intel_pm.c 284.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/pm_runtime.h>
30
#include <drm/drm_plane_helper.h>
31 32
#include "i915_drv.h"
#include "intel_drv.h"
33 34
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
35
#include <drm/drm_atomic_helper.h>
36

B
Ben Widawsky 已提交
37
/**
38 39
 * DOC: RC6
 *
B
Ben Widawsky 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

57
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58
{
59 60 61
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62
		 * Display WA #0390: skl,kbl
63 64 65 66 67 68 69 70 71
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

72
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 74 75
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

76
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 78
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79

80 81
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 83 84
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
85

86
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 88
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
89 90 91 92 93 94

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
95 96
}

97
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98
{
99
	gen9_init_clock_gating(dev_priv);
100

101 102 103 104
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

105 106
	/*
	 * FIXME:
107
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 109
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
111 112 113 114 115

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
116 117
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

208
	dev_priv->ips.r_t = dev_priv->mem_freq;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
240
		dev_priv->ips.c_m = 0;
241
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242
		dev_priv->ips.c_m = 1;
243
	} else {
244
		dev_priv->ips.c_m = 2;
245 246 247
	}
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

286 287
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

310 311 312 313
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

314
	mutex_lock(&dev_priv->pcu_lock);
315 316 317 318 319 320 321 322 323 324 325 326 327 328

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

329
	mutex_unlock(&dev_priv->pcu_lock);
330 331
}

332 333 334 335
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

336
	mutex_lock(&dev_priv->pcu_lock);
337

338
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
339 340 341 342
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
343
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
344

345
	mutex_unlock(&dev_priv->pcu_lock);
346 347
}

348 349 350
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

351
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
352
{
353
	bool was_enabled;
354
	u32 val;
355

356
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359
		POSTING_READ(FW_BLC_SELF_VLV);
360
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363
		POSTING_READ(FW_BLC_SELF);
364
	} else if (IS_PINEVIEW(dev_priv)) {
365 366 367 368 369 370
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
371
		I915_WRITE(DSPFW3, val);
372
		POSTING_READ(DSPFW3);
373
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 376 377
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
378
		POSTING_READ(FW_BLC_SELF);
379
	} else if (IS_I915GM(dev_priv)) {
380 381 382 383 384
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
385
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
389
		POSTING_READ(INSTPM);
390
	} else {
391
		return false;
392
	}
393

394 395
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

396 397 398 399 400
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
401 402
}

V
Ville Syrjälä 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
440
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
441
{
442 443
	bool ret;

444
	mutex_lock(&dev_priv->wm.wm_mutex);
445
	ret = _intel_set_memory_cxsr(dev_priv, enable);
446 447 448 449
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
450
	mutex_unlock(&dev_priv->wm.wm_mutex);
451 452

	return ret;
453
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
469
static const int pessimal_latency_ns = 5000;
470

471 472 473
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

474
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475
{
476
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 480
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
481

482
	switch (pipe) {
483
		u32 dsparb, dsparb2, dsparb3;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
503 504
		MISSING_CASE(pipe);
		return;
505 506
	}

507 508 509 510
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
511 512
}

513 514
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
515
{
516
	u32 dsparb = I915_READ(DSPARB);
517 518 519
	int size;

	size = dsparb & 0x7f;
520
	if (i9xx_plane == PLANE_B)
521 522
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

523 524
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
525 526 527 528

	return size;
}

529 530
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
531
{
532
	u32 dsparb = I915_READ(DSPARB);
533 534 535
	int size;

	size = dsparb & 0x1ff;
536
	if (i9xx_plane == PLANE_B)
537 538 539
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

540 541
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
542 543 544 545

	return size;
}

546 547
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
548
{
549
	u32 dsparb = I915_READ(DSPARB);
550 551 552 553 554
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

555 556
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
557 558 559 560 561 562

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
563 564 565 566 567
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 571 572 573 574
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 576
};
static const struct intel_watermark_params pineview_cursor_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 583
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 590
};
static const struct intel_watermark_params i965_cursor_wm_info = {
591 592 593 594 595
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
596 597
};
static const struct intel_watermark_params i945_wm_info = {
598 599 600 601 602
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
603 604
};
static const struct intel_watermark_params i915_wm_info = {
605 606 607 608 609
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
610
};
611
static const struct intel_watermark_params i830_a_wm_info = {
612 613 614 615 616
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
617
};
618 619 620 621 622 623 624
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
625
static const struct intel_watermark_params i845_wm_info = {
626 627 628 629 630
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
631 632
};

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
670
	u64 ret;
671

672
	ret = (u64)pixel_rate * cpp * latency;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

729 730
/**
 * intel_calculate_wm - calculate watermark level
731
 * @pixel_rate: pixel clock
732
 * @wm: chip FIFO params
733
 * @fifo_size: size of the FIFO buffer
734
 * @cpp: bytes per pixel
735 736 737 738 739 740 741 742 743 744 745 746 747
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
748 749 750 751
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
752
{
753
	int entries, wm_size;
754 755 756 757 758 759 760

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
761 762 763 764 765
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766

767 768
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769 770

	/* Don't promote wm_size to unsigned... */
771
	if (wm_size > wm->max_wm)
772 773 774
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
775 776 777 778 779 780 781 782 783 784 785

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

786 787 788
	return wm_size;
}

789 790 791 792 793 794 795 796 797 798
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

799 800 801 802 803
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

827
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828
{
829
	struct intel_crtc *crtc, *enabled = NULL;
830

831
	for_each_intel_crtc(&dev_priv->drm, crtc) {
832
		if (intel_crtc_active(crtc)) {
833 834 835 836 837 838 839 840 841
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

842
static void pineview_update_wm(struct intel_crtc *unused_crtc)
843
{
844
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845
	struct intel_crtc *crtc;
846 847
	const struct cxsr_latency *latency;
	u32 reg;
848
	unsigned int wm;
849

850 851 852 853
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
854 855
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856
		intel_set_memory_cxsr(dev_priv, false);
857 858 859
		return;
	}

860
	crtc = single_enabled_crtc(dev_priv);
861
	if (crtc) {
862 863 864 865
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
866
		int cpp = fb->format->cpp[0];
867
		int clock = adjusted_mode->crtc_clock;
868 869 870 871

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
872
					cpp, latency->display_sr);
873 874
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
875
		reg |= FW_WM(wm, SR);
876 877 878 879 880 881
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
882
					4, latency->cursor_sr);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
885
		reg |= FW_WM(wm, CURSOR_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					cpp, latency->display_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
894
		reg |= FW_WM(wm, HPLL_SR);
895 896 897 898 899
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
900
					4, latency->cursor_hpll_disable);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
903
		reg |= FW_WM(wm, HPLL_CURSOR);
904 905 906
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

907
		intel_set_memory_cxsr(dev_priv, true);
908
	} else {
909
		intel_set_memory_cxsr(dev_priv, false);
910 911 912
	}
}

913 914 915 916 917 918 919 920 921 922
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
923
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 925 926 927 928 929
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

930 931
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
932
{
933 934 935 936 937
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
955

956
	POSTING_READ(DSPFW1);
957 958
}

959 960 961
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

962
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 964
				const struct vlv_wm_values *wm)
{
965 966 967
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
968 969
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

970 971 972 973 974 975
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
976

977 978 979 980 981 982 983 984 985 986 987
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

988
	I915_WRITE(DSPFW1,
989
		   FW_WM(wm->sr.plane, SR) |
990 991 992
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993
	I915_WRITE(DSPFW2,
994 995 996
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997
	I915_WRITE(DSPFW3,
998
		   FW_WM(wm->sr.cursor, CURSOR_SR));
999 1000 1001

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1002 1003
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004
		I915_WRITE(DSPFW8_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007
		I915_WRITE(DSPFW9_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010
		I915_WRITE(DSPHOWM,
1011
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 1013 1014 1015 1016 1017 1018 1019 1020
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1021 1022
	} else {
		I915_WRITE(DSPFW7,
1023 1024
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025
		I915_WRITE(DSPHOWM,
1026
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 1028 1029 1030 1031 1032
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1033 1034 1035
	}

	POSTING_READ(DSPFW1);
1036 1037
}

1038 1039
#undef FW_WM_VLV

1040 1041 1042 1043 1044
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046

1047
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1092 1093 1094
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1095 1096 1097 1098 1099
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1100 1101
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1140
		unsigned int small, large;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1153
	return min_t(unsigned int, wm, USHRT_MAX);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1191 1192 1193
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1322 1323
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1324 1325 1326 1327 1328
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1329 1330 1331 1332
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1333 1334 1335
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1336
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1402
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1403
{
1404
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1405 1406 1407 1408 1409 1410 1411
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 1413
	enum plane_id plane_id;

1414 1415 1416 1417 1418 1419 1420 1421
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1422
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423
		!new_crtc_state->disable_cxsr;
1424
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425
		!new_crtc_state->disable_cxsr;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1467
out:
1468 1469 1470 1471 1472
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473
		new_crtc_state->wm.need_postvbl_update = true;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1570 1571
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 1573
				   unsigned int htotal,
				   unsigned int width,
1574
				   unsigned int cpp,
1575 1576 1577 1578
				   unsigned int latency)
{
	unsigned int ret;

1579 1580
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1581 1582 1583 1584 1585
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1586
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 1588 1589 1590
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1591 1592
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1593 1594 1595
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596 1597

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 1599 1600
	}
}

1601 1602 1603
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1604
{
1605
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 1608
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1609
	unsigned int clock, htotal, cpp, width, wm;
1610 1611 1612 1613

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1614
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 1616
		return 0;

1617
	cpp = plane_state->base.fb->format->cpp[0];
1618 1619 1620
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1621

1622
	if (plane->id == PLANE_CURSOR) {
1623 1624 1625 1626 1627 1628 1629 1630
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1631
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 1633 1634
				    dev_priv->wm.pri_latency[level] * 10);
	}

1635
	return min_t(unsigned int, wm, USHRT_MAX);
1636 1637
}

1638 1639 1640 1641 1642 1643
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1644
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645
{
1646
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647
	const struct g4x_pipe_wm *raw =
1648
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 1651 1652
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1653
	int fifo_extra, fifo_left = fifo_size;
1654
	int sprite0_fifo_extra = 0;
1655 1656
	unsigned int total_rate;
	enum plane_id plane_id;
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1669 1670
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1671 1672
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1673

1674 1675
	if (total_rate > fifo_size)
		return -EINVAL;
1676

1677 1678
	if (total_rate == 0)
		total_rate = 1;
1679

1680
	for_each_plane_id_on_crtc(crtc, plane_id) {
1681 1682
		unsigned int rate;

1683 1684
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1685 1686 1687
			continue;
		}

1688 1689 1690
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1691 1692
	}

1693 1694 1695
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1696 1697 1698
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699 1700

	/* spread the remainder evenly */
1701
	for_each_plane_id_on_crtc(crtc, plane_id) {
1702 1703 1704 1705 1706
		int plane_extra;

		if (fifo_left == 0)
			break;

1707
		if ((active_planes & BIT(plane_id)) == 0)
1708 1709 1710
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1711
		fifo_state->plane[plane_id] += plane_extra;
1712 1713 1714
		fifo_left -= plane_extra;
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1724 1725
}

1726 1727 1728 1729 1730 1731
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1732
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1743 1744 1745 1746 1747 1748 1749 1750
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1751 1752 1753 1754
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1755
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756
				 int level, enum plane_id plane_id, u16 value)
1757
{
1758
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759
	int num_levels = intel_wm_num_levels(dev_priv);
1760
	bool dirty = false;
1761

1762
	for (; level < num_levels; level++) {
1763
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764

1765
		dirty |= raw->plane[plane_id] != value;
1766
		raw->plane[plane_id] = value;
1767
	}
1768 1769

	return dirty;
1770 1771
}

1772 1773
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1774
{
1775 1776
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1777
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778
	int level;
1779
	bool dirty = false;
1780

1781
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 1783
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1784
	}
1785

1786
	for (level = 0; level < num_levels; level++) {
1787
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 1789
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790

1791 1792
		if (wm > max_wm)
			break;
1793

1794
		dirty |= raw->plane[plane_id] != wm;
1795 1796
		raw->plane[plane_id] = wm;
	}
1797

1798
	/* mark all higher levels as invalid */
1799
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800

1801 1802
out:
	if (dirty)
1803
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 1805 1806 1807 1808 1809
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1810
}
1811

1812 1813
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1814
{
1815
	const struct g4x_pipe_wm *raw =
1816 1817 1818
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1819

1820 1821
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1822

1823
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824
{
1825 1826 1827 1828
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1842
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 1844
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1845 1846 1847
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1848
	unsigned int dirty = 0;
1849

1850 1851 1852 1853
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1854 1855
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1856

1857
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1876
			intel_atomic_get_old_crtc_state(state, crtc);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1888
	}
1889

1890
	/* initially allow all levels */
1891
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 1893 1894 1895 1896
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1897
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898

1899
	for (level = 0; level < wm_state->num_levels; level++) {
1900
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902

1903
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904
			break;
1905

1906 1907 1908 1909 1910 1911 1912 1913
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914
						 raw->plane[PLANE_SPRITE0],
1915 1916
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1917

1918 1919 1920
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1921 1922
	}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1933 1934
}

1935 1936 1937
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1938 1939
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1940
{
1941
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 1944
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1945
	int sprite0_start, sprite1_start, fifo_size;
1946

1947 1948 1949
	if (!crtc_state->fifo_changed)
		return;

1950 1951 1952
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953

1954 1955
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1956

1957 1958
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1969

1970
	switch (crtc->pipe) {
1971
		u32 dsparb, dsparb2, dsparb3;
1972
	case PIPE_A:
1973 1974
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1986 1987
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1988 1989
		break;
	case PIPE_B:
1990 1991
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2003 2004
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2005 2006
		break;
	case PIPE_C:
2007 2008
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2020 2021
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2022 2023 2024 2025
		break;
	default:
		break;
	}
2026

2027
	POSTING_READ_FW(DSPARB);
2028

2029
	spin_unlock(&dev_priv->uncore.lock);
2030 2031 2032 2033
}

#undef VLV_FIFO

2034
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2035
{
2036
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2037 2038 2039 2040 2041 2042 2043
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2044 2045
	int level;

2046 2047 2048 2049 2050 2051 2052
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2053
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2054
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2055
		!new_crtc_state->disable_cxsr;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2074
out:
2075 2076 2077 2078
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2079
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2080
		new_crtc_state->wm.need_postvbl_update = true;
2081 2082 2083 2084

	return 0;
}

2085
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2086 2087 2088 2089 2090
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2091
	wm->level = dev_priv->wm.max_level;
2092 2093
	wm->cxsr = true;

