intel_pm.c 275.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

56
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
57
{
58 59 60
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
61
		 * Display WA #0390: skl,kbl
62 63 64 65 66 67 68 69 70
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

71
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72 73 74
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

75
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76 77
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
78

79 80
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81 82 83
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
84

85
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86 87
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
88 89 90 91 92 93

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
94 95
}

96
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
97
{
98
	gen9_init_clock_gating(dev_priv);
99

100 101 102 103
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

104 105
	/*
	 * FIXME:
106
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107 108
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
110 111 112 113 114

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
115 116
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118
}

119 120 121 122 123 124 125 126 127 128 129
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
130 131 132 133 134 135 136 137 138 139

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

140 141
}

142
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

180
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

207
	dev_priv->ips.r_t = dev_priv->mem_freq;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
239
		dev_priv->ips.c_m = 0;
240
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241
		dev_priv->ips.c_m = 1;
242
	} else {
243
		dev_priv->ips.c_m = 2;
244 245 246
	}
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

285 286
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

309 310 311 312
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

313
	mutex_lock(&dev_priv->pcu_lock);
314 315 316 317 318 319 320 321 322 323 324 325 326 327

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

328
	mutex_unlock(&dev_priv->pcu_lock);
329 330
}

331 332 333 334
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

335
	mutex_lock(&dev_priv->pcu_lock);
336 337 338 339 340 341 342 343

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

344
	mutex_unlock(&dev_priv->pcu_lock);
345 346
}

347 348 349
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

350
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
351
{
352
	bool was_enabled;
353
	u32 val;
354

355
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358
		POSTING_READ(FW_BLC_SELF_VLV);
359
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362
		POSTING_READ(FW_BLC_SELF);
363
	} else if (IS_PINEVIEW(dev_priv)) {
364 365 366 367 368 369
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
370
		I915_WRITE(DSPFW3, val);
371
		POSTING_READ(DSPFW3);
372
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374 375 376
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
377
		POSTING_READ(FW_BLC_SELF);
378
	} else if (IS_I915GM(dev_priv)) {
379 380 381 382 383
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
384
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385 386 387
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
388
		POSTING_READ(INSTPM);
389
	} else {
390
		return false;
391
	}
392

393 394
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

395 396 397 398 399
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
400 401
}

V
Ville Syrjälä 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
439
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
440
{
441 442
	bool ret;

443
	mutex_lock(&dev_priv->wm.wm_mutex);
444
	ret = _intel_set_memory_cxsr(dev_priv, enable);
445 446 447 448
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
449
	mutex_unlock(&dev_priv->wm.wm_mutex);
450 451

	return ret;
452
}
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
468
static const int pessimal_latency_ns = 5000;
469

470 471 472
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

473
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
474
{
475
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478 479
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
480

481
	switch (pipe) {
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
502 503
		MISSING_CASE(pipe);
		return;
504 505
	}

506 507 508 509
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
510 511
}

512 513
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
514 515 516 517 518
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
519
	if (i9xx_plane == PLANE_B)
520 521
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

522 523
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
524 525 526 527

	return size;
}

528 529
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
530 531 532 533 534
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
535
	if (i9xx_plane == PLANE_B)
536 537 538
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

539 540
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
541 542 543 544

	return size;
}

545 546
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
547 548 549 550 551 552 553
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

554 555
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
556 557 558 559 560 561

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
562 563 564 565 566
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
567 568
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 575
};
static const struct intel_watermark_params pineview_cursor_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 582
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583 584 585 586 587
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 589
};
static const struct intel_watermark_params i965_cursor_wm_info = {
590 591 592 593 594
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
595 596
};
static const struct intel_watermark_params i945_wm_info = {
597 598 599 600 601
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
602 603
};
static const struct intel_watermark_params i915_wm_info = {
604 605 606 607 608
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
609
};
610
static const struct intel_watermark_params i830_a_wm_info = {
611 612 613 614 615
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
616
};
617 618 619 620 621 622 623
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
624
static const struct intel_watermark_params i845_wm_info = {
625 626 627 628 629
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
630 631
};

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

728 729
/**
 * intel_calculate_wm - calculate watermark level
730
 * @pixel_rate: pixel clock
731
 * @wm: chip FIFO params
732
 * @fifo_size: size of the FIFO buffer
733
 * @cpp: bytes per pixel
734 735 736 737 738 739 740 741 742 743 744 745 746
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
747 748 749 750
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
751
{
752
	int entries, wm_size;
753 754 755 756 757 758 759

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
760 761 762 763 764
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
765

766 767
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
768 769

	/* Don't promote wm_size to unsigned... */
770
	if (wm_size > wm->max_wm)
771 772 773
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
774 775 776 777 778 779 780 781 782 783 784

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

785 786 787
	return wm_size;
}

788 789 790 791 792 793 794 795 796 797
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

798 799 800 801 802
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

826
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
827
{
828
	struct intel_crtc *crtc, *enabled = NULL;
829

830
	for_each_intel_crtc(&dev_priv->drm, crtc) {
831
		if (intel_crtc_active(crtc)) {
832 833 834 835 836 837 838 839 840
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

841
static void pineview_update_wm(struct intel_crtc *unused_crtc)
842
{
843
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
844
	struct intel_crtc *crtc;
845 846
	const struct cxsr_latency *latency;
	u32 reg;
847
	unsigned int wm;
848

849 850 851 852
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
853 854
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
855
		intel_set_memory_cxsr(dev_priv, false);
856 857 858
		return;
	}

859
	crtc = single_enabled_crtc(dev_priv);
860
	if (crtc) {
861 862 863 864
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
865
		int cpp = fb->format->cpp[0];
866
		int clock = adjusted_mode->crtc_clock;
867 868 869 870

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
871
					cpp, latency->display_sr);
872 873
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
874
		reg |= FW_WM(wm, SR);
875 876 877 878 879 880
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
881
					4, latency->cursor_sr);
882 883
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
884
		reg |= FW_WM(wm, CURSOR_SR);
885 886 887 888 889
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
890
					cpp, latency->display_hpll_disable);
891 892
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
893
		reg |= FW_WM(wm, HPLL_SR);
894 895 896 897 898
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
899
					4, latency->cursor_hpll_disable);
900 901
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
902
		reg |= FW_WM(wm, HPLL_CURSOR);
903 904 905
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

906
		intel_set_memory_cxsr(dev_priv, true);
907
	} else {
908
		intel_set_memory_cxsr(dev_priv, false);
909 910 911
	}
}

912 913 914 915 916 917 918 919 920 921
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
922
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
923 924 925 926 927 928
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

929 930
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
931
{
932 933 934 935 936
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
954

955
	POSTING_READ(DSPFW1);
956 957
}

958 959 960
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

961
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
962 963
				const struct vlv_wm_values *wm)
{
964 965 966
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
967 968
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

969 970 971 972 973 974
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
975

976 977 978 979 980 981 982 983 984 985 986
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

987
	I915_WRITE(DSPFW1,
988
		   FW_WM(wm->sr.plane, SR) |
989 990 991
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
992
	I915_WRITE(DSPFW2,
993 994 995
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
996
	I915_WRITE(DSPFW3,
997
		   FW_WM(wm->sr.cursor, CURSOR_SR));
998 999 1000

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1001 1002
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003
		I915_WRITE(DSPFW8_CHV,
1004 1005
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006
		I915_WRITE(DSPFW9_CHV,
1007 1008
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1009
		I915_WRITE(DSPHOWM,
1010
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1011 1012 1013 1014 1015 1016 1017 1018 1019
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1020 1021
	} else {
		I915_WRITE(DSPFW7,
1022 1023
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1024
		I915_WRITE(DSPHOWM,
1025
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1026 1027 1028 1029 1030 1031
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1032 1033 1034
	}

	POSTING_READ(DSPFW1);
1035 1036
}

1037 1038
#undef FW_WM_VLV

1039 1040 1041 1042 1043
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1045

1046
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1099 1100
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1139
		unsigned int small, large;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1152
	return min_t(unsigned int, wm, USHRT_MAX);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1321 1322
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1323 1324 1325 1326 1327
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1328 1329 1330 1331
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1332 1333 1334
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1335
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
1403
				       struct intel_crtc_state *new_crtc_state)
1404
{
1405 1406 1407 1408 1409 1410 1411
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 1413
	enum plane_id plane_id;

1414 1415 1416 1417 1418 1419 1420 1421
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1422
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423
		!new_crtc_state->disable_cxsr;
1424
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425
		!new_crtc_state->disable_cxsr;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1467
out:
1468 1469 1470 1471 1472
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473
		new_crtc_state->wm.need_postvbl_update = true;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1570 1571
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 1573
				   unsigned int htotal,
				   unsigned int width,
1574
				   unsigned int cpp,
1575 1576 1577 1578
				   unsigned int latency)
{
	unsigned int ret;

1579 1580
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1581 1582 1583 1584 1585
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1586
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 1588 1589 1590
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1591 1592
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1593 1594 1595
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596 1597

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 1599 1600
	}
}

1601 1602
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1603 1604
				     int level)
{
1605
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 1608
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1609
	unsigned int clock, htotal, cpp, width, wm;
1610 1611 1612 1613

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1614
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 1616
		return 0;

1617
	cpp = plane_state->base.fb->format->cpp[0];
1618 1619 1620
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1621

1622
	if (plane->id == PLANE_CURSOR) {
1623 1624 1625 1626 1627 1628 1629 1630
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1631
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 1633 1634
				    dev_priv->wm.pri_latency[level] * 10);
	}

1635
	return min_t(unsigned int, wm, USHRT_MAX);
1636 1637
}

1638 1639 1640 1641 1642 1643
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1644
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645
{
1646
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647
	const struct g4x_pipe_wm *raw =
1648
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 1651 1652
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1653
	int fifo_extra, fifo_left = fifo_size;
1654
	int sprite0_fifo_extra = 0;
1655 1656
	unsigned int total_rate;
	enum plane_id plane_id;
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1669 1670
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1671 1672
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1673

1674 1675
	if (total_rate > fifo_size)
		return -EINVAL;
1676

1677 1678
	if (total_rate == 0)
		total_rate = 1;
1679

1680
	for_each_plane_id_on_crtc(crtc, plane_id) {
1681 1682
		unsigned int rate;

1683 1684
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1685 1686 1687
			continue;
		}

1688 1689 1690
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1691 1692
	}

1693 1694 1695
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1696 1697 1698
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699 1700

	/* spread the remainder evenly */
1701
	for_each_plane_id_on_crtc(crtc, plane_id) {
1702 1703 1704 1705 1706
		int plane_extra;

		if (fifo_left == 0)
			break;

1707
		if ((active_planes & BIT(plane_id)) == 0)
1708 1709 1710
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1711
		fifo_state->plane[plane_id] += plane_extra;
1712 1713 1714
		fifo_left -= plane_extra;
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1724 1725
}

1726 1727 1728 1729 1730 1731
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1732
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1743 1744 1745 1746 1747 1748 1749 1750
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1751 1752 1753 1754
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1755
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756
				 int level, enum plane_id plane_id, u16 value)
1757
{
1758
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759
	int num_levels = intel_wm_num_levels(dev_priv);
1760
	bool dirty = false;
1761

1762
	for (; level < num_levels; level++) {
1763
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764

1765
		dirty |= raw->plane[plane_id] != value;
1766
		raw->plane[plane_id] = value;
1767
	}
1768 1769

	return dirty;
1770 1771
}

1772 1773
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1774
{
1775 1776
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1777
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778
	int level;
1779
	bool dirty = false;
1780

1781
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 1783
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1784
	}
1785

1786
	for (level = 0; level < num_levels; level++) {
1787
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 1789
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790

1791 1792
		if (wm > max_wm)
			break;
1793

1794
		dirty |= raw->plane[plane_id] != wm;
1795 1796
		raw->plane[plane_id] = wm;
	}
1797

1798
	/* mark all higher levels as invalid */
1799
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800

1801 1802
out:
	if (dirty)
1803
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 1805 1806 1807 1808 1809
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1810
}
1811

1812 1813
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1814
{
1815
	const struct g4x_pipe_wm *raw =
1816 1817 1818
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1819

1820 1821
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1822

1823
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824
{
1825 1826 1827 1828
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1842
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 1844
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1845 1846 1847
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1848
	unsigned int dirty = 0;
1849

1850 1851 1852 1853
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1854 1855
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1856

1857
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1876
			intel_atomic_get_old_crtc_state(state, crtc);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1888
	}
1889

1890
	/* initially allow all levels */
1891
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 1893 1894 1895 1896
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1897
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898

1899
	for (level = 0; level < wm_state->num_levels; level++) {
1900
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902

1903
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904
			break;
1905

1906 1907 1908 1909 1910 1911 1912 1913
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914
						 raw->plane[PLANE_SPRITE0],
1915 1916
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1917

1918 1919 1920
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1921 1922
	}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1933 1934
}

1935 1936 1937
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1938 1939
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1940
{
1941
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 1944
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1945
	int sprite0_start, sprite1_start, fifo_size;
1946

1947 1948 1949
	if (!crtc_state->fifo_changed)
		return;

1950 1951 1952
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953

1954 1955
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1956

1957 1958
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1969

1970 1971 1972
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1973 1974
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1986 1987
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1988 1989
		break;
	case PIPE_B:
1990 1991
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2003 2004
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2005 2006
		break;
	case PIPE_C:
2007 2008
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2020 2021
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2022 2023 2024 2025
		break;
	default:
		break;
	}
2026

2027
	POSTING_READ_FW(DSPARB);
2028

2029
	spin_unlock(&dev_priv->uncore.lock);
2030 2031 2032 2033
}

#undef VLV_FIFO

2034 2035
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
2036
				       struct intel_crtc_state *new_crtc_state)
2037
{
2038 2039 2040 2041 2042 2043 2044
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2045 2046
	int level;

2047 2048 2049 2050 2051 2052 2053
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2054
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056
		!new_crtc_state->disable_cxsr;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2075
out:
2076 2077 2078 2079
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2080
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081
		new_crtc_state->wm.need_postvbl_update = true;
2082 2083 2084 2085

	return 0;
}

2086
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087 2088 2089 2090 2091
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2092
	wm->level = dev_priv->wm.max_level;
2093 2094
	wm->cxsr = true;

