intel_pm.c 221.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_fixed.h"
44
#include "i915_irq.h"
45
#include "i915_trace.h"
46
#include "display/intel_bw.h"
47
#include "intel_pm.h"
48
#include "intel_sideband.h"
49
#include "../../../platform/x86/intel_ips.h"
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

74
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
75
{
76 77 78
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
79
		 * Display WA #0390: skl,kbl
80 81 82 83 84 85 86 87 88
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

89
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90 91 92
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

93
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94 95
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
96

97 98
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
99 100 101
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
102

103
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
104 105
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
106 107 108 109 110 111

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
112 113
}

114
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
115
{
116
	gen9_init_clock_gating(dev_priv);
117

118 119 120 121
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

122 123
	/*
	 * FIXME:
124
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
125 126
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
127
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
128 129 130 131 132

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
133 134
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
135 136 137 138 139 140 141 142

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
143 144
}

145 146 147 148 149 150 151 152 153 154 155 156 157
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

158
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

196
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
197 198 199
{
	u16 ddrpll, csipll;

200 201
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
217 218
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
246 247
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
248 249 250 251 252
		dev_priv->fsb_freq = 0;
		break;
	}
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

291 292
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

315 316 317 318
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

319
	vlv_punit_get(dev_priv);
320 321 322 323 324 325 326 327 328 329 330 331

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
332 333
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
334

335
	vlv_punit_put(dev_priv);
336 337
}

338 339 340 341
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

342
	vlv_punit_get(dev_priv);
343

344
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
345 346 347 348
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
349
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
350

351
	vlv_punit_put(dev_priv);
352 353
}

354 355 356
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

357
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358
{
359
	bool was_enabled;
360
	u32 val;
361

362
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365
		POSTING_READ(FW_BLC_SELF_VLV);
366
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_PINEVIEW(dev_priv)) {
371 372 373 374 375 376
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
377
		I915_WRITE(DSPFW3, val);
378
		POSTING_READ(DSPFW3);
379
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 382 383
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
384
		POSTING_READ(FW_BLC_SELF);
385
	} else if (IS_I915GM(dev_priv)) {
386 387 388 389 390
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
391
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392 393 394
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
395
		POSTING_READ(INSTPM);
396
	} else {
397
		return false;
398
	}
399

400 401
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

402 403 404
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
405 406

	return was_enabled;
407 408
}

V
Ville Syrjälä 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
446
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447
{
448 449
	bool ret;

450
	mutex_lock(&dev_priv->wm.wm_mutex);
451
	ret = _intel_set_memory_cxsr(dev_priv, enable);
452 453 454 455
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
456
	mutex_unlock(&dev_priv->wm.wm_mutex);
457 458

	return ret;
459
}
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
475
static const int pessimal_latency_ns = 5000;
476

477 478 479
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

480
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481
{
482
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
483
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485 486
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
487
	u32 dsparb, dsparb2, dsparb3;
488

489
	switch (pipe) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
509 510
		MISSING_CASE(pipe);
		return;
511 512
	}

513 514 515 516
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
517 518
}

519 520
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
521
{
522
	u32 dsparb = I915_READ(DSPARB);
523 524 525
	int size;

	size = dsparb & 0x7f;
526
	if (i9xx_plane == PLANE_B)
527 528
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

529 530
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
531 532 533 534

	return size;
}

535 536
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
537
{
538
	u32 dsparb = I915_READ(DSPARB);
539 540 541
	int size;

	size = dsparb & 0x1ff;
542
	if (i9xx_plane == PLANE_B)
543 544 545
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

546 547
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
548 549 550 551

	return size;
}

552 553
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
554
{
555
	u32 dsparb = I915_READ(DSPARB);
556 557 558 559 560
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

561 562
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
563 564 565 566 567

	return size;
}

/* Pineview has different values for various configs */
568
static const struct intel_watermark_params pnv_display_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574
};
575 576

static const struct intel_watermark_params pnv_display_hplloff_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582
};
583 584

static const struct intel_watermark_params pnv_cursor_wm = {
585 586 587 588 589
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
590
};
591 592

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
593 594 595 596 597
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598
};
599

600
static const struct intel_watermark_params i965_cursor_wm_info = {
601 602 603 604 605
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
606
};
607

608
static const struct intel_watermark_params i945_wm_info = {
609 610 611 612 613
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
614
};
615

616
static const struct intel_watermark_params i915_wm_info = {
617 618 619 620 621
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
622
};
623

624
static const struct intel_watermark_params i830_a_wm_info = {
625 626 627 628 629
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
630
};
631

632 633 634 635 636 637 638
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
639

640
static const struct intel_watermark_params i845_wm_info = {
641 642 643 644 645
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
646 647
};

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
685
	u64 ret;
686

687
	ret = mul_u32_u32(pixel_rate, cpp * latency);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

744 745
/**
 * intel_calculate_wm - calculate watermark level
746
 * @pixel_rate: pixel clock
747
 * @wm: chip FIFO params
748
 * @fifo_size: size of the FIFO buffer
749
 * @cpp: bytes per pixel
750 751 752 753 754 755 756 757 758 759 760 761 762
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
763 764 765 766
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
767
{
768
	int entries, wm_size;
769 770 771 772 773 774 775

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
776 777 778 779 780
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
781

782 783
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
784 785

	/* Don't promote wm_size to unsigned... */
786
	if (wm_size > wm->max_wm)
787 788 789
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
790 791 792 793 794 795 796 797 798 799 800

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

801 802 803
	return wm_size;
}

804 805 806 807 808 809 810 811 812 813
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

814 815 816 817 818
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

819 820 821
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
822
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
823 824

	/* FIXME check the 'enable' instead */
825
	if (!crtc_state->hw.active)
826 827 828 829 830 831 832 833 834 835 836
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
837
		return plane_state->hw.fb != NULL;
838
	else
839
		return plane_state->uapi.visible;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

861
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
862
{
863
	struct intel_crtc *crtc, *enabled = NULL;
864

865
	for_each_intel_crtc(&dev_priv->drm, crtc) {
866
		if (intel_crtc_active(crtc)) {
867 868 869 870 871 872 873 874 875
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

876
static void pnv_update_wm(struct intel_crtc *unused_crtc)
877
{
878
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
879
	struct intel_crtc *crtc;
880 881
	const struct cxsr_latency *latency;
	u32 reg;
882
	unsigned int wm;
883

884
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
885 886 887
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
888
	if (!latency) {
889 890
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
891
		intel_set_memory_cxsr(dev_priv, false);
892 893 894
		return;
	}

895
	crtc = single_enabled_crtc(dev_priv);
896
	if (crtc) {
897
		const struct drm_display_mode *adjusted_mode =
898
			&crtc->config->hw.adjusted_mode;
899 900
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
901
		int cpp = fb->format->cpp[0];
902
		int clock = adjusted_mode->crtc_clock;
903 904

		/* Display SR */
905 906
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
907
					cpp, latency->display_sr);
908 909
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
910
		reg |= FW_WM(wm, SR);
911
		I915_WRITE(DSPFW1, reg);
912
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
913 914

		/* cursor SR */
915 916
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
917
					4, latency->cursor_sr);
918 919
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
920
		reg |= FW_WM(wm, CURSOR_SR);
921 922 923
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
924 925
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
926
					cpp, latency->display_hpll_disable);
927 928
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
929
		reg |= FW_WM(wm, HPLL_SR);
930 931 932
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
933 934
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
935
					4, latency->cursor_hpll_disable);
936 937
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
938
		reg |= FW_WM(wm, HPLL_CURSOR);
939
		I915_WRITE(DSPFW3, reg);
940
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
941

942
		intel_set_memory_cxsr(dev_priv, true);
943
	} else {
944
		intel_set_memory_cxsr(dev_priv, false);
945 946 947
	}
}

948 949 950 951 952 953 954 955 956 957
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
958
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
959 960 961 962 963 964
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

965 966
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
967
{
968 969 970 971 972
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
990

991
	POSTING_READ(DSPFW1);
992 993
}

994 995 996
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

997
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
998 999
				const struct vlv_wm_values *wm)
{
1000 1001 1002
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1003 1004
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1005 1006 1007 1008 1009 1010
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

1023
	I915_WRITE(DSPFW1,
1024
		   FW_WM(wm->sr.plane, SR) |
1025 1026 1027
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1028
	I915_WRITE(DSPFW2,
1029 1030 1031
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1032
	I915_WRITE(DSPFW3,
1033
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1034 1035 1036

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1037 1038
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1039
		I915_WRITE(DSPFW8_CHV,
1040 1041
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1042
		I915_WRITE(DSPFW9_CHV,
1043 1044
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1045
		I915_WRITE(DSPHOWM,
1046
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1047 1048 1049 1050 1051 1052 1053 1054 1055
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1056 1057
	} else {
		I915_WRITE(DSPFW7,
1058 1059
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1060
		I915_WRITE(DSPHOWM,
1061
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1062 1063 1064 1065 1066 1067
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1068 1069 1070
	}

	POSTING_READ(DSPFW1);
1071 1072
}

1073 1074
#undef FW_WM_VLV

1075 1076 1077 1078 1079
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1080
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1081

1082
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1127 1128 1129
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1130
{
1131
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1132 1133
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1134
		&crtc_state->hw.adjusted_mode;
1135 1136
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1137 1138 1139 1140 1141 1142 1143

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1144
	cpp = plane_state->hw.fb->format->cpp[0];
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1159
		cpp = max(cpp, 4u);
1160 1161 1162 1163

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1164
	width = drm_rect_width(&plane_state->uapi.dst);
1165 1166 1167 1168 1169 1170 1171

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1172
		unsigned int small, large;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1185
	return min_t(unsigned int, wm, USHRT_MAX);
1186 1187 1188 1189 1190
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1191
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1207
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1223 1224
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1225
			      u32 pri_val);
1226 1227 1228 1229

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1230
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1231
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1284 1285 1286 1287 1288 1289
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1290 1291

		if (plane_id == PLANE_PRIMARY)
1292 1293 1294 1295
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1312
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1350
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1351
	struct intel_atomic_state *state =
1352
		to_intel_atomic_state(crtc_state->uapi.state);
1353
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1354 1355
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1356
	const struct g4x_pipe_wm *raw;
1357 1358
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1359 1360 1361 1362 1363
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1364 1365 1366
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1367 1368
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1369 1370
			continue;

1371
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1437
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1438
{
1439
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1440 1441 1442
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1443
		to_intel_atomic_state(new_crtc_state->uapi.state);
1444 1445 1446
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1447 1448
	enum plane_id plane_id;

1449
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1450 1451 1452 1453 1454 1455 1456
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1457
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1458
		!new_crtc_state->disable_cxsr;
1459
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1460
		!new_crtc_state->disable_cxsr;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1502
out:
1503 1504 1505 1506 1507
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1508
		new_crtc_state->wm.need_postvbl_update = true;
1509 1510 1511 1512 1513 1514 1515 1516

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1517
	int num_active_pipes = 0;
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1536
		num_active_pipes++;
1537 1538
	}

1539
	if (num_active_pipes != 1) {
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1579
				   struct intel_crtc *crtc)
1580
{
1581 1582 1583
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1584 1585 1586 1587 1588 1589 1590 1591

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1592
				    struct intel_crtc *crtc)
1593
{
1594 1595 1596
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1597 1598 1599 1600 1601

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1602
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1603 1604 1605 1606
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1607 1608
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1609 1610
				   unsigned int htotal,
				   unsigned int width,
1611
				   unsigned int cpp,
1612 1613 1614 1615
				   unsigned int latency)
{
	unsigned int ret;

