899 4900
	struct skl_wm_params wm_params;
	int ret;

4901
	wm->is_planar = true;
4902 4903

	/* uv plane watermarks must also be validated for NV12/Planar */
4904
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4905 4906 4907
					  &wm_params, 1);
	if (ret)
		return ret;
4908

4909
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4910

4911
	return 0;
4912 4913
}

4914
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
4915
			      const struct intel_plane_state *plane_state)
4916
{
4917
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4918
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4919
	enum plane_id plane_id = plane->id;
4920 4921
	int ret;

4922 4923 4924
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4925
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4926
					plane_id, 0);
4927 4928 4929
	if (ret)
		return ret;

4930
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4931
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4932 4933 4934 4935 4936 4937 4938 4939
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4940
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
4941 4942
			      const struct intel_plane_state *plane_state)
{
4943
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
4944 4945 4946
	int ret;

	/* Watermarks calculated in master */
4947
	if (plane_state->planar_slave)
4948 4949
		return 0;

4950
	if (plane_state->planar_linked_plane) {
4951
		const struct drm_framebuffer *fb = plane_state->hw.fb;
4952
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
4953 4954 4955 4956 4957

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

4958
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4959 4960 4961 4962
						y_plane_id, 0);
		if (ret)
			return ret;

4963
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4964 4965 4966 4967
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4968
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4969 4970 4971 4972 4973 4974
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
4975 4976
}

4977
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
4978
{
4979
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4980
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
4981 4982
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4983
	int ret;
4984

L
Lyude 已提交
4985 4986 4987 4988 4989 4990
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4991 4992
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
4993

4994
		if (INTEL_GEN(dev_priv) >= 11)
4995
			ret = icl_build_plane_wm(crtc_state, plane_state);
4996
		else
4997
			ret = skl_build_plane_wm(crtc_state, plane_state);
4998 4999
		if (ret)
			return ret;
5000
	}
5001

5002
	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5003

5004
	return 0;
5005 5006
}

5007 5008
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5009 5010 5011
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5012
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5013
	else
5014
		I915_WRITE_FW(reg, 0);
5015 5016
}

5017 5018 5019 5020
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5021
	u32 val = 0;
5022

5023
	if (level->plane_en)
5024
		val |= PLANE_WM_EN;
5025 5026 5027 5028
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5029

5030
	I915_WRITE_FW(reg, val);
5031 5032
}

5033 5034
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5035
{
5036
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5037
	int level, max_level = ilk_wm_max_level(dev_priv);
5038 5039 5040 5041 5042 5043 5044 5045
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5046 5047

	for (level = 0; level <= max_level; level++) {
5048
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5049
				   &wm->wm[level]);
5050
	}
5051
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5052
			   &wm->trans_wm);
5053

5054
	if (INTEL_GEN(dev_priv) >= 11) {
5055
		skl_ddb_entry_write(dev_priv,
5056 5057
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5058
	}
5059 5060 5061 5062 5063 5064 5065 5066

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5067 5068
}

5069 5070
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5071
{
5072
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5073
	int level, max_level = ilk_wm_max_level(dev_priv);
5074 5075 5076 5077 5078 5079
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5080 5081

	for (level = 0; level <= max_level; level++) {
5082 5083
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5084
	}
5085
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5086

5087
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5088 5089
}

5090 5091 5092
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5093
	return l1->plane_en == l2->plane_en &&
5094
		l1->ignore_lines == l2->ignore_lines &&
5095 5096 5097
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5098

5099 5100 5101 5102 5103
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5104

5105 5106 5107 5108 5109 5110 5111
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5112 5113
}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5131 5132
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5133
{
5134
	return a->start < b->end && b->start < a->end;
5135 5136
}

5137
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5138
				 const struct skl_ddb_entry *entries,
5139
				 int num_entries, int ignore_idx)
5140
{
5141
	int i;
5142