2095
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2096
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2111 2112 2113
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2114
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2115
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116 2117 2118
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2119
		if (crtc->active && wm->cxsr)
2120 2121
			wm->sr = wm_state->sr[wm->level];

2122 2123 2124 2125
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2126 2127 2128
	}
}

2129
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2130
{
2131 2132
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2133

2134
	vlv_merge_wm(dev_priv, &new_wm);
2135

2136
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2137 2138
		return;

2139
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140 2141
		chv_set_memory_dvfs(dev_priv, false);

2142
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143 2144
		chv_set_memory_pm5(dev_priv, false);

2145
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146
		_intel_set_memory_cxsr(dev_priv, false);
2147

2148
	vlv_write_wm_values(dev_priv, &new_wm);
2149

2150
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151
		_intel_set_memory_cxsr(dev_priv, true);
2152

2153
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154 2155
		chv_set_memory_pm5(dev_priv, true);

2156
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157 2158
		chv_set_memory_dvfs(dev_priv, true);

2159
	*old_wm = new_wm;
2160 2161
}

2162 2163 2164 2165 2166 2167 2168
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185 2186 2187 2188
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2189
static void i965_update_wm(struct intel_crtc *unused_crtc)
2190
{
2191
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192
	struct intel_crtc *crtc;
2193 2194
	int srwm = 1;
	int cursor_sr = 16;
2195
	bool cxsr_enabled;
2196 2197

	/* Calc sr entries for one plane configs */
2198
	crtc = single_enabled_crtc(dev_priv);
2199 2200 2201
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2202 2203 2204 2205
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2206
		int clock = adjusted_mode->crtc_clock;
2207
		int htotal = adjusted_mode->crtc_htotal;
2208
		int hdisplay = crtc->config->pipe_src_w;
2209
		int cpp = fb->format->cpp[0];
2210 2211
		int entries;

2212 2213
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2214 2215 2216 2217 2218 2219 2220 2221
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2222 2223 2224
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2225
		entries = DIV_ROUND_UP(entries,
2226 2227
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2228

2229
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230 2231 2232 2233 2234 2235
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2236
		cxsr_enabled = true;
2237
	} else {
2238
		cxsr_enabled = false;
2239
		/* Turn off self refresh if both pipes are enabled */
2240
		intel_set_memory_cxsr(dev_priv, false);
2241 2242 2243 2244 2245 2246
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2247 2248 2249 2250 2251 2252
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2253
	/* update cursor SR watermark */
2254
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2255 2256 2257

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2258 2259
}

2260 2261
#undef FW_WM

2262
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2263
{
2264
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265 2266 2267 2268 2269 2270
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2271
	struct intel_crtc *crtc, *enabled = NULL;
2272

2273
	if (IS_I945GM(dev_priv))
2274
		wm_info = &i945_wm_info;
2275
	else if (!IS_GEN2(dev_priv))
2276 2277
		wm_info = &i915_wm_info;
	else
2278
		wm_info = &i830_a_wm_info;
2279

2280 2281
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282 2283 2284 2285 2286 2287 2288
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2289
		if (IS_GEN2(dev_priv))
2290
			cpp = 4;
2291
		else
2292
			cpp = fb->format->cpp[0];
2293

2294
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295
					       wm_info, fifo_size, cpp,
2296
					       pessimal_latency_ns);
2297
		enabled = crtc;
2298
	} else {
2299
		planea_wm = fifo_size - wm_info->guard_size;
2300 2301 2302 2303
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2304
	if (IS_GEN2(dev_priv))
2305
		wm_info = &i830_bc_wm_info;
2306

2307 2308
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309 2310 2311 2312 2313 2314 2315
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2316
		if (IS_GEN2(dev_priv))
2317
			cpp = 4;
2318
		else
2319
			cpp = fb->format->cpp[0];
2320

2321
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322
					       wm_info, fifo_size, cpp,
2323
					       pessimal_latency_ns);
2324 2325 2326 2327
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2328
	} else {
2329
		planeb_wm = fifo_size - wm_info->guard_size;
2330 2331 2332
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2333 2334 2335

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2336
	if (IS_I915GM(dev_priv) && enabled) {
2337
		struct drm_i915_gem_object *obj;
2338

2339
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2340 2341

		/* self-refresh seems busted with untiled */
2342
		if (!i915_gem_object_is_tiled(obj))
2343 2344 2345
			enabled = NULL;
	}

2346 2347 2348 2349 2350 2351
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2352
	intel_set_memory_cxsr(dev_priv, false);
2353 2354

	/* Calc sr entries for one plane configs */
2355
	if (HAS_FW_BLC(dev_priv) && enabled) {
2356 2357
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2358 2359 2360 2361
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2362
		int clock = adjusted_mode->crtc_clock;
2363
		int htotal = adjusted_mode->crtc_htotal;
2364 2365
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2366 2367
		int entries;

2368
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2369
			cpp = 4;
2370
		else
2371
			cpp = fb->format->cpp[0];
2372

2373 2374
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2375 2376 2377 2378 2379 2380
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2381
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382 2383
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2384
		else
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2401 2402
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2403 2404
}

2405
static void i845_update_wm(struct intel_crtc *unused_crtc)
2406
{
2407
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408
	struct intel_crtc *crtc;
2409
	const struct drm_display_mode *adjusted_mode;
2410 2411 2412
	uint32_t fwater_lo;
	int planea_wm;

2413
	crtc = single_enabled_crtc(dev_priv);
2414 2415 2416
	if (crtc == NULL)
		return;

2417
	adjusted_mode = &crtc->config->base.adjusted_mode;
2418
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2419
				       &i845_wm_info,
2420
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421
				       4, pessimal_latency_ns);
2422 2423 2424 2425 2426 2427 2428 2429
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2430
/* latency must be in 0.1us units. */
2431 2432 2433
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2434
{
2435
	unsigned int ret;
2436

2437 2438
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2439 2440 2441 2442

	return ret;
}

2443
/* latency must be in 0.1us units. */
2444 2445 2446 2447 2448
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2449
{
2450
	unsigned int ret;
2451

2452 2453
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2454
	ret = DIV_ROUND_UP(ret, 64) + 2;
2455

2456 2457 2458
	return ret;
}

2459
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2460
			   uint8_t cpp)
2461
{
2462 2463 2464 2465 2466 2467
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2468
	if (WARN_ON(!cpp))
2469 2470 2471 2472
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2473
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2474 2475
}

2476
struct ilk_wm_maximums {
2477 2478 2479 2480 2481 2482
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2483 2484 2485 2486
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2487
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488
				   const struct intel_plane_state *pstate,
2489 2490
				   uint32_t mem_value,
				   bool is_lp)
2491
{
2492
	uint32_t method1, method2;
2493
	int cpp;
2494

2495
	if (!intel_wm_plane_visible(cstate, pstate))
2496 2497
		return 0;

2498
	cpp = pstate->base.fb->format->cpp[0];
2499

2500
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501 2502 2503 2504

	if (!is_lp)
		return method1;

2505
	method2 = ilk_wm_method2(cstate->pixel_rate,
2506
				 cstate->base.adjusted_mode.crtc_htotal,
2507
				 drm_rect_width(&pstate->base.dst),
2508
				 cpp, mem_value);
2509 2510

	return min(method1, method2);
2511 2512
}

2513 2514 2515 2516
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2517
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518
				   const struct intel_plane_state *pstate,
2519 2520 2521
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2522
	int cpp;
2523

2524
	if (!intel_wm_plane_visible(cstate, pstate))
2525 2526
		return 0;

2527
	cpp = pstate->base.fb->format->cpp[0];
2528

2529 2530
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2531
				 cstate->base.adjusted_mode.crtc_htotal,
2532
				 drm_rect_width(&pstate->base.dst),
2533
				 cpp, mem_value);
2534 2535 2536
	return min(method1, method2);
}

2537 2538 2539 2540
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2541
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542
				   const struct intel_plane_state *pstate,
2543 2544
				   uint32_t mem_value)
{
2545 2546
	int cpp;

2547
	if (!intel_wm_plane_visible(cstate, pstate))
2548 2549
		return 0;

2550 2551
	cpp = pstate->base.fb->format->cpp[0];

2552
	return ilk_wm_method2(cstate->pixel_rate,
2553
			      cstate->base.adjusted_mode.crtc_htotal,
2554
			      pstate->base.crtc_w, cpp, mem_value);
2555 2556
}

2557
/* Only for WM_LP. */
2558
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559
				   const struct intel_plane_state *pstate,
2560
				   uint32_t pri_val)
2561
{
2562
	int cpp;
2563

2564
	if (!intel_wm_plane_visible(cstate, pstate))
2565 2566
		return 0;

2567
	cpp = pstate->base.fb->format->cpp[0];
2568

2569
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2570 2571
}

2572 2573
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2574
{
2575
	if (INTEL_GEN(dev_priv) >= 8)
2576
		return 3072;
2577
	else if (INTEL_GEN(dev_priv) >= 7)
2578 2579 2580 2581 2582
		return 768;
	else
		return 512;
}

2583 2584 2585
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2586
{
2587
	if (INTEL_GEN(dev_priv) >= 8)
2588 2589
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2590
	else if (INTEL_GEN(dev_priv) >= 7)
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2601 2602
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2603
{
2604
	if (INTEL_GEN(dev_priv) >= 7)
2605 2606 2607 2608 2609
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2610
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2611
{
2612
	if (INTEL_GEN(dev_priv) >= 8)
2613 2614 2615 2616 2617
		return 31;
	else
		return 15;
}

2618 2619 2620
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2621
				     const struct intel_wm_config *config,
2622 2623 2624
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2625 2626
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627 2628

	/* if sprites aren't enabled, sprites get nothing */
2629
	if (is_sprite && !config->sprites_enabled)
2630 2631 2632
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2633
	if (level == 0 || config->num_pipes_active > 1) {
2634
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2635 2636 2637 2638 2639 2640

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2641
		if (INTEL_GEN(dev_priv) <= 6)
2642 2643 2644
			fifo_size /= 2;
	}

2645
	if (config->sprites_enabled) {
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2657
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658 2659 2660 2661
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2662 2663
				      int level,
				      const struct intel_wm_config *config)
2664 2665
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2666
	if (level > 0 && config->num_pipes_active > 1)
2667 2668 2669
		return 64;

	/* otherwise just report max that registers can hold */
2670
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2671 2672
}

2673
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2674 2675 2676
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2677
				    struct ilk_wm_maximums *max)
2678
{
2679 2680 2681
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2682
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2683 2684
}

2685
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686 2687 2688
					int level,
					struct ilk_wm_maximums *max)
{
2689 2690 2691 2692
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693 2694
}

2695
static bool ilk_validate_wm_level(int level,
2696
				  const struct ilk_wm_maximums *max,
2697
				  struct intel_wm_level *result)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2736
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737
				 const struct intel_crtc *intel_crtc,
2738
				 int level,
2739
				 struct intel_crtc_state *cstate,
2740 2741 2742
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2743
				 struct intel_wm_level *result)
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2768 2769 2770
	result->enable = true;
}

2771
static uint32_t
2772
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2773
{
2774 2775
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2776 2777
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2778
	u32 linetime, ips_linetime;
2779

2780 2781 2782 2783
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2784
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785
		return 0;
2786

2787 2788 2789
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2790 2791 2792
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793
					 intel_state->cdclk.logical.cdclk);
2794

2795 2796
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2797 2798
}

2799 2800
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2801
{
2802
	if (INTEL_GEN(dev_priv) >= 9) {
2803
		uint32_t val;
2804
		int ret, i;
2805
		int level, max_level = ilk_wm_max_level(dev_priv);
2806 2807 2808

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2809
		mutex_lock(&dev_priv->pcu_lock);
2810 2811 2812
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2813
		mutex_unlock(&dev_priv->pcu_lock);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2830
		mutex_lock(&dev_priv->pcu_lock);
2831 2832 2833
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2834
		mutex_unlock(&dev_priv->pcu_lock);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2861
		/*
2862
		 * WaWmMemoryReadLatency:skl+,glk
2863
		 *
2864
		 * punit doesn't take into account the read latency so we need
2865 2866
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2867
		 */
2868 2869 2870 2871 2872
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2873
				wm[level] += 2;
2874
			}
2875 2876
		}

2877
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878 2879 2880 2881 2882
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2883 2884 2885 2886
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2887
	} else if (INTEL_GEN(dev_priv) >= 6) {
2888 2889 2890 2891 2892 2893
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894
	} else if (INTEL_GEN(dev_priv) >= 5) {
2895 2896 2897 2898 2899 2900
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2901 2902
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2903 2904 2905
	}
}

2906 2907
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2908 2909
{
	/* ILK sprite LP0 latency is 1300 ns */
2910
	if (IS_GEN5(dev_priv))
2911 2912 2913
		wm[0] = 13;
}

2914 2915
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2916 2917
{
	/* ILK cursor LP0 latency is 1300 ns */
2918
	if (IS_GEN5(dev_priv))
2919 2920 2921
		wm[0] = 13;
}

2922
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2923 2924
{
	/* how many WM levels are we expecting */
2925
	if (INTEL_GEN(dev_priv) >= 9)
2926
		return 7;
2927
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2928
		return 4;
2929
	else if (INTEL_GEN(dev_priv) >= 6)
2930
		return 3;
2931
	else
2932 2933
		return 2;
}
2934

2935
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2936
				   const char *name,
2937
				   const uint16_t wm[8])
2938
{
2939
	int level, max_level = ilk_wm_max_level(dev_priv);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2950 2951 2952 2953
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2954
		if (INTEL_GEN(dev_priv) >= 9)
2955 2956
			latency *= 10;
		else if (level > 0)
2957 2958 2959 2960 2961 2962 2963 2964
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2965 2966 2967
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2968
	int level, max_level = ilk_wm_max_level(dev_priv);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2980
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996 2997 2998
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999 3000
}

3001
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3002
{
3003
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3004 3005 3006 3007 3008 3009

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3010
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3012