1616 1617
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1618 1619 1620 1621 1622
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1623
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1624 1625 1626 1627
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1628 1629
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1630 1631 1632
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1633 1634

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1635 1636 1637
	}
}

1638 1639 1640
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1641
{
1642
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1643
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1644
	const struct drm_display_mode *adjusted_mode =
1645
		&crtc_state->hw.adjusted_mode;
1646
	unsigned int clock, htotal, cpp, width, wm;
1647 1648 1649 1650

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1651
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1652 1653
		return 0;

1654
	cpp = plane_state->hw.fb->format->cpp[0];
1655 1656 1657
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1658

1659
	if (plane->id == PLANE_CURSOR) {
1660 1661 1662 1663 1664 1665 1666 1667
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1668
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1669 1670 1671
				    dev_priv->wm.pri_latency[level] * 10);
	}

1672
	return min_t(unsigned int, wm, USHRT_MAX);
1673 1674
}

1675 1676 1677 1678 1679 1680
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1681
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1682
{
1683
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1684
	const struct g4x_pipe_wm *raw =
1685
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1686
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1687
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1688
	int num_active_planes = hweight8(active_planes);
1689
	const int fifo_size = 511;
1690
	int fifo_extra, fifo_left = fifo_size;
1691
	int sprite0_fifo_extra = 0;
1692 1693
	unsigned int total_rate;
	enum plane_id plane_id;
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1706 1707
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1708 1709
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1710

1711 1712
	if (total_rate > fifo_size)
		return -EINVAL;
1713

1714 1715
	if (total_rate == 0)
		total_rate = 1;
1716

1717
	for_each_plane_id_on_crtc(crtc, plane_id) {
1718 1719
		unsigned int rate;

1720 1721
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1722 1723 1724
			continue;
		}

1725 1726 1727
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1728 1729
	}

1730 1731 1732
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1733 1734 1735
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1736 1737

	/* spread the remainder evenly */
1738
	for_each_plane_id_on_crtc(crtc, plane_id) {
1739 1740 1741 1742 1743
		int plane_extra;

		if (fifo_left == 0)
			break;

1744
		if ((active_planes & BIT(plane_id)) == 0)
1745 1746 1747
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1748
		fifo_state->plane[plane_id] += plane_extra;
1749 1750 1751
		fifo_left -= plane_extra;
	}

1752 1753 1754 1755 1756 1757 1758 1759 1760
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1761 1762
}

1763 1764 1765 1766 1767 1768
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1769
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1780 1781 1782 1783 1784 1785 1786 1787
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1788 1789 1790 1791
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1792
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1793
				 int level, enum plane_id plane_id, u16 value)
1794
{
1795
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1796
	int num_levels = intel_wm_num_levels(dev_priv);
1797
	bool dirty = false;
1798

1799
	for (; level < num_levels; level++) {
1800
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1801

1802
		dirty |= raw->plane[plane_id] != value;
1803
		raw->plane[plane_id] = value;
1804
	}
1805 1806

	return dirty;
1807 1808
}

1809 1810
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1811
{
1812
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1813
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1814
	enum plane_id plane_id = plane->id;
1815
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1816
	int level;
1817
	bool dirty = false;
1818

1819
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1820 1821
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1822
	}
1823

1824
	for (level = 0; level < num_levels; level++) {
1825
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1826 1827
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1828

1829 1830
		if (wm > max_wm)
			break;
1831

1832
		dirty |= raw->plane[plane_id] != wm;
1833 1834
		raw->plane[plane_id] = wm;
	}
1835

1836
	/* mark all higher levels as invalid */
1837
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1838

1839 1840
out:
	if (dirty)
1841 1842 1843 1844 1845 1846
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1847 1848

	return dirty;
1849
}
1850

1851 1852
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1853
{
1854
	const struct g4x_pipe_wm *raw =
1855 1856 1857
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1858

1859 1860
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1861

1862
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1863
{
1864 1865 1866 1867
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1868 1869 1870 1871
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1872
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1873 1874
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1875
		to_intel_atomic_state(crtc_state->uapi.state);
1876 1877 1878
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1879 1880
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1881
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1882 1883
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1884 1885 1886
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1887
	unsigned int dirty = 0;
1888

1889 1890 1891
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1892 1893
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1894
			continue;
1895

1896
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1915
			intel_atomic_get_old_crtc_state(state, crtc);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1927
	}
1928

1929
	/* initially allow all levels */
1930
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1931 1932 1933 1934 1935
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1936
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1937

1938
	for (level = 0; level < wm_state->num_levels; level++) {
1939
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1940
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1941

1942
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1943
			break;
1944

1945 1946 1947 1948 1949 1950 1951 1952
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1953
						 raw->plane[PLANE_SPRITE0],
1954 1955
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1956

1957 1958 1959
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1960 1961
	}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1972 1973
}

1974 1975 1976
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1977
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1978
				   struct intel_crtc *crtc)
1979
{
1980
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1981
	struct intel_uncore *uncore = &dev_priv->uncore;
1982 1983
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1984 1985
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1986
	int sprite0_start, sprite1_start, fifo_size;
1987
	u32 dsparb, dsparb2, dsparb3;
1988

1989 1990 1991
	if (!crtc_state->fifo_changed)
		return;

1992 1993 1994
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1995

1996 1997
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1998

1999 2000
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2001 2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2010
	spin_lock(&uncore->lock);
2011

2012 2013
	switch (crtc->pipe) {
	case PIPE_A:
2014 2015
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2027 2028
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2029 2030
		break;
	case PIPE_B:
2031 2032
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2044 2045
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2046 2047
		break;
	case PIPE_C:
2048 2049
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2061 2062
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2063 2064 2065 2066
		break;
	default:
		break;
	}
2067

2068
	intel_uncore_posting_read_fw(uncore, DSPARB);
2069

2070
	spin_unlock(&uncore->lock);
2071 2072 2073 2074
}

#undef VLV_FIFO

2075
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2076
{
2077
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2078 2079 2080
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2081
		to_intel_atomic_state(new_crtc_state->uapi.state);
2082 2083 2084
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2085 2086
	int level;

2087
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2088 2089 2090 2091 2092 2093
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2094
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2095
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2096
		!new_crtc_state->disable_cxsr;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2115
out:
2116 2117 2118 2119
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2120
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2121
		new_crtc_state->wm.need_postvbl_update = true;
2122 2123 2124 2125

	return 0;
}

2126
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2127 2128 2129
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2130
	int num_active_pipes = 0;
2131

2132
	wm->level = dev_priv->wm.max_level;
2133 2134
	wm->cxsr = true;

2135
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2136
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2137 2138 2139 2140 2141 2142 2143

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2144
		num_active_pipes++;
2145 2146 2147
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2148
	if (num_active_pipes != 1)
2149 2150
		wm->cxsr = false;

2151
	if (num_active_pipes > 1)
2152 2153
		wm->level = VLV_WM_LEVEL_PM2;

2154
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2155
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2156 2157 2158
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2159
		if (crtc->active && wm->cxsr)
2160 2161
			wm->sr = wm_state->sr[wm->level];

2162 2163 2164 2165
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2166 2167 2168
	}
}

2169
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2170
{
2171 2172
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2173

2174
	vlv_merge_wm(dev_priv, &new_wm);
2175

2176
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2177 2178
		return;

2179
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2180 2181
		chv_set_memory_dvfs(dev_priv, false);

2182
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2183 2184
		chv_set_memory_pm5(dev_priv, false);

2185
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2186
		_intel_set_memory_cxsr(dev_priv, false);
2187

2188
	vlv_write_wm_values(dev_priv, &new_wm);
2189

2190
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2191
		_intel_set_memory_cxsr(dev_priv, true);
2192

2193
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2194 2195
		chv_set_memory_pm5(dev_priv, true);

2196
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2197 2198
		chv_set_memory_dvfs(dev_priv, true);

2199
	*old_wm = new_wm;
2200 2201
}

2202
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2203
				   struct intel_crtc *crtc)
2204
{
2205 2206 2207
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2208 2209

	mutex_lock(&dev_priv->wm.wm_mutex);
2210 2211 2212 2213 2214 2215
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2216
				    struct intel_crtc *crtc)
2217
{
2218 2219 2220
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2221 2222 2223 2224 2225

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2226
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2227 2228 2229 2230
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2231
static void i965_update_wm(struct intel_crtc *unused_crtc)
2232
{
2233
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2234
	struct intel_crtc *crtc;
2235 2236
	int srwm = 1;
	int cursor_sr = 16;
2237
	bool cxsr_enabled;
2238 2239

	/* Calc sr entries for one plane configs */
2240
	crtc = single_enabled_crtc(dev_priv);
2241 2242 2243
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2244
		const struct drm_display_mode *adjusted_mode =
2245
			&crtc->config->hw.adjusted_mode;
2246 2247
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2248
		int clock = adjusted_mode->crtc_clock;
2249
		int htotal = adjusted_mode->crtc_htotal;
2250
		int hdisplay = crtc->config->pipe_src_w;
2251
		int cpp = fb->format->cpp[0];
2252 2253
		int entries;

2254 2255
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2256 2257 2258 2259 2260
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2261 2262 2263
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2264

2265 2266 2267
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2268
		entries = DIV_ROUND_UP(entries,
2269 2270
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2271

2272
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2273 2274 2275
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2276 2277 2278
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2279

2280
		cxsr_enabled = true;
2281
	} else {
2282
		cxsr_enabled = false;
2283
		/* Turn off self refresh if both pipes are enabled */
2284
		intel_set_memory_cxsr(dev_priv, false);
2285 2286
	}

2287 2288 2289
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2290 2291

	/* 965 has limitations... */
2292 2293 2294 2295 2296 2297
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2298
	/* update cursor SR watermark */
2299
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2300 2301 2302

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2303 2304
}

2305 2306
#undef FW_WM

2307
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2308
{
2309
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2310
	const struct intel_watermark_params *wm_info;
2311 2312
	u32 fwater_lo;
	u32 fwater_hi;
2313 2314 2315
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2316
	struct intel_crtc *crtc, *enabled = NULL;
2317

2318
	if (IS_I945GM(dev_priv))
2319
		wm_info = &i945_wm_info;
2320
	else if (!IS_GEN(dev_priv, 2))
2321 2322
		wm_info = &i915_wm_info;
	else
2323
		wm_info = &i830_a_wm_info;
2324

2325 2326
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2327 2328
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2329
			&crtc->config->hw.adjusted_mode;
2330 2331 2332 2333
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2334
		if (IS_GEN(dev_priv, 2))
2335
			cpp = 4;
2336
		else
2337
			cpp = fb->format->cpp[0];
2338

2339
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2340
					       wm_info, fifo_size, cpp,
2341
					       pessimal_latency_ns);
2342
		enabled = crtc;
2343
	} else {
2344
		planea_wm = fifo_size - wm_info->guard_size;
2345 2346 2347 2348
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2349
	if (IS_GEN(dev_priv, 2))
2350
		wm_info = &i830_bc_wm_info;
2351

2352 2353
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2354 2355
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2356
			&crtc->config->hw.adjusted_mode;
2357 2358 2359 2360
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2361
		if (IS_GEN(dev_priv, 2))
2362
			cpp = 4;
2363
		else
2364
			cpp = fb->format->cpp[0];
2365

2366
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2367
					       wm_info, fifo_size, cpp,
2368
					       pessimal_latency_ns);
2369 2370 2371 2372
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2373
	} else {
2374
		planeb_wm = fifo_size - wm_info->guard_size;
2375 2376 2377
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2378