2094
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2095
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2110 2111 2112
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2113
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2114
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2115 2116 2117
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2118
		if (crtc->active && wm->cxsr)
2119 2120
			wm->sr = wm_state->sr[wm->level];

2121 2122 2123 2124
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2125 2126 2127
	}
}

2128
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2129
{
2130 2131
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2132

2133
	vlv_merge_wm(dev_priv, &new_wm);
2134

2135
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2136 2137
		return;

2138
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2139 2140
		chv_set_memory_dvfs(dev_priv, false);

2141
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2142 2143
		chv_set_memory_pm5(dev_priv, false);

2144
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2145
		_intel_set_memory_cxsr(dev_priv, false);
2146

2147
	vlv_write_wm_values(dev_priv, &new_wm);
2148

2149
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2150
		_intel_set_memory_cxsr(dev_priv, true);
2151

2152
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2153 2154
		chv_set_memory_pm5(dev_priv, true);

2155
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2156 2157
		chv_set_memory_dvfs(dev_priv, true);

2158
	*old_wm = new_wm;
2159 2160
}

2161 2162 2163 2164 2165 2166 2167
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2184 2185 2186 2187
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2188
static void i965_update_wm(struct intel_crtc *unused_crtc)
2189
{
2190
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2191
	struct intel_crtc *crtc;
2192 2193
	int srwm = 1;
	int cursor_sr = 16;
2194
	bool cxsr_enabled;
2195 2196

	/* Calc sr entries for one plane configs */
2197
	crtc = single_enabled_crtc(dev_priv);
2198 2199 2200
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2201 2202 2203 2204
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2205
		int clock = adjusted_mode->crtc_clock;
2206
		int htotal = adjusted_mode->crtc_htotal;
2207
		int hdisplay = crtc->config->pipe_src_w;
2208
		int cpp = fb->format->cpp[0];
2209 2210
		int entries;

2211 2212
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2213 2214 2215 2216 2217 2218 2219 2220
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2221 2222 2223
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2224
		entries = DIV_ROUND_UP(entries,
2225 2226
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2227

2228
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2229 2230 2231 2232 2233 2234
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2235
		cxsr_enabled = true;
2236
	} else {
2237
		cxsr_enabled = false;
2238
		/* Turn off self refresh if both pipes are enabled */
2239
		intel_set_memory_cxsr(dev_priv, false);
2240 2241 2242 2243 2244 2245
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2246 2247 2248 2249 2250 2251
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2252
	/* update cursor SR watermark */
2253
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2254 2255 2256

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2257 2258
}

2259 2260
#undef FW_WM

2261
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2262
{
2263
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2264
	const struct intel_watermark_params *wm_info;
2265 2266
	u32 fwater_lo;
	u32 fwater_hi;
2267 2268 2269
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2270
	struct intel_crtc *crtc, *enabled = NULL;
2271

2272
	if (IS_I945GM(dev_priv))
2273
		wm_info = &i945_wm_info;
2274
	else if (!IS_GEN(dev_priv, 2))
2275 2276
		wm_info = &i915_wm_info;
	else
2277
		wm_info = &i830_a_wm_info;
2278

2279 2280
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2281 2282 2283 2284 2285 2286 2287
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2288
		if (IS_GEN(dev_priv, 2))
2289
			cpp = 4;
2290
		else
2291
			cpp = fb->format->cpp[0];
2292

2293
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2294
					       wm_info, fifo_size, cpp,
2295
					       pessimal_latency_ns);
2296
		enabled = crtc;
2297
	} else {
2298
		planea_wm = fifo_size - wm_info->guard_size;
2299 2300 2301 2302
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2303
	if (IS_GEN(dev_priv, 2))
2304
		wm_info = &i830_bc_wm_info;
2305

2306 2307
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2308 2309 2310 2311 2312 2313 2314
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2315
		if (IS_GEN(dev_priv, 2))
2316
			cpp = 4;
2317
		else
2318
			cpp = fb->format->cpp[0];
2319

2320
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2321
					       wm_info, fifo_size, cpp,
2322
					       pessimal_latency_ns);
2323 2324 2325 2326
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2327
	} else {
2328
		planeb_wm = fifo_size - wm_info->guard_size;
2329 2330 2331
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2332 2333 2334

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2335
	if (IS_I915GM(dev_priv) && enabled) {
2336
		struct drm_i915_gem_object *obj;
2337

2338
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2339 2340

		/* self-refresh seems busted with untiled */
2341
		if (!i915_gem_object_is_tiled(obj))
2342 2343 2344
			enabled = NULL;
	}

2345 2346 2347 2348 2349 2350
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2351
	intel_set_memory_cxsr(dev_priv, false);
2352 2353

	/* Calc sr entries for one plane configs */
2354
	if (HAS_FW_BLC(dev_priv) && enabled) {
2355 2356
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2357 2358 2359 2360
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2361
		int clock = adjusted_mode->crtc_clock;
2362
		int htotal = adjusted_mode->crtc_htotal;
2363 2364
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2365 2366
		int entries;

2367
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2368
			cpp = 4;
2369
		else
2370
			cpp = fb->format->cpp[0];
2371

2372 2373
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2374 2375 2376 2377 2378 2379
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2380
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2381 2382
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2383
		else
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2400 2401
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2402 2403
}

2404
static void i845_update_wm(struct intel_crtc *unused_crtc)
2405
{
2406
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2407
	struct intel_crtc *crtc;
2408
	const struct drm_display_mode *adjusted_mode;
2409
	u32 fwater_lo;
2410 2411
	int planea_wm;

2412
	crtc = single_enabled_crtc(dev_priv);
2413 2414 2415
	if (crtc == NULL)
		return;

2416
	adjusted_mode = &crtc->config->base.adjusted_mode;
2417
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2418
				       &i845_wm_info,
2419
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2420
				       4, pessimal_latency_ns);
2421 2422 2423 2424 2425 2426 2427 2428
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2429
/* latency must be in 0.1us units. */
2430 2431 2432
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2433
{
2434
	unsigned int ret;
2435

2436 2437
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2438 2439 2440 2441

	return ret;
}

2442
/* latency must be in 0.1us units. */
2443 2444 2445 2446 2447
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2448
{
2449
	unsigned int ret;
2450

2451 2452
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2453
	ret = DIV_ROUND_UP(ret, 64) + 2;
2454

2455 2456 2457
	return ret;
}

2458
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2459
{
2460 2461 2462 2463 2464 2465
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2466
	if (WARN_ON(!cpp))
2467 2468 2469 2470
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2471
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2472 2473
}

2474
struct ilk_wm_maximums {
2475 2476 2477 2478
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2479 2480
};

2481 2482 2483 2484
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2485 2486 2487
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value, bool is_lp)
2488
{
2489
	u32 method1, method2;
2490
	int cpp;
2491

2492 2493 2494
	if (mem_value == 0)
		return U32_MAX;

2495
	if (!intel_wm_plane_visible(cstate, pstate))
2496 2497
		return 0;

2498
	cpp = pstate->base.fb->format->cpp[0];
2499

2500
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501 2502 2503 2504

	if (!is_lp)
		return method1;

2505
	method2 = ilk_wm_method2(cstate->pixel_rate,
2506
				 cstate->base.adjusted_mode.crtc_htotal,
2507
				 drm_rect_width(&pstate->base.dst),
2508
				 cpp, mem_value);
2509 2510

	return min(method1, method2);
2511 2512
}

2513 2514 2515 2516
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2517 2518 2519
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2520
{
2521
	u32 method1, method2;
2522
	int cpp;
2523

2524 2525 2526
	if (mem_value == 0)
		return U32_MAX;

2527
	if (!intel_wm_plane_visible(cstate, pstate))
2528 2529
		return 0;

2530
	cpp = pstate->base.fb->format->cpp[0];
2531

2532 2533
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2534
				 cstate->base.adjusted_mode.crtc_htotal,
2535
				 drm_rect_width(&pstate->base.dst),
2536
				 cpp, mem_value);
2537 2538 2539
	return min(method1, method2);
}

2540 2541 2542 2543
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2544 2545 2546
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2547
{
2548 2549
	int cpp;

2550 2551 2552
	if (mem_value == 0)
		return U32_MAX;

2553
	if (!intel_wm_plane_visible(cstate, pstate))
2554 2555
		return 0;

2556 2557
	cpp = pstate->base.fb->format->cpp[0];

2558
	return ilk_wm_method2(cstate->pixel_rate,
2559
			      cstate->base.adjusted_mode.crtc_htotal,
2560
			      pstate->base.crtc_w, cpp, mem_value);
2561 2562
}

2563
/* Only for WM_LP. */
2564 2565 2566
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val)
2567
{
2568
	int cpp;
2569

2570
	if (!intel_wm_plane_visible(cstate, pstate))
2571 2572
		return 0;

2573
	cpp = pstate->base.fb->format->cpp[0];
2574

2575
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2576 2577
}

2578 2579
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2580
{
2581
	if (INTEL_GEN(dev_priv) >= 8)
2582
		return 3072;
2583
	else if (INTEL_GEN(dev_priv) >= 7)
2584 2585 2586 2587 2588
		return 768;
	else
		return 512;
}

2589 2590 2591
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2592
{
2593
	if (INTEL_GEN(dev_priv) >= 8)
2594 2595
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2596
	else if (INTEL_GEN(dev_priv) >= 7)
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2607 2608
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2609
{
2610
	if (INTEL_GEN(dev_priv) >= 7)
2611 2612 2613 2614 2615
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2616
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2617
{
2618
	if (INTEL_GEN(dev_priv) >= 8)
2619 2620 2621 2622 2623
		return 31;
	else
		return 15;
}

2624
/* Calculate the maximum primary/sprite plane watermark */
2625
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2626
				     int level,
2627
				     const struct intel_wm_config *config,
2628 2629 2630
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2631
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2632 2633

	/* if sprites aren't enabled, sprites get nothing */
2634
	if (is_sprite && !config->sprites_enabled)
2635 2636 2637
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2638
	if (level == 0 || config->num_pipes_active > 1) {
2639
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2640 2641 2642 2643 2644 2645

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2646
		if (INTEL_GEN(dev_priv) <= 6)
2647 2648 2649
			fifo_size /= 2;
	}

2650
	if (config->sprites_enabled) {
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2662
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2663 2664 2665
}

/* Calculate the maximum cursor plane watermark */
2666
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2667 2668
				      int level,
				      const struct intel_wm_config *config)
2669 2670
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2671
	if (level > 0 && config->num_pipes_active > 1)
2672 2673 2674
		return 64;

	/* otherwise just report max that registers can hold */
2675
	return ilk_cursor_wm_reg_max(dev_priv, level);
2676 2677
}

2678
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2679 2680 2681
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2682
				    struct ilk_wm_maximums *max)
2683
{
2684 2685 2686 2687
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2688 2689
}

2690
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2691 2692 2693
					int level,
					struct ilk_wm_maximums *max)
{
2694 2695 2696 2697
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2698 2699
}

2700
static bool ilk_validate_wm_level(int level,
2701
				  const struct ilk_wm_maximums *max,
2702
				  struct intel_wm_level *result)
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2732 2733 2734
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2735 2736 2737 2738 2739 2740
		result->enable = true;
	}

	return ret;
}

2741
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2742
				 const struct intel_crtc *intel_crtc,
2743
				 int level,
2744
				 struct intel_crtc_state *cstate,
2745 2746 2747
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2748
				 struct intel_wm_level *result)
2749
{
2750 2751 2752
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2753 2754 2755 2756 2757 2758 2759 2760

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2773 2774 2775
	result->enable = true;
}

2776
static u32
2777
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2778
{
2779 2780
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2781 2782
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2783
	u32 linetime, ips_linetime;
2784

2785 2786 2787 2788
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2789
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2790
		return 0;
2791

2792 2793 2794
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2795 2796 2797
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2798
					 intel_state->cdclk.logical.cdclk);
2799

2800 2801
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2802 2803
}

2804
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2805
				  u16 wm[8])
2806
{
2807
	if (INTEL_GEN(dev_priv) >= 9) {
2808
		u32 val;
2809
		int ret, i;
2810
		int level, max_level = ilk_wm_max_level(dev_priv);
2811 2812 2813

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2814
		mutex_lock(&dev_priv->pcu_lock);
2815 2816 2817
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2818
		mutex_unlock(&dev_priv->pcu_lock);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2835
		mutex_lock(&dev_priv->pcu_lock);
2836 2837 2838
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2839
		mutex_unlock(&dev_priv->pcu_lock);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2866
		/*
2867
		 * WaWmMemoryReadLatency:skl+,glk
2868
		 *
2869
		 * punit doesn't take into account the read latency so we need
2870 2871
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2872
		 */
2873 2874 2875 2876 2877
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2878
				wm[level] += 2;
2879
			}
2880 2881
		}

2882 2883 2884 2885 2886 2887
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2888
		if (dev_priv->dram_info.is_16gb_dimm)
2889 2890
			wm[0] += 1;

2891
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2892
		u64 sskpd = I915_READ64(MCH_SSKPD);
2893 2894 2895 2896

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2897 2898 2899 2900
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2901
	} else if (INTEL_GEN(dev_priv) >= 6) {
2902
		u32 sskpd = I915_READ(MCH_SSKPD);
2903 2904 2905 2906 2907

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2908
	} else if (INTEL_GEN(dev_priv) >= 5) {
2909
		u32 mltr = I915_READ(MLTR_ILK);
2910 2911 2912 2913 2914

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2915 2916
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2917 2918 2919
	}
}

2920
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2921
				       u16 wm[5])
2922 2923
{
	/* ILK sprite LP0 latency is 1300 ns */
2924
	if (IS_GEN(dev_priv, 5))
2925 2926 2927
		wm[0] = 13;
}

2928
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2929
				       u16 wm[5])
2930 2931
{
	/* ILK cursor LP0 latency is 1300 ns */
2932
	if (IS_GEN(dev_priv, 5))
2933 2934 2935
		wm[0] = 13;
}

2936
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2937 2938
{
	/* how many WM levels are we expecting */
2939
	if (INTEL_GEN(dev_priv) >= 9)
2940
		return 7;
2941
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2942
		return 4;
2943
	else if (INTEL_GEN(dev_priv) >= 6)
2944
		return 3;
2945
	else
2946 2947
		return 2;
}
2948

2949
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2950
				   const char *name,
2951
				   const u16 wm[8])
2952
{
2953
	int level, max_level = ilk_wm_max_level(dev_priv);
2954 2955 2956 2957 2958

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2959 2960
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2961 2962 2963
			continue;
		}