3013 3014 3015
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016

3017
	if (IS_GEN6(dev_priv))
3018
		snb_wm_latency_quirk(dev_priv);
3019 3020
}

3021
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3022
{
3023
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3025 3026
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3050
/* Compute new watermarks for the pipe */
3051
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3052
{
3053 3054
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055
	struct intel_pipe_wm *pipe_wm;
3056
	struct drm_device *dev = state->dev;
3057
	const struct drm_i915_private *dev_priv = to_i915(dev);
3058 3059 3060 3061 3062
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3063
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064
	struct ilk_wm_maximums max;
3065

3066
	pipe_wm = &cstate->wm.ilk.optimal;
3067

3068 3069
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3070

3071
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3072
			pristate = ps;
3073
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3074
			sprstate = ps;
3075
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3076
			curstate = ps;
3077 3078
	}

3079
	pipe_wm->pipe_enabled = cstate->base.active;
3080
	if (sprstate) {
3081 3082 3083 3084
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3085 3086
	}

3087 3088
	usable_level = max_level;

3089
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3090
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3091
		usable_level = 1;
3092 3093

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094
	if (pipe_wm->sprites_scaled)
3095
		usable_level = 0;
3096

3097
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098 3099
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3100

3101
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3103

3104
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3105
		return -EINVAL;
3106

3107
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3108

3109 3110
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3111

3112
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113
				     pristate, sprstate, curstate, wm);
3114 3115 3116 3117 3118 3119

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3120 3121 3122 3123
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3124 3125
	}

3126
	return 0;
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3138
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139 3140 3141 3142 3143
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3145 3146 3147 3148 3149 3150

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3151
	*a = newstate->wm.ilk.optimal;
3152 3153 3154
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
		return 0;

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3183 3184
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3185 3186 3187 3188

	return 0;
}

3189 3190 3191 3192 3193 3194 3195 3196 3197
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3198 3199
	ret_wm->enable = true;

3200
	for_each_intel_crtc(dev, intel_crtc) {
3201
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202 3203 3204 3205
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3206

3207 3208 3209 3210 3211
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3212
		if (!wm->enable)
3213
			ret_wm->enable = false;
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3226
			 const struct intel_wm_config *config,
3227
			 const struct ilk_wm_maximums *max,
3228 3229
			 struct intel_pipe_wm *merged)
{
3230
	struct drm_i915_private *dev_priv = to_i915(dev);
3231
	int level, max_level = ilk_wm_max_level(dev_priv);
3232
	int last_enabled_level = max_level;
3233

3234
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236
	    config->num_pipes_active > 1)
3237
		last_enabled_level = 0;
3238

3239
	/* ILK: FBC WM must be disabled always */
3240
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3241 3242 3243 3244 3245 3246 3247

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3248 3249 3250 3251 3252
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3253 3254 3255 3256 3257 3258

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3259 3260
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3261 3262 3263
			wm->fbc_val = 0;
		}
	}
3264 3265 3266 3267 3268 3269 3270

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3271
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272
	    intel_fbc_is_active(dev_priv)) {
3273 3274 3275 3276 3277 3278
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3279 3280
}

3281 3282 3283 3284 3285 3286
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3287 3288 3289
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3290
	struct drm_i915_private *dev_priv = to_i915(dev);
3291

3292
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3293 3294 3295 3296 3297
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3298
static void ilk_compute_wm_results(struct drm_device *dev,
3299
				   const struct intel_pipe_wm *merged,
3300
				   enum intel_ddb_partitioning partitioning,
3301
				   struct ilk_wm_values *results)
3302
{
3303
	struct drm_i915_private *dev_priv = to_i915(dev);
3304 3305
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3306

3307
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3308
	results->partitioning = partitioning;
3309

3310
	/* LP1+ register values */
3311
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312
		const struct intel_wm_level *r;
3313

3314
		level = ilk_wm_lp_to_level(wm_lp, merged);
3315

3316
		r = &merged->wm[level];
3317

3318 3319 3320 3321 3322
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3323
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324 3325 3326
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3327 3328 3329
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3330
		if (INTEL_GEN(dev_priv) >= 8)
3331 3332 3333 3334 3335 3336
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3337 3338 3339 3340
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3341
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342 3343 3344 3345
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3346
	}
3347

3348
	/* LP0 register values */
3349
	for_each_intel_crtc(dev, intel_crtc) {
3350
		enum pipe pipe = intel_crtc->pipe;
3351 3352
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3353 3354 3355 3356

		if (WARN_ON(!r->enable))
			continue;

3357
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3358

3359 3360 3361 3362
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3363 3364 3365
	}
}

3366 3367
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3368
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369 3370
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3371
{
3372
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3373
	int level1 = 0, level2 = 0;
3374

3375 3376 3377 3378 3379
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3380 3381
	}

3382 3383
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3384 3385 3386
			return r2;
		else
			return r1;
3387
	} else if (level1 > level2) {
3388 3389 3390 3391 3392 3393
		return r1;
	} else {
		return r2;
	}
}

3394 3395 3396 3397 3398 3399 3400 3401
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3402
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403 3404
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3405 3406 3407 3408 3409
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3410
	for_each_pipe(dev_priv, pipe) {
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3454 3455
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3456
{
3457
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458
	bool changed = false;
3459

3460 3461 3462
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3463
		changed = true;
3464 3465 3466 3467
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3468
		changed = true;
3469 3470 3471 3472
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3473
		changed = true;
3474
	}
3475

3476 3477 3478 3479
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3480

3481 3482 3483 3484 3485 3486 3487
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3488 3489
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3490
{
3491
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3492 3493 3494
	unsigned int dirty;
	uint32_t val;

3495
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3496 3497 3498 3499 3500
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3501
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506 3507
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3508
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513 3514
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3515
	if (dirty & WM_DIRTY_DDB) {
3516
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3531 3532
	}

3533
	if (dirty & WM_DIRTY_FBC) {
3534 3535 3536 3537 3538 3539 3540 3541
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3542 3543 3544 3545
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3546
	if (INTEL_GEN(dev_priv) >= 7) {
3547 3548 3549 3550 3551
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3552

3553
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3559 3560

	dev_priv->wm.hw = *results;
3561 3562
}

3563
bool ilk_disable_lp_wm(struct drm_device *dev)
3564
{
3565
	struct drm_i915_private *dev_priv = to_i915(dev);
3566 3567 3568 3569

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
		enabled_slices++;

	return enabled_slices;
}

3587 3588 3589 3590 3591 3592 3593 3594
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3595
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3596 3597 3598 3599 3600
		return true;

	return false;
}

3601 3602 3603
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3604 3605
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3606 3607 3608 3609 3610 3611 3612
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3613 3614
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3627
intel_enable_sagv(struct drm_i915_private *dev_priv)
3628 3629 3630
{
	int ret;

3631 3632 3633 3634
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3635 3636 3637
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3638
	mutex_lock(&dev_priv->pcu_lock);
3639 3640 3641 3642 3643

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3644
	mutex_unlock(&dev_priv->pcu_lock);
3645 3646 3647 3648 3649

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3650
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3651
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3652
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3653 3654 3655 3656 3657 3658
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3659
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3660 3661 3662 3663
	return 0;
}

int
3664
intel_disable_sagv(struct drm_i915_private *dev_priv)
3665
{
3666
	int ret;
3667

3668 3669 3670 3671
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3672 3673 3674
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3675
	mutex_lock(&dev_priv->pcu_lock);
3676 3677

	/* bspec says to keep retrying for at least 1 ms */
3678 3679 3680 3681
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3682
	mutex_unlock(&dev_priv->pcu_lock);
3683 3684 3685 3686 3687

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3688
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3691
		return 0;
3692 3693 3694
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3695 3696
	}

3697
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3698 3699 3700
	return 0;
}

3701
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3702 3703 3704 3705
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3706 3707
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3708
	struct intel_crtc_state *cstate;
3709
	enum pipe pipe;
3710
	int level, latency;
3711
	int sagv_block_time_us;
3712

3713 3714 3715
	if (!intel_has_sagv(dev_priv))
		return false;

3716 3717 3718 3719 3720 3721 3722
	if (IS_GEN9(dev_priv))
		sagv_block_time_us = 30;
	else if (IS_GEN10(dev_priv))
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3723
	/*
3724
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3736
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3737
	cstate = to_intel_crtc_state(crtc->base.state);
3738

3739
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3740 3741
		return false;

3742
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3743 3744
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3745

3746
		/* Skip this plane if it's not enabled */
3747
		if (!wm->wm[0].plane_en)
3748 3749 3750
			continue;

		/* Find the highest enabled wm level for this plane */
3751
		for (level = ilk_wm_max_level(dev_priv);
3752
		     !wm->wm[level].plane_en; --level)
3753 3754
		     { }

3755 3756 3757
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3758
		    plane->base.state->fb->modifier ==
3759 3760 3761
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3762
		/*
3763 3764 3765
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3766
		 */
3767
		if (latency < sagv_block_time_us)
3768 3769 3770 3771 3772 3773
			return false;
	}

	return true;
}

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
				       const struct intel_crtc_state *cstate,
				       const unsigned int total_data_rate,
				       const int num_active,
				       struct skl_ddb_allocation *ddb)
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
	total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
	 */
	if (total_data_bw >= GBps(12) || num_active > 1) {
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3805 3806
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3807
				   const struct intel_crtc_state *cstate,
3808 3809
				   const unsigned int total_data_rate,
				   struct skl_ddb_allocation *ddb,
3810 3811
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3812
{
3813 3814 3815
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3816
	struct drm_crtc *for_crtc = cstate->base.crtc;
3817 3818
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3819

3820
	if (WARN_ON(!state) || !cstate->base.active) {
3821 3822
		alloc->start = 0;
		alloc->end = 0;
3823
		*num_active = hweight32(dev_priv->active_crtcs);
3824 3825 3826
		return;
	}

3827 3828 3829 3830 3831
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3832 3833
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3834

3835
	/*
3836 3837 3838 3839 3840 3841
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3842
	 */
3843
	if (!intel_state->active_pipe_changes) {
3844 3845 3846 3847 3848
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3849
		return;
3850
	}
3851 3852 3853 3854 3855 3856

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3857 3858
}

3859
static unsigned int skl_cursor_allocation(int num_active)
3860
{
3861
	if (num_active == 1)
3862 3863 3864 3865 3866
		return 32;

	return 8;
}

3867 3868
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3869
{
3870 3871 3872 3873 3874 3875 3876 3877 3878
	u16 mask;

	if (INTEL_GEN(dev_priv) >= 11)
		mask = ICL_DDB_ENTRY_MASK;
	else
		mask = SKL_DDB_ENTRY_MASK;
	entry->start = reg & mask;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;

3879 3880
	if (entry->end)
		entry->end += 1;
3881 3882
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
			   struct skl_ddb_allocation *ddb /* out */)
{
	u32 val, val2 = 0;
	int fourcc, pixel_format;

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3895 3896
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
	if (!(val & PLANE_CTL_ENABLE))
		return;

	pixel_format = val & PLANE_CTL_FORMAT_MASK;
	fourcc = skl_format_to_fourcc(pixel_format,
				      val & PLANE_CTL_ORDER_RGBX,
				      val & PLANE_CTL_ALPHA_MASK);

	val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
	val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));

	if (fourcc == DRM_FORMAT_NV12) {
3915 3916 3917 3918
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val2);
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->uv_plane[pipe][plane_id], val);
3919
	} else {
3920 3921
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val);
3922 3923 3924
	}
}

3925 3926
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3927
{
3928
	struct intel_crtc *crtc;
3929

3930 3931
	memset(ddb, 0, sizeof(*ddb));

3932 3933
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);

3934
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3935
		enum intel_display_power_domain power_domain;
3936 3937
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3938 3939 3940

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3941 3942
			continue;

3943 3944 3945
		for_each_plane_id_on_crtc(crtc, plane_id)
			skl_ddb_get_hw_plane_state(dev_priv, pipe,
						   plane_id, ddb);
3946 3947

		intel_display_power_put(dev_priv, power_domain);
3948 3949 3950
	}
}

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3967
static uint_fixed_16_16_t
3968 3969
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3970
{
3971
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3972
	uint32_t src_w, src_h, dst_w, dst_h;
3973 3974
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3975

3976
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3977
		return u32_to_fixed16(0);
3978 3979

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3980
	if (plane->id == PLANE_CURSOR) {
3981 3982 3983 3984
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3985 3986
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3987 3988 3989
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3990 3991 3992 3993 3994
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3995 3996
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3997 3998 3999 4000
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4001 4002 4003 4004
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4005

4006
	return mul_fixed16(downscale_w, downscale_h);
4007 4008
}

4009 4010 4011
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4012
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4031 4032 4033 4034
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4045
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4046 4047 4048 4049 4050
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4051
	int crtc_clock, dotclk;
4052 4053
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
4054
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4055 4056 4057 4058 4059 4060

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4061
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4079
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4080 4081 4082 4083 4084 4085
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4086 4087
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4088
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4089 4090 4091
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4092 4093

	if (pipe_max_pixel_rate < crtc_clock) {
4094
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4095 4096 4097 4098 4099 4100
		return -EINVAL;
	}

	return 0;
}

4101
static unsigned int
4102 4103
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
4104
			     const int plane)
4105
{
4106
	struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4107
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4108
	uint32_t data_rate;
4109
	uint32_t width = 0, height = 0;
4110 4111
	struct drm_framebuffer *fb;
	u32 format;
4112
	uint_fixed_16_16_t down_scale_amount;
4113

4114
	if (!intel_pstate->base.visible)
4115
		return 0;
4116 4117

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4118
	format = fb->format->format;
4119

4120
	if (intel_plane->id == PLANE_CURSOR)
4121
		return 0;
4122
	if (plane == 1 && format != DRM_FORMAT_NV12)
4123
		return 0;
4124

4125 4126 4127 4128 4129
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4130 4131
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4132

4133 4134 4135 4136
	/* UV plane does 1/2 pixel sub-sampling */
	if (plane == 1 && format == DRM_FORMAT_NV12) {
		width /= 2;
		height /= 2;
4137 4138
	}

4139 4140
	data_rate = width * height * fb->format->cpp[plane];