2379 2380
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2381

2382
	if (IS_I915GM(dev_priv) && enabled) {
2383
		struct drm_i915_gem_object *obj;
2384

2385
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2386 2387

		/* self-refresh seems busted with untiled */
2388
		if (!i915_gem_object_is_tiled(obj))
2389 2390 2391
			enabled = NULL;
	}

2392 2393 2394 2395 2396 2397
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2398
	intel_set_memory_cxsr(dev_priv, false);
2399 2400

	/* Calc sr entries for one plane configs */
2401
	if (HAS_FW_BLC(dev_priv) && enabled) {
2402 2403
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2404
		const struct drm_display_mode *adjusted_mode =
2405
			&enabled->config->hw.adjusted_mode;
2406 2407
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2408
		int clock = adjusted_mode->crtc_clock;
2409
		int htotal = adjusted_mode->crtc_htotal;
2410 2411
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2412 2413
		int entries;

2414
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2415
			cpp = 4;
2416
		else
2417
			cpp = fb->format->cpp[0];
2418

2419 2420
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2421
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2422 2423
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2424 2425 2426 2427
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2428
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2429 2430
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2431
		else
2432 2433 2434
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

2435 2436 2437
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2449 2450
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2451 2452
}

2453
static void i845_update_wm(struct intel_crtc *unused_crtc)
2454
{
2455
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2456
	struct intel_crtc *crtc;
2457
	const struct drm_display_mode *adjusted_mode;
2458
	u32 fwater_lo;
2459 2460
	int planea_wm;

2461
	crtc = single_enabled_crtc(dev_priv);
2462 2463 2464
	if (crtc == NULL)
		return;

2465
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2466
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2467
				       &i845_wm_info,
2468
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2469
				       4, pessimal_latency_ns);
2470 2471 2472
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

2473 2474
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2475 2476 2477 2478

	I915_WRITE(FW_BLC, fwater_lo);
}

2479
/* latency must be in 0.1us units. */
2480 2481 2482
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2483
{
2484
	unsigned int ret;
2485

2486 2487
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2488 2489 2490 2491

	return ret;
}

2492
/* latency must be in 0.1us units. */
2493 2494 2495 2496 2497
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2498
{
2499
	unsigned int ret;
2500

2501 2502
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2503
	ret = DIV_ROUND_UP(ret, 64) + 2;
2504

2505 2506 2507
	return ret;
}

2508
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2509
{
2510 2511 2512 2513 2514 2515
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2516
	if (WARN_ON(!cpp))
2517 2518 2519 2520
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2521
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2522 2523
}

2524
struct ilk_wm_maximums {
2525 2526 2527 2528
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2529 2530
};

2531 2532 2533 2534
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2535 2536
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2537
			      u32 mem_value, bool is_lp)
2538
{
2539
	u32 method1, method2;
2540
	int cpp;
2541

2542 2543 2544
	if (mem_value == 0)
		return U32_MAX;

2545
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2546 2547
		return 0;

2548
	cpp = plane_state->hw.fb->format->cpp[0];
2549

2550
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2551 2552 2553 2554

	if (!is_lp)
		return method1;

2555
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2556
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2557
				 drm_rect_width(&plane_state->uapi.dst),
2558
				 cpp, mem_value);
2559 2560

	return min(method1, method2);
2561 2562
}

2563 2564 2565 2566
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2567 2568
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2569
			      u32 mem_value)
2570
{
2571
	u32 method1, method2;
2572
	int cpp;
2573

2574 2575 2576
	if (mem_value == 0)
		return U32_MAX;

2577
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2578 2579
		return 0;

2580
	cpp = plane_state->hw.fb->format->cpp[0];
2581

2582 2583
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2584
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2585
				 drm_rect_width(&plane_state->uapi.dst),
2586
				 cpp, mem_value);
2587 2588 2589
	return min(method1, method2);
}

2590 2591 2592 2593
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2594 2595
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2596
			      u32 mem_value)
2597
{
2598 2599
	int cpp;

2600 2601 2602
	if (mem_value == 0)
		return U32_MAX;

2603
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2604 2605
		return 0;

2606
	cpp = plane_state->hw.fb->format->cpp[0];
2607

2608
	return ilk_wm_method2(crtc_state->pixel_rate,
2609
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2610
			      drm_rect_width(&plane_state->uapi.dst),
2611
			      cpp, mem_value);
2612 2613
}

2614
/* Only for WM_LP. */
2615 2616
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2617
			      u32 pri_val)
2618
{
2619
	int cpp;
2620

2621
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2622 2623
		return 0;

2624
	cpp = plane_state->hw.fb->format->cpp[0];
2625

2626 2627
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2628 2629
}

2630 2631
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2632
{
2633
	if (INTEL_GEN(dev_priv) >= 8)
2634
		return 3072;
2635
	else if (INTEL_GEN(dev_priv) >= 7)
2636 2637 2638 2639 2640
		return 768;
	else
		return 512;
}

2641 2642 2643
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2644
{
2645
	if (INTEL_GEN(dev_priv) >= 8)
2646 2647
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2648
	else if (INTEL_GEN(dev_priv) >= 7)
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2659 2660
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2661
{
2662
	if (INTEL_GEN(dev_priv) >= 7)
2663 2664 2665 2666 2667
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2668
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2669
{
2670
	if (INTEL_GEN(dev_priv) >= 8)
2671 2672 2673 2674 2675
		return 31;
	else
		return 15;
}

2676
/* Calculate the maximum primary/sprite plane watermark */
2677
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2678
				     int level,
2679
				     const struct intel_wm_config *config,
2680 2681 2682
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2683
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2684 2685

	/* if sprites aren't enabled, sprites get nothing */
2686
	if (is_sprite && !config->sprites_enabled)
2687 2688 2689
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2690
	if (level == 0 || config->num_pipes_active > 1) {
2691
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2692 2693 2694 2695 2696 2697

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2698
		if (INTEL_GEN(dev_priv) <= 6)
2699 2700 2701
			fifo_size /= 2;
	}

2702
	if (config->sprites_enabled) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2714
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2715 2716 2717
}

/* Calculate the maximum cursor plane watermark */
2718
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2719 2720
				      int level,
				      const struct intel_wm_config *config)
2721 2722
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2723
	if (level > 0 && config->num_pipes_active > 1)
2724 2725 2726
		return 64;

	/* otherwise just report max that registers can hold */
2727
	return ilk_cursor_wm_reg_max(dev_priv, level);
2728 2729
}

2730
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2731 2732 2733
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2734
				    struct ilk_wm_maximums *max)
2735
{
2736 2737 2738 2739
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2740 2741
}

2742
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2743 2744 2745
					int level,
					struct ilk_wm_maximums *max)
{
2746 2747 2748 2749
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2750 2751
}

2752
static bool ilk_validate_wm_level(int level,
2753
				  const struct ilk_wm_maximums *max,
2754
				  struct intel_wm_level *result)
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2784 2785 2786
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2787 2788 2789 2790 2791 2792
		result->enable = true;
	}

	return ret;
}

2793
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2794
				 const struct intel_crtc *crtc,
2795
				 int level,
2796
				 struct intel_crtc_state *crtc_state,
2797 2798 2799
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2800
				 struct intel_wm_level *result)
2801
{
2802 2803 2804
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2805 2806 2807 2808 2809 2810 2811 2812

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2813
	if (pristate) {
2814
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2815
						     pri_latency, level);
2816
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2817 2818 2819
	}

	if (sprstate)
2820
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2821 2822

	if (curstate)
2823
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2824

2825 2826 2827
	result->enable = true;
}

2828
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2829
				  u16 wm[8])
2830
{
2831 2832
	struct intel_uncore *uncore = &dev_priv->uncore;

2833
	if (INTEL_GEN(dev_priv) >= 9) {
2834
		u32 val;
2835
		int ret, i;
2836
		int level, max_level = ilk_wm_max_level(dev_priv);
2837 2838 2839 2840 2841

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2842
					     &val, NULL);
2843 2844

		if (ret) {
2845 2846
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2862
					     &val, NULL);
2863
		if (ret) {
2864 2865
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2890
		/*
2891
		 * WaWmMemoryReadLatency:skl+,glk
2892
		 *
2893
		 * punit doesn't take into account the read latency so we need
2894 2895
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2896
		 */
2897 2898 2899 2900 2901
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2902
				wm[level] += 2;
2903
			}
2904 2905
		}

2906 2907 2908 2909 2910 2911
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2912
		if (dev_priv->dram_info.is_16gb_dimm)
2913 2914
			wm[0] += 1;

2915
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2916
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2917 2918 2919 2920

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2921 2922 2923 2924
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2925
	} else if (INTEL_GEN(dev_priv) >= 6) {
2926
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2927 2928 2929 2930 2931

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2932
	} else if (INTEL_GEN(dev_priv) >= 5) {
2933
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2934 2935 2936 2937 2938

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2939 2940
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2941 2942 2943
	}
}

2944
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2945
				       u16 wm[5])
2946 2947
{
	/* ILK sprite LP0 latency is 1300 ns */
2948
	if (IS_GEN(dev_priv, 5))
2949 2950 2951
		wm[0] = 13;
}

2952
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2953
				       u16 wm[5])
2954 2955
{
	/* ILK cursor LP0 latency is 1300 ns */
2956
	if (IS_GEN(dev_priv, 5))
2957 2958 2959
		wm[0] = 13;
}

2960
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2961 2962
{
	/* how many WM levels are we expecting */
2963
	if (INTEL_GEN(dev_priv) >= 9)
2964
		return 7;
2965
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2966
		return 4;
2967
	else if (INTEL_GEN(dev_priv) >= 6)
2968
		return 3;
2969
	else
2970 2971
		return 2;
}
2972

2973
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2974
				   const char *name,
2975
				   const u16 wm[8])
2976
{
2977
	int level, max_level = ilk_wm_max_level(dev_priv);
2978 2979 2980 2981 2982

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2983 2984 2985
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
2986 2987 2988
			continue;
		}

2989 2990 2991 2992
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2993
		if (INTEL_GEN(dev_priv) >= 9)
2994 2995
			latency *= 10;
		else if (level > 0)
2996 2997
			latency *= 5;

2998 2999 3000
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3001 3002 3003
	}
}

3004
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3005
				    u16 wm[5], u16 min)
3006
{
3007
	int level, max_level = ilk_wm_max_level(dev_priv);
3008 3009 3010 3011 3012 3013

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3014
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3015 3016 3017 3018

	return true;
}

3019
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3034 3035
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3036 3037 3038
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3063 3064
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3065 3066 3067 3068 3069
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3070
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3071
{
3072
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3073 3074 3075 3076 3077 3078

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3079
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3080
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3081

3082 3083 3084
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3085

3086
	if (IS_GEN(dev_priv, 6)) {
3087
		snb_wm_latency_quirk(dev_priv);
3088 3089
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3090 3091
}

3092
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3093
{
3094
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3095
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3096 3097
}

3098
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3110
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3111 3112 3113

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3114
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3115 3116 3117 3118 3119 3120
		return false;
	}

	return true;
}

3121
/* Compute new watermarks for the pipe */
3122
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3123
{
3124
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3125
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3126
	struct intel_pipe_wm *pipe_wm;
3127 3128
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3129 3130 3131
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3132
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3133
	struct ilk_wm_maximums max;
3134

3135
	pipe_wm = &crtc_state->wm.ilk.optimal;
3136

3137 3138 3139 3140 3141 3142 3143
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3144 3145
	}

3146
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3147
	if (sprstate) {
3148 3149 3150 3151
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3152 3153
	}