5143 5144 5145
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5146
			return true;
5147
	}
5148

5149
	return false;
5150 5151
}

5152
static int
5153 5154
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5155
{
5156 5157
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5158 5159
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5160

5161 5162 5163
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5164

5165 5166 5167 5168
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5169 5170
			continue;

5171
		plane_state = intel_atomic_get_plane_state(state, plane);
5172 5173
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5174

5175
		new_crtc_state->update_planes |= BIT(plane_id);
5176 5177 5178 5179 5180 5181
	}

	return 0;
}

static int
5182
skl_compute_ddb(struct intel_atomic_state *state)
5183
{
5184 5185
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5186 5187
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5188 5189
	struct intel_crtc *crtc;
	int ret, i;
5190

5191 5192
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5193
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5194 5195
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5196 5197 5198
		if (ret)
			return ret;

5199 5200
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5201 5202
		if (ret)
			return ret;
5203 5204 5205 5206 5207
	}

	return 0;
}

5208 5209 5210 5211 5212
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5213
static void
5214
skl_print_wm_changes(struct intel_atomic_state *state)
5215
{
5216 5217 5218 5219 5220
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5221
	int i;
5222

5223 5224 5225
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5226 5227
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5228 5229 5230 5231 5232
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5233 5234
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5235 5236
			const struct skl_ddb_entry *old, *new;

5237 5238
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5239 5240 5241 5242

			if (skl_ddb_entry_equal(old, new))
				continue;

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5273 5274
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5275
				      plane->base.base.id, plane->base.name,
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5312
				      plane->base.base.id, plane->base.name,
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5323 5324 5325 5326
		}
	}
}

V
Ville Syrjälä 已提交
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5343
static int
5344
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5345
{
V
Ville Syrjälä 已提交
5346
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5347
	int ret;
5348

5349 5350 5351 5352 5353 5354 5355
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5356
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5357
				       state->base.acquire_ctx);
5358 5359 5360
		if (ret)
			return ret;

5361
		state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5362 5363

		/*
5364
		 * We usually only initialize state->active_pipes if we
5365 5366 5367 5368
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5369
		if (!state->modeset)
5370
			state->active_pipes = dev_priv->active_pipes;
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5386
	if (state->active_pipe_changes || state->modeset) {
5387
		state->wm_results.dirty_pipes = INTEL_INFO(dev_priv)->pipe_mask;
5388

V
Ville Syrjälä 已提交
5389 5390 5391
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5392 5393 5394 5395 5396
	}

	return 0;
}

5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5441
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5457
static int
5458
skl_compute_wm(struct intel_atomic_state *state)
5459
{
5460
	struct intel_crtc *crtc;
5461
	struct intel_crtc_state *new_crtc_state;
5462 5463
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5464 5465
	int ret, i;

5466 5467 5468
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5469 5470
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5471 5472
		return ret;

5473 5474
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5475
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5476 5477 5478
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5479
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5480 5481
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5482 5483 5484
		if (ret)
			return ret;

5485
		ret = skl_wm_add_affected_planes(state, crtc);
5486 5487 5488
		if (ret)
			return ret;

5489 5490 5491
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5492
			results->dirty_pipes |= BIT(crtc->pipe);
5493 5494
	}

5495 5496 5497 5498
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5499
	skl_print_wm_changes(state);
5500

5501 5502 5503
	return 0;
}

5504
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5505
				      struct intel_crtc *crtc)
5506
{
5507 5508 5509 5510
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5511
	enum pipe pipe = crtc->pipe;
5512

5513
	if ((state->wm_results.dirty_pipes & BIT(crtc->pipe)) == 0)
5514
		return;
5515 5516 5517 5518

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5519
static void skl_initial_wm(struct intel_atomic_state *state,
5520
			   struct intel_crtc *crtc)
5521
{
5522
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5523 5524
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5525
	struct skl_ddb_values *results = &state->wm_results;
5526