4141
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4142

4143
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4144 4145 4146 4147 4148 4149 4150 4151
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4152
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4153 4154
				 unsigned int *plane_data_rate,
				 unsigned int *uv_plane_data_rate)
4155
{
4156 4157
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4158 4159
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4160
	unsigned int total_data_rate = 0;
4161 4162 4163

	if (WARN_ON(!state))
		return 0;
4164

4165
	/* Calculate and cache data rate for each plane */
4166
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4167 4168
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4169

4170
		/* packed/y */
4171 4172
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4173
		plane_data_rate[plane_id] = rate;
4174 4175

		total_data_rate += rate;
4176

4177
		/* uv-plane */
4178 4179
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4180
		uv_plane_data_rate[plane_id] = rate;
4181

4182
		total_data_rate += rate;
4183 4184 4185 4186 4187
	}

	return total_data_rate;
}

4188
static uint16_t
4189
skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

4200 4201
	/* For packed formats, and uv-plane, return 0 */
	if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4202 4203 4204
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4205
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4206 4207 4208
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4209 4210
		return 8;

4211 4212 4213 4214 4215
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4216 4217
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4218 4219

	/* Halve UV plane width and height for NV12 */
4220
	if (plane == 1) {
4221 4222 4223 4224
		src_w /= 2;
		src_h /= 2;
	}

4225
	plane_bpp = fb->format->cpp[plane];
4226

4227
	if (drm_rotation_90_or_270(pstate->rotation)) {
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4251 4252
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4253
		 uint16_t *minimum, uint16_t *uv_minimum)
4254 4255 4256 4257 4258
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4259
		enum plane_id plane_id = to_intel_plane(plane)->id;
4260

4261
		if (plane_id == PLANE_CURSOR)
4262 4263 4264 4265 4266
			continue;

		if (!pstate->visible)
			continue;

4267
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4268
		uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4269 4270 4271 4272 4273
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4274
static int
4275
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4276 4277
		      struct skl_ddb_allocation *ddb /* out */)
{
4278
	struct drm_atomic_state *state = cstate->base.state;
4279
	struct drm_crtc *crtc = cstate->base.crtc;
4280 4281 4282
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4283
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4284
	uint16_t alloc_size, start;
4285
	uint16_t minimum[I915_MAX_PLANES] = {};
4286
	uint16_t uv_minimum[I915_MAX_PLANES] = {};
4287
	unsigned int total_data_rate;
4288
	enum plane_id plane_id;
4289
	int num_active;
4290 4291
	unsigned int plane_data_rate[I915_MAX_PLANES] = {};
	unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4292
	uint16_t total_min_blocks = 0;
4293

4294 4295
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4296
	memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4297

4298 4299 4300
	if (WARN_ON(!state))
		return 0;

4301
	if (!cstate->base.active) {
4302
		alloc->start = alloc->end = 0;
4303 4304 4305
		return 0;
	}

4306 4307 4308 4309 4310
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   uv_plane_data_rate);
	skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
					   alloc, &num_active);
4311
	alloc_size = skl_ddb_entry_size(alloc);
4312
	if (alloc_size == 0)
4313
		return 0;
4314

4315
	skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4316

4317 4318 4319 4320 4321
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4322

4323
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4324
		total_min_blocks += minimum[plane_id];
4325
		total_min_blocks += uv_minimum[plane_id];
4326 4327
	}

4328 4329 4330 4331 4332 4333 4334
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4335 4336
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4337 4338
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4339
	/*
4340 4341
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4342 4343 4344
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4345
	if (total_data_rate == 0)
4346
		return 0;
4347

4348
	start = alloc->start;
4349
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4350 4351
		unsigned int data_rate, uv_data_rate;
		uint16_t plane_blocks, uv_plane_blocks;
4352

4353
		if (plane_id == PLANE_CURSOR)
4354 4355
			continue;

4356
		data_rate = plane_data_rate[plane_id];
4357 4358

		/*
4359
		 * allocation for (packed formats) or (uv-plane part of planar format):
4360 4361 4362
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4363 4364 4365
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4366

4367 4368
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4369 4370
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4371
		}
4372

4373 4374
		start += plane_blocks;

4375 4376
		/* Allocate DDB for UV plane for planar format/NV12 */
		uv_data_rate = uv_plane_data_rate[plane_id];
4377

4378 4379 4380
		uv_plane_blocks = uv_minimum[plane_id];
		uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
					   total_data_rate);
4381

4382 4383 4384 4385
		if (uv_data_rate) {
			ddb->uv_plane[pipe][plane_id].start = start;
			ddb->uv_plane[pipe][plane_id].end =
				start + uv_plane_blocks;
4386
		}
4387

4388
		start += uv_plane_blocks;
4389 4390
	}

4391
	return 0;
4392 4393
}

4394 4395
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4396
 * for the read latency) and cpp should always be <= 8, so that
4397 4398 4399
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4400 4401
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4402
	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4403
{
4404 4405
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4406 4407

	if (latency == 0)
4408
		return FP_16_16_MAX;
4409

4410
	wm_intermediate_val = latency * pixel_rate * cpp;
4411
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4412 4413 4414 4415

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4416 4417 4418
	return ret;
}

4419 4420 4421 4422
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4423
{
4424
	uint32_t wm_intermediate_val;
4425
	uint_fixed_16_16_t ret;
4426 4427

	if (latency == 0)
4428
		return FP_16_16_MAX;
4429 4430

	wm_intermediate_val = latency * pixel_rate;
4431 4432
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4433
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4434 4435 4436
	return ret;
}

4437 4438 4439 4440 4441 4442 4443 4444
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4445
		return u32_to_fixed16(0);
4446 4447 4448 4449

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4450
		return u32_to_fixed16(0);
4451 4452

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4453
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4454 4455 4456 4457

	return linetime_us;
}

4458 4459 4460
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4461 4462
{
	uint64_t adjusted_pixel_rate;
4463
	uint_fixed_16_16_t downscale_amount;
4464 4465

	/* Shouldn't reach here on disabled planes... */
4466
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4467 4468 4469 4470 4471 4472
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4473
	adjusted_pixel_rate = cstate->pixel_rate;
4474
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4475

4476 4477
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4478 4479
}

4480 4481 4482 4483
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
4484
			    struct skl_wm_params *wp, int plane_id)
4485
{
4486
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4487 4488
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4489
	uint32_t interm_pbpl;
4490 4491 4492
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4493

4494
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4495
		return 0;
4496

4497 4498 4499 4500 4501 4502
	/* only NV12 format has two planes */
	if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
		DRM_DEBUG_KMS("Non NV12 format have single plane\n");
		return -EINVAL;
	}

4503 4504 4505 4506 4507 4508 4509
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4510
	wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4511

4512
	if (plane->id == PLANE_CURSOR) {
4513
		wp->width = intel_pstate->base.crtc_w;
4514
	} else {
4515 4516 4517 4518 4519
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4520
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4521
	}
4522

4523 4524 4525 4526
	if (plane_id == 1 && wp->is_planar)
		wp->width /= 2;

	wp->cpp = fb->format->cpp[plane_id];
4527 4528
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4529

4530 4531 4532 4533 4534 4535
	if (INTEL_GEN(dev_priv) >= 11 &&
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4536
	if (drm_rotation_90_or_270(pstate->rotation)) {
4537

4538
		switch (wp->cpp) {
4539
		case 1:
4540
			wp->y_min_scanlines = 16;
4541 4542
			break;
		case 2:
4543
			wp->y_min_scanlines = 8;
4544 4545
			break;
		case 4:
4546
			wp->y_min_scanlines = 4;
4547
			break;
4548
		default:
4549
			MISSING_CASE(wp->cpp);
4550
			return -EINVAL;
4551 4552
		}
	} else {
4553
		wp->y_min_scanlines = 4;
4554 4555
	}

4556
	if (apply_memory_bw_wa)
4557
		wp->y_min_scanlines *= 2;
4558

4559 4560 4561
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4562 4563
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4564 4565 4566 4567

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4568 4569 4570
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4571 4572
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4573
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4574
	} else {
4575 4576
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4577
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4578 4579
	}

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
4594
				const struct skl_wm_level *result_prev,
4595
				struct skl_wm_level *result /* out */)
4596 4597 4598 4599 4600 4601 4602 4603 4604
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4605
	uint32_t min_disp_buf_needed;
4606 4607 4608

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
4609
		result->plane_en = false;
4610 4611 4612 4613
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4614 4615
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4616 4617 4618 4619 4620 4621 4622
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4623
				 wp->cpp, latency, wp->dbuf_block_size);
4624
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4625
				 cstate->base.adjusted_mode.crtc_htotal,
4626
				 latency,
4627
				 wp->plane_blocks_per_line);
4628

4629 4630
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4631
	} else {
4632
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4633 4634
		     wp->dbuf_block_size < 1) &&
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4635
			selected_result = method2;
4636
		else if (ddb_allocation >=
4637
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4638
			selected_result = min_fixed16(method1, method2);
4639
		else if (latency >= wp->linetime_us)
4640
			selected_result = min_fixed16(method1, method2);
4641 4642 4643
		else
			selected_result = method1;
	}
4644

4645
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4646
	res_lines = div_round_up_fixed16(selected_result,
4647
					 wp->plane_blocks_per_line);
4648

4649
	/* Display WA #1125: skl,bxt,kbl,glk */
4650 4651
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4652 4653

	/* Display WA #1126: skl,bxt,kbl,glk */
4654
	if (level >= 1 && level <= 7) {
4655 4656 4657 4658
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4659
		} else {
4660
			res_blocks++;
4661
		}
4662 4663 4664 4665 4666 4667 4668 4669 4670

		/*
		 * Make sure result blocks for higher latency levels are atleast
		 * as high as level below the current level.
		 * Assumption in DDB algorithm optimization for special cases.
		 * Also covers Display WA #1125 for RC.
		 */
		if (result_prev->plane_res_b > res_blocks)
			res_blocks = result_prev->plane_res_b;
4671
	}
4672

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			uint32_t extra_lines;
			uint_fixed_16_16_t fp_min_disp_buf_needed;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					      res_lines % wp->y_min_scanlines;

			fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
						extra_lines,
						wp->plane_blocks_per_line);
			min_disp_buf_needed = fixed16_to_u32_round_up(
						fp_min_disp_buf_needed);
		} else {
			min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
		}
	} else {
		min_disp_buf_needed = res_blocks;
	}

4696 4697
	if ((level > 0 && res_lines > 31) ||
	    res_blocks >= ddb_allocation ||
4698
	    min_disp_buf_needed >= ddb_allocation) {
4699
		result->plane_en = false;
4700

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4716
	}
4717

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	/*
	 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
	 * disable wm level 1-7 on NV12 planes
	 */
	if (wp->is_planar && level >= 1 &&
	    (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	     IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
		result->plane_en = false;
		return 0;
	}

4729
	/* The number of lines are ignored for the level 0 watermark. */
4730 4731 4732
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
	result->plane_en = true;
4733

4734
	return 0;
4735 4736
}

4737
static int
4738
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4739
		      struct skl_ddb_allocation *ddb,
4740 4741
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4742
		      const struct skl_wm_params *wm_params,
4743 4744
		      struct skl_plane_wm *wm,
		      int plane_id)
4745
{
4746 4747 4748 4749 4750
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4751
	int level, max_level = ilk_wm_max_level(dev_priv);
4752
	enum plane_id intel_plane_id = intel_plane->id;
4753
	int ret;
L
Lyude 已提交
4754

4755 4756
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4757

4758 4759 4760
	ddb_blocks = plane_id ?
		     skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
		     skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4761

4762
	for (level = 0; level <= max_level; level++) {
4763 4764
		struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
							  &wm->wm[level];
4765 4766 4767 4768 4769 4770 4771
		struct skl_wm_level *result_prev;

		if (level)
			result_prev = plane_id ? &wm->uv_wm[level - 1] :
						  &wm->wm[level - 1];
		else
			result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4772 4773 4774 4775

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4776
					   ddb_blocks,
4777
					   level,
4778
					   wm_params,
4779
					   result_prev,
4780
					   result);
4781 4782 4783
		if (ret)
			return ret;
	}
4784

4785 4786 4787
	if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
		wm->is_planar = true;

4788
	return 0;
4789 4790
}

4791
static uint32_t
4792
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4793
{
M
Mahesh Kumar 已提交
4794 4795
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4796
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4797
	uint32_t linetime_wm;
4798

4799
	linetime_us = intel_get_linetime_us(cstate);
4800

4801
	if (is_fixed16_zero(linetime_us))
4802
		return 0;
4803

4804
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4805

4806 4807 4808 4809
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4810 4811

	return linetime_wm;
4812 4813
}

4814
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4815 4816 4817
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4818
				      struct skl_wm_level *trans_wm /* out */)
4819
{
4820 4821 4822 4823 4824 4825
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4826
	if (!cstate->base.active)
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

4837
	trans_min = 0;
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4862
		return;
4863
	}
4864

4865
exit:
L
Lyude 已提交
4866
	trans_wm->plane_en = false;
4867 4868
}

4869 4870 4871
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4872
{
4873
	struct drm_device *dev = cstate->base.crtc->dev;
4874
	struct drm_crtc_state *crtc_state = &cstate->base;
4875
	const struct drm_i915_private *dev_priv = to_i915(dev);
4876 4877
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4878
	struct skl_plane_wm *wm;
4879
	int ret;
4880

L
Lyude 已提交
4881 4882 4883 4884 4885 4886
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4887 4888 4889 4890
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4891
		struct skl_wm_params wm_params;
4892 4893
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4894 4895

		wm = &pipe_wm->planes[plane_id];
4896
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4897 4898

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
4899
						  intel_pstate, &wm_params, 0);
4900 4901
		if (ret)
			return ret;
L
Lyude 已提交
4902

4903
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4904
					    intel_pstate, &wm_params, wm, 0);
4905 4906
		if (ret)
			return ret;
4907

4908 4909
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927

		/* uv plane watermarks must also be validated for NV12/Planar */
		if (wm_params.is_planar) {
			memset(&wm_params, 0, sizeof(struct skl_wm_params));
			wm->is_planar = true;

			ret = skl_compute_plane_wm_params(dev_priv, cstate,
							  intel_pstate,
							  &wm_params, 1);
			if (ret)
				return ret;

			ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
						    intel_pstate, &wm_params,
						    wm, 1);
			if (ret)
				return ret;
		}
4928
	}
4929

4930
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4931

4932
	return 0;
4933 4934
}

4935 4936
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4937 4938 4939 4940 4941 4942 4943 4944
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4960 4961 4962
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4963
			       enum plane_id plane_id)
4964 4965 4966 4967
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4968
	int level, max_level = ilk_wm_max_level(dev_priv);
4969 4970 4971
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4972
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4973
				   &wm->wm[level]);
4974
	}
4975
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4976
			   &wm->trans_wm);
4977

4978 4979
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
4980 4981 4982 4983 4984 4985 4986
	if (INTEL_GEN(dev_priv) >= 11)
		return skl_ddb_entry_write(dev_priv,
					   PLANE_BUF_CFG(pipe, plane_id),
					   &ddb->plane[pipe][plane_id]);
	if (wm->is_planar) {
		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
				    &ddb->uv_plane[pipe][plane_id]);
4987 4988
		skl_ddb_entry_write(dev_priv,
				    PLANE_NV12_BUF_CFG(pipe, plane_id),
4989 4990 4991 4992 4993 4994
				    &ddb->plane[pipe][plane_id]);
	} else {
		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
				    &ddb->plane[pipe][plane_id]);
		I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
	}
4995 4996
}

4997 4998 4999
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
5000 5001 5002 5003
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
5004
	int level, max_level = ilk_wm_max_level(dev_priv);
5005 5006 5007
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
5008 5009
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5010
	}
5011
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5012

5013
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5014
			    &ddb->plane[pipe][PLANE_CURSOR]);
5015 5016
}

5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

5031 5032
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5033
{
5034
	return a->start < b->end && b->start < a->end;
5035 5036
}

5037 5038
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
				 const struct skl_ddb_entry **entries,
5039 5040
				 const struct skl_ddb_entry *ddb,
				 int ignore)
5041
{
5042
	enum pipe pipe;
5043

5044 5045 5046
	for_each_pipe(dev_priv, pipe) {
		if (pipe != ignore && entries[pipe] &&
		    skl_ddb_entries_overlap(ddb, entries[pipe]))
5047
			return true;
5048
	}
5049

5050
	return false;
5051 5052
}

5053
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5054
			      const struct skl_pipe_wm *old_pipe_wm,
5055
			      struct skl_pipe_wm *pipe_wm, /* out */
5056
			      struct skl_ddb_allocation *ddb, /* out */
5057
			      bool *changed /* out */)
5058
{
5059
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5060
	int ret;
5061

5062 5063 5064
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
5065

5066
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5067 5068 5069
		*changed = false;
	else
		*changed = true;
5070

5071
	return 0;
5072 5073
}

5074 5075 5076 5077 5078 5079 5080
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

5081
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5082 5083 5084 5085 5086
		ret |= drm_crtc_mask(crtc);

	return ret;
}

5087
static int
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
5107 5108
		    skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
					&new_ddb->uv_plane[pipe][plane_id]))
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
5121
{
5122
	const struct drm_i915_private *dev_priv = to_i915(state->dev);
5123
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5124
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5125 5126 5127
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
	int ret, i;
5128

5129 5130
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5131
	for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5132 5133 5134 5135 5136 5137 5138
		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
5139 5140 5141 5142 5143
	}

	return 0;
}

5144
static void
5145 5146 5147
skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
		      struct skl_ddb_values *src,
		      enum pipe pipe)
5148
{
5149 5150
	memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
	       sizeof(dst->ddb.uv_plane[pipe]));
5151 5152
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
5153
	dst->ddb.enabled_slices = src->ddb.enabled_slices;
5154 5155
}

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5168
	int i;
5169

5170
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5171 5172
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5173

5174
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5175
			enum plane_id plane_id = intel_plane->id;
5176 5177
			const struct skl_ddb_entry *old, *new;

5178 5179
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5180 5181 5182 5183

			if (skl_ddb_entry_equal(old, new))
				continue;

5184 5185 5186 5187 5188
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5189 5190 5191 5192
		}
	}
}

5193
static int
5194
skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5195
{
5196
	struct drm_device *dev = state->dev;
5197 5198 5199 5200 5201 5202
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	struct intel_crtc *intel_crtc;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	uint32_t realloc_pipes = pipes_modified(state);
5203
	int ret, i;
5204

5205 5206 5207 5208
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5209 5210
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5211

5212 5213 5214 5215 5216 5217 5218 5219
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5220
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5221
		(*changed) = true;
5222

5223
	if (!*changed)
5224 5225
		return 0;

5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

		intel_state->active_pipe_changes = ~0;

		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
	if (intel_state->active_pipe_changes) {
		realloc_pipes = ~0;
		intel_state->wm_results.dirty_pipes = ~0;
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
	bool changed = false;
	int ret, i;

5294 5295 5296
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5297 5298 5299 5300
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5301
	ret = skl_compute_ddb(state);
5302 5303 5304
	if (ret)
		return ret;

5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5315
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5316 5317
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5318 5319
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5320 5321

		pipe_wm = &intel_cstate->wm.skl.optimal;
5322 5323
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5337 5338
	skl_print_wm_changes(state);

5339 5340 5341
	return 0;
}

5342 5343 5344 5345 5346 5347
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5348
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5349
	enum pipe pipe = crtc->pipe;
5350
	enum plane_id plane_id;
5351 5352 5353

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5354 5355

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5356

5357 5358 5359 5360 5361 5362 5363 5364
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5365 5366
}

5367 5368
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5369
{
5370
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5371
	struct drm_device *dev = intel_crtc->base.dev;
5372
	struct drm_i915_private *dev_priv = to_i915(dev);
5373 5374
	struct skl_ddb_values *results = &state->wm_results;
	struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5375
	enum pipe pipe = intel_crtc->pipe;
5376

5377
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5378 5379
		return;

5380
	mutex_lock(&dev_priv->wm.wm_mutex);
5381

5382 5383
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5384

5385
	skl_copy_ddb_for_pipe(hw_vals, results, pipe);
5386 5387

	mutex_unlock(&dev_priv->wm.wm_mutex);
5388 5389
}

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5408
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5409
{
5410
	struct drm_device *dev = &dev_priv->drm;
5411
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5412
	struct ilk_wm_maximums max;
5413
	struct intel_wm_config config = {};
5414
	struct ilk_wm_values results = {};
5415
	enum intel_ddb_partitioning partitioning;
5416

5417 5418 5419 5420
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5421 5422

	/* 5/6 split only in single pipe config on IVB+ */
5423
	if (INTEL_GEN(dev_priv) >= 7 &&
5424 5425 5426
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5427

5428
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5429
	} else {
5430
		best_lp_wm = &lp_wm_1_2;
5431 5432
	}

5433
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5434
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5435

5436
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5437

5438
	ilk_write_wm_values(dev_priv, &results);
5439 5440
}

5441 5442
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5443
{
5444 5445
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5446

5447
	mutex_lock(&dev_priv->wm.wm_mutex);
5448
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5449 5450 5451
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5452

5453 5454
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5455 5456 5457
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5458

5459 5460
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5461
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5462 5463 5464
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5465 5466
}

5467 5468
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5469
{
5470 5471 5472 5473
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5474 5475
}

5476 5477
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5478
{
5479
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5480 5481
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5482 5483
	int level, max_level;
	enum plane_id plane_id;
5484
	uint32_t val;
5485

5486
	max_level = ilk_wm_max_level(dev_priv);
5487

5488 5489
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5490

5491
		for (level = 0; level <= max_level; level++) {
5492 5493
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5494 5495
			else
				val = I915_READ(CUR_WM(pipe, level));
5496

5497
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5498 5499
		}

5500 5501
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5502 5503 5504 5505
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5506 5507
	}

5508 5509
	if (!intel_crtc->active)
		return;
5510

5511
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5512 5513 5514 5515
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5516
	struct drm_i915_private *dev_priv = to_i915(dev);
5517
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5518
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5519
	struct drm_crtc *crtc;
5520 5521
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5522

5523
	skl_ddb_get_hw_state(dev_priv, ddb);
5524 5525 5526 5527 5528 5529
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5530
		if (intel_crtc->active)
5531 5532
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5533

5534 5535 5536 5537
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
5538 5539 5540 5541 5542 5543
		/*
		 * Easy/common case; just sanitize DDB now if everything off
		 * Keep dbuf slice info intact
		 */
		memset(ddb->plane, 0, sizeof(ddb->plane));
		memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5544
	}
5545 5546
}

5547 5548 5549
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5550
	struct drm_i915_private *dev_priv = to_i915(dev);
5551
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5552
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5553
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5554
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5555
	enum pipe pipe = intel_crtc->pipe;
5556
	static const i915_reg_t wm0_pipe_reg[] = {
5557 5558 5559 5560 5561 5562
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5563
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5564
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5565

5566 5567
	memset(active, 0, sizeof(*active));

5568
	active->pipe_enabled = intel_crtc->active;
5569 5570

	if (active->pipe_enabled) {
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5585
		int level, max_level = ilk_wm_max_level(dev_priv);
5586 5587 5588 5589 5590 5591 5592 5593 5594

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5595 5596

	intel_crtc->wm.active.ilk = *active;
5597 5598
}

5599 5600 5601 5602 5603
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5630 5631 5632 5633 5634 5635 5636 5637 5638
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5639
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5640
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5641
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5642
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5643
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5644
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5645
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5646 5647 5648 5649 5650
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5651 5652 5653
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5654 5655

	tmp = I915_READ(DSPFW2);
5656 5657 5658
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5659 5660 5661 5662 5663 5664

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5665 5666
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5667 5668

		tmp = I915_READ(DSPFW8_CHV);
5669 5670
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5671 5672

		tmp = I915_READ(DSPFW9_CHV);
5673 5674
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5675 5676 5677

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5678 5679 5680 5681 5682 5683 5684 5685 5686
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5687 5688
	} else {
		tmp = I915_READ(DSPFW7);
5689 5690
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5691 5692 5693

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5694 5695 5696 5697 5698 5699
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5700 5701 5702 5703 5704 5705
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5847 5848 5849 5850
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5851
	struct intel_crtc *crtc;
5852 5853 5854 5855 5856 5857 5858 5859
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5860
		mutex_lock(&dev_priv->pcu_lock);
5861 5862 5863 5864 5865

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5866 5867 5868 5869 5870 5871 5872 5873 5874
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5875
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5889

5890
		mutex_unlock(&dev_priv->pcu_lock);
5891 5892
	}

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5909
			struct g4x_pipe_wm *raw =
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5931
		crtc_state->wm.vlv.intermediate = *active;
5932

5933
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5934 5935 5936 5937 5938
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5939
	}
5940 5941 5942 5943 5944

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5969
			struct g4x_pipe_wm *raw =
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6010 6011
void ilk_wm_get_hw_state(struct drm_device *dev)
{
6012
	struct drm_i915_private *dev_priv = to_i915(dev);
6013
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6014 6015
	struct drm_crtc *crtc;

6016 6017
	ilk_init_lp_watermarks(dev_priv);

6018
	for_each_crtc(dev, crtc)
6019 6020 6021 6022 6023 6024 6025
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6026
	if (INTEL_GEN(dev_priv) >= 7) {
6027 6028 6029
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6030

6031
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6032 6033
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6034
	else if (IS_IVYBRIDGE(dev_priv))
6035 6036
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6037 6038 6039 6040 6041

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6042 6043
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6044
 * @crtc: the #intel_crtc on which to compute the WM
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6075
void intel_update_watermarks(struct intel_crtc *crtc)
6076
{
6077
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6078 6079

	if (dev_priv->display.update_wm)
6080
		dev_priv->display.update_wm(crtc);
6081 6082
}

6083 6084 6085 6086
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6087 6088 6089 6090 6091 6092
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv)) {
		dev_priv->ipc_enabled = false;
		return;
	}

6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

6113
/*
6114 6115 6116 6117 6118 6119 6120 6121
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

6122
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6123 6124 6125
{
	u16 rgvswctl;

6126
	lockdep_assert_held(&mchdev_lock);
6127

6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6145
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6146
{
6147
	u32 rgvmodectl;
6148 6149
	u8 fmax, fmin, fstart, vstart;

6150 6151
	spin_lock_irq(&mchdev_lock);

6152 6153
	rgvmodectl = I915_READ(MEMMODECTL);

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6174
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6175 6176
		PXVFREQ_PX_SHIFT;

6177 6178
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6179

6180 6181 6182
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6199
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6200
		DRM_ERROR("stuck trying to change perf mode\n");
6201
	mdelay(1);
6202

6203
	ironlake_set_drps(dev_priv, fstart);
6204

6205 6206
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6207
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6208
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6209
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6210 6211

	spin_unlock_irq(&mchdev_lock);
6212 6213
}

6214
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6215
{
6216 6217 6218 6219 6220
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6221 6222 6223 6224 6225 6226 6227 6228 6229

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6230
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6231
	mdelay(1);
6232 6233
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6234
	mdelay(1);
6235

6236
	spin_unlock_irq(&mchdev_lock);
6237 6238
}

6239 6240 6241 6242 6243
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6244
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6245
{
6246
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6247
	u32 limits;
6248

6249 6250 6251 6252 6253 6254
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6255
	if (INTEL_GEN(dev_priv) >= 9) {
6256 6257 6258
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6259
	} else {
6260 6261 6262
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6263
	}
6264 6265 6266 6267

	return limits;
}

6268 6269
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
6270
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6271
	int new_power;
6272 6273
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6274

6275 6276
	new_power = rps->power;
	switch (rps->power) {
6277
	case LOW_POWER:
6278 6279
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
6280 6281 6282 6283
			new_power = BETWEEN;
		break;

	case BETWEEN:
6284 6285
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
6286
			new_power = LOW_POWER;
6287 6288
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
6289 6290 6291 6292
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
6293 6294
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
6295 6296 6297 6298
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
6299
	if (val <= rps->min_freq_softlimit)
6300
		new_power = LOW_POWER;
6301
	if (val >= rps->max_freq_softlimit)
6302
		new_power = HIGH_POWER;
6303
	if (new_power == rps->power)
6304 6305 6306 6307 6308 6309
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6310 6311
		ei_up = 16000;
		threshold_up = 95;
6312 6313