3154 3155
	usable_level = max_level;

3156
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3157
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3158
		usable_level = 1;
3159 3160

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3161
	if (pipe_wm->sprites_scaled)
3162
		usable_level = 0;
3163

3164
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3165
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3166
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3167

3168
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3169
		return -EINVAL;
3170

3171
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3172

3173 3174
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3175

3176
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3177
				     pristate, sprstate, curstate, wm);
3178 3179 3180 3181 3182 3183

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3184 3185 3186 3187
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3188 3189
	}

3190
	return 0;
3191 3192
}

3193 3194 3195 3196 3197
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3198
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3199
{
3200
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3201
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3202
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3203
	struct intel_atomic_state *intel_state =
3204
		to_intel_atomic_state(newstate->uapi.state);
3205 3206 3207
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3208
	int level, max_level = ilk_wm_max_level(dev_priv);
3209 3210 3211 3212 3213 3214

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3215
	*a = newstate->wm.ilk.optimal;
3216
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3217
	    intel_state->skip_intermediate_wm)
3218 3219
		return 0;

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3241
	if (!ilk_validate_pipe_wm(dev_priv, a))
3242 3243 3244 3245 3246 3247
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3248 3249
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3250 3251 3252 3253

	return 0;
}

3254 3255 3256
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3257
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3258 3259 3260 3261 3262
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3263 3264
	ret_wm->enable = true;

3265
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3266
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3267 3268 3269 3270
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3271

3272 3273 3274 3275 3276
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3277
		if (!wm->enable)
3278
			ret_wm->enable = false;
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3290
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3291
			 const struct intel_wm_config *config,
3292
			 const struct ilk_wm_maximums *max,
3293 3294
			 struct intel_pipe_wm *merged)
{
3295
	int level, max_level = ilk_wm_max_level(dev_priv);
3296
	int last_enabled_level = max_level;
3297

3298
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3299
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3300
	    config->num_pipes_active > 1)
3301
		last_enabled_level = 0;
3302

3303
	/* ILK: FBC WM must be disabled always */
3304
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3305 3306 3307 3308 3309

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3310
		ilk_merge_wm_level(dev_priv, level, wm);
3311

3312 3313 3314 3315 3316
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3317 3318 3319 3320 3321 3322

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3323 3324
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3325 3326 3327
			wm->fbc_val = 0;
		}
	}
3328 3329 3330 3331 3332 3333 3334

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3335
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3336
	    intel_fbc_is_active(dev_priv)) {
3337 3338 3339 3340 3341 3342
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3343 3344
}

3345 3346 3347 3348 3349 3350
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3351
/* The value we need to program into the WM_LPx latency field */
3352 3353
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3354
{
3355
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3356 3357 3358 3359 3360
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3361
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3362
				   const struct intel_pipe_wm *merged,
3363
				   enum intel_ddb_partitioning partitioning,
3364
				   struct ilk_wm_values *results)
3365
{
3366 3367
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3368

3369
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3370
	results->partitioning = partitioning;
3371

3372
	/* LP1+ register values */
3373
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3374
		const struct intel_wm_level *r;
3375

3376
		level = ilk_wm_lp_to_level(wm_lp, merged);
3377

3378
		r = &merged->wm[level];
3379

3380 3381 3382 3383 3384
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3385
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3386 3387 3388
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3389 3390 3391
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3392
		if (INTEL_GEN(dev_priv) >= 8)
3393 3394 3395 3396 3397 3398
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3399 3400 3401 3402
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3403
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3404
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3405 3406 3407
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3408
	}
3409

3410
	/* LP0 register values */
3411
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3412
		enum pipe pipe = intel_crtc->pipe;
3413 3414
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3415

3416
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3417
			continue;
3418

3419 3420 3421 3422
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3423 3424 3425
	}
}

3426 3427
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3428 3429 3430 3431
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3432
{
3433
	int level, max_level = ilk_wm_max_level(dev_priv);
3434
	int level1 = 0, level2 = 0;
3435

3436 3437 3438 3439 3440
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3441 3442
	}

3443 3444
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3445 3446 3447
			return r2;
		else
			return r1;
3448
	} else if (level1 > level2) {
3449 3450 3451 3452 3453 3454
		return r1;
	} else {
		return r2;
	}
}

3455 3456 3457 3458 3459 3460 3461
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3462
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3463 3464
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3465 3466 3467 3468 3469
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3470
	for_each_pipe(dev_priv, pipe) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3508 3509
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3510
{
3511
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3512
	bool changed = false;
3513

3514 3515 3516
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3517
		changed = true;
3518 3519 3520 3521
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3522
		changed = true;
3523 3524 3525 3526
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3527
		changed = true;
3528
	}
3529

3530 3531 3532 3533
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3534

3535 3536 3537 3538 3539 3540 3541
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3542 3543
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3544
{
3545
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3546
	unsigned int dirty;
3547
	u32 val;
3548

3549
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3550 3551 3552 3553 3554
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3555
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3556
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3557
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3558
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3559
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3560 3561
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3562
	if (dirty & WM_DIRTY_DDB) {
3563
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3578 3579
	}

3580
	if (dirty & WM_DIRTY_FBC) {
3581 3582 3583 3584 3585 3586 3587 3588
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3589 3590 3591 3592
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3593
	if (INTEL_GEN(dev_priv) >= 7) {
3594 3595 3596 3597 3598
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3599

3600
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3601
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3602
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3603
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3604
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3605
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3606 3607

	dev_priv->wm.hw = *results;
3608 3609
}

3610
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3611 3612 3613 3614
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3615
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3616
{
3617 3618 3619
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3620

3621 3622 3623 3624
	for (i = 0; i < max_slices; i++) {
		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
			enabled_slices_mask |= BIT(i);
	}
3625

3626
	return enabled_slices_mask;
3627 3628
}

3629 3630 3631 3632
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3633
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3634
{
3635
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3636 3637
}

3638 3639 3640
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3641 3642 3643 3644
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3645 3646
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3647 3648
}

3649 3650 3651
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3664
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3665
	} else if (IS_GEN(dev_priv, 11)) {
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3694
intel_enable_sagv(struct drm_i915_private *dev_priv)
3695 3696 3697
{
	int ret;

3698 3699 3700 3701
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3702 3703
		return 0;

3704
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3705 3706 3707
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3708
	/* We don't need to wait for SAGV when enabling */
3709 3710 3711

	/*
	 * Some skl systems, pre-release machines in particular,
3712
	 * don't actually have SAGV.
3713
	 */
3714
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3715
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3716
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3717 3718
		return 0;
	} else if (ret < 0) {
3719
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3720 3721 3722
		return ret;
	}

3723
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3724 3725 3726 3727
	return 0;
}

int
3728
intel_disable_sagv(struct drm_i915_private *dev_priv)
3729
{
3730
	int ret;
3731

3732 3733 3734 3735
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3736 3737
		return 0;

3738
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3739
	/* bspec says to keep retrying for at least 1 ms */
3740 3741 3742 3743
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3744 3745
	/*
	 * Some skl systems, pre-release machines in particular,
3746
	 * don't actually have SAGV.
3747
	 */
3748
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3749
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3750
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3751
		return 0;
3752
	} else if (ret < 0) {
3753
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3754
		return ret;
3755 3756
	}

3757
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3758 3759 3760
	return 0;
}

3761 3762 3763
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3764
	const struct intel_bw_state *new_bw_state;
3765

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;

	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

	if (!intel_can_enable_sagv(new_bw_state))
3781 3782 3783 3784 3785 3786
		intel_disable_sagv(dev_priv);
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	const struct intel_bw_state *new_bw_state;

	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;
3798

3799 3800 3801 3802 3803
	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

	if (intel_can_enable_sagv(new_bw_state))
3804 3805 3806
		intel_enable_sagv(dev_priv);
}

3807
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3808
{
3809
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3810
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3811
	struct intel_plane *plane;
3812
	const struct intel_plane_state *plane_state;
3813
	int level, latency;
3814

3815 3816 3817
	if (!intel_has_sagv(dev_priv))
		return false;

3818
	if (!crtc_state->hw.active)
3819
		return true;
3820

3821
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3822 3823
		return false;

3824
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3825
		const struct skl_plane_wm *wm =
3826
			&crtc_state->wm.skl.optimal.planes[plane->id];
3827

3828
		/* Skip this plane if it's not enabled */
3829
		if (!wm->wm[0].plane_en)
3830 3831 3832
			continue;

		/* Find the highest enabled wm level for this plane */
3833
		for (level = ilk_wm_max_level(dev_priv);
3834
		     !wm->wm[level].plane_en; --level)
3835 3836
		     { }

3837 3838
		latency = dev_priv->wm.skl_latency[level];

3839
		if (skl_needs_memory_bw_wa(dev_priv) &&
3840
		    plane_state->uapi.fb->modifier ==
3841 3842 3843
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3844
		/*
3845 3846
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3847
		 * can't enable SAGV.
3848
		 */
3849
		if (latency < dev_priv->sagv_block_time_us)
3850 3851 3852 3853 3854 3855
			return false;
	}

	return true;
}

3856
bool intel_can_enable_sagv(const struct intel_bw_state *bw_state)
3857
{
3858 3859 3860
	if (bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
		return false;

3861 3862 3863 3864 3865 3866
	return bw_state->pipe_sagv_reject == 0;
}

static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
	int ret;
3867
	struct intel_crtc *crtc;
3868 3869 3870 3871
	struct intel_crtc_state *new_crtc_state;
	struct intel_bw_state *new_bw_state = NULL;
	const struct intel_bw_state *old_bw_state = NULL;
	int i;
3872

3873 3874 3875 3876 3877
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
3878

3879
		old_bw_state = intel_atomic_get_old_bw_state(state);
3880

3881 3882 3883 3884 3885
		if (intel_crtc_can_enable_sagv(new_crtc_state))
			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
		else
			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
	}
3886

3887 3888
	if (!new_bw_state)
		return 0;
3889

3890 3891 3892 3893 3894 3895 3896 3897
	new_bw_state->active_pipes =
		intel_calc_active_pipes(state, old_bw_state->active_pipes);
	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	if (intel_can_enable_sagv(new_bw_state) != intel_can_enable_sagv(old_bw_state)) {
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

	return 0;
3909 3910
}

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3933 3934 3935
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

3936
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3937 3938 3939 3940 3941 3942 3943

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

3944
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
3945
				  u8 active_pipes);
3946

3947
static void
3948
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3949
				   const struct intel_crtc_state *crtc_state,
3950
				   const u64 total_data_rate,
3951 3952
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3953
{
3954
	struct drm_atomic_state *state = crtc_state->uapi.state;
3955
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3956
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3957
	const struct intel_crtc *crtc;
3958
	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3959 3960
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
3961
	u32 ddb_range_size;
3962
	u32 i;
3963 3964 3965 3966 3967 3968
	u32 dbuf_slice_mask;
	u32 active_pipes;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
3969

3970
	if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3971 3972
		alloc->start = 0;
		alloc->end = 0;
3973
		*num_active = hweight8(dev_priv->active_pipes);
3974 3975 3976
		return;
	}

3977
	if (intel_state->active_pipe_changes)
3978
		active_pipes = intel_state->active_pipes;
3979
	else
3980 3981 3982 3983 3984
		active_pipes = dev_priv->active_pipes;

	*num_active = hweight8(active_pipes);

	ddb_size = intel_get_ddb_size(dev_priv);
3985

3986
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3987

3988
	/*
3989 3990 3991 3992 3993 3994
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3995
	 */
3996
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3997 3998 3999 4000 4001
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4002
		return;
4003
	}
4004