5527
	if ((results->dirty_pipes & BIT(crtc->pipe)) == 0)
5528 5529
		return;

5530
	mutex_lock(&dev_priv->wm.wm_mutex);
5531

5532
	if (crtc_state->uapi.active_changed)
5533
		skl_atomic_update_crtc_wm(state, crtc);
5534

5535
	mutex_unlock(&dev_priv->wm.wm_mutex);
5536 5537
}

5538
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5539 5540 5541 5542 5543
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5544
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5556
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5557
{
5558
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5559
	struct ilk_wm_maximums max;
5560
	struct intel_wm_config config = {};
5561
	struct ilk_wm_values results = {};
5562
	enum intel_ddb_partitioning partitioning;
5563

5564
	ilk_compute_wm_config(dev_priv, &config);
5565

5566 5567
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5568 5569

	/* 5/6 split only in single pipe config on IVB+ */
5570
	if (INTEL_GEN(dev_priv) >= 7 &&
5571
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5572 5573
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5574

5575
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5576
	} else {
5577
		best_lp_wm = &lp_wm_1_2;
5578 5579
	}

5580
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5581
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5582

5583
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5584

5585
	ilk_write_wm_values(dev_priv, &results);
5586 5587
}

5588
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5589
				   struct intel_crtc *crtc)
5590
{
5591 5592 5593
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5594

5595
	mutex_lock(&dev_priv->wm.wm_mutex);
5596
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5597 5598 5599
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5600

5601
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5602
				    struct intel_crtc *crtc)
5603
{
5604 5605 5606
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5607 5608 5609

	if (!crtc_state->wm.need_postvbl_update)
		return;
5610

5611
	mutex_lock(&dev_priv->wm.wm_mutex);
5612 5613
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5614
	mutex_unlock(&dev_priv->wm.wm_mutex);
5615 5616
}

5617
static inline void skl_wm_level_from_reg_val(u32 val,
5618
					     struct skl_wm_level *level)
5619
{
5620
	level->plane_en = val & PLANE_WM_EN;
5621
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5622 5623 5624
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5625 5626
}

5627
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5628
			      struct skl_pipe_wm *out)
5629
{
5630 5631
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5632 5633
	int level, max_level;
	enum plane_id plane_id;
5634
	u32 val;
5635

5636
	max_level = ilk_wm_max_level(dev_priv);
5637

5638
	for_each_plane_id_on_crtc(crtc, plane_id) {
5639
		struct skl_plane_wm *wm = &out->planes[plane_id];
5640

5641
		for (level = 0; level <= max_level; level++) {
5642 5643
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5644 5645
			else
				val = I915_READ(CUR_WM(pipe, level));
5646

5647
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5648 5649
		}

5650 5651
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5652 5653 5654 5655
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5656 5657
	}

5658
	if (!crtc->active)
5659
		return;
5660

5661
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5662 5663
}

5664
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5665
{
5666
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5667
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5668
	struct intel_crtc *crtc;
5669
	struct intel_crtc_state *crtc_state;
5670

5671
	skl_ddb_get_hw_state(dev_priv, ddb);
5672
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5673
		crtc_state = to_intel_crtc_state(crtc->base.state);
5674

5675
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5676

5677
		if (crtc->active)
5678
			hw->dirty_pipes |= BIT(crtc->pipe);
5679
	}
5680

5681
	if (dev_priv->active_pipes) {
5682 5683 5684
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5685 5686
}

5687
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5688
{
5689
	struct drm_device *dev = crtc->base.dev;
5690
	struct drm_i915_private *dev_priv = to_i915(dev);
5691
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5692 5693
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5694
	enum pipe pipe = crtc->pipe;
5695
	static const i915_reg_t wm0_pipe_reg[] = {
5696 5697 5698 5699 5700 5701
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5702
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5703
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5704

5705 5706
	memset(active, 0, sizeof(*active));

