intel_pm.c 262.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36
#include "display/intel_atomic.h"
37
#include "display/intel_display_types.h"
38 39 40
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

41
#include "i915_drv.h"
42
#include "i915_irq.h"
43
#include "i915_trace.h"
44
#include "intel_pm.h"
45
#include "intel_sideband.h"
46
#include "../../../platform/x86/intel_ips.h"
47

48
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
49
{
50 51 52
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
53
		 * Display WA #0390: skl,kbl
54 55 56 57 58 59 60 61 62
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
68 69
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
70

71 72
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
73 74 75
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
76

77
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
78 79
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
80 81 82 83 84 85

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
86 87
}

88
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
89
{
90
	gen9_init_clock_gating(dev_priv);
91

92 93 94 95
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

96 97
	/*
	 * FIXME:
98
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
99 100
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
101
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
102 103 104 105 106

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
107 108
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112 113 114 115 116 117 118 119 120 121
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
122 123 124 125 126 127 128 129 130 131

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

132 133
}

134
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

172
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
173 174 175
{
	u16 ddrpll, csipll;

176 177
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

199
	dev_priv->ips.r_t = dev_priv->mem_freq;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
231
		dev_priv->ips.c_m = 0;
232
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
233
		dev_priv->ips.c_m = 1;
234
	} else {
235
		dev_priv->ips.c_m = 2;
236 237 238
	}
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

277 278
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

301 302 303 304
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

305
	vlv_punit_get(dev_priv);
306 307 308 309 310 311 312 313 314 315 316 317 318 319

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

320
	vlv_punit_put(dev_priv);
321 322
}

323 324 325 326
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

327
	vlv_punit_get(dev_priv);
328

329
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
330 331 332 333
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
334
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
335

336
	vlv_punit_put(dev_priv);
337 338
}

339 340 341
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

342
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
343
{
344
	bool was_enabled;
345
	u32 val;
346

347
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
348
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
349
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
350
		POSTING_READ(FW_BLC_SELF_VLV);
351
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
352
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
353
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
354
		POSTING_READ(FW_BLC_SELF);
355
	} else if (IS_PINEVIEW(dev_priv)) {
356 357 358 359 360 361
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
362
		I915_WRITE(DSPFW3, val);
363
		POSTING_READ(DSPFW3);
364
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
365
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
366 367 368
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_I915GM(dev_priv)) {
371 372 373 374 375
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
376
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
377 378 379
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
380
		POSTING_READ(INSTPM);
381
	} else {
382
		return false;
383
	}
384

385 386
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

387 388 389 390 391
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
392 393
}

V
Ville Syrjälä 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
431
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
432
{
433 434
	bool ret;

435
	mutex_lock(&dev_priv->wm.wm_mutex);
436
	ret = _intel_set_memory_cxsr(dev_priv, enable);
437 438 439 440
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
441
	mutex_unlock(&dev_priv->wm.wm_mutex);
442 443

	return ret;
444
}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
460
static const int pessimal_latency_ns = 5000;
461

462 463 464
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

465
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
466
{
467
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
468
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
469
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
470 471
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
472

473
	switch (pipe) {
474
		u32 dsparb, dsparb2, dsparb3;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
494 495
		MISSING_CASE(pipe);
		return;
496 497
	}

498 499 500 501
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
502 503
}

504 505
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
506
{
507
	u32 dsparb = I915_READ(DSPARB);
508 509 510
	int size;

	size = dsparb & 0x7f;
511
	if (i9xx_plane == PLANE_B)
512 513
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

514 515
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
516 517 518 519

	return size;
}

520 521
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
522
{
523
	u32 dsparb = I915_READ(DSPARB);
524 525 526
	int size;

	size = dsparb & 0x1ff;
527
	if (i9xx_plane == PLANE_B)
528 529 530
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

531 532
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
533 534 535 536

	return size;
}

537 538
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
539
{
540
	u32 dsparb = I915_READ(DSPARB);
541 542 543 544 545
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

546 547
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
548 549 550 551 552 553

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
554 555 556 557 558
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 560
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
561 562 563 564 565
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 567
};
static const struct intel_watermark_params pineview_cursor_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 574
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
575 576 577 578 579
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
580 581
};
static const struct intel_watermark_params i965_cursor_wm_info = {
582 583 584 585 586
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
587 588
};
static const struct intel_watermark_params i945_wm_info = {
589 590 591 592 593
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
594 595
};
static const struct intel_watermark_params i915_wm_info = {
596 597 598 599 600
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
601
};
602
static const struct intel_watermark_params i830_a_wm_info = {
603 604 605 606 607
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
608
};
609 610 611 612 613 614 615
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
616
static const struct intel_watermark_params i845_wm_info = {
617 618 619 620 621
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
622 623
};

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
661
	u64 ret;
662

663
	ret = mul_u32_u32(pixel_rate, cpp * latency);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

720 721
/**
 * intel_calculate_wm - calculate watermark level
722
 * @pixel_rate: pixel clock
723
 * @wm: chip FIFO params
724
 * @fifo_size: size of the FIFO buffer
725
 * @cpp: bytes per pixel
726 727 728 729 730 731 732 733 734 735 736 737 738
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
739 740 741 742
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
743
{
744
	int entries, wm_size;
745 746 747 748 749 750 751

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
752 753 754 755 756
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
757

758 759
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
760 761

	/* Don't promote wm_size to unsigned... */
762
	if (wm_size > wm->max_wm)
763 764 765
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
766 767 768 769 770 771 772 773 774 775 776

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

777 778 779
	return wm_size;
}

780 781 782 783 784 785 786 787 788 789
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

790 791 792 793 794
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

818
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
819
{
820
	struct intel_crtc *crtc, *enabled = NULL;
821

822
	for_each_intel_crtc(&dev_priv->drm, crtc) {
823
		if (intel_crtc_active(crtc)) {
824 825 826 827 828 829 830 831 832
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

833
static void pineview_update_wm(struct intel_crtc *unused_crtc)
834
{
835
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
836
	struct intel_crtc *crtc;
837 838
	const struct cxsr_latency *latency;
	u32 reg;
839
	unsigned int wm;
840

841
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
842 843 844
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
845 846
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
847
		intel_set_memory_cxsr(dev_priv, false);
848 849 850
		return;
	}

851
	crtc = single_enabled_crtc(dev_priv);
852
	if (crtc) {
853 854 855 856
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
857
		int cpp = fb->format->cpp[0];
858
		int clock = adjusted_mode->crtc_clock;
859 860 861 862

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
863
					cpp, latency->display_sr);
864 865
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
866
		reg |= FW_WM(wm, SR);
867 868 869 870 871 872
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
873
					4, latency->cursor_sr);
874 875
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
876
		reg |= FW_WM(wm, CURSOR_SR);
877 878 879 880 881
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
882
					cpp, latency->display_hpll_disable);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
885
		reg |= FW_WM(wm, HPLL_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					4, latency->cursor_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
894
		reg |= FW_WM(wm, HPLL_CURSOR);
895 896 897
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

898
		intel_set_memory_cxsr(dev_priv, true);
899
	} else {
900
		intel_set_memory_cxsr(dev_priv, false);
901 902 903
	}
}

904 905 906 907 908 909 910 911 912 913
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
914
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
915 916 917 918 919 920
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

921 922
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
923
{
924 925 926 927 928
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
946

947
	POSTING_READ(DSPFW1);
948 949
}

950 951 952
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

953
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
954 955
				const struct vlv_wm_values *wm)
{
956 957 958
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
959 960
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

961 962 963 964 965 966
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
967

968 969 970 971 972 973 974 975 976 977 978
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

979
	I915_WRITE(DSPFW1,
980
		   FW_WM(wm->sr.plane, SR) |
981 982 983
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
984
	I915_WRITE(DSPFW2,
985 986 987
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
988
	I915_WRITE(DSPFW3,
989
		   FW_WM(wm->sr.cursor, CURSOR_SR));
990 991 992

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
993 994
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
995
		I915_WRITE(DSPFW8_CHV,
996 997
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
998
		I915_WRITE(DSPFW9_CHV,
999 1000
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1001
		I915_WRITE(DSPHOWM,
1002
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1003 1004 1005 1006 1007 1008 1009 1010 1011
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1012 1013
	} else {
		I915_WRITE(DSPFW7,
1014 1015
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1016
		I915_WRITE(DSPHOWM,
1017
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1018 1019 1020 1021 1022 1023
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024 1025 1026
	}

	POSTING_READ(DSPFW1);
1027 1028
}

1029 1030
#undef FW_WM_VLV

1031 1032 1033 1034 1035
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1036
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1037

1038
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1083 1084 1085
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1086 1087 1088 1089 1090
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1091 1092
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1093 1094 1095 1096 1097 1098 1099

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1100 1101
	cpp = plane_state->base.fb->format->cpp[0];

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1115
		cpp = max(cpp, 4u);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1131
		unsigned int small, large;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1144
	return min_t(unsigned int, wm, USHRT_MAX);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1182 1183
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1184
			      u32 pri_val);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1310 1311
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1312
	const struct g4x_pipe_wm *raw;
1313 1314
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1315 1316 1317 1318 1319
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1320 1321 1322 1323
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1324 1325 1326
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1327
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1393
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1394
{
1395
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1396 1397 1398 1399 1400 1401 1402
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1403 1404
	enum plane_id plane_id;

1405 1406 1407 1408 1409 1410 1411 1412
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1413
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1414
		!new_crtc_state->disable_cxsr;
1415
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1416
		!new_crtc_state->disable_cxsr;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1458
out:
1459 1460 1461 1462 1463
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1464
		new_crtc_state->wm.need_postvbl_update = true;
1465 1466 1467 1468 1469 1470 1471 1472

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1473
	int num_active_pipes = 0;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1492
		num_active_pipes++;
1493 1494
	}

1495
	if (num_active_pipes != 1) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1550
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1551 1552 1553 1554 1555

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1556
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1557 1558 1559 1560
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1561 1562
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1563 1564
				   unsigned int htotal,
				   unsigned int width,
1565
				   unsigned int cpp,
1566 1567 1568 1569
				   unsigned int latency)
{
	unsigned int ret;

1570 1571
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1572 1573 1574 1575 1576
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1577
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1578 1579 1580 1581
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1582 1583
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1584 1585 1586
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1587 1588

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1589 1590 1591
	}
}

1592 1593 1594
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1595
{
1596
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1597
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1598 1599
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1600
	unsigned int clock, htotal, cpp, width, wm;
1601 1602 1603 1604

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1605
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1606 1607
		return 0;

1608
	cpp = plane_state->base.fb->format->cpp[0];
1609 1610 1611
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1612

1613
	if (plane->id == PLANE_CURSOR) {
1614 1615 1616 1617 1618 1619 1620 1621
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1622
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1623 1624 1625
				    dev_priv->wm.pri_latency[level] * 10);
	}

1626
	return min_t(unsigned int, wm, USHRT_MAX);
1627 1628
}

1629 1630 1631 1632 1633 1634
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1635
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1636
{
1637
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1638
	const struct g4x_pipe_wm *raw =
1639
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1640
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1641
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1642
	int num_active_planes = hweight8(active_planes);
1643
	const int fifo_size = 511;
1644
	int fifo_extra, fifo_left = fifo_size;
1645
	int sprite0_fifo_extra = 0;
1646 1647
	unsigned int total_rate;
	enum plane_id plane_id;
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1660 1661
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1662 1663
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1664

1665 1666
	if (total_rate > fifo_size)
		return -EINVAL;
1667

1668 1669
	if (total_rate == 0)
		total_rate = 1;
1670

1671
	for_each_plane_id_on_crtc(crtc, plane_id) {
1672 1673
		unsigned int rate;

1674 1675
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1676 1677 1678
			continue;
		}

1679 1680 1681
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1682 1683
	}

1684 1685 1686
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1687 1688 1689
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1690 1691

	/* spread the remainder evenly */
1692
	for_each_plane_id_on_crtc(crtc, plane_id) {
1693 1694 1695 1696 1697
		int plane_extra;

		if (fifo_left == 0)
			break;

1698
		if ((active_planes & BIT(plane_id)) == 0)
1699 1700 1701
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1702
		fifo_state->plane[plane_id] += plane_extra;
1703 1704 1705
		fifo_left -= plane_extra;
	}

1706 1707 1708 1709 1710 1711 1712 1713 1714
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1715 1716
}