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);

	DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
		      dbuf_slice_mask,
		      pipe_name(for_pipe), active_pipes);

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

4029 4030 4031 4032 4033
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
4034
	total_slice_mask = dbuf_slice_mask;
4035 4036
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
4037
			&crtc_state->hw.adjusted_mode;
4038
		enum pipe pipe = crtc->pipe;
4039
		int hdisplay, vdisplay;
4040
		u32 pipe_dbuf_slice_mask;
4041

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		if (!crtc_state->hw.active)
			continue;

		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
							       active_pipes);

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4065 4066 4067
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4068 4069

		total_width_in_range += hdisplay;
4070 4071

		if (pipe < for_pipe)
4072
			width_before_pipe_in_range += hdisplay;
4073 4074 4075 4076
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
	intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);

	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
	end = ddb_range_size *
		(width_before_pipe_in_range + pipe_width) / total_width_in_range;

	alloc->start = offset + start;
	alloc->end = offset + end;

	DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
		      alloc->start, alloc->end);
	DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
		      intel_state->enabled_dbuf_slices_mask,
		      INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4095 4096
}

4097 4098 4099 4100 4101
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4102
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4103
				 int level,
4104
				 unsigned int latency,
4105 4106 4107 4108 4109 4110 4111
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4112
{
4113
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4124
	drm_WARN_ON(&dev_priv->drm, ret);
4125 4126

	for (level = 0; level <= max_level; level++) {
4127 4128 4129
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4130 4131 4132 4133 4134
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4135

4136
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4137 4138
}

4139 4140
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4141
{
4142

4143 4144
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4145

4146 4147
	if (entry->end)
		entry->end += 1;
4148 4149
}

4150 4151 4152 4153
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4154 4155
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4156
{
4157 4158
	u32 val, val2;
	u32 fourcc = 0;
4159 4160 4161 4162

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4163
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4164 4165 4166 4167 4168 4169
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4170 4171 4172 4173
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4174

4175 4176 4177 4178 4179
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4180
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4181

4182 4183
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4184 4185 4186 4187
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4188 4189 4190
	}
}

4191 4192 4193
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4194
{
4195 4196 4197
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4198
	intel_wakeref_t wakeref;
4199
	enum plane_id plane_id;
4200

4201
	power_domain = POWER_DOMAIN_PIPE(pipe);
4202 4203
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4204
		return;
4205

4206 4207 4208 4209 4210
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4211

4212
	intel_display_power_put(dev_priv, power_domain, wakeref);
4213
}
4214

4215
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4216
{
4217 4218
	dev_priv->enabled_dbuf_slices_mask =
				intel_enabled_dbuf_slices_mask(dev_priv);
4219 4220
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4237
static uint_fixed_16_16_t
4238 4239
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4240
{
4241
	u32 src_w, src_h, dst_w, dst_h;
4242 4243
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4244

4245
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4246
		return u32_to_fixed16(0);
4247

4248 4249 4250 4251 4252 4253 4254
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4255 4256 4257 4258
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4259

4260 4261 4262 4263
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4264

4265
	return mul_fixed16(downscale_w, downscale_h);
4266 4267
}

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4283
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4284 4285 4286 4287 4288
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4289 4290
			[PIPE_A] = BIT(DBUF_S1),
		},
4291 4292 4293 4294
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4295 4296
			[PIPE_B] = BIT(DBUF_S1),
		},
4297 4298 4299 4300 4301
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4302 4303
			[PIPE_B] = BIT(DBUF_S2),
		},
4304 4305 4306 4307
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4308 4309
			[PIPE_C] = BIT(DBUF_S2),
		},
4310 4311 4312 4313 4314
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4315 4316
			[PIPE_C] = BIT(DBUF_S2),
		},
4317 4318 4319 4320 4321
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4322 4323
			[PIPE_C] = BIT(DBUF_S2),
		},
4324 4325 4326 4327 4328 4329
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4330 4331
			[PIPE_C] = BIT(DBUF_S2),
		},
4332
	},
4333
	{}
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4346
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4347 4348 4349 4350 4351
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4352 4353
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4354 4355 4356 4357
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4358 4359
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4360 4361 4362 4363 4364
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4365 4366
			[PIPE_B] = BIT(DBUF_S1),
		},
4367 4368 4369 4370
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4371 4372
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4373 4374 4375 4376 4377
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4378 4379
			[PIPE_C] = BIT(DBUF_S2),
		},
4380 4381 4382 4383 4384
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4385 4386
			[PIPE_C] = BIT(DBUF_S2),
		},
4387 4388 4389 4390 4391 4392
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4393 4394
			[PIPE_C] = BIT(DBUF_S2),
		},
4395 4396 4397 4398
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4399 4400
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4401 4402 4403 4404 4405
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4406 4407
			[PIPE_D] = BIT(DBUF_S2),
		},
4408 4409 4410 4411 4412
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4413 4414
			[PIPE_D] = BIT(DBUF_S2),
		},
4415 4416 4417 4418 4419 4420
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4421 4422
			[PIPE_D] = BIT(DBUF_S2),
		},
4423 4424 4425 4426 4427
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4428 4429
			[PIPE_D] = BIT(DBUF_S2),
		},
4430 4431 4432 4433 4434 4435
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4436 4437
			[PIPE_D] = BIT(DBUF_S2),
		},
4438 4439 4440 4441 4442 4443
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4444 4445
			[PIPE_D] = BIT(DBUF_S2),
		},
4446 4447 4448 4449 4450 4451 4452
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4453 4454
			[PIPE_D] = BIT(DBUF_S2),
		},
4455
	},
4456
	{}
4457 4458
};

4459 4460
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4461 4462 4463
{
	int i;

4464
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4476
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4490
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4491 4492
}

4493
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4494
{
4495
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4496 4497 4498
}

static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4499
				  u8 active_pipes)
4500 4501 4502 4503 4504 4505
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4506
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4507
	else if (IS_GEN(dev_priv, 11))
4508
		return icl_compute_dbuf_slices(pipe, active_pipes);
4509 4510 4511 4512 4513 4514 4515
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
	return BIT(DBUF_S1);
}

4516
static u64
4517 4518
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4519
			     int color_plane)
4520
{
4521
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4522
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4523 4524
	u32 data_rate;
	u32 width = 0, height = 0;
4525
	uint_fixed_16_16_t down_scale_amount;
4526
	u64 rate;
4527

4528
	if (!plane_state->uapi.visible)
4529
		return 0;
4530

4531
	if (plane->id == PLANE_CURSOR)
4532
		return 0;
4533 4534

	if (color_plane == 1 &&
4535
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4536
		return 0;
4537

4538 4539 4540 4541 4542
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4543 4544
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4545

4546
	/* UV plane does 1/2 pixel sub-sampling */
4547
	if (color_plane == 1) {
4548 4549
		width /= 2;
		height /= 2;
4550 4551
	}

4552
	data_rate = width * height;
4553

4554
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4555

4556 4557
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4558
	rate *= fb->format->cpp[color_plane];
4559
	return rate;
4560 4561
}

4562
static u64
4563
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4564 4565
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4566
{
4567 4568
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4569
	u64 total_data_rate = 0;
4570

4571
	/* Calculate and cache data rate for each plane */
4572 4573
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4574
		u64 rate;
4575

4576
		/* packed/y */
4577
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4578
		plane_data_rate[plane_id] = rate;
4579
		total_data_rate += rate;
4580

4581
		/* uv-plane */
4582
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4583
		uv_plane_data_rate[plane_id] = rate;
4584
		total_data_rate += rate;
4585 4586 4587 4588 4589
	}

	return total_data_rate;
}

4590
static u64
4591
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4592 4593
				 u64 *plane_data_rate)
{
4594 4595
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4596 4597 4598
	u64 total_data_rate = 0;

	/* Calculate and cache data rate for each plane */
4599 4600
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4601 4602
		u64 rate;

4603
		if (!plane_state->planar_linked_plane) {
4604
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4605 4606 4607 4608 4609 4610 4611
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4612
			 * intel_atomic_crtc_state_for_each_plane_state(),
4613 4614 4615 4616
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4617
			if (plane_state->planar_slave)
4618 4619 4620
				continue;

			/* Y plane rate is calculated on the slave */
4621
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4622
			y_plane_id = plane_state->planar_linked_plane->id;
4623 4624 4625
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4626
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4627 4628 4629 4630 4631 4632 4633 4634
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
static const struct skl_wm_level *
skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
		   enum plane_id plane_id,
		   int level)
{
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];

	return &wm->wm[level];
}

4646
static int
4647
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4648
{
4649 4650
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4651
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4652 4653 4654
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4655
	u64 total_data_rate;
4656
	enum plane_id plane_id;
4657
	int num_active;
4658 4659
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4660
	u32 blocks;
4661
	int level;
4662

4663
	/* Clear the partitioning for disabled planes. */
4664 4665
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4666

4667
	if (!crtc_state->hw.active) {
4668
		alloc->start = alloc->end = 0;
4669 4670 4671
		return 0;
	}

4672 4673
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4674
			icl_get_total_relative_data_rate(crtc_state,
4675 4676
							 plane_data_rate);
	else
4677
		total_data_rate =
4678
			skl_get_total_relative_data_rate(crtc_state,
4679 4680
							 plane_data_rate,
							 uv_plane_data_rate);
4681

4682

4683
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4684
					   alloc, &num_active);
4685
	alloc_size = skl_ddb_entry_size(alloc);
4686
	if (alloc_size == 0)
4687
		return 0;
4688

4689
	/* Allocate fixed number of blocks for cursor. */
4690
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4691
	alloc_size -= total[PLANE_CURSOR];
4692
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4693
		alloc->end - total[PLANE_CURSOR];
4694
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4695 4696 4697

	if (total_data_rate == 0)
		return 0;
4698

4699
	/*
4700 4701
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4702
	 */
4703
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4704
		blocks = 0;
4705
		for_each_plane_id_on_crtc(crtc, plane_id) {
4706
			const struct skl_plane_wm *wm =
4707
				&crtc_state->wm.skl.optimal.planes[plane_id];
4708 4709

			if (plane_id == PLANE_CURSOR) {
4710
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4711 4712
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4713 4714 4715
					blocks = U32_MAX;
					break;
				}
4716
				continue;
4717
			}
4718

4719 4720
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4721 4722
		}

4723
		if (blocks <= alloc_size) {
4724 4725 4726
			alloc_size -= blocks;
			break;
		}
4727 4728
	}

4729
	if (level < 0) {
4730 4731 4732 4733
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4734 4735 4736
		return -EINVAL;
	}

4737
	/*
4738 4739 4740
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4741
	 */
4742
	for_each_plane_id_on_crtc(crtc, plane_id) {
4743
		const struct skl_plane_wm *wm =
4744
			&crtc_state->wm.skl.optimal.planes[plane_id];
4745 4746
		u64 rate;
		u16 extra;
4747

4748
		if (plane_id == PLANE_CURSOR)
4749 4750
			continue;

4751
		/*
4752 4753
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4754
		 */
4755 4756
		if (total_data_rate == 0)
			break;
4757

4758 4759 4760 4761
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4762
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4763 4764
		alloc_size -= extra;
		total_data_rate -= rate;
4765

4766 4767
		if (total_data_rate == 0)
			break;
4768

4769 4770 4771 4772
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4773
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4774 4775 4776
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4777
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4778 4779 4780

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4781
	for_each_plane_id_on_crtc(crtc, plane_id) {
4782
		struct skl_ddb_entry *plane_alloc =
4783
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4784
		struct skl_ddb_entry *uv_plane_alloc =
4785
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4786 4787 4788 4789

		if (plane_id == PLANE_CURSOR)
			continue;