		/* Downclock if less than 85% busy over 32ms */
6314 6315
		ei_down = 32000;
		threshold_down = 85;
6316 6317 6318 6319
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6320 6321
		ei_up = 13000;
		threshold_up = 90;
6322 6323

		/* Downclock if less than 75% busy over 32ms */
6324 6325
		ei_down = 32000;
		threshold_down = 75;
6326 6327 6328 6329
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6330 6331
		ei_up = 10000;
		threshold_up = 85;
6332 6333

		/* Downclock if less than 60% busy over 32ms */
6334 6335
		ei_down = 32000;
		threshold_down = 60;
6336 6337 6338
		break;
	}

6339 6340 6341 6342 6343 6344
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6345
	I915_WRITE(GEN6_RP_UP_EI,
6346
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6347
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6348 6349
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6350 6351

	I915_WRITE(GEN6_RP_DOWN_EI,
6352
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6353
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6364

6365
skip_hw_write:
6366 6367 6368 6369
	rps->power = new_power;
	rps->up_threshold = threshold_up;
	rps->down_threshold = threshold_down;
	rps->last_adj = 0;
6370 6371
}

6372 6373
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6374
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6375 6376
	u32 mask = 0;

6377
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6378
	if (val > rps->min_freq_softlimit)
6379
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6380
	if (val < rps->max_freq_softlimit)
6381
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6382

6383 6384
	mask &= dev_priv->pm_rps_events;

6385
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6386 6387
}

6388 6389 6390
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6391
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6392
{
6393 6394
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6395 6396 6397
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6398
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6399
		gen6_set_rps_thresholds(dev_priv, val);
6400

6401
		if (INTEL_GEN(dev_priv) >= 9)
6402 6403
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6404
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6405 6406 6407 6408 6409 6410 6411
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6412
	}
6413 6414 6415 6416

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6417
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6418
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6419

6420
	rps->cur_freq = val;
6421
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6422 6423

	return 0;
6424 6425
}

6426
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6427
{
6428 6429
	int err;

6430
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6431 6432 6433
		      "Odd GPU freq value\n"))
		val &= ~1;

6434 6435
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6436
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6437 6438 6439 6440
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6441
		gen6_set_rps_thresholds(dev_priv, val);
6442
	}
6443

6444
	dev_priv->gt_pm.rps.cur_freq = val;
6445
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6446 6447

	return 0;
6448 6449
}

6450
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6451 6452
 *
 * * If Gfx is Idle, then
6453 6454 6455
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6456 6457 6458
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6459 6460
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6461
	int err;
6462

6463
	if (rps->cur_freq <= val)
6464 6465
		return;

6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6478
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6479
	err = valleyview_set_rps(dev_priv, val);
6480
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6481 6482 6483

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6484 6485
}

6486 6487
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6488 6489
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6490
	mutex_lock(&dev_priv->pcu_lock);
6491
	if (rps->enabled) {
6492 6493
		u8 freq;

6494
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6495 6496
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6497
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6498

6499 6500
		gen6_enable_rps_interrupts(dev_priv);

6501 6502 6503
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6504 6505
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6506

6507
		if (intel_set_rps(dev_priv,
6508
				  clamp(freq,
6509 6510
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6511
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6512
	}
6513
	mutex_unlock(&dev_priv->pcu_lock);
6514 6515
}

6516 6517
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6518 6519
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6520 6521 6522 6523 6524 6525 6526
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6527
	mutex_lock(&dev_priv->pcu_lock);
6528
	if (rps->enabled) {
6529
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6530
			vlv_set_rps_idle(dev_priv);
6531
		else
6532 6533
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6534 6535
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6536
	}
6537
	mutex_unlock(&dev_priv->pcu_lock);
6538 6539
}

6540
void gen6_rps_boost(struct i915_request *rq,
6541
		    struct intel_rps_client *rps_client)
6542
{
6543
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6544
	unsigned long flags;
6545 6546
	bool boost;

6547 6548 6549
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6550
	if (!rps->enabled)
6551
		return;
6552

6553 6554 6555
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return;

6556
	/* Serializes with i915_request_retire() */
6557
	boost = false;
6558
	spin_lock_irqsave(&rq->lock, flags);
6559 6560
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6561
		rq->waitboost = true;
6562
	}
6563
	spin_unlock_irqrestore(&rq->lock, flags);
6564 6565 6566
	if (!boost)
		return;

6567 6568
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6569

6570
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6571 6572
}

6573
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6574
{
6575
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6576 6577
	int err;

6578
	lockdep_assert_held(&dev_priv->pcu_lock);
6579 6580
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6581

6582 6583
	if (!rps->enabled) {
		rps->cur_freq = val;
6584 6585 6586
		return 0;
	}

6587
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6588
		err = valleyview_set_rps(dev_priv, val);
6589
	else
6590 6591 6592
		err = gen6_set_rps(dev_priv, val);

	return err;
6593 6594
}

6595
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6596 6597
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6598
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6599 6600
}

6601
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6602 6603 6604 6605
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6606
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6607 6608
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6609 6610 6611 6612
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6613
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6614
	I915_WRITE(GEN6_RP_CONTROL, 0);
6615 6616
}

6617
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6618 6619 6620 6621
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6622 6623 6624 6625 6626
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6627
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6628
{
6629
	/* We're doing forcewake before Disabling RC6,
6630
	 * This what the BIOS expects when going into suspend */
6631
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6632

6633
	I915_WRITE(GEN6_RC_CONTROL, 0);
6634

6635
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6636 6637
}

6638 6639 6640 6641 6642
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6643
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6644 6645 6646
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6658 6659

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6660
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6661 6662 6663 6664 6665 6666 6667 6668
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6669 6670
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6671
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6672 6673 6674 6675 6676 6677 6678
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6679
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6680 6681 6682
		enable_rc6 = false;
	}

6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6697 6698 6699 6700 6701 6702
		enable_rc6 = false;
	}

	return enable_rc6;
}

6703
static bool sanitize_rc6(struct drm_i915_private *i915)
6704
{
6705
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6706

6707 6708 6709
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6710

6711 6712
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6713
		DRM_INFO("RC6 disabled by BIOS\n");
6714
		info->has_rc6 = 0;
6715 6716
	}

6717 6718 6719 6720 6721 6722 6723 6724
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6725

6726
	return info->has_rc6;
6727 6728
}

6729
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6730
{
6731 6732
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6733
	/* All of these values are in units of 50MHz */
6734

6735
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6736
	if (IS_GEN9_LP(dev_priv)) {
6737
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6738 6739 6740
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6741
	} else {
6742
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6743 6744 6745
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6746
	}
6747
	/* hw_max = RP0 until we check for overclocking */
6748
	rps->max_freq = rps->rp0_freq;
6749

6750
	rps->efficient_freq = rps->rp1_freq;
6751
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6752
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6753 6754 6755 6756 6757
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6758
			rps->efficient_freq =
6759 6760
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6761 6762
					rps->min_freq,
					rps->max_freq);
6763 6764
	}

6765
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6766
		/* Store the frequency values in 16.66 MHZ units, which is
6767 6768
		 * the natural hardware unit for SKL
		 */
6769 6770 6771 6772 6773
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6774
	}
6775 6776
}

6777
static void reset_rps(struct drm_i915_private *dev_priv,
6778
		      int (*set)(struct drm_i915_private *, u8))
6779
{
6780 6781
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6782 6783

	/* force a reset */
6784 6785
	rps->power = -1;
	rps->cur_freq = -1;
6786

6787 6788
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6789 6790
}

J
Jesse Barnes 已提交
6791
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6792
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6793 6794 6795
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6796 6797 6798 6799
	/* Program defaults and thresholds for RPS */
	if (IS_GEN9(dev_priv))
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6800 6801 6802 6803 6804

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6805 6806
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6807 6808 6809
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6810
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6811 6812 6813 6814

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6815
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6816
{
6817
	struct intel_engine_cs *engine;
6818
	enum intel_engine_id id;
6819
	u32 rc6_mode;
Z
Zhe Wang 已提交
6820 6821 6822 6823 6824 6825

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6826
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6827 6828 6829 6830 6831

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6832 6833 6834 6835 6836 6837 6838 6839
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6840
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6841
	} else {
6842
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6843 6844
	}

Z
Zhe Wang 已提交
6845 6846
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6847
	for_each_engine(engine, dev_priv, id)
6848
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6849

6850
	if (HAS_GUC(dev_priv))
6851 6852
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6853 6854
	I915_WRITE(GEN6_RC_SLEEP, 0);

6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6878

Z
Zhe Wang 已提交
6879
	/* 3a: Enable RC6 */
6880
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6881 6882 6883 6884 6885 6886 6887

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

6888
	I915_WRITE(GEN6_RC_CONTROL,
6889 6890 6891
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
6892

6893 6894
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6895
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6896
	 */
6897
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6898 6899
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
6900 6901
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6902

6903
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6904 6905
}

6906
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6907
{
6908
	struct intel_engine_cs *engine;
6909
	enum intel_engine_id id;
6910 6911 6912 6913

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

6914
	/* 1b: Get forcewake during program sequence. Although the driver
6915
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6916
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6917 6918 6919 6920 6921 6922 6923 6924

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6925
	for_each_engine(engine, dev_priv, id)
6926
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6927
	I915_WRITE(GEN6_RC_SLEEP, 0);
6928
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6929 6930

	/* 3: Enable RC6 */
6931

6932 6933 6934 6935
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
6936

6937 6938 6939 6940 6941
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6942 6943
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6944 6945 6946
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
6947
	I915_WRITE(GEN6_RPNSWREQ,
6948
		   HSW_FREQUENCY(rps->rp1_freq));
6949
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6950
		   HSW_FREQUENCY(rps->rp1_freq));
6951 6952 6953 6954 6955
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6956 6957
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
6958 6959 6960 6961 6962 6963 6964

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6965

6966
	/* 2: Enable RPS */
6967 6968 6969 6970 6971 6972 6973 6974
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

6975
	reset_rps(dev_priv, gen6_set_rps);
6976

6977
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6978 6979
}

6980
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6981
{
6982
	struct intel_engine_cs *engine;
6983
	enum intel_engine_id id;
6984
	u32 rc6vids, rc6_mask;
6985
	u32 gtfifodbg;
6986
	int ret;
6987 6988 6989 6990

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6991 6992
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6993 6994 6995 6996
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6997
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7008
	for_each_engine(engine, dev_priv, id)
7009
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7010 7011 7012

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7013
	if (IS_IVYBRIDGE(dev_priv))
7014 7015 7016
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7017
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7018 7019
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7020
	/* We don't use those on Haswell */
7021 7022 7023 7024 7025
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7026 7027 7028 7029 7030
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7031 7032
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7033
	if (IS_GEN6(dev_priv) && ret) {
7034
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7035
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7036 7037 7038 7039 7040 7041 7042 7043 7044
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7045
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7046 7047
}

7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7067
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7068
{
7069
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7070 7071
	const int min_freq = 15;
	const int scaling_factor = 180;
7072 7073
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7074
	unsigned int max_gpu_freq, min_gpu_freq;
7075
	struct cpufreq_policy *policy;
7076

7077
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7078

7079 7080 7081
	if (rps->max_freq <= rps->min_freq)
		return;

7082 7083 7084 7085 7086 7087 7088 7089 7090
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7091
		max_ia_freq = tsc_khz;
7092
	}
7093 7094 7095 7096

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7097
	min_ring_freq = I915_READ(DCLK) & 0xf;
7098 7099
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7100

7101 7102
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7103
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7104
		/* Convert GT frequency to 50 HZ units */
7105 7106
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7107 7108
	}

7109 7110 7111 7112 7113
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7114
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7115
		const int diff = max_gpu_freq - gpu_freq;
7116 7117
		unsigned int ia_freq = 0, ring_freq = 0;

7118
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7119 7120 7121 7122 7123
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7124
		} else if (INTEL_GEN(dev_priv) >= 8) {
7125 7126
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7127
		} else if (IS_HASWELL(dev_priv)) {
7128
			ring_freq = mult_frac(gpu_freq, 5, 4);
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7145

B
Ben Widawsky 已提交
7146 7147
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7148 7149 7150
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7151 7152 7153
	}
}

7154
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7155 7156 7157
{
	u32 val, rp0;

7158
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7159

7160
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7175
	}
7176 7177 7178

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7192 7193 7194 7195
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7196 7197 7198
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7199 7200 7201
	return rp1;
}

7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7224
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7225 7226 7227
{
	u32 val, rp0;

7228
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7241
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7242
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7243
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7244 7245 7246 7247 7248
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7249
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7250
{
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7262 7263
}

7264 7265 7266 7267 7268
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7269
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7270 7271 7272
			     dev_priv->vlv_pctx->stolen->start);
}

7273 7274 7275 7276 7277 7278 7279 7280 7281

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7282
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7283
{
7284 7285
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7286 7287 7288 7289
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7290
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7291 7292
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7293 7294 7295 7296

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7297 7298

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7299 7300
}

7301
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7302 7303
{
	struct drm_i915_gem_object *pctx;
7304 7305
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7306 7307 7308 7309 7310
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7311
		resource_size_t pcbr_offset;
7312

7313
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7314
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7315
								      pcbr_offset,
7316
								      I915_GTT_OFFSET_NONE,
7317 7318 7319 7320
								      pctx_size);
		goto out;
	}

7321 7322
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7323 7324 7325 7326 7327 7328 7329 7330
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7331
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7332 7333
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7334
		goto out;
7335 7336
	}

7337 7338 7339 7340 7341
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7342 7343 7344
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7345
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7346 7347 7348
	dev_priv->vlv_pctx = pctx;
}

7349
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7350 7351 7352 7353
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
7354
	i915_gem_object_put(dev_priv->vlv_pctx);
7355 7356 7357
	dev_priv->vlv_pctx = NULL;
}

7358 7359
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7360
	dev_priv->gt_pm.rps.gpll_ref_freq =
7361 7362 7363 7364 7365
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7366
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7367 7368
}

7369
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7370
{
7371
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7372
	u32 val;
7373