1717 1718 1719 1720 1721 1722
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1723
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1734 1735 1736 1737 1738 1739 1740 1741
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1742 1743 1744 1745
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1746
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1747
				 int level, enum plane_id plane_id, u16 value)
1748
{
1749
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1750
	int num_levels = intel_wm_num_levels(dev_priv);
1751
	bool dirty = false;
1752

1753
	for (; level < num_levels; level++) {
1754
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1755

1756
		dirty |= raw->plane[plane_id] != value;
1757
		raw->plane[plane_id] = value;
1758
	}
1759 1760

	return dirty;
1761 1762
}

1763 1764
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1765
{
1766 1767
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1768
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1769
	int level;
1770
	bool dirty = false;
1771

1772
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1773 1774
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1775
	}
1776

1777
	for (level = 0; level < num_levels; level++) {
1778
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1779 1780
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1781

1782 1783
		if (wm > max_wm)
			break;
1784

1785
		dirty |= raw->plane[plane_id] != wm;
1786 1787
		raw->plane[plane_id] = wm;
	}
1788

1789
	/* mark all higher levels as invalid */
1790
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1791

1792 1793
out:
	if (dirty)
1794
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1795 1796 1797 1798 1799 1800
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1801
}
1802

1803 1804
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1805
{
1806
	const struct g4x_pipe_wm *raw =
1807 1808 1809
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1810

1811 1812
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1813

1814
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1815
{
1816 1817 1818 1819
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1831 1832
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1833
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1834 1835
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1836 1837 1838
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1839
	unsigned int dirty = 0;
1840

1841 1842 1843 1844
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1845 1846
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1847

1848
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1867
			intel_atomic_get_old_crtc_state(state, crtc);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1879
	}
1880

1881
	/* initially allow all levels */
1882
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1883 1884 1885 1886 1887
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1888
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1889

1890
	for (level = 0; level < wm_state->num_levels; level++) {
1891
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1892
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1893

1894
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1895
			break;
1896

1897 1898 1899 1900 1901 1902 1903 1904
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1905
						 raw->plane[PLANE_SPRITE0],
1906 1907
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1908

1909 1910 1911
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1912 1913
	}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1924 1925
}

1926 1927 1928
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1929 1930
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1931
{
1932
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1933
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1934
	struct intel_uncore *uncore = &dev_priv->uncore;
1935 1936
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1937
	int sprite0_start, sprite1_start, fifo_size;
1938

1939 1940 1941
	if (!crtc_state->fifo_changed)
		return;

1942 1943 1944
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1945

1946 1947
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1948

1949 1950
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1951 1952 1953 1954 1955 1956 1957 1958 1959
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1960
	spin_lock(&uncore->lock);
1961

1962
	switch (crtc->pipe) {
1963
		u32 dsparb, dsparb2, dsparb3;
1964
	case PIPE_A:
1965 1966
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1978 1979
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1980 1981
		break;
	case PIPE_B:
1982 1983
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1995 1996
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1997 1998
		break;
	case PIPE_C:
1999 2000
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2012 2013
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2014 2015 2016 2017
		break;
	default:
		break;
	}
2018

2019
	intel_uncore_posting_read_fw(uncore, DSPARB);
2020

2021
	spin_unlock(&uncore->lock);
2022 2023 2024 2025
}

#undef VLV_FIFO

2026
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2027
{
2028
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2029 2030 2031 2032 2033 2034 2035
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2036 2037
	int level;

2038 2039 2040 2041 2042 2043 2044
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2045
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2046
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2047
		!new_crtc_state->disable_cxsr;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2066
out:
2067 2068 2069 2070
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2071
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2072
		new_crtc_state->wm.need_postvbl_update = true;
2073 2074 2075 2076

	return 0;
}

2077
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2078 2079 2080
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2081
	int num_active_pipes = 0;
2082

2083
	wm->level = dev_priv->wm.max_level;
2084 2085
	wm->cxsr = true;

2086
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2087
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2088 2089 2090 2091 2092 2093 2094

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2095
		num_active_pipes++;
2096 2097 2098
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2099
	if (num_active_pipes != 1)
2100 2101
		wm->cxsr = false;

2102
	if (num_active_pipes > 1)
2103 2104
		wm->level = VLV_WM_LEVEL_PM2;

2105
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2106
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2107 2108 2109
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2110
		if (crtc->active && wm->cxsr)
2111 2112
			wm->sr = wm_state->sr[wm->level];

2113 2114 2115 2116
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2117 2118 2119
	}
}

2120
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2121
{
2122 2123
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2124

2125
	vlv_merge_wm(dev_priv, &new_wm);
2126

2127
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2128 2129
		return;

2130
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2131 2132
		chv_set_memory_dvfs(dev_priv, false);

2133
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2134 2135
		chv_set_memory_pm5(dev_priv, false);

2136
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2137
		_intel_set_memory_cxsr(dev_priv, false);
2138

2139
	vlv_write_wm_values(dev_priv, &new_wm);
2140

2141
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2142
		_intel_set_memory_cxsr(dev_priv, true);
2143

2144
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2145 2146
		chv_set_memory_pm5(dev_priv, true);

2147
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2148 2149
		chv_set_memory_dvfs(dev_priv, true);

2150
	*old_wm = new_wm;
2151 2152
}

2153 2154 2155 2156 2157 2158 2159
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2160 2161 2162 2163 2164 2165 2166 2167 2168
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2169
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2170 2171 2172 2173 2174

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2175
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2176 2177 2178 2179
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2180
static void i965_update_wm(struct intel_crtc *unused_crtc)
2181
{
2182
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2183
	struct intel_crtc *crtc;
2184 2185
	int srwm = 1;
	int cursor_sr = 16;
2186
	bool cxsr_enabled;
2187 2188

	/* Calc sr entries for one plane configs */
2189
	crtc = single_enabled_crtc(dev_priv);
2190 2191 2192
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2193 2194 2195 2196
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2197
		int clock = adjusted_mode->crtc_clock;
2198
		int htotal = adjusted_mode->crtc_htotal;
2199
		int hdisplay = crtc->config->pipe_src_w;
2200
		int cpp = fb->format->cpp[0];
2201 2202
		int entries;

2203 2204
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2205 2206 2207 2208 2209 2210 2211 2212
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2213 2214 2215
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2216
		entries = DIV_ROUND_UP(entries,
2217 2218
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2219

2220
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2221 2222 2223 2224 2225 2226
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2227
		cxsr_enabled = true;
2228
	} else {
2229
		cxsr_enabled = false;
2230
		/* Turn off self refresh if both pipes are enabled */
2231
		intel_set_memory_cxsr(dev_priv, false);
2232 2233 2234 2235 2236 2237
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2238 2239 2240 2241 2242 2243
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2244
	/* update cursor SR watermark */
2245
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2246 2247 2248

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2249 2250
}

2251 2252
#undef FW_WM

2253
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2254
{
2255
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2256
	const struct intel_watermark_params *wm_info;
2257 2258
	u32 fwater_lo;
	u32 fwater_hi;
2259 2260 2261
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2262
	struct intel_crtc *crtc, *enabled = NULL;
2263

2264
	if (IS_I945GM(dev_priv))
2265
		wm_info = &i945_wm_info;
2266
	else if (!IS_GEN(dev_priv, 2))
2267 2268
		wm_info = &i915_wm_info;
	else
2269
		wm_info = &i830_a_wm_info;
2270

2271 2272
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2273 2274 2275 2276 2277 2278 2279
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2280
		if (IS_GEN(dev_priv, 2))
2281
			cpp = 4;
2282
		else
2283
			cpp = fb->format->cpp[0];
2284

2285
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2286
					       wm_info, fifo_size, cpp,
2287
					       pessimal_latency_ns);
2288
		enabled = crtc;
2289
	} else {
2290
		planea_wm = fifo_size - wm_info->guard_size;
2291 2292 2293 2294
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2295
	if (IS_GEN(dev_priv, 2))
2296
		wm_info = &i830_bc_wm_info;
2297

2298 2299
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2300 2301 2302 2303 2304 2305 2306
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2307
		if (IS_GEN(dev_priv, 2))
2308
			cpp = 4;
2309
		else
2310
			cpp = fb->format->cpp[0];
2311

2312
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2313
					       wm_info, fifo_size, cpp,
2314
					       pessimal_latency_ns);
2315 2316 2317 2318
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2319
	} else {
2320
		planeb_wm = fifo_size - wm_info->guard_size;
2321 2322 2323
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2324 2325 2326

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2327
	if (IS_I915GM(dev_priv) && enabled) {
2328
		struct drm_i915_gem_object *obj;
2329

2330
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2331 2332

		/* self-refresh seems busted with untiled */
2333
		if (!i915_gem_object_is_tiled(obj))
2334 2335 2336
			enabled = NULL;
	}

2337 2338 2339 2340 2341 2342
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2343
	intel_set_memory_cxsr(dev_priv, false);
2344 2345

	/* Calc sr entries for one plane configs */
2346
	if (HAS_FW_BLC(dev_priv) && enabled) {
2347 2348
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2349 2350 2351 2352
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2353
		int clock = adjusted_mode->crtc_clock;
2354
		int htotal = adjusted_mode->crtc_htotal;
2355 2356
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2357 2358
		int entries;

2359
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2360
			cpp = 4;
2361
		else
2362
			cpp = fb->format->cpp[0];
2363

2364 2365
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2366 2367 2368 2369 2370 2371
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2372
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2373 2374
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2375
		else
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2392 2393
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2394 2395
}

2396
static void i845_update_wm(struct intel_crtc *unused_crtc)
2397
{
2398
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2399
	struct intel_crtc *crtc;
2400
	const struct drm_display_mode *adjusted_mode;
2401
	u32 fwater_lo;
2402 2403
	int planea_wm;

2404
	crtc = single_enabled_crtc(dev_priv);
2405 2406 2407
	if (crtc == NULL)
		return;

2408
	adjusted_mode = &crtc->config->base.adjusted_mode;
2409
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2410
				       &i845_wm_info,
2411
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2412
				       4, pessimal_latency_ns);
2413 2414 2415 2416 2417 2418 2419 2420
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2421
/* latency must be in 0.1us units. */
2422 2423 2424
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2425
{
2426
	unsigned int ret;
2427

2428 2429
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2430 2431 2432 2433

	return ret;
}

2434
/* latency must be in 0.1us units. */
2435 2436 2437 2438 2439
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2440
{
2441
	unsigned int ret;
2442

2443 2444
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2445
	ret = DIV_ROUND_UP(ret, 64) + 2;
2446

2447 2448 2449
	return ret;
}

2450
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2451
{
2452 2453 2454 2455 2456 2457
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2458
	if (WARN_ON(!cpp))
2459 2460 2461 2462
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2463
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2464 2465
}

2466
struct ilk_wm_maximums {
2467 2468 2469 2470
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2471 2472
};

2473 2474 2475 2476
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2477 2478
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2479
			      u32 mem_value, bool is_lp)
2480
{
2481
	u32 method1, method2;
2482
	int cpp;
2483

2484 2485 2486
	if (mem_value == 0)
		return U32_MAX;

2487
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2488 2489
		return 0;

2490
	cpp = plane_state->base.fb->format->cpp[0];
2491

2492
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2493 2494 2495 2496

	if (!is_lp)
		return method1;

2497 2498 2499
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
				 crtc_state->base.adjusted_mode.crtc_htotal,
				 drm_rect_width(&plane_state->base.dst),
2500
				 cpp, mem_value);
2501 2502

	return min(method1, method2);
2503 2504
}

2505 2506 2507 2508
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2509 2510
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2511
			      u32 mem_value)
2512
{
2513
	u32 method1, method2;
2514
	int cpp;
2515

2516 2517 2518
	if (mem_value == 0)
		return U32_MAX;

2519
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2520 2521
		return 0;

2522
	cpp = plane_state->base.fb->format->cpp[0];
2523

2524 2525 2526 2527
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
				 crtc_state->base.adjusted_mode.crtc_htotal,
				 drm_rect_width(&plane_state->base.dst),
2528
				 cpp, mem_value);
2529 2530 2531
	return min(method1, method2);
}

2532 2533 2534 2535
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2536 2537
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2538
			      u32 mem_value)
2539
{
2540 2541
	int cpp;

2542 2543 2544
	if (mem_value == 0)
		return U32_MAX;

2545
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2546 2547
		return 0;