4790
		/* Gen11+ uses a separate plane for UV watermarks */
4791 4792
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4793 4794 4795 4796 4797 4798 4799

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4800

4801 4802 4803 4804
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4805
		}
4806
	}
4807

4808 4809 4810 4811 4812 4813 4814
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4815
		for_each_plane_id_on_crtc(crtc, plane_id) {
4816
			struct skl_plane_wm *wm =
4817
				&crtc_state->wm.skl.optimal.planes[plane_id];
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4834

4835
			/*
4836
			 * Wa_1408961008:icl, ehl
4837 4838
			 * Underruns with WM1+ disabled
			 */
4839
			if (IS_GEN(dev_priv, 11) &&
4840 4841
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4842 4843
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4844
			}
4845 4846 4847 4848 4849 4850 4851
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
4852
	for_each_plane_id_on_crtc(crtc, plane_id) {
4853
		struct skl_plane_wm *wm =
4854
			&crtc_state->wm.skl.optimal.planes[plane_id];
4855

4856
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4857
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4858 4859
	}

4860
	return 0;
4861 4862
}

4863 4864
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4865
 * for the read latency) and cpp should always be <= 8, so that
4866 4867 4868
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4869
static uint_fixed_16_16_t
4870 4871
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4872
{
4873
	u32 wm_intermediate_val;
4874
	uint_fixed_16_16_t ret;
4875 4876

	if (latency == 0)
4877
		return FP_16_16_MAX;
4878

4879
	wm_intermediate_val = latency * pixel_rate * cpp;
4880
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4881

4882
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4883 4884
		ret = add_fixed16_u32(ret, 1);

4885 4886 4887
	return ret;
}

4888 4889 4890
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4891
{
4892
	u32 wm_intermediate_val;
4893
	uint_fixed_16_16_t ret;
4894 4895

	if (latency == 0)
4896
		return FP_16_16_MAX;
4897 4898

	wm_intermediate_val = latency * pixel_rate;
4899 4900
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4901
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4902 4903 4904
	return ret;
}

4905
static uint_fixed_16_16_t
4906
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4907
{
4908 4909
	u32 pixel_rate;
	u32 crtc_htotal;
4910 4911
	uint_fixed_16_16_t linetime_us;

4912
	if (!crtc_state->hw.active)
4913
		return u32_to_fixed16(0);
4914

4915
	pixel_rate = crtc_state->pixel_rate;
4916 4917

	if (WARN_ON(pixel_rate == 0))
4918
		return u32_to_fixed16(0);
4919

4920
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4921
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4922 4923 4924 4925

	return linetime_us;
}

4926
static u32
4927 4928
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4929
{
4930
	u64 adjusted_pixel_rate;
4931
	uint_fixed_16_16_t downscale_amount;
4932 4933

	/* Shouldn't reach here on disabled planes... */
4934
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4935 4936 4937 4938 4939 4940
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4941 4942
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4943

4944 4945
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4946 4947
}

4948
static int
4949 4950 4951 4952 4953
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4954
{
4955
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4956
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4957
	u32 interm_pbpl;
4958

4959
	/* only planar format has two planes */
4960 4961
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4962 4963
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
4964 4965 4966
		return -EINVAL;
	}

4967 4968 4969 4970 4971 4972 4973
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4974
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4975

4976
	wp->width = width;
4977
	if (color_plane == 1 && wp->is_planar)
4978 4979
		wp->width /= 2;

4980 4981
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4982

4983
	if (INTEL_GEN(dev_priv) >= 11 &&
4984
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4985 4986 4987 4988
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4989
	if (drm_rotation_90_or_270(rotation)) {
4990
		switch (wp->cpp) {
4991
		case 1:
4992
			wp->y_min_scanlines = 16;
4993 4994
			break;
		case 2:
4995
			wp->y_min_scanlines = 8;
4996 4997
			break;
		case 4:
4998
			wp->y_min_scanlines = 4;
4999
			break;
5000
		default:
5001
			MISSING_CASE(wp->cpp);
5002
			return -EINVAL;
5003 5004
		}
	} else {
5005
		wp->y_min_scanlines = 4;
5006 5007
	}

5008
	if (skl_needs_memory_bw_wa(dev_priv))
5009
		wp->y_min_scanlines *= 2;
5010

5011 5012 5013
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5014 5015
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
5016

5017
		if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5018 5019
			interm_pbpl++;

5020 5021
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
5022
	} else {
5023
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5024 5025 5026 5027 5028 5029
					   wp->dbuf_block_size);

		if (!wp->x_tiled ||
		    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
			interm_pbpl++;

5030
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5031 5032
	}

5033 5034
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
5035

5036
	wp->linetime_us = fixed16_to_u32_round_up(
5037
					intel_get_linetime_us(crtc_state));
5038 5039 5040 5041

	return 0;
}

5042 5043 5044 5045 5046
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
5047
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5048 5049
	int width;

5050 5051 5052 5053 5054
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
5055
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5056 5057 5058

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
5059
				     plane_state->hw.rotation,
5060 5061 5062 5063
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

5064 5065 5066 5067 5068 5069 5070 5071 5072
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5073
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5074
				 int level,
5075
				 unsigned int latency,
5076 5077 5078
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5079
{
5080
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5081 5082
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5083
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5084

5085 5086 5087
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5088
		return;
5089
	}
5090

5091 5092 5093 5094
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5095
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
5096 5097 5098
	    dev_priv->ipc_enabled)
		latency += 4;

5099
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5100 5101 5102
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5103
				 wp->cpp, latency, wp->dbuf_block_size);
5104
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5105
				 crtc_state->hw.adjusted_mode.crtc_htotal,
5106
				 latency,
5107
				 wp->plane_blocks_per_line);
5108

5109 5110
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5111
	} else {
5112
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5113
		     wp->dbuf_block_size < 1) &&
5114
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5115
			selected_result = method2;
5116
		} else if (latency >= wp->linetime_us) {
5117
			if (IS_GEN(dev_priv, 9) &&
5118 5119 5120 5121 5122
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5123
			selected_result = method1;
5124
		}
5125
	}
5126

5127
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5128
	res_lines = div_round_up_fixed16(selected_result,
5129
					 wp->plane_blocks_per_line);
5130

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5146

5147 5148 5149 5150 5151 5152 5153 5154 5155
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5156
	}
5157

5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5176 5177 5178
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5179 5180 5181
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5182
		return;
5183
	}
5184 5185 5186 5187 5188 5189 5190

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5191 5192
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5193 5194
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5195
	result->plane_en = true;
5196 5197
}

5198
static void
5199
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5200
		      const struct skl_wm_params *wm_params,
5201
		      struct skl_wm_level *levels)
5202
{
5203
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5204
	int level, max_level = ilk_wm_max_level(dev_priv);
5205
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5206

5207
	for (level = 0; level <= max_level; level++) {
5208
		struct skl_wm_level *result = &levels[level];
5209
		unsigned int latency = dev_priv->wm.skl_latency[level];
5210

5211 5212
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5213 5214

		result_prev = result;
5215
	}
5216 5217
}

5218
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5219
				      const struct skl_wm_params *wp,
5220
				      struct skl_plane_wm *wm)
5221
{
5222
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5223
	const struct drm_i915_private *dev_priv = to_i915(dev);
5224
	u16 trans_min, trans_amount, trans_y_tile_min;
5225
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5226 5227 5228

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5229
		return;
5230

5231 5232 5233 5234 5235 5236 5237
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5238
	if (INTEL_GEN(dev_priv) >= 11)
5239
		trans_min = 4;
5240 5241 5242 5243 5244 5245 5246 5247
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5248 5249 5250

	trans_offset_b = trans_min + trans_amount;

5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5261
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5262

5263
	if (wp->y_tiled) {
5264 5265
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5266
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5267 5268
				trans_offset_b;
	} else {
5269
		res_blocks = wm0_sel_res_b + trans_offset_b;
5270 5271
	}

5272 5273 5274 5275 5276 5277 5278
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5279 5280
}

5281
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5282 5283
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5284
{
5285
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5286 5287 5288
	struct skl_wm_params wm_params;
	int ret;

5289
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5290 5291 5292 5293
					  &wm_params, color_plane);
	if (ret)
		return ret;

5294
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5295
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5296 5297 5298 5299

	return 0;
}

5300
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5301 5302
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5303
{
5304
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5305 5306 5307
	struct skl_wm_params wm_params;
	int ret;

5308
	wm->is_planar = true;
5309 5310

	/* uv plane watermarks must also be validated for NV12/Planar */
5311
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5312 5313 5314
					  &wm_params, 1);
	if (ret)
		return ret;
5315

5316
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5317

5318
	return 0;
5319 5320
}

5321
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5322
			      const struct intel_plane_state *plane_state)
5323
{
5324
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5325
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5326
	enum plane_id plane_id = plane->id;
5327 5328
	int ret;

5329 5330 5331
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5332
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5333
					plane_id, 0);
5334 5335 5336
	if (ret)
		return ret;

5337
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5338
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5339 5340 5341 5342 5343 5344 5345 5346
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5347
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5348 5349
			      const struct intel_plane_state *plane_state)
{
5350
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5351 5352 5353
	int ret;

	/* Watermarks calculated in master */
5354
	if (plane_state->planar_slave)
5355 5356
		return 0;

5357
	if (plane_state->planar_linked_plane) {
5358
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5359
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5360 5361 5362 5363 5364

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5365
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5366 5367 5368 5369
						y_plane_id, 0);
		if (ret)
			return ret;

5370
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5371 5372 5373 5374
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5375
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5376 5377 5378 5379 5380 5381
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5382 5383
}

5384
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5385
{
5386
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5387
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5388 5389
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5390
	int ret;
5391

L
Lyude 已提交
5392 5393 5394 5395 5396 5397
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5398 5399
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5400

5401
		if (INTEL_GEN(dev_priv) >= 11)
5402
			ret = icl_build_plane_wm(crtc_state, plane_state);
5403
		else
5404
			ret = skl_build_plane_wm(crtc_state, plane_state);
5405 5406
		if (ret)
			return ret;
5407
	}
5408

5409
	return 0;
5410 5411
}

5412 5413
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5414 5415 5416
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5417 5418
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5419
	else
5420
		intel_de_write_fw(dev_priv, reg, 0);
5421 5422
}

5423 5424 5425 5426
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5427
	u32 val = 0;
5428

5429
	if (level->plane_en)
5430
		val |= PLANE_WM_EN;
5431 5432 5433 5434
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5435

5436
	intel_de_write_fw(dev_priv, reg, val);
5437 5438
}

5439 5440
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5441
{
5442
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5443
	int level, max_level = ilk_wm_max_level(dev_priv);
5444 5445 5446 5447 5448 5449 5450 5451
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5452 5453

	for (level = 0; level <= max_level; level++) {
5454 5455 5456 5457
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5458
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5459
				   wm_level);
5460
	}
5461
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5462
			   &wm->trans_wm);
5463

5464
	if (INTEL_GEN(dev_priv) >= 11) {
5465
		skl_ddb_entry_write(dev_priv,
5466 5467
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5468
	}
5469 5470 5471 5472 5473 5474 5475 5476

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5477 5478
}

5479 5480
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5481
{
5482
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5483
	int level, max_level = ilk_wm_max_level(dev_priv);
5484 5485 5486 5487 5488 5489
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5490 5491

	for (level = 0; level <= max_level; level++) {
5492 5493 5494 5495
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5496
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5497
				   wm_level);
5498
	}
5499
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5500