2964 2965 2966 2967
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2968
		if (INTEL_GEN(dev_priv) >= 9)
2969 2970
			latency *= 10;
		else if (level > 0)
2971 2972 2973 2974 2975 2976 2977 2978
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2979
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2980
				    u16 wm[5], u16 min)
2981
{
2982
	int level, max_level = ilk_wm_max_level(dev_priv);
2983 2984 2985 2986 2987 2988

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2989
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2990 2991 2992 2993

	return true;
}

2994
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3010 3011 3012
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3013 3014
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3043
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3044
{
3045
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3046 3047 3048 3049 3050 3051

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3052
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3053
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3054

3055 3056 3057
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3058

3059
	if (IS_GEN(dev_priv, 6)) {
3060
		snb_wm_latency_quirk(dev_priv);
3061 3062
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3063 3064
}

3065
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3066
{
3067
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3068
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3069 3070
}

3071
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3083
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3094
/* Compute new watermarks for the pipe */
3095
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3096
{
3097 3098
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3099
	struct intel_pipe_wm *pipe_wm;
3100
	struct drm_device *dev = state->dev;
3101
	const struct drm_i915_private *dev_priv = to_i915(dev);
3102 3103 3104 3105 3106
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3107
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3108
	struct ilk_wm_maximums max;
3109

3110
	pipe_wm = &cstate->wm.ilk.optimal;
3111

3112 3113
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3114

3115
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3116
			pristate = ps;
3117
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3118
			sprstate = ps;
3119
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3120
			curstate = ps;
3121 3122
	}

3123
	pipe_wm->pipe_enabled = cstate->base.active;
3124
	if (sprstate) {
3125 3126 3127 3128
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3129 3130
	}

3131 3132
	usable_level = max_level;

3133
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3134
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3135
		usable_level = 1;
3136 3137

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3138
	if (pipe_wm->sprites_scaled)
3139
		usable_level = 0;
3140

3141
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3142 3143
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3144

3145
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3146
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3147

3148
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3149
		return -EINVAL;
3150

3151
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3152

3153 3154
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3155

3156
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3157
				     pristate, sprstate, curstate, wm);
3158 3159 3160 3161 3162 3163

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3164 3165 3166 3167
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3168 3169
	}

3170
	return 0;
3171 3172
}

3173 3174 3175 3176 3177
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3178
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3179
{
3180 3181
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3182
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3183 3184 3185 3186 3187
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3188
	int level, max_level = ilk_wm_max_level(dev_priv);
3189 3190 3191 3192 3193 3194

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3195
	*a = newstate->wm.ilk.optimal;
3196 3197
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3198 3199
		return 0;

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3221
	if (!ilk_validate_pipe_wm(dev_priv, a))
3222 3223 3224 3225 3226 3227
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3228 3229
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3230 3231 3232 3233

	return 0;
}

3234 3235 3236
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3237
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3238 3239 3240 3241 3242
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3243 3244
	ret_wm->enable = true;

3245
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3246
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3247 3248 3249 3250
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3251

3252 3253 3254 3255 3256
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3257
		if (!wm->enable)
3258
			ret_wm->enable = false;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3270
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3271
			 const struct intel_wm_config *config,
3272
			 const struct ilk_wm_maximums *max,
3273 3274
			 struct intel_pipe_wm *merged)
{
3275
	int level, max_level = ilk_wm_max_level(dev_priv);
3276
	int last_enabled_level = max_level;
3277

3278
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3279
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3280
	    config->num_pipes_active > 1)
3281
		last_enabled_level = 0;
3282

3283
	/* ILK: FBC WM must be disabled always */
3284
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3285 3286 3287 3288 3289

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3290
		ilk_merge_wm_level(dev_priv, level, wm);
3291

3292 3293 3294 3295 3296
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3297 3298 3299 3300 3301 3302

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3303 3304
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3305 3306 3307
			wm->fbc_val = 0;
		}
	}
3308 3309 3310 3311 3312 3313 3314

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3315
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3316
	    intel_fbc_is_active(dev_priv)) {
3317 3318 3319 3320 3321 3322
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3323 3324
}

3325 3326 3327 3328 3329 3330
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3331
/* The value we need to program into the WM_LPx latency field */
3332 3333
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3334
{
3335
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3336 3337 3338 3339 3340
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3341
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3342
				   const struct intel_pipe_wm *merged,
3343
				   enum intel_ddb_partitioning partitioning,
3344
				   struct ilk_wm_values *results)
3345
{
3346 3347
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3348

3349
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3350
	results->partitioning = partitioning;
3351

3352
	/* LP1+ register values */
3353
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3354
		const struct intel_wm_level *r;
3355

3356
		level = ilk_wm_lp_to_level(wm_lp, merged);
3357

3358
		r = &merged->wm[level];
3359

3360 3361 3362 3363 3364
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3365
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3366 3367 3368
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3369 3370 3371
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3372
		if (INTEL_GEN(dev_priv) >= 8)
3373 3374 3375 3376 3377 3378
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3379 3380 3381 3382
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3383
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3384 3385 3386 3387
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3388
	}
3389

3390
	/* LP0 register values */
3391
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3392
		enum pipe pipe = intel_crtc->pipe;
3393 3394
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3395 3396 3397 3398

		if (WARN_ON(!r->enable))
			continue;

3399
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3400

3401 3402 3403 3404
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3405 3406 3407
	}
}

3408 3409
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3410 3411 3412 3413
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3414
{
3415
	int level, max_level = ilk_wm_max_level(dev_priv);
3416
	int level1 = 0, level2 = 0;
3417

3418 3419 3420 3421 3422
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3423 3424
	}

3425 3426
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3427 3428 3429
			return r2;
		else
			return r1;
3430
	} else if (level1 > level2) {
3431 3432 3433 3434 3435 3436
		return r1;
	} else {
		return r2;
	}
}

3437 3438 3439 3440 3441 3442 3443 3444
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3445
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3446 3447
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3448 3449 3450 3451 3452
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3453
	for_each_pipe(dev_priv, pipe) {
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3497 3498
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3499
{
3500
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3501
	bool changed = false;
3502

3503 3504 3505
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3506
		changed = true;
3507 3508 3509 3510
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3511
		changed = true;
3512 3513 3514 3515
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3516
		changed = true;
3517
	}
3518

3519 3520 3521 3522
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3523

3524 3525 3526 3527 3528 3529 3530
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3531 3532
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3533
{
3534
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3535
	unsigned int dirty;
3536
	u32 val;
3537

3538
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3539 3540 3541 3542 3543
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3544
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3545
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3546
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3547
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3548
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3549 3550
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3551
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3552
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3553
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3554
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3555
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3556 3557
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3558
	if (dirty & WM_DIRTY_DDB) {
3559
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3574 3575
	}

3576
	if (dirty & WM_DIRTY_FBC) {
3577 3578 3579 3580 3581 3582 3583 3584
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3585 3586 3587 3588
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3589
	if (INTEL_GEN(dev_priv) >= 7) {
3590 3591 3592 3593 3594
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3595

3596
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3597
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3598
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3599
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3600
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3601
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3602 3603

	dev_priv->wm.hw = *results;
3604 3605
}

3606
bool ilk_disable_lp_wm(struct drm_device *dev)
3607
{
3608
	struct drm_i915_private *dev_priv = to_i915(dev);
3609 3610 3611 3612

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
		enabled_slices++;

	return enabled_slices;
}

3630 3631 3632 3633
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3634
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3635
{
3636
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3637 3638
}

3639 3640 3641
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3642 3643
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3644 3645
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3658
intel_enable_sagv(struct drm_i915_private *dev_priv)
3659 3660 3661
{
	int ret;

3662 3663 3664 3665
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3666 3667
		return 0;

3668
	DRM_DEBUG_KMS("Enabling SAGV\n");
3669
	mutex_lock(&dev_priv->pcu_lock);
3670 3671 3672 3673

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3674
	/* We don't need to wait for SAGV when enabling */
3675
	mutex_unlock(&dev_priv->pcu_lock);
3676 3677 3678

	/*
	 * Some skl systems, pre-release machines in particular,
3679
	 * don't actually have SAGV.
3680
	 */
3681
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3682
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3683
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3684 3685
		return 0;
	} else if (ret < 0) {
3686
		DRM_ERROR("Failed to enable SAGV\n");
3687 3688 3689
		return ret;
	}

3690
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3691 3692 3693 3694
	return 0;
}

int
3695
intel_disable_sagv(struct drm_i915_private *dev_priv)
3696
{
3697
	int ret;
3698

3699 3700 3701 3702
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3703 3704
		return 0;

3705
	DRM_DEBUG_KMS("Disabling SAGV\n");
3706
	mutex_lock(&dev_priv->pcu_lock);
3707 3708

	/* bspec says to keep retrying for at least 1 ms */
3709 3710 3711 3712
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3713
	mutex_unlock(&dev_priv->pcu_lock);
3714 3715 3716

	/*
	 * Some skl systems, pre-release machines in particular,
3717
	 * don't actually have SAGV.
3718
	 */
3719
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3720
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3721
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3722
		return 0;
3723
	} else if (ret < 0) {
3724
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3725
		return ret;
3726 3727
	}

3728
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3729 3730 3731
	return 0;
}

3732
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3733 3734 3735 3736
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3737 3738
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3739
	struct intel_crtc_state *cstate;
3740
	enum pipe pipe;
3741
	int level, latency;
3742
	int sagv_block_time_us;
3743

3744 3745 3746
	if (!intel_has_sagv(dev_priv))
		return false;

3747
	if (IS_GEN(dev_priv, 9))
3748
		sagv_block_time_us = 30;
3749
	else if (IS_GEN(dev_priv, 10))
3750 3751 3752 3753
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3754
	/*
3755
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3767
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3768
	cstate = to_intel_crtc_state(crtc->base.state);
3769

3770
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3771 3772
		return false;

3773
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3774 3775
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3776

3777
		/* Skip this plane if it's not enabled */
3778
		if (!wm->wm[0].plane_en)
3779 3780 3781
			continue;

		/* Find the highest enabled wm level for this plane */
3782
		for (level = ilk_wm_max_level(dev_priv);
3783
		     !wm->wm[level].plane_en; --level)
3784 3785
		     { }

3786 3787
		latency = dev_priv->wm.skl_latency[level];

3788
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3789
		    plane->base.state->fb->modifier ==
3790 3791 3792
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3793
		/*
3794 3795
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3796
		 * can't enable SAGV.
3797
		 */
3798
		if (latency < sagv_block_time_us)
3799 3800 3801 3802 3803 3804
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3805 3806
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3807
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3808 3809
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3821
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3822 3823 3824

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3825 3826 3827 3828 3829
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3830
	 */
3831
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3832 3833 3834 3835 3836 3837 3838 3839 3840
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3841
static void
3842
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3843
				   const struct intel_crtc_state *cstate,
3844
				   const u64 total_data_rate,
3845
				   struct skl_ddb_allocation *ddb,
3846 3847
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3848
{
3849 3850
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3851
	struct drm_crtc *for_crtc = cstate->base.crtc;
3852 3853 3854 3855 3856 3857
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3858

3859
	if (WARN_ON(!state) || !cstate->base.active) {
3860 3861
		alloc->start = 0;
		alloc->end = 0;
3862
		*num_active = hweight32(dev_priv->active_crtcs);
3863 3864 3865
		return;
	}

3866 3867 3868 3869 3870
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3871 3872
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3873

3874
	/*
3875 3876 3877 3878 3879 3880
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3881
	 */
3882
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3883 3884 3885 3886 3887
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3888
		return;
3889
	}
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3917 3918
}

3919
static unsigned int skl_cursor_allocation(int num_active)
3920
{
3921
	if (num_active == 1)
3922 3923 3924 3925 3926
		return 32;

	return 8;
}

3927 3928
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3929
{
3930

3931 3932
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3933

3934 3935
	if (entry->end)
		entry->end += 1;
3936 3937
}

3938 3939 3940 3941
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3942 3943
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3944
{
3945 3946
	u32 val, val2;
	u32 fourcc = 0;
3947 3948 3949 3950

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3951
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3952 3953 3954 3955 3956 3957
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3958 3959 3960 3961
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3962

3963 3964 3965 3966 3967
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3968
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3969

3970 3971 3972 3973 3974
		if (fourcc == DRM_FORMAT_NV12)
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
3975 3976 3977
	}
}

3978 3979 3980
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
3981
{
3982 3983 3984
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
3985
	intel_wakeref_t wakeref;
3986
	enum plane_id plane_id;
3987

3988
	power_domain = POWER_DOMAIN_PIPE(pipe);
3989 3990
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
3991
		return;
3992

3993 3994 3995 3996 3997
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
3998

3999
	intel_display_power_put(dev_priv, power_domain, wakeref);
4000
}
4001

4002 4003 4004 4005
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4006 4007
}

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4024
static uint_fixed_16_16_t
4025 4026
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4027
{
4028
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4029
	u32 src_w, src_h, dst_w, dst_h;
4030 4031
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4032

4033
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4034
		return u32_to_fixed16(0);
4035 4036

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4037
	if (plane->id == PLANE_CURSOR) {
4038 4039 4040 4041
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4042 4043
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4044 4045 4046
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4047 4048 4049 4050 4051
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4052 4053
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4054 4055 4056 4057
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4058 4059 4060 4061
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4062

4063
	return mul_fixed16(downscale_w, downscale_h);
4064 4065
}

4066 4067 4068
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4069
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4070 4071 4072 4073 4074

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4075 4076
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4088 4089 4090 4091
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4102
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4103 4104 4105 4106 4107
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4108
	int crtc_clock, dotclk;
4109
	u32 pipe_max_pixel_rate;
4110
	uint_fixed_16_16_t pipe_downscale;
4111
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4112 4113 4114 4115 4116 4117

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4118
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4136
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4137 4138 4139 4140 4141 4142
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4143 4144
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4145
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4146 4147 4148
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4149 4150

	if (pipe_max_pixel_rate < crtc_clock) {
4151
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4152 4153 4154 4155 4156 4157
		return -EINVAL;
	}

	return 0;
}

4158
static u64
4159
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4160
			     const struct intel_plane_state *intel_pstate,
4161
			     const int plane)
4162
{
4163 4164
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4165 4166
	u32 data_rate;
	u32 width = 0, height = 0;
4167 4168
	struct drm_framebuffer *fb;
	u32 format;
4169
	uint_fixed_16_16_t down_scale_amount;
4170
	u64 rate;
4171

4172
	if (!intel_pstate->base.visible)
4173
		return 0;
4174

4175
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4176
	format = fb->format->format;
4177