5707
	active->pipe_enabled = crtc->active;
5708 5709

	if (active->pipe_enabled) {
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5724
		int level, max_level = ilk_wm_max_level(dev_priv);
5725 5726 5727 5728 5729 5730 5731 5732 5733

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5734

5735
	crtc->wm.active.ilk = *active;
5736 5737
}

5738 5739 5740 5741 5742
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5743 5744 5745
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5746
	u32 tmp;
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5769 5770 5771 5772
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5773
	u32 tmp;
5774 5775 5776 5777

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5778
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5779
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5780
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5781
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5782
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5783
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5784
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5785 5786 5787 5788 5789
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5790 5791 5792
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5793 5794

	tmp = I915_READ(DSPFW2);
5795 5796 5797
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5798 5799 5800 5801 5802 5803

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5804 5805
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5806 5807

		tmp = I915_READ(DSPFW8_CHV);
5808 5809
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5810 5811

		tmp = I915_READ(DSPFW9_CHV);
5812 5813
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5814 5815 5816

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5817 5818 5819 5820 5821 5822 5823 5824 5825
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5826 5827
	} else {
		tmp = I915_READ(DSPFW7);
5828 5829
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5830 5831 5832

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5833 5834 5835 5836 5837 5838
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5839 5840 5841 5842 5843 5844
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5845
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5846 5847 5848 5849 5850 5851 5852 5853
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5854
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

5947
		if (plane_state->uapi.visible)
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5985
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
5986 5987
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5988
	struct intel_crtc *crtc;
5989 5990 5991 5992 5993 5994 5995 5996
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5997
		vlv_punit_get(dev_priv);
5998

5999
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6000 6001 6002
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6003 6004 6005 6006 6007 6008 6009 6010 6011
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6012
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6026

6027
		vlv_punit_put(dev_priv);
6028 6029
	}

6030
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6046
			struct g4x_pipe_wm *raw =
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6068
		crtc_state->wm.vlv.intermediate = *active;
6069

6070
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6071 6072 6073 6074 6075
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6076
	}
6077 6078 6079 6080 6081

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6102
		if (plane_state->uapi.visible)
6103 6104 6105
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6106
			struct g4x_pipe_wm *raw =
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6147
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6148
{
6149
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6150
	struct intel_crtc *crtc;
6151

6152 6153
	ilk_init_lp_watermarks(dev_priv);

6154
	for_each_intel_crtc(&dev_priv->drm, crtc)
6155 6156 6157 6158 6159 6160 6161
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6162
	if (INTEL_GEN(dev_priv) >= 7) {
6163 6164 6165
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6166

6167
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6168 6169
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6170
	else if (IS_IVYBRIDGE(dev_priv))
6171 6172
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6173 6174 6175 6176 6177

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6178 6179
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6180
 * @crtc: the #intel_crtc on which to compute the WM
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6211
void intel_update_watermarks(struct intel_crtc *crtc)
6212
{
6213
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6214 6215

	if (dev_priv->display.update_wm)
6216
		dev_priv->display.update_wm(crtc);
6217 6218
}

6219 6220 6221 6222
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6223 6224 6225
	if (!HAS_IPC(dev_priv))
		return;

6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6249 6250 6251 6252 6253
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6254
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6255

6256 6257 6258
	intel_enable_ipc(dev_priv);
}

6259 6260 6261 6262 6263 6264 6265 6266 6267
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6268

6269
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6270
{
6271
	enum pipe pipe;
6272

6273 6274 6275 6276
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6277

6278 6279
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6280 6281 6282
	}
}

6283
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6284
{
6285
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6286

6287 6288 6289 6290 6291 6292 6293
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6294

6295 6296 6297 6298 6299
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6300

6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6315 6316

	/*
6317 6318 6319 6320 6321
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6322
	 */
6323 6324 6325 6326 6327 6328 6329 6330 6331
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6332

6333
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6334

6335 6336 6337 6338 6339 6340
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6341