2548
	cpp = plane_state->base.fb->format->cpp[0];
2549

2550 2551 2552
	return ilk_wm_method2(crtc_state->pixel_rate,
			      crtc_state->base.adjusted_mode.crtc_htotal,
			      plane_state->base.crtc_w, cpp, mem_value);
2553 2554
}

2555
/* Only for WM_LP. */
2556 2557
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2558
			      u32 pri_val)
2559
{
2560
	int cpp;
2561

2562
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2563 2564
		return 0;

2565
	cpp = plane_state->base.fb->format->cpp[0];
2566

2567
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2568 2569
}

2570 2571
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2572
{
2573
	if (INTEL_GEN(dev_priv) >= 8)
2574
		return 3072;
2575
	else if (INTEL_GEN(dev_priv) >= 7)
2576 2577 2578 2579 2580
		return 768;
	else
		return 512;
}

2581 2582 2583
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2584
{
2585
	if (INTEL_GEN(dev_priv) >= 8)
2586 2587
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2588
	else if (INTEL_GEN(dev_priv) >= 7)
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2599 2600
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2601
{
2602
	if (INTEL_GEN(dev_priv) >= 7)
2603 2604 2605 2606 2607
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2608
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2609
{
2610
	if (INTEL_GEN(dev_priv) >= 8)
2611 2612 2613 2614 2615
		return 31;
	else
		return 15;
}

2616
/* Calculate the maximum primary/sprite plane watermark */
2617
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2618
				     int level,
2619
				     const struct intel_wm_config *config,
2620 2621 2622
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2623
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2624 2625

	/* if sprites aren't enabled, sprites get nothing */
2626
	if (is_sprite && !config->sprites_enabled)
2627 2628 2629
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2630
	if (level == 0 || config->num_pipes_active > 1) {
2631
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2632 2633 2634 2635 2636 2637

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2638
		if (INTEL_GEN(dev_priv) <= 6)
2639 2640 2641
			fifo_size /= 2;
	}

2642
	if (config->sprites_enabled) {
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2654
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2655 2656 2657
}

/* Calculate the maximum cursor plane watermark */
2658
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2659 2660
				      int level,
				      const struct intel_wm_config *config)
2661 2662
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2663
	if (level > 0 && config->num_pipes_active > 1)
2664 2665 2666
		return 64;

	/* otherwise just report max that registers can hold */
2667
	return ilk_cursor_wm_reg_max(dev_priv, level);
2668 2669
}

2670
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2671 2672 2673
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2674
				    struct ilk_wm_maximums *max)
2675
{
2676 2677 2678 2679
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2680 2681
}

2682
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2683 2684 2685
					int level,
					struct ilk_wm_maximums *max)
{
2686 2687 2688 2689
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2690 2691
}

2692
static bool ilk_validate_wm_level(int level,
2693
				  const struct ilk_wm_maximums *max,
2694
				  struct intel_wm_level *result)
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2724 2725 2726
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2727 2728 2729 2730 2731 2732
		result->enable = true;
	}

	return ret;
}

2733
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2734
				 const struct intel_crtc *intel_crtc,
2735
				 int level,
2736
				 struct intel_crtc_state *crtc_state,
2737 2738 2739
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2740
				 struct intel_wm_level *result)
2741
{
2742 2743 2744
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2745 2746 2747 2748 2749 2750 2751 2752

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2753
	if (pristate) {
2754
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2755
						     pri_latency, level);
2756
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2757 2758 2759
	}

	if (sprstate)
2760
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2761 2762

	if (curstate)
2763
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2764

2765 2766 2767
	result->enable = true;
}

2768
static u32
2769
hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2770
{
2771
	const struct intel_atomic_state *intel_state =
2772
		to_intel_atomic_state(crtc_state->base.state);
2773
	const struct drm_display_mode *adjusted_mode =
2774
		&crtc_state->base.adjusted_mode;
2775
	u32 linetime, ips_linetime;
2776

2777
	if (!crtc_state->base.active)
2778 2779 2780
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2781
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2782
		return 0;
2783

2784 2785 2786
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2787 2788 2789
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2790
					 intel_state->cdclk.logical.cdclk);
2791

2792 2793
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2794 2795
}

2796
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2797
				  u16 wm[8])
2798
{
2799 2800
	struct intel_uncore *uncore = &dev_priv->uncore;

2801
	if (INTEL_GEN(dev_priv) >= 9) {
2802
		u32 val;
2803
		int ret, i;
2804
		int level, max_level = ilk_wm_max_level(dev_priv);
2805 2806 2807 2808 2809

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2810
					     &val, NULL);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2829
					     &val, NULL);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2856
		/*
2857
		 * WaWmMemoryReadLatency:skl+,glk
2858
		 *
2859
		 * punit doesn't take into account the read latency so we need
2860 2861
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2862
		 */
2863 2864 2865 2866 2867
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2868
				wm[level] += 2;
2869
			}
2870 2871
		}

2872 2873 2874 2875 2876 2877
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2878
		if (dev_priv->dram_info.is_16gb_dimm)
2879 2880
			wm[0] += 1;

2881
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2882
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2883 2884 2885 2886

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2887 2888 2889 2890
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2891
	} else if (INTEL_GEN(dev_priv) >= 6) {
2892
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2893 2894 2895 2896 2897

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2898
	} else if (INTEL_GEN(dev_priv) >= 5) {
2899
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2900 2901 2902 2903 2904

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2905 2906
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2907 2908 2909
	}
}

2910
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2911
				       u16 wm[5])
2912 2913
{
	/* ILK sprite LP0 latency is 1300 ns */
2914
	if (IS_GEN(dev_priv, 5))
2915 2916 2917
		wm[0] = 13;
}

2918
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2919
				       u16 wm[5])
2920 2921
{
	/* ILK cursor LP0 latency is 1300 ns */
2922
	if (IS_GEN(dev_priv, 5))
2923 2924 2925
		wm[0] = 13;
}

2926
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2927 2928
{
	/* how many WM levels are we expecting */
2929
	if (INTEL_GEN(dev_priv) >= 9)
2930
		return 7;
2931
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2932
		return 4;
2933
	else if (INTEL_GEN(dev_priv) >= 6)
2934
		return 3;
2935
	else
2936 2937
		return 2;
}
2938

2939
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2940
				   const char *name,
2941
				   const u16 wm[8])
2942
{
2943
	int level, max_level = ilk_wm_max_level(dev_priv);
2944 2945 2946 2947 2948

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2949 2950
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2951 2952 2953
			continue;
		}

2954 2955 2956 2957
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2958
		if (INTEL_GEN(dev_priv) >= 9)
2959 2960
			latency *= 10;
		else if (level > 0)
2961 2962 2963 2964 2965 2966 2967 2968
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2969
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2970
				    u16 wm[5], u16 min)
2971
{
2972
	int level, max_level = ilk_wm_max_level(dev_priv);
2973 2974 2975 2976 2977 2978

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2979
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2980 2981 2982 2983

	return true;
}

2984
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3000 3001 3002
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3003 3004
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3033
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3034
{
3035
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3036 3037 3038 3039 3040 3041

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3042
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3043
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3044

3045 3046 3047
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3048

3049
	if (IS_GEN(dev_priv, 6)) {
3050
		snb_wm_latency_quirk(dev_priv);
3051 3052
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3053 3054
}

3055
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3056
{
3057
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3058
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3059 3060
}

3061
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3073
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3084
/* Compute new watermarks for the pipe */
3085
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3086
{
3087 3088
	struct drm_atomic_state *state = crtc_state->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3089
	struct intel_pipe_wm *pipe_wm;
3090
	struct drm_device *dev = state->dev;
3091
	const struct drm_i915_private *dev_priv = to_i915(dev);
3092 3093 3094 3095 3096
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3097
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3098
	struct ilk_wm_maximums max;
3099

3100
	pipe_wm = &crtc_state->wm.ilk.optimal;
3101

3102
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &crtc_state->base) {
3103
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3104

3105
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3106
			pristate = ps;
3107
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3108
			sprstate = ps;
3109
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3110
			curstate = ps;
3111 3112
	}

3113
	pipe_wm->pipe_enabled = crtc_state->base.active;
3114
	if (sprstate) {
3115 3116 3117 3118
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3119 3120
	}

3121 3122
	usable_level = max_level;

3123
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3124
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3125
		usable_level = 1;
3126 3127

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3128
	if (pipe_wm->sprites_scaled)
3129
		usable_level = 0;
3130

3131
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3132
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3133
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3134

3135
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3136
		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3137

3138
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3139
		return -EINVAL;
3140

3141
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3142

3143 3144
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3145

3146
		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3147
				     pristate, sprstate, curstate, wm);
3148 3149 3150 3151 3152 3153

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3154 3155 3156 3157
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3158 3159
	}

3160
	return 0;
3161 3162
}

3163 3164 3165 3166 3167
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3168
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3169
{
3170 3171
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3172
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3173 3174 3175 3176 3177
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3178
	int level, max_level = ilk_wm_max_level(dev_priv);
3179 3180 3181 3182 3183 3184

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3185
	*a = newstate->wm.ilk.optimal;
3186 3187
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3188 3189
		return 0;

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3211
	if (!ilk_validate_pipe_wm(dev_priv, a))
3212 3213 3214 3215 3216 3217
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3218 3219
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3220 3221 3222 3223

	return 0;
}

3224 3225 3226
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3227
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3228 3229 3230 3231 3232
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3233 3234
	ret_wm->enable = true;

3235
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3236
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3237 3238 3239 3240
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3241

3242 3243 3244 3245 3246
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3247
		if (!wm->enable)
3248
			ret_wm->enable = false;
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3260
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3261
			 const struct intel_wm_config *config,
3262
			 const struct ilk_wm_maximums *max,
3263 3264
			 struct intel_pipe_wm *merged)
{
3265
	int level, max_level = ilk_wm_max_level(dev_priv);
3266
	int last_enabled_level = max_level;
3267

3268
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3269
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3270
	    config->num_pipes_active > 1)
3271
		last_enabled_level = 0;
3272

3273
	/* ILK: FBC WM must be disabled always */
3274
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3275 3276 3277 3278 3279

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3280
		ilk_merge_wm_level(dev_priv, level, wm);
3281

3282 3283 3284 3285 3286
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3287 3288 3289 3290 3291 3292

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3293 3294
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3295 3296 3297
			wm->fbc_val = 0;
		}
	}
3298 3299 3300 3301 3302 3303 3304

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3305
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3306
	    intel_fbc_is_active(dev_priv)) {
3307 3308 3309 3310 3311 3312
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3313 3314
}

3315 3316 3317 3318 3319 3320
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3321
/* The value we need to program into the WM_LPx latency field */
3322 3323
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3324
{
3325
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3326 3327 3328 3329 3330
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3331
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3332
				   const struct intel_pipe_wm *merged,
3333
				   enum intel_ddb_partitioning partitioning,
3334
				   struct ilk_wm_values *results)
3335
{
3336 3337
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3338

3339
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3340
	results->partitioning = partitioning;
3341

3342
	/* LP1+ register values */
3343
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3344
		const struct intel_wm_level *r;
3345

3346
		level = ilk_wm_lp_to_level(wm_lp, merged);
3347

3348
		r = &merged->wm[level];
3349

3350 3351 3352 3353 3354
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3355
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3356 3357 3358
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3359 3360 3361
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3362
		if (INTEL_GEN(dev_priv) >= 8)
3363 3364 3365 3366 3367 3368
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3369 3370 3371 3372
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3373
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3374 3375 3376 3377
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3378
	}
3379

3380
	/* LP0 register values */
3381
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3382
		enum pipe pipe = intel_crtc->pipe;
3383 3384
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3385 3386 3387 3388

		if (WARN_ON(!r->enable))
			continue;

3389
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3390

3391 3392 3393 3394
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3395 3396 3397
	}
}

3398 3399
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3400 3401 3402 3403
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3404
{
3405
	int level, max_level = ilk_wm_max_level(dev_priv);
3406
	int level1 = 0, level2 = 0;
3407

3408 3409 3410 3411 3412
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3413 3414
	}

3415 3416
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3417 3418 3419
			return r2;
		else
			return r1;
3420
	} else if (level1 > level2) {
3421 3422 3423 3424 3425 3426
		return r1;
	} else {
		return r2;
	}
}

3427 3428 3429 3430 3431 3432 3433 3434
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3435
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3436 3437
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3438 3439 3440 3441 3442
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3443
	for_each_pipe(dev_priv, pipe) {
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3487 3488
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3489
{
3490
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3491
	bool changed = false;
3492