4178
	if (intel_plane->id == PLANE_CURSOR)
4179
		return 0;
4180
	if (plane == 1 && format != DRM_FORMAT_NV12)
4181
		return 0;
4182

4183 4184 4185 4186 4187
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4188 4189
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4190

4191 4192 4193 4194
	/* UV plane does 1/2 pixel sub-sampling */
	if (plane == 1 && format == DRM_FORMAT_NV12) {
		width /= 2;
		height /= 2;
4195 4196
	}

4197
	data_rate = width * height;
4198

4199
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4200

4201 4202 4203 4204
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4205 4206
}

4207
static u64
4208
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4209 4210
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4211
{
4212 4213
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4214 4215
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4216
	u64 total_data_rate = 0;
4217 4218 4219

	if (WARN_ON(!state))
		return 0;
4220

4221
	/* Calculate and cache data rate for each plane */
4222
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4223
		enum plane_id plane_id = to_intel_plane(plane)->id;
4224
		u64 rate;
4225 4226
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4227

4228
		/* packed/y */
4229
		rate = skl_plane_relative_data_rate(intel_cstate,
4230
						    intel_pstate, 0);
4231
		plane_data_rate[plane_id] = rate;
4232
		total_data_rate += rate;
4233

4234
		/* uv-plane */
4235
		rate = skl_plane_relative_data_rate(intel_cstate,
4236
						    intel_pstate, 1);
4237
		uv_plane_data_rate[plane_id] = rate;
4238
		total_data_rate += rate;
4239 4240 4241 4242 4243
	}

	return total_data_rate;
}

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4299
static int
4300
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4301 4302
		      struct skl_ddb_allocation *ddb /* out */)
{
4303
	struct drm_atomic_state *state = cstate->base.state;
4304
	struct drm_crtc *crtc = cstate->base.crtc;
4305
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4306
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4307
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4308
	struct skl_plane_wm *wm;
4309 4310 4311
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4312
	u64 total_data_rate;
4313
	enum plane_id plane_id;
4314
	int num_active;
4315 4316
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4317
	u32 blocks;
4318
	int level;
4319

4320
	/* Clear the partitioning for disabled planes. */
4321 4322
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4323

4324 4325 4326
	if (WARN_ON(!state))
		return 0;

4327
	if (!cstate->base.active) {
4328
		alloc->start = alloc->end = 0;
4329 4330 4331
		return 0;
	}

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
	if (INTEL_GEN(dev_priv) < 11)
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
	else
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4344
	alloc_size = skl_ddb_entry_size(alloc);
4345
	if (alloc_size == 0)
4346
		return 0;
4347

4348 4349 4350 4351 4352 4353 4354 4355 4356
	/* Allocate fixed number of blocks for cursor. */
	total[PLANE_CURSOR] = skl_cursor_allocation(num_active);
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4357

4358
	/*
4359 4360
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4361
	 */
4362
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4363
		blocks = 0;
4364 4365 4366
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			if (plane_id == PLANE_CURSOR)
				continue;
4367

4368
			wm = &cstate->wm.skl.optimal.planes[plane_id];
4369 4370
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4371 4372 4373 4374 4375 4376
		}

		if (blocks < alloc_size) {
			alloc_size -= blocks;
			break;
		}
4377 4378
	}

4379
	if (level < 0) {
4380
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4381 4382
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4383 4384 4385
		return -EINVAL;
	}

4386
	/*
4387 4388 4389
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4390
	 */
4391
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4392 4393
		u64 rate;
		u16 extra;
4394

4395
		if (plane_id == PLANE_CURSOR)
4396 4397
			continue;

4398
		/*
4399 4400
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4401
		 */
4402 4403
		if (total_data_rate == 0)
			break;
4404

4405
		wm = &cstate->wm.skl.optimal.planes[plane_id];
4406

4407 4408 4409 4410
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4411
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4412 4413
		alloc_size -= extra;
		total_data_rate -= rate;
4414

4415 4416
		if (total_data_rate == 0)
			break;
4417

4418 4419 4420 4421
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4422
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_ddb_entry *plane_alloc, *uv_plane_alloc;

		if (plane_id == PLANE_CURSOR)
			continue;

		plane_alloc = &cstate->wm.skl.plane_ddb_y[plane_id];
		uv_plane_alloc = &cstate->wm.skl.plane_ddb_uv[plane_id];
4438

4439
		/* Gen11+ uses a separate plane for UV watermarks */
4440 4441 4442 4443 4444 4445 4446 4447
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4448

4449 4450 4451 4452
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4453
		}
4454
	}
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			wm = &cstate->wm.skl.optimal.planes[plane_id];
			memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		wm = &cstate->wm.skl.optimal.planes[plane_id];
4475
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4476
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4477 4478
	}

4479
	return 0;
4480 4481
}

4482 4483
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4484
 * for the read latency) and cpp should always be <= 8, so that
4485 4486 4487
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4488
static uint_fixed_16_16_t
4489 4490
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4491
{
4492
	u32 wm_intermediate_val;
4493
	uint_fixed_16_16_t ret;
4494 4495

	if (latency == 0)
4496
		return FP_16_16_MAX;
4497

4498
	wm_intermediate_val = latency * pixel_rate * cpp;
4499
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4500 4501 4502 4503

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4504 4505 4506
	return ret;
}

4507 4508 4509
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4510
{
4511
	u32 wm_intermediate_val;
4512
	uint_fixed_16_16_t ret;
4513 4514

	if (latency == 0)
4515
		return FP_16_16_MAX;
4516 4517

	wm_intermediate_val = latency * pixel_rate;
4518 4519
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4520
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4521 4522 4523
	return ret;
}

4524
static uint_fixed_16_16_t
4525
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4526
{
4527 4528
	u32 pixel_rate;
	u32 crtc_htotal;
4529 4530 4531
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4532
		return u32_to_fixed16(0);
4533 4534 4535 4536

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4537
		return u32_to_fixed16(0);
4538 4539

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4540
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4541 4542 4543 4544

	return linetime_us;
}

4545
static u32
4546 4547
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4548
{
4549
	u64 adjusted_pixel_rate;
4550
	uint_fixed_16_16_t downscale_amount;
4551 4552

	/* Shouldn't reach here on disabled planes... */
4553
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4554 4555 4556 4557 4558 4559
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4560
	adjusted_pixel_rate = cstate->pixel_rate;
4561
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4562

4563 4564
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4565 4566
}

4567
static int
4568
skl_compute_plane_wm_params(const struct intel_crtc_state *cstate,
4569
			    const struct intel_plane_state *intel_pstate,
4570
			    struct skl_wm_params *wp, int color_plane)
4571
{
4572
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4573
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4574 4575
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4576
	u32 interm_pbpl;
4577

4578
	/* only NV12 format has two planes */
4579
	if (color_plane == 1 && fb->format->format != DRM_FORMAT_NV12) {
4580 4581 4582 4583
		DRM_DEBUG_KMS("Non NV12 format have single plane\n");
		return -EINVAL;
	}

4584 4585 4586 4587 4588 4589 4590
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4591
	wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4592

4593
	if (plane->id == PLANE_CURSOR) {
4594
		wp->width = intel_pstate->base.crtc_w;
4595
	} else {
4596 4597 4598 4599 4600
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4601
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4602
	}
4603

4604
	if (color_plane == 1 && wp->is_planar)
4605 4606
		wp->width /= 2;

4607
	wp->cpp = fb->format->cpp[color_plane];
4608 4609
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4610

4611
	if (INTEL_GEN(dev_priv) >= 11 &&
4612
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
4613 4614 4615 4616
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4617
	if (drm_rotation_90_or_270(pstate->rotation)) {
4618

4619
		switch (wp->cpp) {
4620
		case 1:
4621
			wp->y_min_scanlines = 16;
4622 4623
			break;
		case 2:
4624
			wp->y_min_scanlines = 8;
4625 4626
			break;
		case 4:
4627
			wp->y_min_scanlines = 4;
4628
			break;
4629
		default:
4630
			MISSING_CASE(wp->cpp);
4631
			return -EINVAL;
4632 4633
		}
	} else {
4634
		wp->y_min_scanlines = 4;
4635 4636
	}

4637
	if (skl_needs_memory_bw_wa(dev_priv))
4638
		wp->y_min_scanlines *= 2;
4639

4640 4641 4642
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4643 4644
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4645 4646 4647 4648

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4649 4650
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4651
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4652 4653
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4654
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4655
	} else {
4656 4657
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4658
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4659 4660
	}

4661 4662 4663 4664 4665 4666 4667 4668
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

4669 4670 4671 4672 4673 4674 4675 4676 4677
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4678 4679 4680 4681 4682 4683
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 const struct intel_plane_state *intel_pstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4684
{
4685 4686
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4687
	u32 latency = dev_priv->wm.skl_latency[level];
4688 4689
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4690
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4691

4692 4693 4694
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4695
		return;
4696
	}
4697

4698
	/* Display WA #1141: kbl,cfl */
4699 4700
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4701 4702 4703
	    dev_priv->ipc_enabled)
		latency += 4;

4704
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4705 4706 4707
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4708
				 wp->cpp, latency, wp->dbuf_block_size);
4709
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4710
				 cstate->base.adjusted_mode.crtc_htotal,
4711
				 latency,
4712
				 wp->plane_blocks_per_line);
4713

4714 4715
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4716
	} else {
4717
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4718
		     wp->dbuf_block_size < 1) &&
4719
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4720
			selected_result = method2;
4721
		} else if (latency >= wp->linetime_us) {
4722
			if (IS_GEN(dev_priv, 9) &&
4723 4724 4725 4726 4727
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4728
			selected_result = method1;
4729
		}
4730
	}
4731

4732
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4733
	res_lines = div_round_up_fixed16(selected_result,
4734
					 wp->plane_blocks_per_line);
4735

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4751

4752 4753 4754 4755 4756 4757 4758 4759 4760
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4761
	}
4762

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4781 4782 4783
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4784 4785 4786
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4787
		return;
4788
	}
4789 4790 4791 4792 4793 4794 4795

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4796 4797
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4798 4799
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4800
	result->plane_en = true;
4801 4802
}

4803
static void
4804
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4805
		      const struct intel_plane_state *intel_pstate,
4806
		      const struct skl_wm_params *wm_params,
4807
		      struct skl_wm_level *levels)
4808
{
4809 4810
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4811
	int level, max_level = ilk_wm_max_level(dev_priv);
4812
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4813

4814
	for (level = 0; level <= max_level; level++) {
4815
		struct skl_wm_level *result = &levels[level];
4816

4817 4818
		skl_compute_plane_wm(cstate, intel_pstate, level, wm_params,
				     result_prev, result);
4819 4820

		result_prev = result;
4821
	}
4822 4823
}

4824
static u32
4825
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4826
{
M
Mahesh Kumar 已提交
4827 4828
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4829
	uint_fixed_16_16_t linetime_us;
4830
	u32 linetime_wm;
4831

4832
	linetime_us = intel_get_linetime_us(cstate);
4833
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4834

4835 4836
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4837
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4838 4839

	return linetime_wm;
4840 4841
}

4842
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4843
				      const struct skl_wm_params *wp,
4844
				      struct skl_plane_wm *wm)
4845
{
4846 4847
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
4848 4849 4850
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4851 4852 4853

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4854
		return;
4855 4856 4857

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4858
		return;
4859

4860 4861
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4862 4863 4864 4865
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4876
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4877

4878
	if (wp->y_tiled) {
4879 4880
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4881
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4882 4883
				trans_offset_b;
	} else {
4884
		res_blocks = wm0_sel_res_b + trans_offset_b;
4885 4886 4887 4888 4889 4890 4891

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4892 4893 4894 4895 4896 4897 4898
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4899 4900
}

4901
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4902 4903
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4904
{
4905
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4906 4907 4908
	struct skl_wm_params wm_params;
	int ret;

4909
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4910 4911 4912 4913
					  &wm_params, color_plane);
	if (ret)
		return ret;

4914 4915
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->wm);
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4916 4917 4918 4919

	return 0;
}

4920
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4921 4922
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4923
{
4924
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4925 4926 4927
	struct skl_wm_params wm_params;
	int ret;

4928
	wm->is_planar = true;
4929 4930

	/* uv plane watermarks must also be validated for NV12/Planar */
4931
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4932 4933 4934
					  &wm_params, 1);
	if (ret)
		return ret;
4935

4936
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->uv_wm);
4937

4938
	return 0;
4939 4940
}

4941
static int skl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4942 4943
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4944
{
4945 4946 4947
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
4948 4949
	int ret;

4950 4951 4952
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4953
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4954
					plane_id, 0);
4955 4956 4957
	if (ret)
		return ret;

4958
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4959
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4960 4961 4962 4963 4964 4965 4966 4967
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4968
static int icl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

4987
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4988 4989 4990 4991
						y_plane_id, 0);
		if (ret)
			return ret;

4992
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4993 4994 4995 4996
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4997
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4998 4999 5000 5001 5002 5003
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5004 5005
}

5006 5007
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_pipe_wm *pipe_wm)
5008
{
5009
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5010 5011 5012
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
5013
	int ret;
5014

L
Lyude 已提交
5015 5016 5017 5018 5019 5020
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5021 5022 5023 5024
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5025
		if (INTEL_GEN(dev_priv) >= 11)
5026
			ret = icl_build_plane_wm(pipe_wm,
5027
						 cstate, intel_pstate);
5028
		else
5029
			ret = skl_build_plane_wm(pipe_wm,
5030
						 cstate, intel_pstate);
5031 5032
		if (ret)
			return ret;
5033
	}
5034

5035
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5036

5037
	return 0;
5038 5039
}

5040 5041
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5042 5043 5044
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5045
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5046
	else
5047
		I915_WRITE_FW(reg, 0);
5048 5049
}

5050 5051 5052 5053
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5054
	u32 val = 0;
5055 5056 5057 5058 5059 5060 5061

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

5062
	I915_WRITE_FW(reg, val);
5063 5064
}

5065 5066
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5067
{
5068
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5069
	int level, max_level = ilk_wm_max_level(dev_priv);
5070 5071 5072 5073 5074 5075 5076 5077
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5078 5079

	for (level = 0; level <= max_level; level++) {
5080
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5081
				   &wm->wm[level]);
5082
	}
5083
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5084
			   &wm->trans_wm);
5085

5086
	if (INTEL_GEN(dev_priv) >= 11) {
5087
		skl_ddb_entry_write(dev_priv,
5088 5089
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5090
	}
5091 5092 5093 5094 5095 5096 5097 5098