6342 6343 6344
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6345

6346 6347
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6348

6349
	g4x_disable_trickle_feed(dev_priv);
6350

6351
	ibx_init_clock_gating(dev_priv);
6352 6353
}

6354
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6355
{
6356 6357
	enum pipe pipe;
	u32 val;
6358

6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6387 6388
}

6389
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6390
{
6391
	u32 tmp;
6392

6393 6394 6395 6396
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6397 6398
}

6399
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6400
{
6401
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6402

6403
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6404

6405 6406 6407
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6408

6409 6410 6411
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6412

6413 6414
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6415

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6426

6427 6428
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6429

6430 6431 6432 6433
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6434

6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6447
	 */
6448 6449 6450
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6451

6452 6453 6454
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6455

6456 6457 6458 6459 6460 6461 6462
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6463

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6485

6486
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6487

6488
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6489

6490
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6491 6492
}

6493
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6494
{
6495
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6496

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6507

6508
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6509 6510
}

6511
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6512
{
6513 6514 6515
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6516
	 */
6517
	if (HAS_PCH_LPT_LP(dev_priv))
6518 6519 6520
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6521 6522

	/* WADPOClockGatingDisable:hsw */
6523 6524
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6525
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6526 6527
}

6528
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6529
{
6530
	if (HAS_PCH_LPT_LP(dev_priv)) {
6531
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6532 6533 6534 6535 6536 6537

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6538 6539 6540 6541 6542
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6543
	u32 val;
6544 6545 6546 6547 6548

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6549 6550 6551 6552 6553
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6564 6565 6566 6567 6568
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6569 6570 6571 6572

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
6573 6574
}

6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
}

6591 6592 6593 6594 6595
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6596
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6597 6598
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6599 6600
}

6601
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6602
{
6603
	u32 val;
6604 6605
	cnp_init_clock_gating(dev_priv);

6606 6607 6608 6609
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6610 6611 6612 6613 6614 6615 6616 6617
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6618 6619 6620
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
6621 6622
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6623 6624
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6625

R
Rodrigo Vivi 已提交
6626 6627 6628 6629 6630
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6631
	/* WaDisableVFclkgate:cnl */
6632
	/* WaVFUnitClockGatingDisable:cnl */
6633 6634 6635
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6636 6637
}

6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

6648
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6649
{
6650
	gen9_init_clock_gating(dev_priv);
6651 6652 6653 6654 6655

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6656 6657 6658 6659 6660

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6661

6662
	/* WaFbcNukeOnHostModify:kbl */
6663 6664
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6665 6666
}

6667
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6668
{
6669
	gen9_init_clock_gating(dev_priv);
6670 6671 6672 6673

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
6674 6675 6676 6677

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6678 6679
}

6680
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
6681
{
6682
	enum pipe pipe;
B
Ben Widawsky 已提交
6683

6684
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6685
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6686

6687
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6688 6689 6690
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6691
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6692
	for_each_pipe(dev_priv, pipe) {
6693
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6694
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6695
			   BDW_DPRS_MASK_VBLANK_SRD);
6696
	}
6697

6698 6699 6700 6701 6702
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6703

6704 6705
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6706 6707 6708 6709

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6710

6711 6712
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6713

6714 6715 6716 6717
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

6718
	lpt_init_clock_gating(dev_priv);
6719 6720 6721 6722 6723 6724 6725 6726

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
6727 6728
}

6729
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6730
{
6731 6732 6733 6734 6735
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6736
	/* This is required by WaCatErrorRejectionIssue:hsw */
6737 6738 6739 6740
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6741 6742 6743
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6744

6745 6746 6747
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6748 6749 6750 6751
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6752
	/* WaDisable4x2SubspanOptimization:hsw */
6753 6754
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6755

6756 6757 6758
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6759 6760 6761 6762
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6763 6764
	 */
	I915_WRITE(GEN7_GT_MODE,
6765
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6766