3493 3494 3495
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3496
		changed = true;
3497 3498 3499 3500
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3501
		changed = true;
3502 3503 3504 3505
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3506
		changed = true;
3507
	}
3508

3509 3510 3511 3512
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3513

3514 3515 3516 3517 3518 3519 3520
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3521 3522
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3523
{
3524
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3525
	unsigned int dirty;
3526
	u32 val;
3527

3528
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3529 3530 3531 3532 3533
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3534
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3535
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3536
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3537
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3538
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3539 3540
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3541
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3542
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3543
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3544
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3545
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3546 3547
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3548
	if (dirty & WM_DIRTY_DDB) {
3549
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3564 3565
	}

3566
	if (dirty & WM_DIRTY_FBC) {
3567 3568 3569 3570 3571 3572 3573 3574
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3575 3576 3577 3578
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3579
	if (INTEL_GEN(dev_priv) >= 7) {
3580 3581 3582 3583 3584
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3585

3586
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3587
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3588
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3589
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3590
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3591
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3592 3593

	dev_priv->wm.hw = *results;
3594 3595
}

3596
bool ilk_disable_lp_wm(struct drm_device *dev)
3597
{
3598
	struct drm_i915_private *dev_priv = to_i915(dev);
3599 3600 3601 3602

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3614 3615 3616 3617 3618 3619
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3620 3621 3622 3623 3624
		enabled_slices++;

	return enabled_slices;
}

3625 3626 3627 3628
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3629
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3630
{
3631
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3632 3633
}

3634 3635 3636
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3637 3638 3639 3640
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3641 3642
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3643 3644
}

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3657
intel_enable_sagv(struct drm_i915_private *dev_priv)
3658 3659 3660
{
	int ret;

3661 3662 3663 3664
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3665 3666
		return 0;

3667
	DRM_DEBUG_KMS("Enabling SAGV\n");
3668 3669 3670
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3671
	/* We don't need to wait for SAGV when enabling */
3672 3673 3674

	/*
	 * Some skl systems, pre-release machines in particular,
3675
	 * don't actually have SAGV.
3676
	 */
3677
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3678
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3679
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3680 3681
		return 0;
	} else if (ret < 0) {
3682
		DRM_ERROR("Failed to enable SAGV\n");
3683 3684 3685
		return ret;
	}

3686
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3687 3688 3689 3690
	return 0;
}

int
3691
intel_disable_sagv(struct drm_i915_private *dev_priv)
3692
{
3693
	int ret;
3694

3695 3696 3697 3698
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3699 3700
		return 0;

3701
	DRM_DEBUG_KMS("Disabling SAGV\n");
3702
	/* bspec says to keep retrying for at least 1 ms */
3703 3704 3705 3706
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3707 3708
	/*
	 * Some skl systems, pre-release machines in particular,
3709
	 * don't actually have SAGV.
3710
	 */
3711
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3712
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3713
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3714
		return 0;
3715
	} else if (ret < 0) {
3716
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3717
		return ret;
3718 3719
	}

3720
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3721 3722 3723
	return 0;
}

3724
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3725
{
3726
	struct drm_device *dev = state->base.dev;
3727
	struct drm_i915_private *dev_priv = to_i915(dev);
3728 3729
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3730
	struct intel_crtc_state *crtc_state;
3731
	enum pipe pipe;
3732
	int level, latency;
3733
	int sagv_block_time_us;
3734

3735 3736 3737
	if (!intel_has_sagv(dev_priv))
		return false;

3738
	if (IS_GEN(dev_priv, 9))
3739
		sagv_block_time_us = 30;
3740
	else if (IS_GEN(dev_priv, 10))
3741 3742 3743 3744
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3745 3746 3747
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3748
	if (hweight8(state->active_pipes) == 0)
3749
		return true;
3750 3751 3752 3753 3754

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3755
	if (hweight8(state->active_pipes) > 1)
3756 3757 3758
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3759
	pipe = ffs(state->active_pipes) - 1;
3760
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3761
	crtc_state = to_intel_crtc_state(crtc->base.state);
3762

3763
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3764 3765
		return false;

3766
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3767
		struct skl_plane_wm *wm =
3768
			&crtc_state->wm.skl.optimal.planes[plane->id];
3769

3770
		/* Skip this plane if it's not enabled */
3771
		if (!wm->wm[0].plane_en)
3772 3773 3774
			continue;

		/* Find the highest enabled wm level for this plane */
3775
		for (level = ilk_wm_max_level(dev_priv);
3776
		     !wm->wm[level].plane_en; --level)
3777 3778
		     { }

3779 3780
		latency = dev_priv->wm.skl_latency[level];

3781
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3782
		    plane->base.state->fb->modifier ==
3783 3784 3785
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3786
		/*
3787 3788
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3789
		 * can't enable SAGV.
3790
		 */
3791
		if (latency < sagv_block_time_us)
3792 3793 3794 3795 3796 3797
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3798
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3799
			      const struct intel_crtc_state *crtc_state,
3800
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3801 3802
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

3813
	adjusted_mode = &crtc_state->base.adjusted_mode;
3814
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3815 3816 3817

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3818 3819 3820 3821 3822
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3823
	 */
3824
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3825 3826 3827 3828 3829 3830 3831 3832 3833
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3834
static void
3835
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3836
				   const struct intel_crtc_state *crtc_state,
3837
				   const u64 total_data_rate,
3838
				   struct skl_ddb_allocation *ddb,
3839 3840
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3841
{
3842
	struct drm_atomic_state *state = crtc_state->base.state;
3843
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3844 3845
	struct drm_crtc *for_crtc = crtc_state->base.crtc;
	const struct intel_crtc *crtc;
3846 3847 3848 3849
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3850

3851
	if (WARN_ON(!state) || !crtc_state->base.active) {
3852 3853
		alloc->start = 0;
		alloc->end = 0;
3854
		*num_active = hweight8(dev_priv->active_pipes);
3855 3856 3857
		return;
	}

3858
	if (intel_state->active_pipe_changes)
3859
		*num_active = hweight8(intel_state->active_pipes);
3860
	else
3861
		*num_active = hweight8(dev_priv->active_pipes);
3862

3863
	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3864
				      *num_active, ddb);
3865

3866
	/*
3867 3868 3869 3870 3871 3872
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3873
	 */
3874
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3875 3876 3877 3878 3879
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3880
		return;
3881
	}
3882

3883 3884 3885 3886 3887
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3888 3889 3890 3891
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
			&crtc_state->base.adjusted_mode;
		enum pipe pipe = crtc->pipe;
3892 3893
		int hdisplay, vdisplay;

3894
		if (!crtc_state->base.enable)
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3908 3909
}

3910 3911 3912 3913 3914
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3915
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3916 3917 3918 3919 3920 3921 3922 3923
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3924
{
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3939
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3940 3941 3942 3943 3944
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3945

3946
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3947 3948
}

3949 3950
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3951
{
3952

3953 3954
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3955

3956 3957
	if (entry->end)
		entry->end += 1;
3958 3959
}

3960 3961 3962 3963
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3964 3965
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3966
{
3967 3968
	u32 val, val2;
	u32 fourcc = 0;
3969 3970 3971 3972

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3973
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3974 3975 3976 3977 3978 3979
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3980 3981 3982 3983
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3984

3985 3986 3987 3988 3989
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3990
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3991

3992 3993
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
3994 3995 3996 3997
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
3998 3999 4000
	}
}

4001 4002 4003
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4004
{
4005 4006 4007
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4008
	intel_wakeref_t wakeref;
4009
	enum plane_id plane_id;
4010

4011
	power_domain = POWER_DOMAIN_PIPE(pipe);
4012 4013
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4014
		return;
4015

4016 4017 4018 4019 4020
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4021

4022
	intel_display_power_put(dev_priv, power_domain, wakeref);
4023
}
4024

4025 4026 4027 4028
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4029 4030
}

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4047
static uint_fixed_16_16_t
4048 4049
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4050
{
4051
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4052
	u32 src_w, src_h, dst_w, dst_h;
4053 4054
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4055

4056
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4057
		return u32_to_fixed16(0);
4058 4059

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4060
	if (plane->id == PLANE_CURSOR) {
4061 4062 4063 4064
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4065 4066 4067 4068
		src_w = plane_state->base.src_w >> 16;
		src_h = plane_state->base.src_h >> 16;
		dst_w = plane_state->base.crtc_w;
		dst_h = plane_state->base.crtc_h;
4069
	} else {
4070 4071 4072 4073 4074
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4075 4076 4077 4078
		src_w = drm_rect_width(&plane_state->base.src) >> 16;
		src_h = drm_rect_height(&plane_state->base.src) >> 16;
		dst_w = drm_rect_width(&plane_state->base.dst);
		dst_h = drm_rect_height(&plane_state->base.dst);
4079 4080
	}

4081 4082 4083 4084
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4085

4086
	return mul_fixed16(downscale_w, downscale_h);
4087 4088
}

4089 4090 4091
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4092
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4093 4094 4095 4096 4097

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4098 4099
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4111 4112 4113 4114
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4115 4116 4117 4118 4119 4120 4121 4122

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4123
				  struct intel_crtc_state *crtc_state)
4124
{
4125
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4126
	struct drm_atomic_state *state = crtc_state->base.state;
4127
	struct drm_plane *plane;
4128
	const struct drm_plane_state *drm_plane_state;
4129
	int crtc_clock, dotclk;
4130
	u32 pipe_max_pixel_rate;
4131
	uint_fixed_16_16_t pipe_downscale;
4132
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4133

4134
	if (!crtc_state->base.enable)
4135 4136
		return 0;

4137
	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4138
		uint_fixed_16_16_t plane_downscale;
4139
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4140
		int bpp;
4141 4142
		const struct intel_plane_state *plane_state =
			to_intel_plane_state(drm_plane_state);
4143

4144
		if (!intel_wm_plane_visible(crtc_state, plane_state))
4145 4146
			continue;

4147
		if (WARN_ON(!plane_state->base.fb))
4148 4149
			return -EINVAL;

4150 4151
		plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
		bpp = plane_state->base.fb->format->cpp[0] * 8;
4152 4153 4154 4155
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4156
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4157
	}
4158
	pipe_downscale = skl_pipe_downscale_amount(crtc_state);
4159 4160 4161

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

4162
	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
4163 4164
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4165
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4166 4167 4168
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4169 4170

	if (pipe_max_pixel_rate < crtc_clock) {
4171
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4172 4173 4174 4175 4176 4177
		return -EINVAL;
	}

	return 0;
}

4178
static u64
4179 4180
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4181
			     int color_plane)
4182
{
4183 4184
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
4185 4186
	u32 data_rate;
	u32 width = 0, height = 0;
4187
	uint_fixed_16_16_t down_scale_amount;
4188
	u64 rate;
4189

4190
	if (!plane_state->base.visible)
4191
		return 0;
4192

4193
	if (plane->id == PLANE_CURSOR)
4194
		return 0;
4195 4196 4197

	if (color_plane == 1 &&
	    !drm_format_info_is_yuv_semiplanar(fb->format))
4198
		return 0;
4199

4200 4201 4202 4203 4204
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4205 4206
	width = drm_rect_width(&plane_state->base.src) >> 16;
	height = drm_rect_height(&plane_state->base.src) >> 16;
4207

4208
	/* UV plane does 1/2 pixel sub-sampling */
4209
	if (color_plane == 1) {
4210 4211
		width /= 2;
		height /= 2;
4212 4213
	}

4214
	data_rate = width * height;
4215

4216
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4217

4218 4219
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4220
	rate *= fb->format->cpp[color_plane];
4221
	return rate;
4222 4223
}

4224
static u64
4225
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4226 4227
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4228
{
4229
	struct drm_atomic_state *state = crtc_state->base.state;
4230
	struct drm_plane *plane;
4231
	const struct drm_plane_state *drm_plane_state;
4232
	u64 total_data_rate = 0;
4233 4234 4235

	if (WARN_ON(!state))
		return 0;
4236

4237
	/* Calculate and cache data rate for each plane */
4238
	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4239
		enum plane_id plane_id = to_intel_plane(plane)->id;
4240 4241
		const struct intel_plane_state *plane_state =
			to_intel_plane_state(drm_plane_state);
4242
		u64 rate;
4243

4244
		/* packed/y */
4245
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4246
		plane_data_rate[plane_id] = rate;
4247
		total_data_rate += rate;
4248