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5099 5100
}

5101 5102
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5103
{
5104
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5105
	int level, max_level = ilk_wm_max_level(dev_priv);
5106 5107 5108 5109 5110 5111
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5112 5113

	for (level = 0; level <= max_level; level++) {
5114 5115
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5116
	}
5117
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5118

5119
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5120 5121
}

5122 5123 5124
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5125 5126 5127 5128
	return l1->plane_en == l2->plane_en &&
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5129

5130 5131 5132 5133 5134
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5135

5136 5137 5138 5139 5140 5141 5142
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5143 5144
}

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5162 5163
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5164
{
5165
	return a->start < b->end && b->start < a->end;
5166 5167
}

5168 5169 5170
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
				 const struct skl_ddb_entry entries[],
				 int num_entries, int ignore_idx)
5171
{
5172
	int i;
5173

5174 5175 5176
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5177
			return true;
5178
	}
5179

5180
	return false;
5181 5182
}

5183
static int skl_update_pipe_wm(struct intel_crtc_state *cstate,
5184
			      const struct skl_pipe_wm *old_pipe_wm,
5185 5186
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
5187
{
5188
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5189
	int ret;
5190

5191
	ret = skl_build_pipe_wm(cstate, pipe_wm);
5192 5193
	if (ret)
		return ret;
5194

5195
	*changed = !skl_pipe_wm_equals(crtc, old_pipe_wm, pipe_wm);
5196

5197
	return 0;
5198 5199
}

5200
static u32
5201
pipes_modified(struct intel_atomic_state *state)
5202
{
5203 5204
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5205
	u32 i, ret = 0;
5206

5207 5208
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5209 5210 5211 5212

	return ret;
}

5213
static int
5214 5215
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5216
{
5217 5218 5219 5220
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5221

5222 5223 5224
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5225

5226 5227 5228 5229
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5230 5231
			continue;

5232
		plane_state = intel_atomic_get_plane_state(state, plane);
5233 5234
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5235

5236
		new_crtc_state->update_planes |= BIT(plane_id);
5237 5238 5239 5240 5241 5242
	}

	return 0;
}

static int
5243
skl_compute_ddb(struct intel_atomic_state *state)
5244
{
5245 5246
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5247 5248
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5249 5250
	struct intel_crtc *crtc;
	int ret, i;
5251

5252 5253
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5254
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5255 5256
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5257 5258 5259
		if (ret)
			return ret;

5260 5261
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5262 5263
		if (ret)
			return ret;
5264 5265 5266 5267 5268
	}

	return 0;
}

5269 5270 5271 5272 5273
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5274
static void
5275
skl_print_wm_changes(struct intel_atomic_state *state)
5276
{
5277 5278 5279 5280 5281
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5282
	int i;
5283

5284 5285 5286
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5287 5288
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5289 5290 5291 5292 5293
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5294 5295
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5296 5297
			const struct skl_ddb_entry *old, *new;

5298 5299
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5300 5301 5302 5303

			if (skl_ddb_entry_equal(old, new))
				continue;

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_l, old_wm->wm[1].plane_res_l,
				      old_wm->wm[2].plane_res_l, old_wm->wm[3].plane_res_l,
				      old_wm->wm[4].plane_res_l, old_wm->wm[5].plane_res_l,
				      old_wm->wm[6].plane_res_l, old_wm->wm[7].plane_res_l,
				      old_wm->trans_wm.plane_res_l,
				      new_wm->wm[0].plane_res_l, new_wm->wm[1].plane_res_l,
				      new_wm->wm[2].plane_res_l, new_wm->wm[3].plane_res_l,
				      new_wm->wm[4].plane_res_l, new_wm->wm[5].plane_res_l,
				      new_wm->wm[6].plane_res_l, new_wm->wm[7].plane_res_l,
				      new_wm->trans_wm.plane_res_l);

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5364
				      plane->base.base.id, plane->base.name,
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5375 5376 5377 5378
		}
	}
}

5379
static int
5380
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5381
{
5382
	struct drm_device *dev = state->base.dev;
5383
	const struct drm_i915_private *dev_priv = to_i915(dev);
5384 5385
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5386
	u32 realloc_pipes = pipes_modified(state);
5387
	int ret, i;
5388

5389 5390 5391 5392
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5393 5394
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5395

5396 5397 5398 5399 5400 5401 5402 5403
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5404
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5405
		(*changed) = true;
5406

5407
	if (!*changed)
5408 5409
		return 0;

5410 5411 5412 5413 5414 5415 5416 5417
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5418
				       state->base.acquire_ctx);
5419 5420 5421
		if (ret)
			return ret;

5422
		state->active_pipe_changes = ~0;
5423 5424

		/*
5425
		 * We usually only initialize state->active_crtcs if we
5426 5427 5428 5429
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5430 5431
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5447
	if (state->active_pipe_changes || state->modeset) {
5448
		realloc_pipes = ~0;
5449
		state->wm_results.dirty_pipes = ~0;
5450 5451 5452 5453 5454 5455
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5456 5457 5458 5459
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5460 5461 5462 5463 5464
	}

	return 0;
}

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5525
static int
5526
skl_compute_wm(struct intel_atomic_state *state)
5527
{
5528 5529 5530 5531
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5532 5533 5534 5535
	struct skl_pipe_wm *pipe_wm;
	bool changed = false;
	int ret, i;

5536 5537 5538
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5539 5540 5541 5542
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5543 5544
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5545
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5546 5547 5548
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5549 5550
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    cstate, i) {
5551
		const struct skl_pipe_wm *old_pipe_wm =
5552
			&old_crtc_state->wm.skl.optimal;
5553

5554
		pipe_wm = &cstate->wm.skl.optimal;
5555 5556 5557 5558
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, &changed);
		if (ret)
			return ret;

5559
		ret = skl_wm_add_affected_planes(state, crtc);
5560 5561 5562 5563
		if (ret)
			return ret;

		if (changed)
5564
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5565 5566
	}

5567 5568 5569 5570
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5571
	skl_print_wm_changes(state);
5572

5573 5574 5575
	return 0;
}

5576 5577 5578 5579 5580 5581 5582
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5583 5584 5585

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5586 5587 5588 5589

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5590 5591
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5592
{
5593
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5594
	struct drm_device *dev = intel_crtc->base.dev;
5595
	struct drm_i915_private *dev_priv = to_i915(dev);
5596
	struct skl_ddb_values *results = &state->wm_results;
5597

5598
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5599 5600
		return;

5601
	mutex_lock(&dev_priv->wm.wm_mutex);
5602

5603 5604
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5605

5606
	mutex_unlock(&dev_priv->wm.wm_mutex);
5607 5608
}

5609
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5610 5611 5612 5613 5614
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5615
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5627
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5628
{
5629
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5630
	struct ilk_wm_maximums max;
5631
	struct intel_wm_config config = {};
5632
	struct ilk_wm_values results = {};
5633
	enum intel_ddb_partitioning partitioning;
5634

5635
	ilk_compute_wm_config(dev_priv, &config);
5636

5637 5638
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5639 5640

	/* 5/6 split only in single pipe config on IVB+ */
5641
	if (INTEL_GEN(dev_priv) >= 7 &&
5642
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5643 5644
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5645

5646
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5647
	} else {
5648
		best_lp_wm = &lp_wm_1_2;
5649 5650
	}

5651
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5652
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5653

5654
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5655

5656
	ilk_write_wm_values(dev_priv, &results);
5657 5658
}

5659 5660
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5661
{
5662 5663
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5664

5665
	mutex_lock(&dev_priv->wm.wm_mutex);
5666
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5667 5668 5669
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5670

5671 5672
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5673 5674 5675
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5676

5677 5678
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5679
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5680 5681 5682
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5683 5684
}

5685
static inline void skl_wm_level_from_reg_val(u32 val,
5686
					     struct skl_wm_level *level)
5687
{
5688 5689 5690 5691
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5692 5693
}

5694
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5695
			      struct skl_pipe_wm *out)
5696
{
5697 5698
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5699 5700
	int level, max_level;
	enum plane_id plane_id;
5701
	u32 val;
5702

5703
	max_level = ilk_wm_max_level(dev_priv);
5704

5705
	for_each_plane_id_on_crtc(crtc, plane_id) {
5706
		struct skl_plane_wm *wm = &out->planes[plane_id];
5707

5708
		for (level = 0; level <= max_level; level++) {
5709 5710
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5711 5712
			else
				val = I915_READ(CUR_WM(pipe, level));
5713

5714
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5715 5716
		}

5717 5718
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5719 5720 5721 5722
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5723 5724
	}

5725
	if (!crtc->active)
5726
		return;
5727

5728
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5729 5730
}

5731
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5732
{
5733
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5734
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5735
	struct intel_crtc *crtc;
5736
	struct intel_crtc_state *cstate;
5737

5738
	skl_ddb_get_hw_state(dev_priv, ddb);
5739 5740
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5741 5742 5743

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5744 5745
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5746
	}
5747

5748 5749 5750 5751
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5752 5753
}

5754
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5755
{
5756
	struct drm_device *dev = crtc->base.dev;
5757
	struct drm_i915_private *dev_priv = to_i915(dev);
5758
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5759
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5760
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5761
	enum pipe pipe = crtc->pipe;
5762
	static const i915_reg_t wm0_pipe_reg[] = {
5763 5764 5765 5766 5767 5768
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5769
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5770
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5771

5772 5773
	memset(active, 0, sizeof(*active));

5774
	active->pipe_enabled = crtc->active;
5775 5776

	if (active->pipe_enabled) {
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5791
		int level, max_level = ilk_wm_max_level(dev_priv);
5792 5793 5794 5795 5796 5797 5798 5799 5800

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5801

5802
	crtc->wm.active.ilk = *active;
5803 5804
}

5805 5806 5807 5808 5809
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5810 5811 5812
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5813
	u32 tmp;
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5836 5837 5838 5839
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5840
	u32 tmp;
5841 5842 5843 5844

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5845
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5846
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5847
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5848
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5849
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5850
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5851
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5852 5853 5854 5855 5856
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5857 5858 5859
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5860 5861

	tmp = I915_READ(DSPFW2);
5862 5863 5864
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5865 5866 5867 5868 5869 5870

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5871 5872
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5873 5874

		tmp = I915_READ(DSPFW8_CHV);
5875 5876
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5877 5878

		tmp = I915_READ(DSPFW9_CHV);
5879 5880
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5881 5882 5883

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5884 5885 5886 5887 5888 5889 5890 5891 5892
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5893 5894
	} else {
		tmp = I915_READ(DSPFW7);
5895 5896
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5897 5898 5899

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5900 5901 5902 5903 5904 5905
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5906 5907 5908 5909 5910 5911
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5912
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5913 5914 5915 5916 5917 5918 5919 5920
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5921
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6052
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6053 6054
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6055
	struct intel_crtc *crtc;
6056 6057 6058 6059 6060 6061 6062 6063
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6064
		mutex_lock(&dev_priv->pcu_lock);
6065

6066
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6067 6068 6069
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6070 6071 6072 6073 6074 6075 6076 6077 6078
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6079
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6093

6094
		mutex_unlock(&dev_priv->pcu_lock);
6095 6096
	}

6097
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6113
			struct g4x_pipe_wm *raw =
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6135
		crtc_state->wm.vlv.intermediate = *active;
6136

6137
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6138 6139 6140 6141 6142
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6143
	}
6144 6145 6146 6147 6148

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6173
			struct g4x_pipe_wm *raw =
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6214
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6215
{
6216
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6217
	struct intel_crtc *crtc;
6218

6219 6220
	ilk_init_lp_watermarks(dev_priv);

6221
	for_each_intel_crtc(&dev_priv->drm, crtc)
6222 6223 6224 6225 6226 6227 6228
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6229
	if (INTEL_GEN(dev_priv) >= 7) {
6230 6231 6232
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6233

6234
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6235 6236
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6237
	else if (IS_IVYBRIDGE(dev_priv))
6238 6239
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6240 6241 6242 6243 6244

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6245 6246
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6247
 * @crtc: the #intel_crtc on which to compute the WM
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6278
void intel_update_watermarks(struct intel_crtc *crtc)
6279
{
6280
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6281 6282

	if (dev_priv->display.update_wm)
6283
		dev_priv->display.update_wm(crtc);
6284 6285
}

6286 6287 6288 6289
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6290 6291 6292
	if (!HAS_IPC(dev_priv))
		return;

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6308 6309 6310 6311 6312 6313
	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
	else
		dev_priv->ipc_enabled = true;

6314 6315 6316
	intel_enable_ipc(dev_priv);
}

6317
/*
6318 6319 6320 6321
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

6322
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6323 6324 6325
{
	u16 rgvswctl;

6326
	lockdep_assert_held(&mchdev_lock);
6327

6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6345
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6346
{
6347
	u32 rgvmodectl;
6348 6349
	u8 fmax, fmin, fstart, vstart;

6350 6351
	spin_lock_irq(&mchdev_lock);

6352 6353
	rgvmodectl = I915_READ(MEMMODECTL);

6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6374
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6375 6376
		PXVFREQ_PX_SHIFT;

6377 6378
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6379

6380 6381 6382
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6399
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6400
		DRM_ERROR("stuck trying to change perf mode\n");
6401
	mdelay(1);
6402

6403
	ironlake_set_drps(dev_priv, fstart);
6404

6405 6406
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6407
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6408
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6409
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6410 6411

	spin_unlock_irq(&mchdev_lock);
6412 6413
}

6414
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6415
{
6416 6417 6418 6419 6420
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6421 6422 6423 6424 6425 6426 6427 6428 6429

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6430
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6431
	mdelay(1);
6432 6433
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6434
	mdelay(1);
6435

6436
	spin_unlock_irq(&mchdev_lock);
6437 6438
}

6439 6440 6441 6442 6443
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6444
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6445
{
6446
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6447
	u32 limits;
6448

6449 6450 6451 6452 6453 6454
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6455
	if (INTEL_GEN(dev_priv) >= 9) {
6456 6457 6458
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6459
	} else {
6460 6461 6462
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6463
	}
6464 6465 6466 6467

	return limits;
}

C
Chris Wilson 已提交
6468
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6469
{
6470
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6471 6472
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6473

C
Chris Wilson 已提交
6474
	lockdep_assert_held(&rps->power.mutex);
6475

C
Chris Wilson 已提交
6476
	if (new_power == rps->power.mode)
6477 6478 6479 6480 6481 6482
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6483 6484
		ei_up = 16000;
		threshold_up = 95;
6485 6486

		/* Downclock if less than 85% busy over 32ms */
6487 6488
		ei_down = 32000;
		threshold_down = 85;
6489 6490 6491 6492
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6493 6494
		ei_up = 13000;
		threshold_up = 90;
6495 6496