5501
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5502 5503
}

5504 5505 5506
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5507
	return l1->plane_en == l2->plane_en &&
5508
		l1->ignore_lines == l2->ignore_lines &&
5509 5510 5511
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5512

5513 5514 5515 5516 5517
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5518

5519
	for (level = 0; level <= max_level; level++) {
5520 5521 5522 5523 5524 5525
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5526 5527 5528 5529
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5530 5531
}

5532 5533
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5534
{
5535
	return a->start < b->end && b->start < a->end;
5536 5537
}

5538
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5539
				 const struct skl_ddb_entry *entries,
5540
				 int num_entries, int ignore_idx)
5541
{
5542
	int i;
5543

5544 5545 5546
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5547
			return true;
5548
	}
5549

5550
	return false;
5551 5552
}

5553
static int
5554 5555
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5556
{
5557 5558
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5559 5560
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5561

5562 5563 5564
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5565

5566 5567 5568 5569
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5570 5571
			continue;

5572
		plane_state = intel_atomic_get_plane_state(state, plane);
5573 5574
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5575

5576
		new_crtc_state->update_planes |= BIT(plane_id);
5577 5578 5579 5580 5581 5582
	}

	return 0;
}

static int
5583
skl_compute_ddb(struct intel_atomic_state *state)
5584
{
5585
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5586 5587
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5588 5589
	struct intel_crtc *crtc;
	int ret, i;
5590

5591
	state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5592

5593
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5594
					    new_crtc_state, i) {
5595
		ret = skl_allocate_pipe_ddb(new_crtc_state);
5596 5597 5598
		if (ret)
			return ret;

5599 5600
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5601 5602
		if (ret)
			return ret;
5603 5604 5605 5606 5607
	}

	return 0;
}

5608 5609 5610 5611 5612
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5613
static void
5614
skl_print_wm_changes(struct intel_atomic_state *state)
5615
{
5616 5617 5618 5619 5620
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5621
	int i;
5622

5623
	if (!drm_debug_enabled(DRM_UT_KMS))
5624 5625
		return;

5626 5627
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5628 5629 5630 5631 5632
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5633 5634
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5635 5636
			const struct skl_ddb_entry *old, *new;

5637 5638
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5639 5640 5641 5642

			if (skl_ddb_entry_equal(old, new))
				continue;

5643 5644 5645 5646 5647
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				    enast(new_wm->trans_wm.plane_en));

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5677
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				    new_wm->trans_wm.plane_res_b);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				    new_wm->trans_wm.min_ddb_alloc);
5728 5729 5730 5731
		}
	}
}

V
Ville Syrjälä 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5748
static int
5749
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5750
{
V
Ville Syrjälä 已提交
5751
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5752
	int ret;
5753

5754 5755 5756 5757 5758 5759 5760
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5761
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5762
				       state->base.acquire_ctx);
5763 5764 5765
		if (ret)
			return ret;

5766
		state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5767 5768

		/*
5769
		 * We usually only initialize state->active_pipes if we
5770 5771 5772 5773
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5774
		if (!state->modeset)
5775
			state->active_pipes = dev_priv->active_pipes;
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5791
	if (state->active_pipe_changes || state->modeset) {
V
Ville Syrjälä 已提交
5792 5793 5794
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5795 5796 5797 5798 5799
	}

	return 0;
}

5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5844
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5860
static int
5861
skl_compute_wm(struct intel_atomic_state *state)
5862
{
5863
	struct intel_crtc *crtc;
5864
	struct intel_crtc_state *new_crtc_state;
5865
	struct intel_crtc_state *old_crtc_state;
5866 5867
	int ret, i;

5868 5869
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5870 5871
		return ret;

5872 5873
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5874
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5875
	 * weren't otherwise being modified if pipe allocations had to change.
5876
	 */
5877
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5878 5879
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5880 5881
		if (ret)
			return ret;
5882 5883
	}

5884 5885 5886 5887
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5888 5889 5890
	ret = intel_compute_sagv_mask(state);
	if (ret)
		return ret;
5891

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

5904
	skl_print_wm_changes(state);
5905

5906 5907 5908
	return 0;
}

5909
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5910 5911 5912 5913 5914
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5915
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5927
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5928
{
5929
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5930
	struct ilk_wm_maximums max;
5931
	struct intel_wm_config config = {};
5932
	struct ilk_wm_values results = {};
5933
	enum intel_ddb_partitioning partitioning;
5934

5935
	ilk_compute_wm_config(dev_priv, &config);
5936

5937 5938
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5939 5940

	/* 5/6 split only in single pipe config on IVB+ */
5941
	if (INTEL_GEN(dev_priv) >= 7 &&
5942
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5943 5944
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5945

5946
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5947
	} else {
5948
		best_lp_wm = &lp_wm_1_2;
5949 5950
	}

5951
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5952
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5953

5954
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5955

5956
	ilk_write_wm_values(dev_priv, &results);
5957 5958
}

5959
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5960
				   struct intel_crtc *crtc)
5961
{
5962 5963 5964
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5965

5966
	mutex_lock(&dev_priv->wm.wm_mutex);
5967
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5968 5969 5970
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5971

5972
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5973
				    struct intel_crtc *crtc)
5974
{
5975 5976 5977
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5978 5979 5980

	if (!crtc_state->wm.need_postvbl_update)
		return;
5981

5982
	mutex_lock(&dev_priv->wm.wm_mutex);
5983 5984
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5985
	mutex_unlock(&dev_priv->wm.wm_mutex);
5986 5987
}

5988
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
5989
{
5990
	level->plane_en = val & PLANE_WM_EN;
5991
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5992 5993 5994
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5995 5996
}

5997
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5998
			      struct skl_pipe_wm *out)
5999
{
6000 6001
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
6002 6003
	int level, max_level;
	enum plane_id plane_id;
6004
	u32 val;
6005

6006
	max_level = ilk_wm_max_level(dev_priv);
6007

6008
	for_each_plane_id_on_crtc(crtc, plane_id) {
6009
		struct skl_plane_wm *wm = &out->planes[plane_id];
6010

6011
		for (level = 0; level <= max_level; level++) {
6012 6013
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
6014 6015
			else
				val = I915_READ(CUR_WM(pipe, level));
6016

6017
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6018 6019
		}

6020 6021
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6022 6023 6024 6025
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6026 6027
	}

6028
	if (!crtc->active)
6029
		return;
6030 6031
}

6032
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6033
{
6034
	struct intel_crtc *crtc;
6035
	struct intel_crtc_state *crtc_state;
6036

6037
	skl_ddb_get_hw_state(dev_priv);
6038
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6039
		crtc_state = to_intel_crtc_state(crtc->base.state);
6040

6041
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6042
	}
6043

6044
	if (dev_priv->active_pipes) {
6045 6046 6047
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
6048 6049
}

6050
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6051
{
6052
	struct drm_device *dev = crtc->base.dev;
6053
	struct drm_i915_private *dev_priv = to_i915(dev);
6054
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6055 6056
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6057
	enum pipe pipe = crtc->pipe;
6058
	static const i915_reg_t wm0_pipe_reg[] = {
6059 6060 6061 6062 6063 6064 6065
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);

6066 6067
	memset(active, 0, sizeof(*active));

6068
	active->pipe_enabled = crtc->active;
6069 6070

	if (active->pipe_enabled) {
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6084
		int level, max_level = ilk_wm_max_level(dev_priv);
6085 6086 6087 6088 6089 6090 6091 6092 6093

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6094

6095
	crtc->wm.active.ilk = *active;
6096 6097
}

6098 6099 6100 6101 6102
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6103 6104 6105
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6106
	u32 tmp;
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6129 6130 6131 6132
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6133
	u32 tmp;
6134 6135 6136 6137

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

6138
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6139
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6140
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6141
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6142
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6143
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6144
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6145 6146 6147 6148 6149
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
6150 6151 6152
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6153 6154

	tmp = I915_READ(DSPFW2);
6155 6156 6157
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6158 6159 6160 6161 6162 6163

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
6164 6165
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6166 6167

		tmp = I915_READ(DSPFW8_CHV);
6168 6169
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6170 6171

		tmp = I915_READ(DSPFW9_CHV);
6172 6173
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6174 6175 6176

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6177 6178 6179 6180 6181 6182 6183 6184 6185
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6186 6187
	} else {
		tmp = I915_READ(DSPFW7);
6188 6189
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6190 6191 6192

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6193 6194 6195 6196 6197 6198
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6199 6200 6201 6202 6203 6204
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6205
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6206 6207 6208 6209 6210 6211 6212 6213
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

6214
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6274 6275 6276 6277 6278 6279
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6280 6281
	}

6282 6283 6284 6285 6286 6287 6288 6289
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6310
		if (plane_state->uapi.visible)
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6348
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6349 6350
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6351
	struct intel_crtc *crtc;
6352 6353 6354 6355 6356 6357 6358 6359
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6360
		vlv_punit_get(dev_priv);
6361

6362
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6363 6364 6365
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6366 6367 6368 6369 6370 6371 6372 6373 6374
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6375
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6376 6377 6378 6379 6380
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6381 6382 6383
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6384 6385 6386 6387 6388 6389
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6390

6391
		vlv_punit_put(dev_priv);
6392 6393
	}

6394
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6410
			struct g4x_pipe_wm *raw =
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6432
		crtc_state->wm.vlv.intermediate = *active;
6433

6434 6435 6436 6437 6438 6439 6440
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6441
	}
6442

6443 6444 6445
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6446 6447
}

6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6468
		if (plane_state->uapi.visible)
6469 6470 6471
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6472
			struct g4x_pipe_wm *raw =
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6513
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6514
{
6515
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6516
	struct intel_crtc *crtc;
6517

6518 6519
	ilk_init_lp_watermarks(dev_priv);

6520
	for_each_intel_crtc(&dev_priv->drm, crtc)
6521 6522 6523 6524 6525 6526 6527
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6528
	if (INTEL_GEN(dev_priv) >= 7) {
6529 6530 6531
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6532

6533
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6534 6535
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6536
	else if (IS_IVYBRIDGE(dev_priv))
6537 6538
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6539 6540 6541 6542 6543

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6544 6545
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6546
 * @crtc: the #intel_crtc on which to compute the WM
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6577
void intel_update_watermarks(struct intel_crtc *crtc)
6578
{
6579
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6580 6581

	if (dev_priv->display.update_wm)
6582
		dev_priv->display.update_wm(crtc);
6583 6584
}

6585 6586 6587 6588
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6589 6590 6591
	if (!HAS_IPC(dev_priv))
		return;

6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6615 6616 6617 6618 6619
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6620
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6621

6622 6623 6624
	intel_enable_ipc(dev_priv);
}

6625 6626 6627 6628 6629 6630 6631 6632 6633
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6634

6635
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6636
{
6637
	enum pipe pipe;
6638

6639 6640 6641 6642
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6643

6644 6645
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6646 6647 6648
	}
}

6649
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6650
{
6651
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6652

6653 6654 6655 6656 6657 6658 6659
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6660

6661 6662 6663 6664 6665
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6666

6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6681 6682

	/*
6683 6684 6685 6686 6687
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6688
	 */
6689 6690 6691 6692 6693 6694 6695 6696 6697
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6698

6699
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6700

6701 6702 6703 6704 6705 6706
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6707

6708 6709 6710
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6711

6712 6713
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6714

6715
	g4x_disable_trickle_feed(dev_priv);
6716

6717
	ibx_init_clock_gating(dev_priv);
6718 6719
}

6720
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6721
{
6722 6723
	enum pipe pipe;
	u32 val;
6724