4249
		/* uv-plane */
4250
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4251
		uv_plane_data_rate[plane_id] = rate;
4252
		total_data_rate += rate;
4253 4254 4255 4256 4257
	}

	return total_data_rate;
}

4258
static u64
4259
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4260 4261 4262
				 u64 *plane_data_rate)
{
	struct drm_plane *plane;
4263
	const struct drm_plane_state *drm_plane_state;
4264 4265
	u64 total_data_rate = 0;

4266
	if (WARN_ON(!crtc_state->base.state))
4267 4268 4269
		return 0;

	/* Calculate and cache data rate for each plane */
4270 4271 4272
	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
		const struct intel_plane_state *plane_state =
			to_intel_plane_state(drm_plane_state);
4273 4274 4275
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

4276
		if (!plane_state->planar_linked_plane) {
4277
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4290
			if (plane_state->planar_slave)
4291 4292 4293
				continue;

			/* Y plane rate is calculated on the slave */
4294
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4295
			y_plane_id = plane_state->planar_linked_plane->id;
4296 4297 4298
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4299
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4300 4301 4302 4303 4304 4305 4306 4307
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4308
static int
4309
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4310 4311
		      struct skl_ddb_allocation *ddb /* out */)
{
4312 4313
	struct drm_atomic_state *state = crtc_state->base.state;
	struct drm_crtc *crtc = crtc_state->base.crtc;
4314
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4315
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4316
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4317 4318 4319
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4320
	u64 total_data_rate;
4321
	enum plane_id plane_id;
4322
	int num_active;
4323 4324
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4325
	u32 blocks;
4326
	int level;
4327

4328
	/* Clear the partitioning for disabled planes. */
4329 4330
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4331

4332 4333 4334
	if (WARN_ON(!state))
		return 0;

4335
	if (!crtc_state->base.active) {
4336
		alloc->start = alloc->end = 0;
4337 4338 4339
		return 0;
	}

4340 4341
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4342
			icl_get_total_relative_data_rate(crtc_state,
4343 4344
							 plane_data_rate);
	else
4345
		total_data_rate =
4346
			skl_get_total_relative_data_rate(crtc_state,
4347 4348
							 plane_data_rate,
							 uv_plane_data_rate);
4349

4350

4351
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4352
					   ddb, alloc, &num_active);
4353
	alloc_size = skl_ddb_entry_size(alloc);
4354
	if (alloc_size == 0)
4355
		return 0;
4356

4357
	/* Allocate fixed number of blocks for cursor. */
4358
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4359
	alloc_size -= total[PLANE_CURSOR];
4360
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4361
		alloc->end - total[PLANE_CURSOR];
4362
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4363 4364 4365

	if (total_data_rate == 0)
		return 0;
4366

4367
	/*
4368 4369
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4370
	 */
4371
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4372
		blocks = 0;
4373
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4374
			const struct skl_plane_wm *wm =
4375
				&crtc_state->wm.skl.optimal.planes[plane_id];
4376 4377 4378 4379 4380 4381 4382

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4383
				continue;
4384
			}
4385

4386 4387
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4388 4389
		}

4390
		if (blocks <= alloc_size) {
4391 4392 4393
			alloc_size -= blocks;
			break;
		}
4394 4395
	}

4396
	if (level < 0) {
4397
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4398 4399
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4400 4401 4402
		return -EINVAL;
	}

4403
	/*
4404 4405 4406
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4407
	 */
4408
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4409
		const struct skl_plane_wm *wm =
4410
			&crtc_state->wm.skl.optimal.planes[plane_id];
4411 4412
		u64 rate;
		u16 extra;
4413

4414
		if (plane_id == PLANE_CURSOR)
4415 4416
			continue;

4417
		/*
4418 4419
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4420
		 */
4421 4422
		if (total_data_rate == 0)
			break;
4423

4424 4425 4426 4427
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4428
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4429 4430
		alloc_size -= extra;
		total_data_rate -= rate;
4431

4432 4433
		if (total_data_rate == 0)
			break;
4434

4435 4436 4437 4438
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4439
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4440 4441 4442 4443 4444 4445 4446 4447
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4448
		struct skl_ddb_entry *plane_alloc =
4449
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4450
		struct skl_ddb_entry *uv_plane_alloc =
4451
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4452 4453 4454 4455

		if (plane_id == PLANE_CURSOR)
			continue;

4456
		/* Gen11+ uses a separate plane for UV watermarks */
4457 4458 4459 4460 4461 4462 4463 4464
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4465

4466 4467 4468 4469
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4470
		}
4471
	}
4472

4473 4474 4475 4476 4477 4478 4479 4480
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4481
			struct skl_plane_wm *wm =
4482
				&crtc_state->wm.skl.optimal.planes[plane_id];
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4499

4500
			/*
4501
			 * Wa_1408961008:icl, ehl
4502 4503
			 * Underruns with WM1+ disabled
			 */
4504
			if (IS_GEN(dev_priv, 11) &&
4505 4506
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4507 4508
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4509
			}
4510 4511 4512 4513 4514 4515 4516 4517
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4518
		struct skl_plane_wm *wm =
4519
			&crtc_state->wm.skl.optimal.planes[plane_id];
4520

4521
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4522
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4523 4524
	}

4525
	return 0;
4526 4527
}

4528 4529
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4530
 * for the read latency) and cpp should always be <= 8, so that
4531 4532 4533
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4534
static uint_fixed_16_16_t
4535 4536
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4537
{
4538
	u32 wm_intermediate_val;
4539
	uint_fixed_16_16_t ret;
4540 4541

	if (latency == 0)
4542
		return FP_16_16_MAX;
4543

4544
	wm_intermediate_val = latency * pixel_rate * cpp;
4545
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4546 4547 4548 4549

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4550 4551 4552
	return ret;
}

4553 4554 4555
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4556
{
4557
	u32 wm_intermediate_val;
4558
	uint_fixed_16_16_t ret;
4559 4560

	if (latency == 0)
4561
		return FP_16_16_MAX;
4562 4563

	wm_intermediate_val = latency * pixel_rate;
4564 4565
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4566
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4567 4568 4569
	return ret;
}

4570
static uint_fixed_16_16_t
4571
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4572
{
4573 4574
	u32 pixel_rate;
	u32 crtc_htotal;
4575 4576
	uint_fixed_16_16_t linetime_us;

4577
	if (!crtc_state->base.active)
4578
		return u32_to_fixed16(0);
4579

4580
	pixel_rate = crtc_state->pixel_rate;
4581 4582

	if (WARN_ON(pixel_rate == 0))
4583
		return u32_to_fixed16(0);
4584

4585
	crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
4586
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4587 4588 4589 4590

	return linetime_us;
}

4591
static u32
4592 4593
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4594
{
4595
	u64 adjusted_pixel_rate;
4596
	uint_fixed_16_16_t downscale_amount;
4597 4598

	/* Shouldn't reach here on disabled planes... */
4599
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4600 4601 4602 4603 4604 4605
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4606 4607
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4608

4609 4610
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4611 4612
}

4613
static int
4614 4615 4616 4617 4618
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4619
{
4620 4621
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4622
	u32 interm_pbpl;
4623

4624
	/* only planar format has two planes */
4625
	if (color_plane == 1 && !drm_format_info_is_yuv_semiplanar(format)) {
4626
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4627 4628 4629
		return -EINVAL;
	}

4630 4631 4632 4633 4634 4635 4636
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4637
	wp->is_planar = drm_format_info_is_yuv_semiplanar(format);
4638

4639
	wp->width = width;
4640
	if (color_plane == 1 && wp->is_planar)
4641 4642
		wp->width /= 2;

4643 4644
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4645

4646
	if (INTEL_GEN(dev_priv) >= 11 &&
4647
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4648 4649 4650 4651
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4652
	if (drm_rotation_90_or_270(rotation)) {
4653
		switch (wp->cpp) {
4654
		case 1:
4655
			wp->y_min_scanlines = 16;
4656 4657
			break;
		case 2:
4658
			wp->y_min_scanlines = 8;
4659 4660
			break;
		case 4:
4661
			wp->y_min_scanlines = 4;
4662
			break;
4663
		default:
4664
			MISSING_CASE(wp->cpp);
4665
			return -EINVAL;
4666 4667
		}
	} else {
4668
		wp->y_min_scanlines = 4;
4669 4670
	}

4671
	if (skl_needs_memory_bw_wa(dev_priv))
4672
		wp->y_min_scanlines *= 2;
4673

4674 4675 4676
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4677 4678
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4679 4680 4681 4682

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4683 4684
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4685
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4686 4687
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4688
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4689
	} else {
4690 4691
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4692
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4693 4694
	}

4695 4696
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4697

4698
	wp->linetime_us = fixed16_to_u32_round_up(
4699
					intel_get_linetime_us(crtc_state));
4700 4701 4702 4703

	return 0;
}

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

	if (plane->id == PLANE_CURSOR) {
		width = plane_state->base.crtc_w;
	} else {
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
		width = drm_rect_width(&plane_state->base.src) >> 16;
	}

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4731 4732 4733 4734 4735 4736 4737 4738 4739
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4740
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4741 4742 4743 4744
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4745
{
4746
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4747
	u32 latency = dev_priv->wm.skl_latency[level];
4748 4749
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4750
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4751

4752 4753 4754
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4755
		return;
4756
	}
4757

4758 4759 4760 4761
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4762
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4763 4764 4765
	    dev_priv->ipc_enabled)
		latency += 4;

4766
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4767 4768 4769
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4770
				 wp->cpp, latency, wp->dbuf_block_size);
4771
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4772
				 crtc_state->base.adjusted_mode.crtc_htotal,
4773
				 latency,
4774
				 wp->plane_blocks_per_line);
4775

4776 4777
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4778
	} else {
4779
		if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
4780
		     wp->dbuf_block_size < 1) &&
4781
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4782
			selected_result = method2;
4783
		} else if (latency >= wp->linetime_us) {
4784
			if (IS_GEN(dev_priv, 9) &&
4785 4786 4787 4788 4789
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4790
			selected_result = method1;
4791
		}
4792
	}
4793

4794
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4795
	res_lines = div_round_up_fixed16(selected_result,
4796
					 wp->plane_blocks_per_line);
4797

4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4813

4814 4815 4816 4817 4818 4819 4820 4821 4822
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4823
	}
4824

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4843 4844 4845
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4846 4847 4848
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4849
		return;
4850
	}
4851 4852 4853 4854 4855 4856 4857

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4858 4859
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4860 4861
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4862
	result->plane_en = true;
4863 4864
}

4865
static void
4866
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4867
		      const struct skl_wm_params *wm_params,
4868
		      struct skl_wm_level *levels)
4869
{
4870
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4871
	int level, max_level = ilk_wm_max_level(dev_priv);
4872
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4873

4874
	for (level = 0; level <= max_level; level++) {
4875
		struct skl_wm_level *result = &levels[level];
4876

4877
		skl_compute_plane_wm(crtc_state, level, wm_params,
4878
				     result_prev, result);
4879 4880

		result_prev = result;
4881
	}
4882 4883
}

4884
static u32
4885
skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4886
{
4887
	struct drm_atomic_state *state = crtc_state->base.state;
M
Mahesh Kumar 已提交
4888
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4889
	uint_fixed_16_16_t linetime_us;
4890
	u32 linetime_wm;
4891

4892
	linetime_us = intel_get_linetime_us(crtc_state);
4893
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4894

4895 4896
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4897
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4898 4899

	return linetime_wm;
4900 4901
}

4902
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4903
				      const struct skl_wm_params *wp,
4904
				      struct skl_plane_wm *wm)
4905
{
4906
	struct drm_device *dev = crtc_state->base.crtc->dev;
4907
	const struct drm_i915_private *dev_priv = to_i915(dev);
4908 4909 4910
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4911 4912 4913

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4914
		return;
4915 4916 4917

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4918
		return;
4919

4920 4921
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4922 4923 4924 4925
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4936
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4937

4938
	if (wp->y_tiled) {
4939 4940
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4941
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4942 4943
				trans_offset_b;
	} else {
4944
		res_blocks = wm0_sel_res_b + trans_offset_b;
4945 4946 4947 4948 4949 4950 4951

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4952 4953 4954 4955 4956 4957 4958
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4959 4960
}

4961
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4962 4963
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4964
{
4965
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4966 4967 4968
	struct skl_wm_params wm_params;
	int ret;

4969
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4970 4971 4972 4973
					  &wm_params, color_plane);
	if (ret)
		return ret;