		/* Downclock if less than 75% busy over 32ms */
6497 6498
		ei_down = 32000;
		threshold_down = 75;
6499 6500 6501 6502
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6503 6504
		ei_up = 10000;
		threshold_up = 85;
6505 6506

		/* Downclock if less than 60% busy over 32ms */
6507 6508
		ei_down = 32000;
		threshold_down = 60;
6509 6510 6511
		break;
	}

6512 6513 6514 6515 6516 6517
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6518
	I915_WRITE(GEN6_RP_UP_EI,
6519
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6520
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6521 6522
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6523 6524

	I915_WRITE(GEN6_RP_DOWN_EI,
6525
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6526
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6537

6538
skip_hw_write:
C
Chris Wilson 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6583 6584
}

C
Chris Wilson 已提交
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6603 6604
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6605
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6606 6607
	u32 mask = 0;

6608
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6609
	if (val > rps->min_freq_softlimit)
6610
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6611
	if (val < rps->max_freq_softlimit)
6612
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6613

6614 6615
	mask &= dev_priv->pm_rps_events;

6616
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6617 6618
}

6619 6620 6621
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6622
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6623
{
6624 6625
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6626 6627 6628
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6629
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6630
		gen6_set_rps_thresholds(dev_priv, val);
6631

6632
		if (INTEL_GEN(dev_priv) >= 9)
6633 6634
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6635
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6636 6637 6638 6639 6640 6641 6642
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6643
	}
6644 6645 6646 6647

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6648
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6649
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6650

6651
	rps->cur_freq = val;
6652
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6653 6654

	return 0;
6655 6656
}

6657
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6658
{
6659 6660
	int err;

6661
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6662 6663 6664
		      "Odd GPU freq value\n"))
		val &= ~1;

6665 6666
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6667
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6668 6669 6670 6671
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6672
		gen6_set_rps_thresholds(dev_priv, val);
6673
	}
6674

6675
	dev_priv->gt_pm.rps.cur_freq = val;
6676
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6677 6678

	return 0;
6679 6680
}

6681
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6682 6683
 *
 * * If Gfx is Idle, then
6684 6685 6686
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6687 6688 6689
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6690 6691
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6692
	int err;
6693

6694
	if (rps->cur_freq <= val)
6695 6696
		return;

6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6709
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6710
	err = valleyview_set_rps(dev_priv, val);
6711
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6712 6713 6714

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6715 6716
}

6717 6718
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6719 6720
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6721
	mutex_lock(&dev_priv->pcu_lock);
6722
	if (rps->enabled) {
6723 6724
		u8 freq;

6725
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6726 6727
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6728
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6729

6730 6731
		gen6_enable_rps_interrupts(dev_priv);

6732 6733 6734
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6735 6736
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6737

6738
		if (intel_set_rps(dev_priv,
6739
				  clamp(freq,
6740 6741
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6742
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6743
	}
6744
	mutex_unlock(&dev_priv->pcu_lock);
6745 6746
}

6747 6748
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6749 6750
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6751 6752 6753 6754 6755 6756 6757
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6758
	mutex_lock(&dev_priv->pcu_lock);
6759
	if (rps->enabled) {
6760
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6761
			vlv_set_rps_idle(dev_priv);
6762
		else
6763 6764
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6765 6766
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6767
	}
6768
	mutex_unlock(&dev_priv->pcu_lock);
6769 6770
}

6771
void gen6_rps_boost(struct i915_request *rq)
6772
{
6773
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6774
	unsigned long flags;
6775 6776
	bool boost;

6777 6778 6779
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6780
	if (!rps->enabled)
6781
		return;
6782

6783
	if (i915_request_signaled(rq))
6784 6785
		return;

6786
	/* Serializes with i915_request_retire() */
6787
	boost = false;
6788
	spin_lock_irqsave(&rq->lock, flags);
6789 6790
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6791
		rq->waitboost = true;
6792
	}
6793
	spin_unlock_irqrestore(&rq->lock, flags);
6794 6795 6796
	if (!boost)
		return;

6797 6798
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6799

6800
	atomic_inc(&rps->boosts);
6801 6802
}

6803
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6804
{
6805
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6806 6807
	int err;

6808
	lockdep_assert_held(&dev_priv->pcu_lock);
6809 6810
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6811

6812 6813
	if (!rps->enabled) {
		rps->cur_freq = val;
6814 6815 6816
		return 0;
	}

6817
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6818
		err = valleyview_set_rps(dev_priv, val);
6819
	else
6820 6821 6822
		err = gen6_set_rps(dev_priv, val);

	return err;
6823 6824
}

6825
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6826 6827
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6828
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6829 6830
}

6831
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6832 6833 6834 6835
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6836
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6837 6838
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6839 6840 6841 6842
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6843
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6844
	I915_WRITE(GEN6_RP_CONTROL, 0);
6845 6846
}

6847
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6848 6849 6850 6851
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6852 6853 6854 6855 6856
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6857
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6858
{
6859
	/* We're doing forcewake before Disabling RC6,
6860
	 * This what the BIOS expects when going into suspend */
6861
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6862

6863
	I915_WRITE(GEN6_RC_CONTROL, 0);
6864

6865
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6866 6867
}

6868 6869 6870 6871 6872
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6873
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6874 6875 6876
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6888 6889

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6890
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6891 6892 6893 6894 6895 6896 6897 6898
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6899 6900
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6901
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6902 6903 6904 6905 6906 6907 6908
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6909
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6910 6911 6912
		enable_rc6 = false;
	}

6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6927 6928 6929 6930 6931 6932
		enable_rc6 = false;
	}

	return enable_rc6;
}

6933
static bool sanitize_rc6(struct drm_i915_private *i915)
6934
{
6935
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6936

6937 6938 6939
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6940

6941 6942
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6943
		DRM_INFO("RC6 disabled by BIOS\n");
6944
		info->has_rc6 = 0;
6945 6946
	}

6947 6948 6949 6950 6951 6952 6953 6954
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6955

6956
	return info->has_rc6;
6957 6958
}

6959
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6960
{
6961 6962
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6963
	/* All of these values are in units of 50MHz */
6964

6965
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6966
	if (IS_GEN9_LP(dev_priv)) {
6967
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6968 6969 6970
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6971
	} else {
6972
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6973 6974 6975
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6976
	}
6977
	/* hw_max = RP0 until we check for overclocking */
6978
	rps->max_freq = rps->rp0_freq;
6979

6980
	rps->efficient_freq = rps->rp1_freq;
6981
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6982
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6983 6984 6985 6986 6987
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6988
			rps->efficient_freq =
6989 6990
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6991 6992
					rps->min_freq,
					rps->max_freq);
6993 6994
	}

6995
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6996
		/* Store the frequency values in 16.66 MHZ units, which is
6997 6998
		 * the natural hardware unit for SKL
		 */
6999 7000 7001 7002 7003
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
7004
	}
7005 7006
}

7007
static void reset_rps(struct drm_i915_private *dev_priv,
7008
		      int (*set)(struct drm_i915_private *, u8))
7009
{
7010 7011
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
7012 7013

	/* force a reset */
C
Chris Wilson 已提交
7014
	rps->power.mode = -1;
7015
	rps->cur_freq = -1;
7016

7017 7018
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
7019 7020
}

J
Jesse Barnes 已提交
7021
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
7022
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
7023 7024 7025
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

7026
	/* Program defaults and thresholds for RPS */
7027
	if (IS_GEN(dev_priv, 9))
7028 7029
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7030 7031 7032 7033 7034

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
7035 7036
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

7037 7038 7039
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7040
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
7041 7042 7043 7044

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7045
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
7046
{
7047
	struct intel_engine_cs *engine;
7048
	enum intel_engine_id id;
7049
	u32 rc6_mode;
Z
Zhe Wang 已提交
7050 7051 7052 7053 7054 7055

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7056
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7057 7058 7059 7060 7061

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
7062 7063 7064 7065 7066 7067 7068 7069
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
7070
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
7071
	} else {
7072
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
7073 7074
	}

Z
Zhe Wang 已提交
7075 7076
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7077
	for_each_engine(engine, dev_priv, id)
7078
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7079

7080
	if (HAS_GUC(dev_priv))
7081 7082
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
7083 7084
	I915_WRITE(GEN6_RC_SLEEP, 0);

7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7108

Z
Zhe Wang 已提交
7109
	/* 3a: Enable RC6 */
7110
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
7111 7112 7113 7114 7115 7116 7117

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7118
	I915_WRITE(GEN6_RC_CONTROL,
7119 7120 7121
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7122

7123 7124
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7125
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7126
	 */
7127
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7128 7129
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7130 7131
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7132

7133
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7134 7135
}

7136
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7137
{
7138
	struct intel_engine_cs *engine;
7139
	enum intel_engine_id id;
7140 7141 7142 7143

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7144
	/* 1b: Get forcewake during program sequence. Although the driver
7145
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7146
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7147 7148 7149 7150 7151 7152 7153 7154

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7155
	for_each_engine(engine, dev_priv, id)
7156
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7157
	I915_WRITE(GEN6_RC_SLEEP, 0);
7158
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7159 7160

	/* 3: Enable RC6 */
7161

7162 7163 7164 7165
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7166

7167 7168 7169 7170 7171
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7172 7173
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7174 7175 7176
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
7177
	I915_WRITE(GEN6_RPNSWREQ,
7178
		   HSW_FREQUENCY(rps->rp1_freq));
7179
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7180
		   HSW_FREQUENCY(rps->rp1_freq));
7181 7182 7183 7184 7185
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7186 7187
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7188 7189 7190 7191 7192 7193 7194

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7195

7196
	/* 2: Enable RPS */
7197 7198 7199 7200 7201 7202 7203 7204
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7205
	reset_rps(dev_priv, gen6_set_rps);
7206

7207
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7208 7209
}

7210
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7211
{
7212
	struct intel_engine_cs *engine;
7213
	enum intel_engine_id id;
7214
	u32 rc6vids, rc6_mask;
7215
	u32 gtfifodbg;
7216
	int ret;
7217 7218 7219 7220

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7221 7222
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7223 7224 7225 7226
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7227
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7238
	for_each_engine(engine, dev_priv, id)
7239
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7240 7241 7242

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7243
	if (IS_IVYBRIDGE(dev_priv))
7244 7245 7246
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7247
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7248 7249
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7250
	/* We don't use those on Haswell */
7251 7252 7253 7254 7255
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7256 7257 7258 7259 7260
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7261 7262
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7263
	if (IS_GEN(dev_priv, 6) && ret) {
7264
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7265
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7266 7267 7268 7269 7270 7271 7272 7273 7274
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7275
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7276 7277
}

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7297
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7298
{
7299
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7300 7301
	const int min_freq = 15;
	const int scaling_factor = 180;
7302 7303
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7304
	unsigned int max_gpu_freq, min_gpu_freq;
7305
	struct cpufreq_policy *policy;
7306

7307
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7308

7309 7310 7311
	if (rps->max_freq <= rps->min_freq)
		return;

7312 7313 7314 7315 7316 7317 7318 7319 7320
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7321
		max_ia_freq = tsc_khz;
7322
	}
7323 7324 7325 7326

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7327
	min_ring_freq = I915_READ(DCLK) & 0xf;
7328 7329
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7330

7331 7332
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7333
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7334
		/* Convert GT frequency to 50 HZ units */
7335 7336
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7337 7338
	}

7339 7340 7341 7342 7343
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7344
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7345
		const int diff = max_gpu_freq - gpu_freq;
7346 7347
		unsigned int ia_freq = 0, ring_freq = 0;

7348
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7349 7350 7351 7352 7353
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7354
		} else if (INTEL_GEN(dev_priv) >= 8) {
7355 7356
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7357
		} else if (IS_HASWELL(dev_priv)) {
7358
			ring_freq = mult_frac(gpu_freq, 5, 4);
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7375

B
Ben Widawsky 已提交
7376 7377
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7378 7379 7380
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7381 7382 7383
	}
}

7384
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7385 7386 7387
{
	u32 val, rp0;

7388
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7389

7390
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7405
	}
7406 7407 7408

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7422 7423 7424 7425
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7426 7427 7428
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7429 7430 7431
	return rp1;
}

7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7454
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7455 7456 7457
{
	u32 val, rp0;

7458
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7471
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7472
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7473
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7474 7475 7476 7477 7478
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7479
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7480
{
7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7492 7493
}

7494 7495 7496 7497 7498
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7499
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7500 7501 7502
			     dev_priv->vlv_pctx->stolen->start);
}

7503 7504 7505 7506 7507 7508 7509 7510 7511

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7512
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7513
{
7514 7515
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7516 7517 7518 7519
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7520
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7521 7522
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7523 7524 7525 7526

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7527 7528

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7529 7530
}

7531
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7532 7533
{
	struct drm_i915_gem_object *pctx;
7534 7535
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7536 7537 7538 7539 7540
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7541
		resource_size_t pcbr_offset;
7542

7543
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7544
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7545
								      pcbr_offset,
7546
								      I915_GTT_OFFSET_NONE,
7547 7548 7549 7550
								      pctx_size);
		goto out;
	}

7551 7552
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7553 7554 7555 7556 7557 7558 7559 7560
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7561
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7562 7563
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7564
		goto out;
7565 7566
	}

7567 7568 7569 7570 7571
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7572 7573 7574
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7575
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7576 7577 7578
	dev_priv->vlv_pctx = pctx;
}

7579
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7580
{
7581
	struct drm_i915_gem_object *pctx;
7582

7583 7584 7585
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7586 7587
}

7588 7589
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7590
	dev_priv->gt_pm.rps.gpll_ref_freq =
7591 7592 7593 7594 7595
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7596
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7597 7598
}

7599
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7600
{
7601
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7602
	u32 val;
7603

7604
	valleyview_setup_pctx(dev_priv);
7605

7606 7607
	vlv_init_gpll_ref_freq(dev_priv);

7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7621
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7622

7623 7624
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7625
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7626 7627
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7628

7629
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7630
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7631 7632
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7633

7634
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7635
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7636 7637
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7638

7639
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7640
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7641 7642
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7643 7644
}

7645
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7646
{
7647
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7648
	u32 val;
7649

7650
	cherryview_setup_pctx(dev_priv);
7651

7652 7653
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7654
	mutex_lock(&dev_priv->sb_lock);
7655
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7656
	mutex_unlock(&dev_priv->sb_lock);
7657

7658 7659 7660 7661
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7662
	default:
7663 7664 7665
		dev_priv->mem_freq = 1600;
		break;
	}
7666
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7667

7668 7669
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7670
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7671 7672
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7673

7674
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7675
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7676 7677
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7678