7374
	valleyview_setup_pctx(dev_priv);
7375

7376 7377
	vlv_init_gpll_ref_freq(dev_priv);

7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7391
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7392

7393 7394
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7395
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7396 7397
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7398

7399
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7400
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7401 7402
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7403

7404
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7405
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7406 7407
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7408

7409
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7410
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7411 7412
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7413 7414
}

7415
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7416
{
7417
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7418
	u32 val;
7419

7420
	cherryview_setup_pctx(dev_priv);
7421

7422 7423
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7424
	mutex_lock(&dev_priv->sb_lock);
7425
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7426
	mutex_unlock(&dev_priv->sb_lock);
7427

7428 7429 7430 7431
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7432
	default:
7433 7434 7435
		dev_priv->mem_freq = 1600;
		break;
	}
7436
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7437

7438 7439
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7440
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7441 7442
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7443

7444
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7445
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7446 7447
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7448

7449
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7450
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7451 7452
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7453

7454
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7455
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7456 7457
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7458

7459 7460
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7461
		  "Odd GPU freq values\n");
7462 7463
}

7464
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7465
{
7466
	valleyview_cleanup_pctx(dev_priv);
7467 7468
}

7469
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7470
{
7471
	struct intel_engine_cs *engine;
7472
	enum intel_engine_id id;
7473
	u32 gtfifodbg, rc6_mode, pcbr;
7474

7475 7476
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7487
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7488

7489 7490 7491
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7492 7493 7494 7495 7496
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7497
	for_each_engine(engine, dev_priv, id)
7498
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7499 7500
	I915_WRITE(GEN6_RC_SLEEP, 0);

7501 7502
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7503

7504
	/* Allows RC6 residency counter to work */
7505 7506 7507 7508 7509 7510 7511 7512 7513
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7514 7515
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7516
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7517 7518
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7529
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7530 7531 7532 7533 7534 7535 7536
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7537
	/* 2: Enable RPS */
7538 7539
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7540
		   GEN6_RP_MEDIA_IS_GFX |
7541 7542 7543 7544
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7545 7546 7547 7548 7549 7550
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7551 7552
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7553 7554 7555
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7556
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7557 7558
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7559
	reset_rps(dev_priv, valleyview_set_rps);
7560

7561
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7562 7563
}

7564
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7565
{
7566
	struct intel_engine_cs *engine;
7567
	enum intel_engine_id id;
7568
	u32 gtfifodbg;
7569

7570 7571
	valleyview_check_pctx(dev_priv);

7572 7573
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7574 7575
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7576 7577 7578
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7579
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7580

7581 7582 7583
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7584 7585 7586 7587
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7588
	for_each_engine(engine, dev_priv, id)
7589
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7590

7591
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7592

7593
	/* Allows RC6 residency counter to work */
7594
	I915_WRITE(VLV_COUNTER_CONTROL,
7595 7596
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7597
				      VLV_RENDER_RC0_COUNT_EN |
7598 7599
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7600

7601 7602
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7603

7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7629 7630 7631 7632 7633 7634
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7635
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7636

7637 7638 7639
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7640
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7641 7642
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7643
	reset_rps(dev_priv, valleyview_set_rps);
7644

7645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7646 7647
}

7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7677
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7678 7679 7680 7681 7682 7683
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7684
	lockdep_assert_held(&mchdev_lock);
7685

7686
	diff1 = now - dev_priv->ips.last_time1;
7687 7688 7689 7690 7691 7692 7693

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7694
		return dev_priv->ips.chipset_power;
7695 7696 7697 7698 7699 7700 7701 7702

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7703 7704
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7705 7706
		diff += total_count;
	} else {
7707
		diff = total_count - dev_priv->ips.last_count1;
7708 7709 7710
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7711 7712
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7723 7724
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7725

7726
	dev_priv->ips.chipset_power = ret;
7727 7728 7729 7730

	return ret;
}

7731 7732 7733 7734
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7735
	if (!IS_GEN5(dev_priv))
7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7774
{
7775 7776 7777
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7778
	if (INTEL_INFO(dev_priv)->is_mobile)
7779 7780 7781
		return vm > 0 ? vm : 0;

	return vd;
7782 7783
}

7784
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7785
{
7786
	u64 now, diff, diffms;
7787 7788
	u32 count;

7789
	lockdep_assert_held(&mchdev_lock);
7790

7791 7792 7793
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7794 7795 7796 7797 7798 7799 7800

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7801 7802
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7803 7804
		diff += count;
	} else {
7805
		diff = count - dev_priv->ips.last_count2;
7806 7807
	}

7808 7809
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7810 7811 7812 7813

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7814
	dev_priv->ips.gfx_power = diff;
7815 7816
}

7817 7818
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7819
	if (!IS_GEN5(dev_priv))
7820 7821
		return;

7822
	spin_lock_irq(&mchdev_lock);
7823 7824 7825

	__i915_update_gfx_val(dev_priv);

7826
	spin_unlock_irq(&mchdev_lock);
7827 7828
}

7829
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7830 7831 7832 7833
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7834
	lockdep_assert_held(&mchdev_lock);
7835

7836
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7856
	corr2 = (corr * dev_priv->ips.corr);
7857 7858 7859 7860

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7861
	__i915_update_gfx_val(dev_priv);
7862

7863
	return dev_priv->ips.gfx_power + state2;
7864 7865
}

7866 7867 7868 7869
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7870
	if (!IS_GEN5(dev_priv))
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7893
	spin_lock_irq(&mchdev_lock);
7894 7895 7896 7897
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7898 7899
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7900 7901 7902 7903

	ret = chipset_val + graphics_val;

out_unlock:
7904
	spin_unlock_irq(&mchdev_lock);
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7920
	spin_lock_irq(&mchdev_lock);
7921 7922 7923 7924 7925 7926
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7927 7928
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7929 7930

out_unlock:
7931
	spin_unlock_irq(&mchdev_lock);
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7948
	spin_lock_irq(&mchdev_lock);
7949 7950 7951 7952 7953 7954
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7955 7956
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7957 7958

out_unlock:
7959
	spin_unlock_irq(&mchdev_lock);
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7974
	spin_lock_irq(&mchdev_lock);
7975 7976
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7977
	spin_unlock_irq(&mchdev_lock);
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7994
	spin_lock_irq(&mchdev_lock);
7995 7996 7997 7998 7999 8000
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8001
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
8002

8003
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8004 8005 8006
		ret = false;

out_unlock:
8007
	spin_unlock_irq(&mchdev_lock);
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8035 8036
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8037
	spin_lock_irq(&mchdev_lock);
8038
	i915_mch_dev = dev_priv;
8039
	spin_unlock_irq(&mchdev_lock);
8040 8041 8042 8043 8044 8045

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8046
	spin_lock_irq(&mchdev_lock);
8047
	i915_mch_dev = NULL;
8048
	spin_unlock_irq(&mchdev_lock);
8049
}
8050

8051
static void intel_init_emon(struct drm_i915_private *dev_priv)
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8068
		I915_WRITE(PEW(i), 0);
8069
	for (i = 0; i < 3; i++)
8070
		I915_WRITE(DEW(i), 0);
8071 8072 8073

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8074
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8095
		I915_WRITE(PXW(i), val);
8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8111
		I915_WRITE(PXWL(i), 0);
8112 8113 8114 8115 8116 8117

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8118
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8119 8120
}

8121
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8122
{
8123 8124
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8125 8126 8127 8128
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8129
	if (!sanitize_rc6(dev_priv)) {
8130 8131 8132
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
8133

8134
	mutex_lock(&dev_priv->pcu_lock);
8135 8136

	/* Initialize RPS limits (for userspace) */
8137 8138 8139 8140
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8141
	else if (INTEL_GEN(dev_priv) >= 6)
8142 8143 8144
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8145 8146
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8147

8148 8149
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8150 8151

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8152
		rps->min_freq_softlimit =
8153
			max_t(int,
8154
			      rps->efficient_freq,
8155 8156
			      intel_freq_opcode(dev_priv, 450));

8157 8158 8159 8160 8161 8162 8163 8164
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8165
					 (rps->max_freq & 0xff) * 50,
8166
					 (params & 0xff) * 50);
8167
			rps->max_freq = params & 0xff;
8168 8169 8170
		}
	}

8171
	/* Finally allow us to boost to max by default */
8172
	rps->boost_freq = rps->max_freq;
8173

8174
	mutex_unlock(&dev_priv->pcu_lock);
8175 8176
}

8177
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8178
{
8179
	if (IS_VALLEYVIEW(dev_priv))
8180
		valleyview_cleanup_gt_powersave(dev_priv);
8181

8182
	if (!HAS_RC6(dev_priv))
8183
		intel_runtime_pm_put(dev_priv);
8184 8185
}

8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8202 8203
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8204 8205
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8206
	intel_disable_gt_powersave(dev_priv);
8207

8208 8209
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
M
Mika Kuoppala 已提交
8210
	else
8211
		gen6_reset_rps_interrupts(dev_priv);
8212 8213
}

8214 8215 8216 8217
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8218 8219 8220
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8221
	/* Currently there is no HW configuration to be done to disable. */
8222 8223

	i915->gt_pm.llc_pstate.enabled = false;
8224 8225
}

8226
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8227
{
8228
	lockdep_assert_held(&dev_priv->pcu_lock);
8229

8230 8231 8232
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8233 8234 8235 8236 8237 8238 8239 8240
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8241 8242

	dev_priv->gt_pm.rc6.enabled = false;
8243
}
8244

8245 8246 8247
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8248

8249 8250 8251
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8252
	if (INTEL_GEN(dev_priv) >= 9)
8253
		gen9_disable_rps(dev_priv);
8254
	else if (IS_CHERRYVIEW(dev_priv))
8255
		cherryview_disable_rps(dev_priv);
8256
	else if (IS_VALLEYVIEW(dev_priv))
8257
		valleyview_disable_rps(dev_priv);
8258
	else if (INTEL_GEN(dev_priv) >= 6)
8259
		gen6_disable_rps(dev_priv);
8260
	else if (IS_IRONLAKE_M(dev_priv))
8261
		ironlake_disable_drps(dev_priv);
8262 8263

	dev_priv->gt_pm.rps.enabled = false;
8264 8265 8266 8267 8268
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8269

8270 8271
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8272 8273 8274
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8275
	mutex_unlock(&dev_priv->pcu_lock);
8276 8277
}

8278 8279 8280 8281
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8282 8283 8284
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8285
	gen6_update_ring_freq(i915);
8286 8287

	i915->gt_pm.llc_pstate.enabled = true;
8288 8289
}

8290
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8291
{
8292
	lockdep_assert_held(&dev_priv->pcu_lock);
8293

8294 8295 8296
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8297 8298 8299 8300 8301 8302 8303 8304 8305 8306
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8307 8308

	dev_priv->gt_pm.rc6.enabled = true;
8309
}
8310

8311 8312 8313
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8314

8315
	lockdep_assert_held(&dev_priv->pcu_lock);
8316

8317 8318 8319
	if (rps->enabled)
		return;

8320 8321 8322 8323
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8324
	} else if (INTEL_GEN(dev_priv) >= 9) {
8325 8326 8327
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8328
	} else if (INTEL_GEN(dev_priv) >= 6) {
8329
		gen6_enable_rps(dev_priv);
8330 8331 8332
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8333
	}
8334

8335 8336
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8337

8338 8339
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8340 8341

	rps->enabled = true;
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8352 8353
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8354 8355 8356
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8357

8358
	mutex_unlock(&dev_priv->pcu_lock);
8359
}
I
Imre Deak 已提交
8360

8361
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8362 8363 8364 8365 8366 8367 8368 8369 8370
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8371
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8372
{
8373
	enum pipe pipe;
8374

8375
	for_each_pipe(dev_priv, pipe) {
8376 8377 8378
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8379 8380 8381

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8382 8383 8384
	}
}

8385
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8386
{
8387
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8388

8389 8390 8391 8392
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8393 8394 8395
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8413
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8414 8415 8416
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8417

8418 8419 8420 8421 8422 8423 8424
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8425
	if (IS_IRONLAKE_M(dev_priv)) {
8426
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8427 8428 8429 8430 8431 8432 8433 8434
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8435 8436
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8437 8438 8439 8440 8441 8442
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8443

8444
	/* WaDisableRenderCachePipelinedFlush:ilk */
8445 8446
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8447

8448 8449 8450
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8451
	g4x_disable_trickle_feed(dev_priv);
8452

8453
	ibx_init_clock_gating(dev_priv);
8454 8455
}

8456
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8457 8458
{
	int pipe;
8459
	uint32_t val;
8460 8461 8462 8463 8464 8465

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8466 8467 8468
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8469 8470
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8471 8472 8473
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8474
	for_each_pipe(dev_priv, pipe) {
8475 8476 8477
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8478
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8479
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8480 8481 8482
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8483 8484
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8485
	/* WADP0ClockGatingDisable */
8486
	for_each_pipe(dev_priv, pipe) {
8487 8488 8489
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8490 8491
}

8492
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8493 8494 8495 8496
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8497 8498 8499
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8500 8501
}

8502
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8503
{
8504
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8505

8506
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8507 8508 8509 8510 8511

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8512
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8513 8514 8515
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8516 8517 8518
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8519 8520 8521
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8522 8523 8524 8525
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8526 8527
	 */
	I915_WRITE(GEN6_GT_MODE,
8528
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8529

8530
	I915_WRITE(CACHE_MODE_0,
8531
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8547
	 *
8548 8549
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8550 8551 8552 8553 8554
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8555
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8556 8557
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8558

8559 8560 8561 8562 8563 8564 8565 8566
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8567 8568 8569 8570 8571 8572 8573 8574
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8575 8576
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8577 8578 8579 8580 8581 8582 8583
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8584 8585 8586 8587
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8588

8589
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8590

8591
	cpt_init_clock_gating(dev_priv);
8592

8593
	gen6_check_mch_setup(dev_priv);
8594 8595 8596 8597 8598 8599
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8600
	/*
8601
	 * WaVSThreadDispatchOverride:ivb,vlv
8602 8603 8604 8605
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8606 8607 8608 8609 8610 8611 8612 8613
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8614
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8615 8616 8617 8618 8619
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8620
	if (HAS_PCH_LPT_LP(dev_priv))
8621 8622 8623
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8624 8625