6767 6768 6769 6770
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6771
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6772 6773
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6774
	lpt_init_clock_gating(dev_priv);
6775 6776
}

6777
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
6778
{
6779
	u32 snpcr;
6780

6781
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6782

6783
	/* WaDisableEarlyCull:ivb */
6784 6785 6786
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6787
	/* WaDisableBackToBackFlipFix:ivb */
6788 6789 6790 6791
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6792
	/* WaDisablePSDDualDispatchEnable:ivb */
6793
	if (IS_IVB_GT1(dev_priv))
6794 6795 6796
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6797 6798 6799
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6800
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6801 6802 6803
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6804
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6805 6806 6807
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6808
		   GEN7_WA_L3_CHICKEN_MODE);
6809
	if (IS_IVB_GT1(dev_priv))
6810 6811
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6812 6813 6814 6815
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6816 6817
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6818
	}
6819

6820
	/* WaForceL3Serialization:ivb */
6821 6822 6823
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6824
	/*
6825
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6826
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6827 6828
	 */
	I915_WRITE(GEN6_UCGCTL2,
6829
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6830

6831
	/* This is required by WaCatErrorRejectionIssue:ivb */
6832 6833 6834 6835
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6836
	g4x_disable_trickle_feed(dev_priv);
6837 6838

	gen7_setup_fixed_func_scheduler(dev_priv);
6839

6840 6841 6842 6843 6844
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6845

6846
	/* WaDisable4x2SubspanOptimization:ivb */
6847 6848
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6849

6850 6851 6852
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6853 6854 6855 6856
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6857 6858
	 */
	I915_WRITE(GEN7_GT_MODE,
6859
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6860

6861 6862 6863 6864
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6865

6866
	if (!HAS_PCH_NOP(dev_priv))
6867
		cpt_init_clock_gating(dev_priv);
6868

6869
	gen6_check_mch_setup(dev_priv);
6870 6871
}

6872
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
6873
{
6874
	/* WaDisableEarlyCull:vlv */
6875 6876 6877
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6878
	/* WaDisableBackToBackFlipFix:vlv */
6879 6880 6881 6882
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6883
	/* WaPsdDispatchEnable:vlv */
6884
	/* WaDisablePSDDualDispatchEnable:vlv */
6885
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6886 6887
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6888

6889 6890 6891
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6892
	/* WaForceL3Serialization:vlv */
6893 6894 6895
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6896
	/* WaDisableDopClockGating:vlv */
6897 6898 6899
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6900
	/* This is required by WaCatErrorRejectionIssue:vlv */
6901 6902 6903 6904
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6905 6906
	gen7_setup_fixed_func_scheduler(dev_priv);

6907
	/*
6908
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6909
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6910 6911
	 */
	I915_WRITE(GEN6_UCGCTL2,
6912
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6913

6914 6915 6916 6917 6918
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6919

6920 6921 6922 6923
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6924 6925
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6926

6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6938 6939 6940 6941 6942 6943
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6944
	/*
6945
	 * WaDisableVLVClockGating_VBIIssue:vlv
6946 6947 6948
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6949
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6950 6951
}

6952
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
6953
{
6954 6955 6956 6957 6958
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6959 6960 6961 6962

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6963 6964 6965 6966

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6967 6968 6969 6970

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6971

6972 6973 6974 6975 6976 6977
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
6978 6979
}

6980
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
6981
{
6982
	u32 dspclk_gate;
6983 6984 6985 6986 6987 6988 6989 6990 6991

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
6992
	if (IS_GM45(dev_priv))
6993 6994
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6995 6996 6997 6998

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6999

7000 7001 7002
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7003
	g4x_disable_trickle_feed(dev_priv);
7004 7005
}

7006
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7007
{
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7018 7019

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7020 7021 7022
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7023 7024
}

7025
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7026 7027 7028 7029 7030 7031 7032
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7033 7034
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7035 7036 7037