4974
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4975
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4976 4977 4978 4979

	return 0;
}

4980
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4981 4982
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4983
{
4984
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4985 4986 4987
	struct skl_wm_params wm_params;
	int ret;

4988
	wm->is_planar = true;
4989 4990

	/* uv plane watermarks must also be validated for NV12/Planar */
4991
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4992 4993 4994
					  &wm_params, 1);
	if (ret)
		return ret;
4995

4996
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4997

4998
	return 0;
4999 5000
}

5001
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5002
			      const struct intel_plane_state *plane_state)
5003
{
5004 5005 5006
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
5007 5008
	int ret;

5009 5010 5011
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5012
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5013
					plane_id, 0);
5014 5015 5016
	if (ret)
		return ret;

5017
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5018
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5019 5020 5021 5022 5023 5024 5025 5026
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5027
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5028 5029 5030 5031 5032 5033
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
5034
	if (plane_state->planar_slave)
5035 5036
		return 0;

5037
	if (plane_state->planar_linked_plane) {
5038
		const struct drm_framebuffer *fb = plane_state->base.fb;
5039
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5040 5041 5042 5043 5044

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5045
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5046 5047 5048 5049
						y_plane_id, 0);
		if (ret)
			return ret;

5050
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5051 5052 5053 5054
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5055
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5056 5057 5058 5059 5060 5061
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5062 5063
}

5064
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5065
{
5066 5067
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5068
	struct drm_plane *plane;
5069
	const struct drm_plane_state *drm_plane_state;
5070
	int ret;
5071

L
Lyude 已提交
5072 5073 5074 5075 5076 5077
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5078 5079 5080 5081
	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state,
						   &crtc_state->base) {
		const struct intel_plane_state *plane_state =
			to_intel_plane_state(drm_plane_state);
5082

5083
		if (INTEL_GEN(dev_priv) >= 11)
5084
			ret = icl_build_plane_wm(crtc_state, plane_state);
5085
		else
5086
			ret = skl_build_plane_wm(crtc_state, plane_state);
5087 5088
		if (ret)
			return ret;
5089
	}
5090

5091
	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5092

5093
	return 0;
5094 5095
}

5096 5097
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5098 5099 5100
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5101
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5102
	else
5103
		I915_WRITE_FW(reg, 0);
5104 5105
}

5106 5107 5108 5109
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5110
	u32 val = 0;
5111

5112
	if (level->plane_en)
5113
		val |= PLANE_WM_EN;
5114 5115 5116 5117
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5118

5119
	I915_WRITE_FW(reg, val);
5120 5121
}

5122 5123
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5124
{
5125
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5126
	int level, max_level = ilk_wm_max_level(dev_priv);
5127 5128 5129 5130 5131 5132 5133 5134
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5135 5136

	for (level = 0; level <= max_level; level++) {
5137
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5138
				   &wm->wm[level]);
5139
	}
5140
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5141
			   &wm->trans_wm);
5142

5143
	if (INTEL_GEN(dev_priv) >= 11) {
5144
		skl_ddb_entry_write(dev_priv,
5145 5146
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5147
	}
5148 5149 5150 5151 5152 5153 5154 5155

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5156 5157
}

5158 5159
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5160
{
5161
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5162
	int level, max_level = ilk_wm_max_level(dev_priv);
5163 5164 5165 5166 5167 5168
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5169 5170

	for (level = 0; level <= max_level; level++) {
5171 5172
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5173
	}
5174
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5175

5176
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5177 5178
}

5179 5180 5181
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5182
	return l1->plane_en == l2->plane_en &&
5183
		l1->ignore_lines == l2->ignore_lines &&
5184 5185 5186
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5187

5188 5189 5190 5191 5192
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5193

5194 5195 5196 5197 5198 5199 5200
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5201 5202
}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5220 5221
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5222
{
5223
	return a->start < b->end && b->start < a->end;
5224 5225
}

5226
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5227
				 const struct skl_ddb_entry *entries,
5228
				 int num_entries, int ignore_idx)
5229
{
5230
	int i;
5231

5232 5233 5234
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5235
			return true;
5236
	}
5237

5238
	return false;
5239 5240
}

5241
static u32
5242
pipes_modified(struct intel_atomic_state *state)
5243
{
5244
	struct intel_crtc *crtc;
5245
	struct intel_crtc_state *crtc_state;
5246
	u32 i, ret = 0;
5247

5248
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5249
		ret |= drm_crtc_mask(&crtc->base);
5250 5251 5252 5253

	return ret;
}

5254
static int
5255 5256
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5257
{
5258 5259 5260 5261
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5262

5263 5264 5265
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5266

5267 5268 5269 5270
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5271 5272
			continue;

5273
		plane_state = intel_atomic_get_plane_state(state, plane);
5274 5275
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5276

5277
		new_crtc_state->update_planes |= BIT(plane_id);
5278 5279 5280 5281 5282 5283
	}

	return 0;
}

static int
5284
skl_compute_ddb(struct intel_atomic_state *state)
5285
{
5286 5287
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5288 5289
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5290 5291
	struct intel_crtc *crtc;
	int ret, i;
5292

5293 5294
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5295
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5296 5297
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5298 5299 5300
		if (ret)
			return ret;

5301 5302
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5303 5304
		if (ret)
			return ret;
5305 5306 5307 5308 5309
	}

	return 0;
}

5310 5311 5312 5313 5314
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5315
static void
5316
skl_print_wm_changes(struct intel_atomic_state *state)
5317
{
5318 5319 5320 5321 5322
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5323
	int i;
5324

5325 5326 5327
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5328 5329
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5330 5331 5332 5333 5334
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5335 5336
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5337 5338
			const struct skl_ddb_entry *old, *new;

5339 5340
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5341 5342 5343 5344

			if (skl_ddb_entry_equal(old, new))
				continue;

5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5375 5376
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5377
				      plane->base.base.id, plane->base.name,
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5414
				      plane->base.base.id, plane->base.name,
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5425 5426 5427 5428
		}
	}
}

5429
static int
5430
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5431
{
5432
	struct drm_device *dev = state->base.dev;
5433
	const struct drm_i915_private *dev_priv = to_i915(dev);
5434 5435
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5436
	u32 realloc_pipes = pipes_modified(state);
5437
	int ret, i;
5438

5439 5440 5441 5442
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5443 5444
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5445

5446 5447 5448 5449
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
5450
	 * which means we can safely use values like dev_priv->active_pipes
5451 5452 5453
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5454
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5455
		(*changed) = true;
5456

5457
	if (!*changed)
5458 5459
		return 0;

5460 5461 5462 5463 5464 5465 5466 5467
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5468
				       state->base.acquire_ctx);
5469 5470 5471
		if (ret)
			return ret;

5472
		state->active_pipe_changes = ~0;
5473 5474

		/*
5475
		 * We usually only initialize state->active_pipes if we
5476 5477 5478 5479
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5480
		if (!state->modeset)
5481
			state->active_pipes = dev_priv->active_pipes;
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5497
	if (state->active_pipe_changes || state->modeset) {
5498
		realloc_pipes = ~0;
5499
		state->wm_results.dirty_pipes = ~0;
5500 5501 5502 5503 5504 5505
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5506 5507 5508 5509
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5510 5511 5512 5513 5514
	}

	return 0;
}

5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5575
static int
5576
skl_compute_wm(struct intel_atomic_state *state)
5577
{
5578
	struct intel_crtc *crtc;
5579
	struct intel_crtc_state *new_crtc_state;
5580 5581
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5582 5583 5584
	bool changed = false;
	int ret, i;

5585 5586 5587
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5588 5589 5590 5591
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5592 5593
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5594
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5595 5596 5597
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5598
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5599 5600
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5601 5602 5603
		if (ret)
			return ret;

5604
		ret = skl_wm_add_affected_planes(state, crtc);
5605 5606 5607
		if (ret)
			return ret;

5608 5609 5610
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5611
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5612 5613
	}

5614 5615 5616 5617
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5618
	skl_print_wm_changes(state);
5619

5620 5621 5622
	return 0;
}

5623
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5624
				      struct intel_crtc_state *crtc_state)
5625
{
5626
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5627
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5628
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5629
	enum pipe pipe = crtc->pipe;
5630 5631 5632

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5633 5634 5635 5636

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5637
static void skl_initial_wm(struct intel_atomic_state *state,
5638
			   struct intel_crtc_state *crtc_state)
5639
{
5640
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5641
	struct drm_device *dev = intel_crtc->base.dev;
5642
	struct drm_i915_private *dev_priv = to_i915(dev);
5643
	struct skl_ddb_values *results = &state->wm_results;
5644

5645
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5646 5647
		return;

5648
	mutex_lock(&dev_priv->wm.wm_mutex);
5649

5650 5651
	if (crtc_state->base.active_changed)
		skl_atomic_update_crtc_wm(state, crtc_state);
5652

5653
	mutex_unlock(&dev_priv->wm.wm_mutex);
5654 5655
}

5656
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5657 5658 5659 5660 5661
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5662
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5674
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5675
{
5676
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5677
	struct ilk_wm_maximums max;
5678
	struct intel_wm_config config = {};
5679
	struct ilk_wm_values results = {};
5680
	enum intel_ddb_partitioning partitioning;
5681

5682
	ilk_compute_wm_config(dev_priv, &config);
5683

5684 5685
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5686 5687

	/* 5/6 split only in single pipe config on IVB+ */
5688
	if (INTEL_GEN(dev_priv) >= 7 &&
5689
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5690 5691
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5692

5693
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5694
	} else {
5695
		best_lp_wm = &lp_wm_1_2;
5696 5697
	}

5698
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5699
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5700

5701
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5702

5703
	ilk_write_wm_values(dev_priv, &results);
5704 5705
}

5706
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5707
				   struct intel_crtc_state *crtc_state)
5708
{
5709
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5710
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5711

5712
	mutex_lock(&dev_priv->wm.wm_mutex);
5713
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5714 5715 5716
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5717

5718
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5719
				    struct intel_crtc_state *crtc_state)
5720
{
5721
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5722 5723 5724 5725
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;
5726

5727
	mutex_lock(&dev_priv->wm.wm_mutex);
5728 5729
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5730
	mutex_unlock(&dev_priv->wm.wm_mutex);
5731 5732
}

5733
static inline void skl_wm_level_from_reg_val(u32 val,
5734
					     struct skl_wm_level *level)
5735
{
5736
	level->plane_en = val & PLANE_WM_EN;
5737
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5738 5739 5740
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5741 5742
}

5743
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5744
			      struct skl_pipe_wm *out)
5745
{
5746 5747
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5748 5749
	int level, max_level;
	enum plane_id plane_id;
5750
	u32 val;
5751

5752
	max_level = ilk_wm_max_level(dev_priv);
5753

5754
	for_each_plane_id_on_crtc(crtc, plane_id) {
5755
		struct skl_plane_wm *wm = &out->planes[plane_id];
5756

5757
		for (level = 0; level <= max_level; level++) {
5758 5759
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5760 5761
			else
				val = I915_READ(CUR_WM(pipe, level));
5762

5763
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5764 5765
		}

5766 5767
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5768 5769 5770 5771
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5772 5773
	}

5774
	if (!crtc->active)
5775
		return;
5776

5777
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5778 5779
}

5780
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5781
{
5782
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5783
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5784
	struct intel_crtc *crtc;
5785
	struct intel_crtc_state *crtc_state;
5786

5787
	skl_ddb_get_hw_state(dev_priv, ddb);
5788
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5789
		crtc_state = to_intel_crtc_state(crtc->base.state);
5790

5791
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5792

5793 5794
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5795
	}
5796

5797
	if (dev_priv->active_pipes) {
5798 5799 5800
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5801 5802
}

5803
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5804
{
5805
	struct drm_device *dev = crtc->base.dev;
5806
	struct drm_i915_private *dev_priv = to_i915(dev);
5807
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5808 5809
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5810
	enum pipe pipe = crtc->pipe;
5811
	static const i915_reg_t wm0_pipe_reg[] = {
5812 5813 5814 5815 5816 5817
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5818
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5819
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5820

5821 5822
	memset(active, 0, sizeof(*active));

5823
	active->pipe_enabled = crtc->active;
5824 5825

	if (active->pipe_enabled) {
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5840
		int level, max_level = ilk_wm_max_level(dev_priv);
5841 5842 5843 5844 5845 5846 5847 5848 5849