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6753 6754
}

6755
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6756
{
6757
	u32 tmp;
6758

6759 6760
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6761 6762 6763
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6764 6765
}

6766
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6767
{
6768
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6769

6770
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6771

6772 6773 6774
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6775

6776 6777 6778
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6779

6780 6781
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6782

6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6793

6794 6795
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6796

6797 6798 6799 6800
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6801

6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6814
	 */
6815 6816 6817
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6818

6819 6820 6821
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6822

6823 6824 6825 6826 6827 6828 6829
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6830

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6852

6853
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6854

6855
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6856

6857
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6858 6859
}

6860
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6861
{
6862
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6863

6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6874

6875
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6876 6877
}

6878
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6879
{
6880 6881 6882
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6883
	 */
6884
	if (HAS_PCH_LPT_LP(dev_priv))
6885 6886 6887
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6888 6889

	/* WADPOClockGatingDisable:hsw */
6890 6891
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6892
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6893 6894
}

6895
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6896
{
6897
	if (HAS_PCH_LPT_LP(dev_priv)) {
6898
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6899 6900 6901 6902 6903 6904

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6905 6906 6907 6908 6909
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6910
	u32 val;
6911 6912 6913 6914 6915

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6916 6917 6918 6919 6920
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6931 6932 6933 6934 6935
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6936

6937 6938 6939
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
6940 6941
}

6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6956 6957 6958 6959 6960

	/* Wa_1409825376:tgl (pre-prod)*/
	if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   TGL_VRH_GATING_DIS);
M
Matt Atwood 已提交
6961 6962 6963 6964

	/* Wa_14011059788:tgl */
	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
			 0, DFR_DISABLE);
6965 6966
}

6967 6968 6969 6970 6971
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6972
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6973 6974
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6975 6976
}

6977
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6978
{
6979
	u32 val;
6980 6981
	cnp_init_clock_gating(dev_priv);

6982 6983 6984 6985
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6986 6987 6988 6989 6990 6991 6992 6993
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6994 6995 6996 6997
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6998

R
Rodrigo Vivi 已提交
6999 7000 7001 7002 7003
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

7004
	/* WaDisableVFclkgate:cnl */
7005
	/* WaVFUnitClockGatingDisable:cnl */
7006 7007 7008
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7009 7010
}

7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

7021
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7022
{
7023
	gen9_init_clock_gating(dev_priv);
7024 7025 7026 7027 7028

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7029 7030 7031 7032 7033

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7034

7035
	/* WaFbcNukeOnHostModify:kbl */
7036 7037
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7038 7039
}

7040
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7041
{
7042
	gen9_init_clock_gating(dev_priv);
7043 7044 7045 7046

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7047 7048 7049 7050

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7051 7052
}

7053
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7054
{
7055
	enum pipe pipe;
B
Ben Widawsky 已提交
7056

7057
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7058
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7059

7060
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7061 7062 7063
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7064
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7065
	for_each_pipe(dev_priv, pipe) {
7066
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7067
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7068
			   BDW_DPRS_MASK_VBLANK_SRD);
7069
	}
7070

7071 7072 7073 7074 7075
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7076

7077 7078
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7079 7080 7081 7082

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7083

7084 7085
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7086

7087 7088 7089 7090
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7091
	lpt_init_clock_gating(dev_priv);
7092 7093 7094 7095 7096 7097 7098 7099

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7100 7101
}

7102
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7103
{
7104 7105 7106 7107 7108
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7109
	/* This is required by WaCatErrorRejectionIssue:hsw */
7110 7111 7112 7113
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7114 7115 7116
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7117

7118 7119 7120
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7121 7122 7123 7124
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7125
	/* WaDisable4x2SubspanOptimization:hsw */
7126 7127
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7128

7129 7130 7131
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7132 7133 7134 7135
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7136 7137
	 */
	I915_WRITE(GEN7_GT_MODE,
7138
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7139

7140 7141 7142 7143
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7144
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7145 7146
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7147
	lpt_init_clock_gating(dev_priv);
7148 7149
}

7150
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7151
{
7152
	u32 snpcr;
7153

7154
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7155

7156
	/* WaDisableEarlyCull:ivb */
7157 7158 7159
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7160
	/* WaDisableBackToBackFlipFix:ivb */
7161 7162 7163 7164
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7165
	/* WaDisablePSDDualDispatchEnable:ivb */
7166
	if (IS_IVB_GT1(dev_priv))
7167 7168 7169
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7170 7171 7172
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7173
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7174 7175 7176
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7177
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7178 7179 7180
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7181
		   GEN7_WA_L3_CHICKEN_MODE);
7182
	if (IS_IVB_GT1(dev_priv))
7183 7184
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7185 7186 7187 7188
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7189 7190
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7191
	}
7192

7193
	/* WaForceL3Serialization:ivb */
7194 7195 7196
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7197
	/*
7198
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7199
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7200 7201
	 */
	I915_WRITE(GEN6_UCGCTL2,
7202
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7203

7204
	/* This is required by WaCatErrorRejectionIssue:ivb */
7205 7206 7207 7208
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7209
	g4x_disable_trickle_feed(dev_priv);
7210 7211

	gen7_setup_fixed_func_scheduler(dev_priv);
7212

7213 7214 7215 7216 7217
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7218

7219
	/* WaDisable4x2SubspanOptimization:ivb */
7220 7221
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7222

7223 7224 7225
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7226 7227 7228 7229
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7230 7231
	 */
	I915_WRITE(GEN7_GT_MODE,
7232
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7233

7234 7235 7236 7237
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7238

7239
	if (!HAS_PCH_NOP(dev_priv))
7240
		cpt_init_clock_gating(dev_priv);
7241

7242
	gen6_check_mch_setup(dev_priv);
7243 7244
}

7245
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7246
{
7247
	/* WaDisableEarlyCull:vlv */
7248 7249 7250
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7251
	/* WaDisableBackToBackFlipFix:vlv */
7252 7253 7254 7255
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7256
	/* WaPsdDispatchEnable:vlv */
7257
	/* WaDisablePSDDualDispatchEnable:vlv */
7258
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7259 7260
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7261

7262 7263 7264
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7265
	/* WaForceL3Serialization:vlv */
7266 7267 7268
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7269
	/* WaDisableDopClockGating:vlv */
7270 7271 7272
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7273
	/* This is required by WaCatErrorRejectionIssue:vlv */
7274 7275 7276 7277
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7278 7279
	gen7_setup_fixed_func_scheduler(dev_priv);

7280
	/*
7281
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7282
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7283 7284
	 */
	I915_WRITE(GEN6_UCGCTL2,
7285
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7286

7287 7288 7289 7290 7291
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7292

7293 7294 7295 7296
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7297 7298
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7299

7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7311 7312 7313 7314 7315 7316
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7317
	/*
7318
	 * WaDisableVLVClockGating_VBIIssue:vlv
7319 7320 7321
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7322
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7323 7324
}

7325
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7326
{
7327 7328 7329 7330 7331
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7332 7333 7334 7335

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7336 7337 7338 7339

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7340 7341 7342 7343

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7344

7345 7346 7347 7348 7349 7350
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7351 7352
}

7353
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7354
{
7355
	u32 dspclk_gate;
7356 7357 7358 7359 7360 7361 7362 7363 7364

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7365
	if (IS_GM45(dev_priv))
7366 7367
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7368 7369 7370 7371

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7372

7373 7374 7375
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7376
	g4x_disable_trickle_feed(dev_priv);
7377 7378
}

7379
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7380
{
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7391 7392

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7393 7394 7395
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7396 7397
}

7398
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7399 7400 7401 7402 7403 7404 7405
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7406 7407
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7408 7409 7410

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7411 7412
}

7413
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7414 7415 7416 7417 7418 7419
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7420

7421
	if (IS_PINEVIEW(dev_priv))
7422
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7423 7424 7425

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7426 7427

	/* interrupts should cause a wake up from C3 */
7428
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7429 7430 7431

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7432 7433 7434

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7435 7436
}

7437
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7438 7439
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7440 7441 7442 7443

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7444 7445 7446

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7447 7448
}

7449
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7450
{
7451 7452 7453
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7454 7455
}

7456
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7457
{
7458
	dev_priv->display.init_clock_gating(dev_priv);
7459 7460
}

7461
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7462
{
7463 7464
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7465 7466
}

7467
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7468
{
7469 7470
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7484
	if (IS_GEN(dev_priv, 12))
7485
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7486
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7487
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7488
	else if (IS_CANNONLAKE(dev_priv))
7489
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7490 7491
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7492
	else if (IS_SKYLAKE(dev_priv))
7493
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7494
	else if (IS_KABYLAKE(dev_priv))
7495
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7496
	else if (IS_BROXTON(dev_priv))
7497
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7498 7499
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7500
	else if (IS_BROADWELL(dev_priv))
7501
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7502
	else if (IS_CHERRYVIEW(dev_priv))
7503
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7504
	else if (IS_HASWELL(dev_priv))
7505
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7506
	else if (IS_IVYBRIDGE(dev_priv))
7507
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7508
	else if (IS_VALLEYVIEW(dev_priv))
7509
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7510
	else if (IS_GEN(dev_priv, 6))
7511
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7512
	else if (IS_GEN(dev_priv, 5))
7513
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7514 7515
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7516
	else if (IS_I965GM(dev_priv))
7517
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7518
	else if (IS_I965G(dev_priv))
7519
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7520
	else if (IS_GEN(dev_priv, 3))
7521 7522 7523
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7524
	else if (IS_GEN(dev_priv, 2))
7525 7526 7527 7528 7529 7530 7531
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7532
/* Set up chip specific power management-related functions */
7533
void intel_init_pm(struct drm_i915_private *dev_priv)
7534
{
7535
	/* For cxsr */
7536
	if (IS_PINEVIEW(dev_priv))
7537
		pnv_get_mem_freq(dev_priv);
7538
	else if (IS_GEN(dev_priv, 5))
7539
		ilk_get_mem_freq(dev_priv);
7540

7541 7542 7543
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7544
	/* For FIFO watermark updates */
7545
	if (INTEL_GEN(dev_priv) >= 9) {
7546
		skl_setup_wm_latency(dev_priv);
7547
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7548
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7549
		ilk_setup_wm_latency(dev_priv);
7550

7551
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7552
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7553
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7554
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7555
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7556 7557 7558 7559 7560 7561
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7562
		} else {
7563 7564 7565
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7566
		}
7567
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7568
		vlv_setup_wm_latency(dev_priv);
7569
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7570
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7571
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7572
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7573
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7574 7575 7576 7577 7578 7579
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7580
	} else if (IS_PINEVIEW(dev_priv)) {
7581
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7582 7583 7584
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7585 7586
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7587 7588 7589 7590 7591
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7592
			intel_set_memory_cxsr(dev_priv, false);
7593 7594
			dev_priv->display.update_wm = NULL;
		} else
7595
			dev_priv->display.update_wm = pnv_update_wm;
7596
	} else if (IS_GEN(dev_priv, 4)) {
7597
		dev_priv->display.update_wm = i965_update_wm;
7598
	} else if (IS_GEN(dev_priv, 3)) {
7599 7600
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7601
	} else if (IS_GEN(dev_priv, 2)) {
7602
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7603
			dev_priv->display.update_wm = i845_update_wm;
7604
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7605 7606
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7607
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7608 7609
		}
	} else {
7610 7611
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7612 7613 7614
	}
}

7615
void intel_pm_setup(struct drm_i915_private *dev_priv)
7616
{
7617 7618
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7619
}