7679
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7680
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7681 7682
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7683

7684
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7685
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7686 7687
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7688

7689 7690
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7691
		  "Odd GPU freq values\n");
7692 7693
}

7694
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7695
{
7696
	valleyview_cleanup_pctx(dev_priv);
7697 7698
}

7699
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7700
{
7701
	struct intel_engine_cs *engine;
7702
	enum intel_engine_id id;
7703
	u32 gtfifodbg, rc6_mode, pcbr;
7704

7705 7706
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7717
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7718

7719 7720 7721
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7722 7723 7724 7725 7726
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7727
	for_each_engine(engine, dev_priv, id)
7728
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7729 7730
	I915_WRITE(GEN6_RC_SLEEP, 0);

7731 7732
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7733

7734
	/* Allows RC6 residency counter to work */
7735 7736 7737 7738 7739 7740 7741 7742 7743
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7744 7745
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7746
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7747 7748
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7759
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7760 7761 7762 7763 7764 7765 7766
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7767
	/* 2: Enable RPS */
7768 7769
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7770
		   GEN6_RP_MEDIA_IS_GFX |
7771 7772 7773 7774
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7775 7776 7777 7778 7779 7780
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7781 7782
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7783 7784 7785
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7786
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7787 7788
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7789
	reset_rps(dev_priv, valleyview_set_rps);
7790

7791
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7792 7793
}

7794
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7795
{
7796
	struct intel_engine_cs *engine;
7797
	enum intel_engine_id id;
7798
	u32 gtfifodbg;
7799

7800 7801
	valleyview_check_pctx(dev_priv);

7802 7803
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7804 7805
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7806 7807 7808
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7809
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7810

7811 7812 7813
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7814 7815 7816 7817
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7818
	for_each_engine(engine, dev_priv, id)
7819
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7820

7821
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7822

7823
	/* Allows RC6 residency counter to work */
7824
	I915_WRITE(VLV_COUNTER_CONTROL,
7825 7826
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7827
				      VLV_RENDER_RC0_COUNT_EN |
7828 7829
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7830

7831 7832
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7833

7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7859 7860 7861 7862 7863 7864
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7865
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7866

7867 7868 7869
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7870
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7871 7872
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7873
	reset_rps(dev_priv, valleyview_set_rps);
7874

7875
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7876 7877
}

7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7907
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7908 7909 7910 7911 7912 7913
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7914
	lockdep_assert_held(&mchdev_lock);
7915

7916
	diff1 = now - dev_priv->ips.last_time1;
7917 7918 7919 7920 7921 7922 7923

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7924
		return dev_priv->ips.chipset_power;
7925 7926 7927 7928 7929 7930 7931 7932

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7933 7934
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7935 7936
		diff += total_count;
	} else {
7937
		diff = total_count - dev_priv->ips.last_count1;
7938 7939 7940
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7941 7942
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7953 7954
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7955

7956
	dev_priv->ips.chipset_power = ret;
7957 7958 7959 7960

	return ret;
}

7961 7962
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
7963 7964
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7965

7966
	if (!IS_GEN(dev_priv, 5))
7967 7968
		return 0;

7969 7970 7971 7972 7973
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7974 7975 7976 7977

	return val;
}

7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8005
{
8006 8007 8008
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

8009
	if (INTEL_INFO(dev_priv)->is_mobile)
8010 8011 8012
		return vm > 0 ? vm : 0;

	return vd;
8013 8014
}

8015
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8016
{
8017
	u64 now, diff, diffms;
8018 8019
	u32 count;

8020
	lockdep_assert_held(&mchdev_lock);
8021

8022 8023 8024
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
8025 8026 8027 8028 8029 8030 8031

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

8032 8033
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
8034 8035
		diff += count;
	} else {
8036
		diff = count - dev_priv->ips.last_count2;
8037 8038
	}

8039 8040
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
8041 8042 8043 8044

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
8045
	dev_priv->ips.gfx_power = diff;
8046 8047
}

8048 8049
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
8050 8051
	intel_wakeref_t wakeref;

8052
	if (!IS_GEN(dev_priv, 5))
8053 8054
		return;

8055 8056 8057 8058 8059
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8060 8061
}

8062
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8063 8064 8065 8066
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

8067
	lockdep_assert_held(&mchdev_lock);
8068

8069
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
8089
	corr2 = (corr * dev_priv->ips.corr);
8090 8091 8092 8093

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

8094
	__i915_update_gfx_val(dev_priv);
8095

8096
	return dev_priv->ips.gfx_power + state2;
8097 8098
}

8099 8100
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
8101 8102
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8103

8104
	if (!IS_GEN(dev_priv, 5))
8105 8106
		return 0;

8107 8108 8109 8110 8111
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8112

8113 8114
	return val;
}
8115

8116
static struct drm_i915_private *i915_mch_dev;
8117

8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
	i915 = i915_mch_dev;
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
8129 8130
}

8131 8132 8133 8134 8135 8136 8137 8138
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
8139 8140 8141 8142
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
8143

8144 8145 8146
	i915 = mchdev_get();
	if (!i915)
		return 0;
8147

8148 8149 8150 8151 8152 8153
	with_intel_runtime_pm(i915, wakeref) {
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
8154

8155 8156
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
8157 8158 8159 8160 8161 8162 8163 8164 8165 8166
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
8167
	struct drm_i915_private *i915;
8168

8169 8170 8171
	i915 = mchdev_get();
	if (!i915)
		return false;
8172

8173 8174 8175
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
8176
	spin_unlock_irq(&mchdev_lock);
8177

8178 8179
	drm_dev_put(&i915->drm);
	return true;
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
8191
	struct drm_i915_private *i915;
8192

8193 8194 8195
	i915 = mchdev_get();
	if (!i915)
		return false;
8196

8197 8198 8199
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
8200
	spin_unlock_irq(&mchdev_lock);
8201

8202 8203
	drm_dev_put(&i915->drm);
	return true;
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
8214 8215
	struct drm_i915_private *i915;
	bool ret;
8216

8217 8218 8219
	i915 = mchdev_get();
	if (!i915)
		return false;
8220

8221 8222 8223
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
8236 8237
	struct drm_i915_private *i915;
	bool ret;
8238

8239 8240 8241
	i915 = mchdev_get();
	if (!i915)
		return false;
8242

8243 8244 8245
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
8246
	spin_unlock_irq(&mchdev_lock);
8247

8248
	drm_dev_put(&i915->drm);
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8275 8276
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8277
	rcu_assign_pointer(i915_mch_dev, dev_priv);
8278 8279 8280 8281 8282 8283

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8284
	rcu_assign_pointer(i915_mch_dev, NULL);
8285
}
8286

8287
static void intel_init_emon(struct drm_i915_private *dev_priv)
8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8304
		I915_WRITE(PEW(i), 0);
8305
	for (i = 0; i < 3; i++)
8306
		I915_WRITE(DEW(i), 0);
8307 8308 8309

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8310
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8331
		I915_WRITE(PXW(i), val);
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8347
		I915_WRITE(PXWL(i), 0);
8348 8349 8350 8351 8352 8353

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8354
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8355 8356
}

8357
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8358
{
8359 8360
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8361 8362 8363 8364
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8365
	if (!sanitize_rc6(dev_priv)) {
8366
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8367
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8368
	}
I
Imre Deak 已提交
8369

8370
	mutex_lock(&dev_priv->pcu_lock);
8371 8372

	/* Initialize RPS limits (for userspace) */
8373 8374 8375 8376
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8377
	else if (INTEL_GEN(dev_priv) >= 6)
8378 8379 8380
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8381 8382
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8383

8384 8385
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8386 8387

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8388
		rps->min_freq_softlimit =
8389
			max_t(int,
8390
			      rps->efficient_freq,
8391 8392
			      intel_freq_opcode(dev_priv, 450));

8393
	/* After setting max-softlimit, find the overclock max freq */
8394
	if (IS_GEN(dev_priv, 6) ||
8395 8396 8397 8398 8399 8400
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8401
					 (rps->max_freq & 0xff) * 50,
8402
					 (params & 0xff) * 50);
8403
			rps->max_freq = params & 0xff;
8404 8405 8406
		}
	}

8407
	/* Finally allow us to boost to max by default */
8408
	rps->boost_freq = rps->max_freq;
8409

8410
	mutex_unlock(&dev_priv->pcu_lock);
8411 8412
}

8413
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8414
{
8415
	if (IS_VALLEYVIEW(dev_priv))
8416
		valleyview_cleanup_gt_powersave(dev_priv);
8417

8418
	if (!HAS_RC6(dev_priv))
8419
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8420 8421
}

8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8438 8439
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8440 8441
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8442
	intel_disable_gt_powersave(dev_priv);
8443

8444 8445
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8446
	else if (INTEL_GEN(dev_priv) >= 6)
8447
		gen6_reset_rps_interrupts(dev_priv);
8448 8449
}

8450 8451 8452 8453
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8454 8455 8456
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8457
	/* Currently there is no HW configuration to be done to disable. */
8458 8459

	i915->gt_pm.llc_pstate.enabled = false;
8460 8461
}

8462
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8463
{
8464
	lockdep_assert_held(&dev_priv->pcu_lock);
8465

8466 8467 8468
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8469 8470 8471 8472 8473 8474 8475 8476
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8477 8478

	dev_priv->gt_pm.rc6.enabled = false;
8479
}
8480

8481 8482 8483
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8484

8485 8486 8487
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8488
	if (INTEL_GEN(dev_priv) >= 9)
8489
		gen9_disable_rps(dev_priv);
8490
	else if (IS_CHERRYVIEW(dev_priv))
8491
		cherryview_disable_rps(dev_priv);
8492
	else if (IS_VALLEYVIEW(dev_priv))
8493
		valleyview_disable_rps(dev_priv);
8494
	else if (INTEL_GEN(dev_priv) >= 6)
8495
		gen6_disable_rps(dev_priv);
8496
	else if (IS_IRONLAKE_M(dev_priv))
8497
		ironlake_disable_drps(dev_priv);
8498 8499

	dev_priv->gt_pm.rps.enabled = false;
8500 8501 8502 8503 8504
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8505

8506 8507
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8508 8509 8510
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8511
	mutex_unlock(&dev_priv->pcu_lock);
8512 8513
}

8514 8515 8516 8517
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8518 8519 8520
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8521
	gen6_update_ring_freq(i915);
8522 8523

	i915->gt_pm.llc_pstate.enabled = true;
8524 8525
}

8526
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8527
{
8528
	lockdep_assert_held(&dev_priv->pcu_lock);
8529

8530 8531 8532
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8533 8534 8535 8536 8537 8538 8539 8540 8541 8542
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8543 8544

	dev_priv->gt_pm.rc6.enabled = true;
8545
}
8546

8547 8548 8549
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8550

8551
	lockdep_assert_held(&dev_priv->pcu_lock);
8552

8553 8554 8555
	if (rps->enabled)
		return;

8556 8557 8558 8559
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8560
	} else if (INTEL_GEN(dev_priv) >= 9) {
8561 8562 8563
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8564
	} else if (INTEL_GEN(dev_priv) >= 6) {
8565
		gen6_enable_rps(dev_priv);
8566 8567 8568
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8569
	}
8570

8571 8572
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8573

8574 8575
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8576 8577

	rps->enabled = true;
8578 8579 8580 8581 8582 8583 8584 8585 8586 8587
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8588 8589
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8590 8591 8592
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8593

8594
	mutex_unlock(&dev_priv->pcu_lock);
8595
}
I
Imre Deak 已提交
8596

8597
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8598 8599 8600 8601 8602 8603 8604 8605 8606
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8607
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8608
{
8609
	enum pipe pipe;
8610

8611
	for_each_pipe(dev_priv, pipe) {
8612 8613 8614
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8615 8616 8617

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8618 8619 8620
	}
}

8621
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8622
{
8623
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8624

8625 8626 8627 8628
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8629 8630 8631
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8649
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8650 8651 8652
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8653

8654 8655 8656 8657 8658 8659 8660
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8661
	if (IS_IRONLAKE_M(dev_priv)) {
8662
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8663 8664 8665 8666 8667 8668 8669 8670
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8671 8672
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8673 8674 8675 8676 8677 8678
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8679

8680
	/* WaDisableRenderCachePipelinedFlush:ilk */
8681 8682
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8683

8684 8685 8686
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8687
	g4x_disable_trickle_feed(dev_priv);
8688

8689
	ibx_init_clock_gating(dev_priv);
8690 8691
}

8692
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8693 8694
{
	int pipe;
8695
	u32 val;
8696 8697 8698 8699 8700 8701

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8702 8703 8704
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8705 8706
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8707 8708 8709
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8710
	for_each_pipe(dev_priv, pipe) {
8711 8712 8713
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8714
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8715
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8716 8717 8718
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8719 8720
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8721
	/* WADP0ClockGatingDisable */
8722
	for_each_pipe(dev_priv, pipe) {
8723 8724 8725
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8726 8727
}

8728
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8729
{
8730
	u32 tmp;
8731 8732

	tmp = I915_READ(MCH_SSKPD);
8733 8734 8735
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8736 8737
}

8738
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8739
{
8740
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8741

8742
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8743 8744 8745 8746 8747

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8748
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8749 8750 8751
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8752 8753 8754
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8755 8756 8757
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8758 8759 8760 8761
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8762 8763
	 */
	I915_WRITE(GEN6_GT_MODE,
8764
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8765

8766
	I915_WRITE(CACHE_MODE_0,
8767
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8783
	 *
8784 8785
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8786 8787 8788 8789 8790
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8791
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8792 8793
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8794

8795 8796 8797 8798 8799 8800 8801 8802
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8803 8804 8805 8806 8807 8808 8809 8810
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8811 8812
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8813 8814 8815 8816 8817 8818 8819
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8820 8821 8822 8823
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8824

8825
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8826

8827
	cpt_init_clock_gating(dev_priv);
8828

8829
	gen6_check_mch_setup(dev_priv);
8830 8831 8832 8833
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8834
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8835

8836
	/*
8837
	 * WaVSThreadDispatchOverride:ivb,vlv
8838 8839 8840 8841
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8842 8843 8844 8845 8846 8847 8848 8849
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8850
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8851 8852 8853 8854 8855
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8856
	if (HAS_PCH_LPT_LP(dev_priv))
8857 8858 8859
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8860 8861

	/* WADPOClockGatingDisable:hsw */
8862 8863
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8864
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8865 8866
}

8867
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8868
{
8869
	if (HAS_PCH_LPT_LP(dev_priv)) {
8870
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8871 8872 8873 8874 8875 8876

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8877 8878 8879 8880 8881
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8882
	u32 val;
8883 8884 8885 8886 8887