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5850

5851
	crtc->wm.active.ilk = *active;
5852 5853
}

5854 5855 5856 5857 5858
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5859 5860 5861
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5862
	u32 tmp;
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5885 5886 5887 5888
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5889
	u32 tmp;
5890 5891 5892 5893

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5894
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5895
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5896
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5897
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5898
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5899
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5900
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5901 5902 5903 5904 5905
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5906 5907 5908
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5909 5910

	tmp = I915_READ(DSPFW2);
5911 5912 5913
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5914 5915 5916 5917 5918 5919

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5920 5921
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5922 5923

		tmp = I915_READ(DSPFW8_CHV);
5924 5925
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5926 5927

		tmp = I915_READ(DSPFW9_CHV);
5928 5929
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5930 5931 5932

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5933 5934 5935 5936 5937 5938 5939 5940 5941
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5942 5943
	} else {
		tmp = I915_READ(DSPFW7);
5944 5945
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5946 5947 5948

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5949 5950 5951 5952 5953 5954
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5955 5956 5957 5958 5959 5960
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5961
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5962 5963 5964 5965 5966 5967 5968 5969
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5970
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6101
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6102 6103
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6104
	struct intel_crtc *crtc;
6105 6106 6107 6108 6109 6110 6111 6112
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6113
		vlv_punit_get(dev_priv);
6114

6115
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6116 6117 6118
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6119 6120 6121 6122 6123 6124 6125 6126 6127
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6128
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6142

6143
		vlv_punit_put(dev_priv);
6144 6145
	}

6146
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6162
			struct g4x_pipe_wm *raw =
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6184
		crtc_state->wm.vlv.intermediate = *active;
6185

6186
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6187 6188 6189 6190 6191
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6192
	}
6193 6194 6195 6196 6197

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6222
			struct g4x_pipe_wm *raw =
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6263
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6264
{
6265
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6266
	struct intel_crtc *crtc;
6267

6268 6269
	ilk_init_lp_watermarks(dev_priv);

6270
	for_each_intel_crtc(&dev_priv->drm, crtc)
6271 6272 6273 6274 6275 6276 6277
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6278
	if (INTEL_GEN(dev_priv) >= 7) {
6279 6280 6281
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6282

6283
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6284 6285
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6286
	else if (IS_IVYBRIDGE(dev_priv))
6287 6288
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6289 6290 6291 6292 6293

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6294 6295
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6296
 * @crtc: the #intel_crtc on which to compute the WM
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6327
void intel_update_watermarks(struct intel_crtc *crtc)
6328
{
6329
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6330 6331

	if (dev_priv->display.update_wm)
6332
		dev_priv->display.update_wm(crtc);
6333 6334
}

6335 6336 6337 6338
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6339 6340 6341
	if (!HAS_IPC(dev_priv))
		return;

6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6365 6366 6367 6368 6369
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6370
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6371

6372 6373 6374
	intel_enable_ipc(dev_priv);
}

6375
/*
6376 6377 6378 6379
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

T
Tvrtko Ursulin 已提交
6380
bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6381
{
T
Tvrtko Ursulin 已提交
6382
	struct intel_uncore *uncore = &i915->uncore;
6383 6384
	u16 rgvswctl;

6385
	lockdep_assert_held(&mchdev_lock);
6386

T
Tvrtko Ursulin 已提交
6387
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6388 6389 6390 6391 6392 6393 6394
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
T
Tvrtko Ursulin 已提交
6395 6396
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
	intel_uncore_posting_read16(uncore, MEMSWCTL);
6397 6398

	rgvswctl |= MEMCTL_CMD_STS;
T
Tvrtko Ursulin 已提交
6399
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6400 6401 6402 6403

	return true;
}

6404
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6405
{
6406
	struct intel_uncore *uncore = &dev_priv->uncore;
6407
	u32 rgvmodectl;
6408 6409
	u8 fmax, fmin, fstart, vstart;

6410 6411
	spin_lock_irq(&mchdev_lock);

6412
	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6413

6414
	/* Enable temp reporting */
6415 6416
	intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6417 6418

	/* 100ms RC evaluation intervals */
6419 6420
	intel_uncore_write(uncore, RCUPEI, 100000);
	intel_uncore_write(uncore, RCDNEI, 100000);
6421 6422

	/* Set max/min thresholds to 90ms and 80ms respectively */
6423 6424
	intel_uncore_write(uncore, RCBMAXAVG, 90000);
	intel_uncore_write(uncore, RCBMINAVG, 80000);
6425

6426
	intel_uncore_write(uncore, MEMIHYST, 1);
6427 6428 6429 6430 6431 6432 6433

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6434 6435
	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6436

6437 6438
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6439

6440 6441 6442
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6443 6444 6445 6446

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

6447 6448 6449
	intel_uncore_write(uncore,
			   MEMINTREN,
			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6450 6451 6452 6453 6454

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

6455 6456
	intel_uncore_write(uncore, VIDSTART, vstart);
	intel_uncore_posting_read(uncore, VIDSTART);
6457 6458

	rgvmodectl |= MEMMODE_SWMODE_EN;
6459
	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6460

6461 6462
	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
			     MEMCTL_CMD_STS) == 0, 10))
6463
		DRM_ERROR("stuck trying to change perf mode\n");
6464
	mdelay(1);
6465

6466
	ironlake_set_drps(dev_priv, fstart);
6467

6468 6469 6470 6471
	dev_priv->ips.last_count1 =
		intel_uncore_read(uncore, DMIEC) +
		intel_uncore_read(uncore, DDREC) +
		intel_uncore_read(uncore, CSIEC);
6472
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6473
	dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6474
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6475 6476

	spin_unlock_irq(&mchdev_lock);
6477 6478
}

6479
static void ironlake_disable_drps(struct drm_i915_private *i915)
6480
{
6481
	struct intel_uncore *uncore = &i915->uncore;
6482 6483 6484 6485
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

6486
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6487 6488

	/* Ack interrupts, disable EFC interrupt */
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
	intel_uncore_write(uncore,
			   MEMINTREN,
			   intel_uncore_read(uncore, MEMINTREN) &
			   ~MEMINT_EVAL_CHG_EN);
	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
	intel_uncore_write(uncore,
			   DEIER,
			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
	intel_uncore_write(uncore,
			   DEIMR,
			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6501 6502

	/* Go back to the starting frequency */
6503
	ironlake_set_drps(i915, i915->ips.fstart);
6504
	mdelay(1);
6505
	rgvswctl |= MEMCTL_CMD_STS;
6506
	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6507
	mdelay(1);
6508

6509
	spin_unlock_irq(&mchdev_lock);
6510 6511
}

6512 6513 6514 6515 6516
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6517
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6518
{
6519
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6520
	u32 limits;
6521

6522 6523 6524 6525 6526 6527
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6528
	if (INTEL_GEN(dev_priv) >= 9) {
6529 6530 6531
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6532
	} else {
6533 6534 6535
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6536
	}
6537 6538 6539 6540

	return limits;
}

C
Chris Wilson 已提交
6541
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6542
{
6543
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6544 6545
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6546

C
Chris Wilson 已提交
6547
	lockdep_assert_held(&rps->power.mutex);
6548

C
Chris Wilson 已提交
6549
	if (new_power == rps->power.mode)
6550 6551 6552 6553 6554 6555
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6556 6557
		ei_up = 16000;
		threshold_up = 95;
6558 6559

		/* Downclock if less than 85% busy over 32ms */
6560 6561
		ei_down = 32000;
		threshold_down = 85;
6562 6563 6564 6565
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6566 6567
		ei_up = 13000;
		threshold_up = 90;
6568 6569

		/* Downclock if less than 75% busy over 32ms */
6570 6571
		ei_down = 32000;
		threshold_down = 75;
6572 6573 6574 6575
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6576 6577
		ei_up = 10000;
		threshold_up = 85;
6578 6579

		/* Downclock if less than 60% busy over 32ms */
6580 6581
		ei_down = 32000;
		threshold_down = 60;
6582 6583 6584
		break;
	}

6585 6586 6587 6588 6589 6590
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6591
	I915_WRITE(GEN6_RP_UP_EI,
6592
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6593
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6594 6595
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6596 6597

	I915_WRITE(GEN6_RP_DOWN_EI,
6598
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6599
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6600 6601 6602 6603
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
6604
		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6605 6606 6607 6608 6609
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6610

6611
skip_hw_write:
C
Chris Wilson 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6656 6657
}

C
Chris Wilson 已提交
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6676 6677
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6678
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6679 6680
	u32 mask = 0;

6681
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6682
	if (val > rps->min_freq_softlimit)
6683
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6684
	if (val < rps->max_freq_softlimit)
6685
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6686

6687 6688
	mask &= dev_priv->pm_rps_events;

6689
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6690 6691
}

6692 6693 6694
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6695
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6696
{
6697 6698
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6699 6700 6701
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6702
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6703
		gen6_set_rps_thresholds(dev_priv, val);
6704

6705
		if (INTEL_GEN(dev_priv) >= 9)
6706 6707
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6708
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6709 6710 6711 6712 6713 6714 6715
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6716
	}
6717 6718 6719 6720

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6721
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6722
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6723

6724
	rps->cur_freq = val;
6725
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6726 6727

	return 0;
6728 6729
}

6730
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6731
{
6732 6733
	int err;

6734
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6735 6736 6737
		      "Odd GPU freq value\n"))
		val &= ~1;

6738 6739
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6740
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6741
		vlv_punit_get(dev_priv);
6742
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6743
		vlv_punit_put(dev_priv);
6744 6745 6746
		if (err)
			return err;

6747
		gen6_set_rps_thresholds(dev_priv, val);
6748
	}
6749

6750
	dev_priv->gt_pm.rps.cur_freq = val;
6751
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6752 6753

	return 0;
6754 6755
}

6756
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6757 6758
 *
 * * If Gfx is Idle, then
6759 6760 6761
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6762 6763 6764
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6765 6766
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6767
	int err;
6768

6769
	if (rps->cur_freq <= val)
6770 6771
		return;

6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6784
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6785
	err = valleyview_set_rps(dev_priv, val);
6786
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6787 6788 6789

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6790 6791
}

6792 6793
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6794 6795
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6796
	mutex_lock(&rps->lock);
6797
	if (rps->enabled) {
6798 6799
		u8 freq;

6800
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6801 6802
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6803
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6804

6805 6806
		gen6_enable_rps_interrupts(dev_priv);

6807 6808 6809
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6810 6811
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6812

6813
		if (intel_set_rps(dev_priv,
6814
				  clamp(freq,
6815 6816
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6817
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6818
	}
6819
	mutex_unlock(&rps->lock);
6820 6821
}

6822 6823
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6824 6825
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6826 6827 6828 6829 6830 6831 6832
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6833
	mutex_lock(&rps->lock);
6834
	if (rps->enabled) {
6835
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6836
			vlv_set_rps_idle(dev_priv);
6837
		else
6838 6839
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6840 6841
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6842
	}
6843
	mutex_unlock(&rps->lock);
6844 6845
}

6846
void gen6_rps_boost(struct i915_request *rq)
6847
{
6848
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6849
	unsigned long flags;
6850 6851
	bool boost;

6852 6853 6854
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6855
	if (!rps->enabled)
6856
		return;
6857

6858
	if (i915_request_signaled(rq))
6859 6860
		return;

6861
	/* Serializes with i915_request_retire() */
6862
	boost = false;
6863
	spin_lock_irqsave(&rq->lock, flags);
6864 6865
	if (!i915_request_has_waitboost(rq) &&
	    !dma_fence_is_signaled_locked(&rq->fence)) {
6866
		boost = !atomic_fetch_inc(&rps->num_waiters);
6867
		rq->flags |= I915_REQUEST_WAITBOOST;
6868
	}
6869
	spin_unlock_irqrestore(&rq->lock, flags);
6870 6871 6872
	if (!boost)
		return;

6873 6874
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6875

6876
	atomic_inc(&rps->boosts);
6877 6878
}

6879
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6880
{
6881
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6882 6883
	int err;

6884
	lockdep_assert_held(&rps->lock);
6885 6886
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6887

6888 6889
	if (!rps->enabled) {
		rps->cur_freq = val;
6890 6891 6892
		return 0;
	}

6893
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6894
		err = valleyview_set_rps(dev_priv, val);
6895
	else
6896 6897 6898
		err = gen6_set_rps(dev_priv, val);

	return err;
6899 6900
}

6901
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6902 6903 6904 6905
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6906 6907
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6908
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6909
	I915_WRITE(GEN6_RP_CONTROL, 0);
6910 6911
}