	/* WADPOClockGatingDisable:hsw */
8626 8627
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8628
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8629 8630
}

8631
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8632
{
8633
	if (HAS_PCH_LPT_LP(dev_priv)) {
8634 8635 8636 8637 8638 8639 8640
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8641 8642 8643 8644 8645
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8646
	u32 val;
8647 8648 8649 8650 8651

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8652 8653 8654 8655 8656
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8657 8658 8659 8660 8661 8662 8663 8664 8665 8666

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8667 8668 8669 8670 8671
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8672
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8673 8674
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8675 8676
}

8677
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8678
{
8679
	u32 val;
8680 8681
	cnp_init_clock_gating(dev_priv);

8682 8683 8684 8685
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8686 8687 8688 8689 8690 8691 8692 8693
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8694 8695 8696
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8697 8698
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8699 8700
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8701

R
Rodrigo Vivi 已提交
8702 8703 8704 8705 8706
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8707
	/* WaDisableVFclkgate:cnl */
8708
	/* WaVFUnitClockGatingDisable:cnl */
8709 8710 8711
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8712 8713
}

8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8724
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8725
{
8726
	gen9_init_clock_gating(dev_priv);
8727 8728 8729 8730 8731

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8732 8733 8734 8735 8736

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8737

8738
	/* WaFbcNukeOnHostModify:kbl */
8739 8740
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8741 8742
}

8743
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8744
{
8745
	gen9_init_clock_gating(dev_priv);
8746 8747 8748 8749

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8750 8751 8752 8753

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8754 8755
}

8756
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8757
{
8758 8759 8760
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8761
	enum pipe pipe;
B
Ben Widawsky 已提交
8762

8763
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8764
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8765

8766
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8767 8768 8769
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8770
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8771
	for_each_pipe(dev_priv, pipe) {
8772
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8773
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8774
			   BDW_DPRS_MASK_VBLANK_SRD);
8775
	}
8776

8777 8778 8779 8780 8781
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8782

8783 8784
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8785 8786 8787 8788

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8789

8790 8791
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8792

8793 8794
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8795

8796 8797 8798 8799
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8800
	lpt_init_clock_gating(dev_priv);
8801 8802 8803 8804 8805 8806 8807 8808

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8809 8810
}

8811
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8812
{
8813 8814 8815 8816 8817
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8818
	/* This is required by WaCatErrorRejectionIssue:hsw */
8819 8820 8821 8822
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8823 8824 8825
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8826

8827 8828 8829
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8830 8831 8832 8833
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8834
	/* WaDisable4x2SubspanOptimization:hsw */
8835 8836
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8837

8838 8839 8840
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8841 8842 8843 8844
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8845 8846
	 */
	I915_WRITE(GEN7_GT_MODE,
8847
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8848

8849 8850 8851 8852
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8853
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8854 8855
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8856
	lpt_init_clock_gating(dev_priv);
8857 8858
}

8859
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8860
{
8861
	uint32_t snpcr;
8862

8863
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8864

8865
	/* WaDisableEarlyCull:ivb */
8866 8867 8868
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8869
	/* WaDisableBackToBackFlipFix:ivb */
8870 8871 8872 8873
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8874
	/* WaDisablePSDDualDispatchEnable:ivb */
8875
	if (IS_IVB_GT1(dev_priv))
8876 8877 8878
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8879 8880 8881
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8882
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8883 8884 8885
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8886
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8887 8888 8889
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8890
		   GEN7_WA_L3_CHICKEN_MODE);
8891
	if (IS_IVB_GT1(dev_priv))
8892 8893
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8894 8895 8896 8897
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8898 8899
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8900
	}
8901

8902
	/* WaForceL3Serialization:ivb */
8903 8904 8905
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8906
	/*
8907
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8908
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8909 8910
	 */
	I915_WRITE(GEN6_UCGCTL2,
8911
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8912

8913
	/* This is required by WaCatErrorRejectionIssue:ivb */
8914 8915 8916 8917
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8918
	g4x_disable_trickle_feed(dev_priv);
8919 8920

	gen7_setup_fixed_func_scheduler(dev_priv);
8921

8922 8923 8924 8925 8926
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8927

8928
	/* WaDisable4x2SubspanOptimization:ivb */
8929 8930
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8931

8932 8933 8934
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8935 8936 8937 8938
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8939 8940
	 */
	I915_WRITE(GEN7_GT_MODE,
8941
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8942

8943 8944 8945 8946
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8947

8948
	if (!HAS_PCH_NOP(dev_priv))
8949
		cpt_init_clock_gating(dev_priv);
8950

8951
	gen6_check_mch_setup(dev_priv);
8952 8953
}

8954
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8955
{
8956
	/* WaDisableEarlyCull:vlv */
8957 8958 8959
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8960
	/* WaDisableBackToBackFlipFix:vlv */
8961 8962 8963 8964
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8965
	/* WaPsdDispatchEnable:vlv */
8966
	/* WaDisablePSDDualDispatchEnable:vlv */
8967
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8968 8969
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8970

8971 8972 8973
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8974
	/* WaForceL3Serialization:vlv */
8975 8976 8977
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8978
	/* WaDisableDopClockGating:vlv */
8979 8980 8981
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8982
	/* This is required by WaCatErrorRejectionIssue:vlv */
8983 8984 8985 8986
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8987 8988
	gen7_setup_fixed_func_scheduler(dev_priv);

8989
	/*
8990
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8991
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8992 8993
	 */
	I915_WRITE(GEN6_UCGCTL2,
8994
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8995

8996 8997 8998 8999 9000
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9001

9002 9003 9004 9005
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9006 9007
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9008

9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9020 9021 9022 9023 9024 9025
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9026
	/*
9027
	 * WaDisableVLVClockGating_VBIIssue:vlv
9028 9029 9030
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9031
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9032 9033
}

9034
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9035
{
9036 9037 9038 9039 9040
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9041 9042 9043 9044

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9045 9046 9047 9048

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9049 9050 9051 9052

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9053

9054 9055 9056 9057 9058 9059 9060
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9061 9062 9063 9064 9065
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9066 9067
}

9068
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9080
	if (IS_GM45(dev_priv))
9081 9082
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9083 9084 9085 9086

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9087

9088 9089 9090
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9091
	g4x_disable_trickle_feed(dev_priv);
9092 9093
}

9094
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9095 9096 9097 9098 9099 9100
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9101 9102
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9103 9104 9105

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9106 9107
}

9108
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9109 9110 9111 9112 9113 9114 9115
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9116 9117
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9118 9119 9120

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9121 9122
}

9123
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9124 9125 9126 9127 9128 9129
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9130

9131
	if (IS_PINEVIEW(dev_priv))
9132
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9133 9134 9135

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9136 9137

	/* interrupts should cause a wake up from C3 */
9138
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9139 9140 9141

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9142 9143 9144

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9145 9146
}

9147
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9148 9149
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9150 9151 9152 9153

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9154 9155 9156

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9157 9158
}

9159
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9160
{
9161 9162 9163
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9164 9165
}

9166
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9167
{
9168
	dev_priv->display.init_clock_gating(dev_priv);
9169 9170
}

9171
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9172
{
9173 9174
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9175 9176
}

9177
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9193
	if (IS_CANNONLAKE(dev_priv))
9194
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9195 9196
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9197
	else if (IS_SKYLAKE(dev_priv))
9198
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9199
	else if (IS_KABYLAKE(dev_priv))
9200
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9201
	else if (IS_BROXTON(dev_priv))
9202
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9203 9204
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9205
	else if (IS_BROADWELL(dev_priv))
9206
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9207
	else if (IS_CHERRYVIEW(dev_priv))
9208
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9209
	else if (IS_HASWELL(dev_priv))
9210
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9211
	else if (IS_IVYBRIDGE(dev_priv))
9212
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9213
	else if (IS_VALLEYVIEW(dev_priv))
9214
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9215 9216 9217
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
9218
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9219 9220
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9221
	else if (IS_I965GM(dev_priv))
9222
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9223
	else if (IS_I965G(dev_priv))
9224
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9237
/* Set up chip specific power management-related functions */
9238
void intel_init_pm(struct drm_i915_private *dev_priv)
9239
{
9240
	intel_fbc_init(dev_priv);
9241

9242
	/* For cxsr */
9243
	if (IS_PINEVIEW(dev_priv))
9244
		i915_pineview_get_mem_freq(dev_priv);
9245
	else if (IS_GEN5(dev_priv))
9246
		i915_ironlake_get_mem_freq(dev_priv);
9247

9248
	/* For FIFO watermark updates */
9249
	if (INTEL_GEN(dev_priv) >= 9) {
9250
		skl_setup_wm_latency(dev_priv);
9251
		dev_priv->display.initial_watermarks = skl_initial_wm;
9252
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9253
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9254
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9255
		ilk_setup_wm_latency(dev_priv);
9256

9257
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9258
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9259
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9260
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9261
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9262 9263 9264 9265 9266 9267
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9268 9269 9270 9271
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9272
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9273
		vlv_setup_wm_latency(dev_priv);
9274
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9275
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9276
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9277
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9278
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9279 9280 9281 9282 9283 9284
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9285
	} else if (IS_PINEVIEW(dev_priv)) {
9286
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9287 9288 9289 9290 9291 9292 9293 9294 9295
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9296
			intel_set_memory_cxsr(dev_priv, false);
9297 9298 9299
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9300
	} else if (IS_GEN4(dev_priv)) {
9301
		dev_priv->display.update_wm = i965_update_wm;
9302
	} else if (IS_GEN3(dev_priv)) {
9303 9304
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9305
	} else if (IS_GEN2(dev_priv)) {
9306
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9307
			dev_priv->display.update_wm = i845_update_wm;
9308
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9309 9310
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9311
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9312 9313 9314
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9315 9316 9317
	}
}

9318 9319 9320 9321 9322 9323 9324 9325 9326
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9327
		return -ENODEV;
9328 9329 9330
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9331
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9332 9333 9334 9335
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9336
		MISSING_CASE(flags);
9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9363
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9364
{
9365 9366
	int status;

9367
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9368

9369 9370 9371 9372 9373 9374
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9375 9376
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9377 9378 9379
		return -EAGAIN;
	}

9380 9381 9382
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9383

9384 9385 9386
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9387 9388
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9389 9390 9391
		return -ETIMEDOUT;
	}

9392 9393
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9394

9395 9396 9397 9398 9399 9400
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9401 9402
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9403 9404 9405
		return status;
	}

B
Ben Widawsky 已提交
9406 9407 9408
	return 0;
}

9409
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9410 9411
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9412
{
9413 9414
	int status;

9415
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9416

9417 9418 9419 9420 9421 9422
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9423 9424
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9425 9426 9427
		return -EAGAIN;
	}

9428
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9429
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9430
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9431

9432 9433
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9434 9435
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9436 9437
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9438 9439 9440
		return -ETIMEDOUT;
	}

9441
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9442

9443 9444 9445 9446 9447 9448
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9449 9450
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9451 9452 9453
		return status;
	}

B
Ben Widawsky 已提交
9454 9455
	return 0;
}
9456

9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9478
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9479 9480
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9481
 * for @timeout_base_ms and if this times out for another 50 ms with
9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9493
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9508
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9509 9510 9511 9512 9513 9514 9515 9516
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9517
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9518
	 * account for interrupts that could reduce the number of these
9519 9520
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9521 9522 9523 9524
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9525
	ret = wait_for_atomic(COND, 50);
9526 9527 9528 9529 9530 9531 9532
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9533 9534
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9535 9536
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9537 9538 9539 9540
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9541
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9542 9543
}

9544
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9545
{
9546 9547 9548
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9549 9550
}

9551
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9552
{
9553 9554
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9555 9556 9557 9558
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9559
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9560 9561
}

9562
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9563
{
9564 9565
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9566
	/* CHV needs even values */
9567
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9568 9569
}

9570
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9571
{
9572
	if (INTEL_GEN(dev_priv) >= 9)
9573 9574
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9575
	else if (IS_CHERRYVIEW(dev_priv))
9576
		return chv_gpu_freq(dev_priv, val);
9577
	else if (IS_VALLEYVIEW(dev_priv))
9578 9579 9580
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9581 9582
}

9583 9584
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9585
	if (INTEL_GEN(dev_priv) >= 9)
9586 9587
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9588
	else if (IS_CHERRYVIEW(dev_priv))
9589
		return chv_freq_opcode(dev_priv, val);
9590
	else if (IS_VALLEYVIEW(dev_priv))
9591 9592
		return byt_freq_opcode(dev_priv, val);
	else
9593
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9594
}
9595

9596
void intel_pm_setup(struct drm_i915_private *dev_priv)
9597
{
9598
	mutex_init(&dev_priv->pcu_lock);
D
Daniel Vetter 已提交
9599

9600
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9601

9602 9603
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9604
}
9605

9606 9607 9608
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9609
	u32 lower, upper, tmp;
9610
	int loop = 2;
9611

9612 9613
	/*
	 * The register accessed do not need forcewake. We borrow
9614 9615
	 * uncore lock to prevent concurrent access to range reg.
	 */
9616
	lockdep_assert_held(&dev_priv->uncore.lock);
9617

9618 9619
	/*
	 * vlv and chv residency counters are 40 bits in width.
9620 9621
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9622 9623 9624 9625 9626
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9627
	 */
9628 9629
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9641
	} while (upper != tmp && --loop);
9642

9643 9644
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9645 9646 9647 9648
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9649 9650 9651
	return lower | (u64)upper << 8;
}

9652
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9653
			   const i915_reg_t reg)
9654
{
9655 9656 9657 9658
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9659
	u32 mul, div;
9660

9661
	if (!HAS_RC6(dev_priv))
9662 9663
		return 0;

9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9681 9682
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9683
		mul = 1000000;
9684
		div = dev_priv->czclk_freq;
9685
		overflow_hw = BIT_ULL(40);
9686 9687
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9688 9689 9690 9691 9692 9693 9694 9695
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9696

9697 9698
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9699
	}
9700

9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9724
}
T
Tvrtko Ursulin 已提交
9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}