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8888 8889 8890 8891 8892
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8893 8894 8895 8896 8897 8898 8899 8900 8901 8902

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8903 8904 8905 8906 8907
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8908 8909 8910 8911

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8912 8913
}

8914 8915 8916 8917 8918
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8919
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8920 8921
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8922 8923
}

8924
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8925
{
8926
	u32 val;
8927 8928
	cnp_init_clock_gating(dev_priv);

8929 8930 8931 8932
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8933 8934 8935 8936 8937 8938 8939 8940
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8941 8942 8943
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8944 8945
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8946 8947
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8948

R
Rodrigo Vivi 已提交
8949 8950 8951 8952 8953
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8954
	/* WaDisableVFclkgate:cnl */
8955
	/* WaVFUnitClockGatingDisable:cnl */
8956 8957 8958
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8959 8960
}

8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8971
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8972
{
8973
	gen9_init_clock_gating(dev_priv);
8974 8975 8976 8977 8978

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8979 8980 8981 8982 8983

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8984

8985
	/* WaFbcNukeOnHostModify:kbl */
8986 8987
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8988 8989
}

8990
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8991
{
8992
	gen9_init_clock_gating(dev_priv);
8993 8994 8995 8996

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8997 8998 8999 9000

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9001 9002
}

9003
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
9004
{
9005 9006 9007
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
9008
	enum pipe pipe;
B
Ben Widawsky 已提交
9009

9010
	/* WaSwitchSolVfFArbitrationPriority:bdw */
9011
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9012

9013
	/* WaPsrDPAMaskVBlankInSRD:bdw */
9014 9015 9016
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

9017
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9018
	for_each_pipe(dev_priv, pipe) {
9019
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
9020
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
9021
			   BDW_DPRS_MASK_VBLANK_SRD);
9022
	}
9023

9024 9025 9026 9027 9028
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9029

9030 9031
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9032 9033 9034 9035

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9036

9037 9038
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
9039

9040 9041
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9042

9043 9044 9045 9046
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

9047
	lpt_init_clock_gating(dev_priv);
9048 9049 9050 9051 9052 9053 9054 9055

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
9056 9057
}

9058
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9059
{
9060 9061 9062 9063 9064
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

9065
	/* This is required by WaCatErrorRejectionIssue:hsw */
9066 9067 9068 9069
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9070 9071 9072
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9073

9074 9075 9076
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9077 9078 9079 9080
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

9081
	/* WaDisable4x2SubspanOptimization:hsw */
9082 9083
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9084

9085 9086 9087
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9088 9089 9090 9091
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9092 9093
	 */
	I915_WRITE(GEN7_GT_MODE,
9094
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9095

9096 9097 9098 9099
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

9100
	/* WaSwitchSolVfFArbitrationPriority:hsw */
9101 9102
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

9103
	lpt_init_clock_gating(dev_priv);
9104 9105
}

9106
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9107
{
9108
	u32 snpcr;
9109

9110
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9111

9112
	/* WaDisableEarlyCull:ivb */
9113 9114 9115
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9116
	/* WaDisableBackToBackFlipFix:ivb */
9117 9118 9119 9120
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9121
	/* WaDisablePSDDualDispatchEnable:ivb */
9122
	if (IS_IVB_GT1(dev_priv))
9123 9124 9125
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9126 9127 9128
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9129
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9130 9131 9132
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9133
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9134 9135 9136
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9137
		   GEN7_WA_L3_CHICKEN_MODE);
9138
	if (IS_IVB_GT1(dev_priv))
9139 9140
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9141 9142 9143 9144
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9145 9146
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9147
	}
9148

9149
	/* WaForceL3Serialization:ivb */
9150 9151 9152
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9153
	/*
9154
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9155
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9156 9157
	 */
	I915_WRITE(GEN6_UCGCTL2,
9158
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9159

9160
	/* This is required by WaCatErrorRejectionIssue:ivb */
9161 9162 9163 9164
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9165
	g4x_disable_trickle_feed(dev_priv);
9166 9167

	gen7_setup_fixed_func_scheduler(dev_priv);
9168

9169 9170 9171 9172 9173
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9174

9175
	/* WaDisable4x2SubspanOptimization:ivb */
9176 9177
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9178

9179 9180 9181
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9182 9183 9184 9185
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9186 9187
	 */
	I915_WRITE(GEN7_GT_MODE,
9188
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9189

9190 9191 9192 9193
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9194

9195
	if (!HAS_PCH_NOP(dev_priv))
9196
		cpt_init_clock_gating(dev_priv);
9197

9198
	gen6_check_mch_setup(dev_priv);
9199 9200
}

9201
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9202
{
9203
	/* WaDisableEarlyCull:vlv */
9204 9205 9206
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9207
	/* WaDisableBackToBackFlipFix:vlv */
9208 9209 9210 9211
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9212
	/* WaPsdDispatchEnable:vlv */
9213
	/* WaDisablePSDDualDispatchEnable:vlv */
9214
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9215 9216
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9217

9218 9219 9220
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9221
	/* WaForceL3Serialization:vlv */
9222 9223 9224
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9225
	/* WaDisableDopClockGating:vlv */
9226 9227 9228
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9229
	/* This is required by WaCatErrorRejectionIssue:vlv */
9230 9231 9232 9233
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9234 9235
	gen7_setup_fixed_func_scheduler(dev_priv);

9236
	/*
9237
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9238
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9239 9240
	 */
	I915_WRITE(GEN6_UCGCTL2,
9241
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9242

9243 9244 9245 9246 9247
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9248

9249 9250 9251 9252
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9253 9254
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9255

9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9267 9268 9269 9270 9271 9272
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9273
	/*
9274
	 * WaDisableVLVClockGating_VBIIssue:vlv
9275 9276 9277
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9278
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9279 9280
}

9281
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9282
{
9283 9284 9285 9286 9287
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9288 9289 9290 9291

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9292 9293 9294 9295

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9296 9297 9298 9299

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9300

9301 9302 9303 9304 9305 9306 9307
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9308 9309 9310 9311 9312
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9313 9314
}

9315
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9316
{
9317
	u32 dspclk_gate;
9318 9319 9320 9321 9322 9323 9324 9325 9326

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9327
	if (IS_GM45(dev_priv))
9328 9329
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9330 9331 9332 9333

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9334

9335 9336 9337
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9338
	g4x_disable_trickle_feed(dev_priv);
9339 9340
}

9341
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9342 9343 9344 9345 9346 9347
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9348 9349
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9350 9351 9352

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9353 9354
}

9355
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9356 9357 9358 9359 9360 9361 9362
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9363 9364
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9365 9366 9367

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9368 9369
}

9370
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9371 9372 9373 9374 9375 9376
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9377

9378
	if (IS_PINEVIEW(dev_priv))
9379
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9380 9381 9382

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9383 9384

	/* interrupts should cause a wake up from C3 */
9385
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9386 9387 9388

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9389 9390 9391

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9392 9393
}

9394
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9395 9396
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9397 9398 9399 9400

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9401 9402 9403

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9404 9405
}

9406
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9407
{
9408 9409 9410
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9411 9412
}

9413
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9414
{
9415
	dev_priv->display.init_clock_gating(dev_priv);
9416 9417
}

9418
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9419
{
9420 9421
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9422 9423
}

9424
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9440
	if (IS_ICELAKE(dev_priv))
O
Oscar Mateo 已提交
9441
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9442
	else if (IS_CANNONLAKE(dev_priv))
9443
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9444 9445
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9446
	else if (IS_SKYLAKE(dev_priv))
9447
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9448
	else if (IS_KABYLAKE(dev_priv))
9449
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9450
	else if (IS_BROXTON(dev_priv))
9451
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9452 9453
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9454
	else if (IS_BROADWELL(dev_priv))
9455
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9456
	else if (IS_CHERRYVIEW(dev_priv))
9457
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9458
	else if (IS_HASWELL(dev_priv))
9459
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9460
	else if (IS_IVYBRIDGE(dev_priv))
9461
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9462
	else if (IS_VALLEYVIEW(dev_priv))
9463
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9464
	else if (IS_GEN(dev_priv, 6))
9465
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9466
	else if (IS_GEN(dev_priv, 5))
9467
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9468 9469
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9470
	else if (IS_I965GM(dev_priv))
9471
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9472
	else if (IS_I965G(dev_priv))
9473
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9474
	else if (IS_GEN(dev_priv, 3))
9475 9476 9477
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9478
	else if (IS_GEN(dev_priv, 2))
9479 9480 9481 9482 9483 9484 9485
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9486
/* Set up chip specific power management-related functions */
9487
void intel_init_pm(struct drm_i915_private *dev_priv)
9488
{
9489
	/* For cxsr */
9490
	if (IS_PINEVIEW(dev_priv))
9491
		i915_pineview_get_mem_freq(dev_priv);
9492
	else if (IS_GEN(dev_priv, 5))
9493
		i915_ironlake_get_mem_freq(dev_priv);
9494

9495
	/* For FIFO watermark updates */
9496
	if (INTEL_GEN(dev_priv) >= 9) {
9497
		skl_setup_wm_latency(dev_priv);
9498
		dev_priv->display.initial_watermarks = skl_initial_wm;
9499
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9500
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9501
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9502
		ilk_setup_wm_latency(dev_priv);
9503

9504
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9505
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9506
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9507
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9508
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9509 9510 9511 9512 9513 9514
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9515 9516 9517 9518
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9519
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9520
		vlv_setup_wm_latency(dev_priv);
9521
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9522
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9523
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9524
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9525
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9526 9527 9528 9529 9530 9531
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9532
	} else if (IS_PINEVIEW(dev_priv)) {
9533
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9534 9535 9536 9537 9538 9539 9540 9541 9542
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9543
			intel_set_memory_cxsr(dev_priv, false);
9544 9545 9546
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9547
	} else if (IS_GEN(dev_priv, 4)) {
9548
		dev_priv->display.update_wm = i965_update_wm;
9549
	} else if (IS_GEN(dev_priv, 3)) {
9550 9551
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9552
	} else if (IS_GEN(dev_priv, 2)) {
9553
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9554
			dev_priv->display.update_wm = i845_update_wm;
9555
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9556 9557
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9558
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9559 9560 9561
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9562 9563 9564
	}
}

9565 9566
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9567
	u32 flags =
9568 9569 9570 9571 9572 9573
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9574
		return -ENODEV;
9575 9576 9577
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9578
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9579 9580 9581 9582
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9583
		MISSING_CASE(flags);
9584 9585 9586 9587 9588 9589
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9590
	u32 flags =
9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9610
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9611
{
9612 9613
	int status;

9614
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9615

9616 9617 9618 9619 9620 9621
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9622 9623
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9624 9625 9626
		return -EAGAIN;
	}

9627 9628 9629
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9630

9631 9632 9633
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9634 9635
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9636 9637 9638
		return -ETIMEDOUT;
	}

9639 9640
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9641

9642 9643 9644 9645 9646 9647
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9648 9649
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9650 9651 9652
		return status;
	}

B
Ben Widawsky 已提交
9653 9654 9655
	return 0;
}

9656
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9657 9658
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9659
{
9660 9661
	int status;

9662
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9663

9664 9665 9666 9667 9668 9669
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9670 9671
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9672 9673 9674
		return -EAGAIN;
	}

9675
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9676
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9677
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9678

9679 9680
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9681 9682
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9683 9684
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9685 9686 9687
		return -ETIMEDOUT;
	}

9688
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9689

9690 9691 9692 9693 9694 9695
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9696 9697
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9698 9699 9700
		return status;
	}

B
Ben Widawsky 已提交
9701 9702
	return 0;
}
9703

9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9725
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9726 9727
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9728
 * for @timeout_base_ms and if this times out for another 50 ms with
9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9740
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9755
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9756 9757 9758 9759 9760 9761 9762 9763
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9764
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9765
	 * account for interrupts that could reduce the number of these
9766 9767
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9768 9769 9770 9771
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9772
	ret = wait_for_atomic(COND, 50);
9773 9774 9775 9776 9777 9778 9779
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9780 9781
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9782 9783
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9784 9785 9786 9787
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9788
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9789 9790
}

9791
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9792
{
9793 9794 9795
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9796 9797
}

9798
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9799
{
9800 9801
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9802 9803 9804 9805
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9806
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9807 9808
}

9809
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9810
{
9811 9812
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9813
	/* CHV needs even values */
9814
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9815 9816
}

9817
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9818
{
9819
	if (INTEL_GEN(dev_priv) >= 9)
9820 9821
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9822
	else if (IS_CHERRYVIEW(dev_priv))
9823
		return chv_gpu_freq(dev_priv, val);
9824
	else if (IS_VALLEYVIEW(dev_priv))
9825 9826 9827
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9828 9829
}

9830 9831
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9832
	if (INTEL_GEN(dev_priv) >= 9)
9833 9834
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9835
	else if (IS_CHERRYVIEW(dev_priv))
9836
		return chv_freq_opcode(dev_priv, val);
9837
	else if (IS_VALLEYVIEW(dev_priv))
9838 9839
		return byt_freq_opcode(dev_priv, val);
	else
9840
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9841
}
9842

9843
void intel_pm_setup(struct drm_i915_private *dev_priv)
9844
{
9845
	mutex_init(&dev_priv->pcu_lock);
C
Chris Wilson 已提交
9846
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9847

9848
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9849

9850 9851
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9852
}
9853

9854 9855 9856
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9857
	u32 lower, upper, tmp;
9858
	int loop = 2;
9859

9860 9861
	/*
	 * The register accessed do not need forcewake. We borrow
9862 9863
	 * uncore lock to prevent concurrent access to range reg.
	 */
9864
	lockdep_assert_held(&dev_priv->uncore.lock);
9865

9866 9867
	/*
	 * vlv and chv residency counters are 40 bits in width.
9868 9869
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9870 9871 9872 9873 9874
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9875
	 */
9876 9877
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9889
	} while (upper != tmp && --loop);
9890

9891 9892
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9893 9894 9895 9896
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9897 9898 9899
	return lower | (u64)upper << 8;
}

9900
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9901
			   const i915_reg_t reg)
9902
{
9903 9904 9905 9906
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9907
	u32 mul, div;
9908

9909
	if (!HAS_RC6(dev_priv))
9910 9911
		return 0;

9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9929 9930
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9931
		mul = 1000000;
9932
		div = dev_priv->czclk_freq;
9933
		overflow_hw = BIT_ULL(40);
9934 9935
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9936 9937 9938 9939 9940 9941 9942 9943
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9944

9945 9946
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9947
	}
9948

9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9972
}
T
Tvrtko Ursulin 已提交
9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}