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7038 7039
}

7040
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7041 7042 7043 7044 7045 7046
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7047

7048
	if (IS_PINEVIEW(dev_priv))
7049
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7050 7051 7052

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7053 7054

	/* interrupts should cause a wake up from C3 */
7055
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7056 7057 7058

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7059 7060 7061

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7062 7063
}

7064
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7065 7066
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7067 7068 7069 7070

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7071 7072 7073

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7074 7075
}

7076
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7077
{
7078 7079 7080
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7081 7082
}

7083
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7084
{
7085
	dev_priv->display.init_clock_gating(dev_priv);
7086 7087
}

7088
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7089
{
7090 7091
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7092 7093
}

7094
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7110
	if (IS_GEN(dev_priv, 12))
7111
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7112
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7113
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7114
	else if (IS_CANNONLAKE(dev_priv))
7115
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7116 7117
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7118
	else if (IS_SKYLAKE(dev_priv))
7119
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7120
	else if (IS_KABYLAKE(dev_priv))
7121
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7122
	else if (IS_BROXTON(dev_priv))
7123
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7124 7125
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7126
	else if (IS_BROADWELL(dev_priv))
7127
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7128
	else if (IS_CHERRYVIEW(dev_priv))
7129
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7130
	else if (IS_HASWELL(dev_priv))
7131
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7132
	else if (IS_IVYBRIDGE(dev_priv))
7133
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7134
	else if (IS_VALLEYVIEW(dev_priv))
7135
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7136
	else if (IS_GEN(dev_priv, 6))
7137
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7138
	else if (IS_GEN(dev_priv, 5))
7139
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7140 7141
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7142
	else if (IS_I965GM(dev_priv))
7143
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7144
	else if (IS_I965G(dev_priv))
7145
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7146
	else if (IS_GEN(dev_priv, 3))
7147 7148 7149
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7150
	else if (IS_GEN(dev_priv, 2))
7151 7152 7153 7154 7155 7156 7157
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7158
/* Set up chip specific power management-related functions */
7159
void intel_init_pm(struct drm_i915_private *dev_priv)
7160
{
7161
	/* For cxsr */
7162
	if (IS_PINEVIEW(dev_priv))
7163
		i915_pineview_get_mem_freq(dev_priv);
7164
	else if (IS_GEN(dev_priv, 5))
7165
		i915_ironlake_get_mem_freq(dev_priv);
7166

7167 7168 7169
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7170
	/* For FIFO watermark updates */
7171
	if (INTEL_GEN(dev_priv) >= 9) {
7172
		skl_setup_wm_latency(dev_priv);
7173
		dev_priv->display.initial_watermarks = skl_initial_wm;
7174
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7175
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7176
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7177
		ilk_setup_wm_latency(dev_priv);
7178

7179
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7180
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7181
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7182
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7183
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7184 7185 7186 7187 7188 7189
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7190 7191 7192 7193
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7194
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7195
		vlv_setup_wm_latency(dev_priv);
7196
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7197
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7198
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7199
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7200
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7201 7202 7203 7204 7205 7206
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7207
	} else if (IS_PINEVIEW(dev_priv)) {
7208
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7209 7210 7211 7212 7213 7214 7215 7216 7217
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7218
			intel_set_memory_cxsr(dev_priv, false);
7219 7220 7221
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7222
	} else if (IS_GEN(dev_priv, 4)) {
7223
		dev_priv->display.update_wm = i965_update_wm;
7224
	} else if (IS_GEN(dev_priv, 3)) {
7225 7226
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7227
	} else if (IS_GEN(dev_priv, 2)) {
7228
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7229
			dev_priv->display.update_wm = i845_update_wm;
7230
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7231 7232
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7233
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7234 7235 7236
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7237 7238 7239
	}
}

7240
void intel_pm_setup(struct drm_i915_private *dev_priv)
7241
{
7242 7243
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7244
}