6912 6913 6914 6915 6916
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6917 6918 6919 6920 6921
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6922
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6923
{
6924 6925
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6926
	/* All of these values are in units of 50MHz */
6927

6928
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6929
	if (IS_GEN9_LP(dev_priv)) {
6930
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6931 6932 6933
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6934
	} else {
6935
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6936 6937 6938
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6939
	}
6940
	/* hw_max = RP0 until we check for overclocking */
6941
	rps->max_freq = rps->rp0_freq;
6942

6943
	rps->efficient_freq = rps->rp1_freq;
6944
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6945
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6946 6947 6948 6949
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6950
					   &ddcc_status, NULL) == 0)
6951
			rps->efficient_freq =
6952 6953
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6954 6955
					rps->min_freq,
					rps->max_freq);
6956 6957
	}

6958
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6959
		/* Store the frequency values in 16.66 MHZ units, which is
6960 6961
		 * the natural hardware unit for SKL
		 */
6962 6963 6964 6965 6966
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6967
	}
6968 6969
}

6970
static void reset_rps(struct drm_i915_private *dev_priv,
6971
		      int (*set)(struct drm_i915_private *, u8))
6972
{
6973 6974
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6975 6976

	/* force a reset */
C
Chris Wilson 已提交
6977
	rps->power.mode = -1;
6978
	rps->cur_freq = -1;
6979

6980 6981
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6982 6983
}

J
Jesse Barnes 已提交
6984
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6985
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6986
{
6987
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
6988

6989
	/* Program defaults and thresholds for RPS */
6990
	if (IS_GEN(dev_priv, 9))
6991 6992
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6993 6994 6995 6996 6997

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6998 6999
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

7000 7001 7002
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7003
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
7004

7005
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
7006 7007
}

7008 7009
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7010 7011
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7012
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7013 7014

	/* 1 Program defaults and thresholds for RPS*/
7015
	I915_WRITE(GEN6_RPNSWREQ,
7016
		   HSW_FREQUENCY(rps->rp1_freq));
7017
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7018
		   HSW_FREQUENCY(rps->rp1_freq));
7019 7020 7021 7022 7023
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7024 7025
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7026 7027 7028 7029 7030 7031 7032

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7033

7034
	/* 2: Enable RPS */
7035 7036 7037 7038 7039 7040 7041 7042
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7043
	reset_rps(dev_priv, gen6_set_rps);
7044

7045
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7046 7047
}

7048 7049 7050 7051 7052 7053 7054 7055
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
7056
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7057 7058 7059 7060 7061 7062 7063

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

7064
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7065 7066
}

7067
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7068
{
7069
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7070 7071
	const int min_freq = 15;
	const int scaling_factor = 180;
7072 7073
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7074
	unsigned int max_gpu_freq, min_gpu_freq;
7075
	struct cpufreq_policy *policy;
7076

7077
	lockdep_assert_held(&rps->lock);
7078

7079 7080 7081
	if (rps->max_freq <= rps->min_freq)
		return;

7082 7083 7084 7085 7086 7087 7088 7089 7090
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7091
		max_ia_freq = tsc_khz;
7092
	}
7093 7094 7095 7096

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7097
	min_ring_freq = I915_READ(DCLK) & 0xf;
7098 7099
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7100

7101 7102
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7103
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7104
		/* Convert GT frequency to 50 HZ units */
7105 7106
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7107 7108
	}

7109 7110 7111 7112 7113
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7114
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7115
		const int diff = max_gpu_freq - gpu_freq;
7116 7117
		unsigned int ia_freq = 0, ring_freq = 0;

7118
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7119 7120 7121 7122 7123
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7124
		} else if (INTEL_GEN(dev_priv) >= 8) {
7125 7126
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7127
		} else if (IS_HASWELL(dev_priv)) {
7128
			ring_freq = mult_frac(gpu_freq, 5, 4);
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7145

B
Ben Widawsky 已提交
7146 7147
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7148 7149 7150
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7151 7152 7153
	}
}

7154
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7155 7156 7157
{
	u32 val, rp0;

7158
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7159

7160
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7175
	}
7176 7177 7178

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7192 7193 7194 7195
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7196 7197 7198
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7199 7200 7201
	return rp1;
}

7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7224
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7225 7226 7227
{
	u32 val, rp0;

7228
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7241
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7242
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7243
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7244 7245 7246 7247 7248
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7249
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7250
{
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7262 7263
}

7264 7265
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7266
	dev_priv->gt_pm.rps.gpll_ref_freq =
7267 7268 7269 7270 7271
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7272
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7273 7274
}

7275
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7276
{
7277
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7278
	u32 val;
7279

7280 7281 7282 7283 7284
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7285 7286
	vlv_init_gpll_ref_freq(dev_priv);

7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7300
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7301

7302 7303
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7304
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7305 7306
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7307

7308
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7309
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7310 7311
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7312

7313
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7314
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7315 7316
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7317

7318
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7319
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7320 7321
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7322 7323 7324 7325 7326

	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));
7327 7328
}

7329
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7330
{
7331
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7332
	u32 val;
7333

7334 7335 7336 7337 7338
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7339 7340
	vlv_init_gpll_ref_freq(dev_priv);

7341 7342
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);

7343 7344 7345 7346
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7347
	default:
7348 7349 7350
		dev_priv->mem_freq = 1600;
		break;
	}
7351
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7352

7353 7354
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7355
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7356 7357
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7358

7359
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7360
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7361 7362
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7363

7364
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7365
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7366 7367
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7368

7369
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7370
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7371 7372
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7373

7374 7375 7376 7377 7378
	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7379 7380
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7381
		  "Odd GPU freq values\n");
7382 7383
}

7384 7385 7386 7387
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7388
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7389 7390

	/* 1: Program defaults and thresholds for RPS*/
7391
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7392 7393 7394 7395 7396 7397 7398
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7399
	/* 2: Enable RPS */
7400 7401
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7402
		   GEN6_RP_MEDIA_IS_GFX |
7403 7404 7405 7406
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7407
	/* Setting Fixed Bias */
7408 7409 7410
	vlv_punit_get(dev_priv);

	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
D
Deepak S 已提交
7411 7412
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7413 7414
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7415 7416
	vlv_punit_put(dev_priv);

7417 7418 7419
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7420
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7421 7422
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7423
	reset_rps(dev_priv, valleyview_set_rps);
7424

7425
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7426 7427
}

7428 7429 7430 7431
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7432
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

7450 7451
	vlv_punit_get(dev_priv);

D
Deepak S 已提交
7452
	/* Setting Fixed Bias */
7453
	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
D
Deepak S 已提交
7454 7455
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7456
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7457

7458 7459
	vlv_punit_put(dev_priv);

7460 7461 7462
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7463
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7464 7465
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7466
	reset_rps(dev_priv, valleyview_set_rps);
7467

7468
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7469 7470
}

7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7500
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7501 7502 7503 7504 7505 7506
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7507
	lockdep_assert_held(&mchdev_lock);
7508

7509
	diff1 = now - dev_priv->ips.last_time1;
7510 7511 7512 7513 7514 7515 7516

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7517
		return dev_priv->ips.chipset_power;
7518 7519 7520 7521 7522 7523 7524 7525

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7526 7527
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7528 7529
		diff += total_count;
	} else {
7530
		diff = total_count - dev_priv->ips.last_count1;
7531 7532 7533
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7534 7535
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7546 7547
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7548

7549
	dev_priv->ips.chipset_power = ret;
7550 7551 7552 7553

	return ret;
}

7554 7555
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
7556 7557
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7558

7559
	if (!IS_GEN(dev_priv, 5))
7560 7561
		return 0;

7562
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7563 7564 7565 7566
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7567 7568 7569 7570

	return val;
}

T
Tvrtko Ursulin 已提交
7571
unsigned long i915_mch_val(struct drm_i915_private *i915)
7572 7573 7574 7575
{
	unsigned long m, x, b;
	u32 tsfs;

T
Tvrtko Ursulin 已提交
7576
	tsfs = intel_uncore_read(&i915->uncore, TSFS);
7577 7578

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
T
Tvrtko Ursulin 已提交
7579
	x = intel_uncore_read8(&i915->uncore, TR1);
7580 7581 7582 7583 7584 7585

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7598
{
7599 7600 7601
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7602
	if (INTEL_INFO(dev_priv)->is_mobile)
7603 7604 7605
		return vm > 0 ? vm : 0;

	return vd;
7606 7607
}

7608
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7609
{
7610
	u64 now, diff, diffms;
7611 7612
	u32 count;

7613
	lockdep_assert_held(&mchdev_lock);
7614

7615 7616 7617
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7618 7619 7620 7621 7622 7623 7624

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7625 7626
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7627 7628
		diff += count;
	} else {
7629
		diff = count - dev_priv->ips.last_count2;
7630 7631
	}

7632 7633
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7634 7635 7636 7637

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7638
	dev_priv->ips.gfx_power = diff;
7639 7640
}

7641 7642
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7643 7644
	intel_wakeref_t wakeref;

7645
	if (!IS_GEN(dev_priv, 5))
7646 7647
		return;

7648
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7649 7650 7651 7652
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7653 7654
}

7655
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7656 7657 7658 7659
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7660
	lockdep_assert_held(&mchdev_lock);
7661

7662
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7682
	corr2 = (corr * dev_priv->ips.corr);
7683 7684 7685 7686

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7687
	__i915_update_gfx_val(dev_priv);
7688

7689
	return dev_priv->ips.gfx_power + state2;
7690 7691
}

7692 7693
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
7694 7695
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7696

7697
	if (!IS_GEN(dev_priv, 5))
7698 7699
		return 0;

7700
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7701 7702 7703 7704
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7705

7706 7707
	return val;
}
7708

7709
static struct drm_i915_private __rcu *i915_mch_dev;
7710

7711 7712 7713 7714 7715
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
7716
	i915 = rcu_dereference(i915_mch_dev);
7717 7718 7719 7720 7721
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
7722 7723
}

7724 7725 7726 7727 7728 7729 7730 7731
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
7732 7733 7734 7735
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
7736

7737 7738 7739
	i915 = mchdev_get();
	if (!i915)
		return 0;
7740

7741
	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
7742 7743 7744 7745 7746
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
7747

7748 7749
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
7760
	struct drm_i915_private *i915;
7761

7762 7763 7764
	i915 = mchdev_get();
	if (!i915)
		return false;
7765

7766 7767 7768
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
7769
	spin_unlock_irq(&mchdev_lock);
7770

7771 7772
	drm_dev_put(&i915->drm);
	return true;
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
7784
	struct drm_i915_private *i915;
7785

7786 7787 7788
	i915 = mchdev_get();
	if (!i915)
		return false;
7789

7790 7791 7792
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
7793
	spin_unlock_irq(&mchdev_lock);
7794

7795 7796
	drm_dev_put(&i915->drm);
	return true;
7797 7798 7799 7800 7801 7802 7803 7804 7805 7806
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
7807 7808
	struct drm_i915_private *i915;
	bool ret;
7809

7810 7811 7812
	i915 = mchdev_get();
	if (!i915)
		return false;
7813

7814 7815 7816
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
7829 7830
	struct drm_i915_private *i915;
	bool ret;
7831

7832 7833 7834
	i915 = mchdev_get();
	if (!i915)
		return false;
7835

7836 7837 7838
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
7839
	spin_unlock_irq(&mchdev_lock);
7840

7841
	drm_dev_put(&i915->drm);
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7868 7869
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7870
	rcu_assign_pointer(i915_mch_dev, dev_priv);
7871 7872 7873 7874 7875 7876

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7877
	rcu_assign_pointer(i915_mch_dev, NULL);
7878
}
7879

7880
static void intel_init_emon(struct drm_i915_private *dev_priv)
7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7897
		I915_WRITE(PEW(i), 0);
7898
	for (i = 0; i < 3; i++)
7899
		I915_WRITE(DEW(i), 0);
7900 7901 7902

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7903
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7924
		I915_WRITE(PXW(i), val);
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7940
		I915_WRITE(PXWL(i), 0);
7941 7942 7943 7944 7945 7946

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7947
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7948 7949
}

7950
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7951
{
7952 7953
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7954 7955 7956
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->has_rps = false;
I
Imre Deak 已提交
7957

7958
	/* Initialize RPS limits (for userspace) */
7959 7960 7961 7962
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7963
	else if (INTEL_GEN(dev_priv) >= 6)
7964 7965 7966
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
7967 7968
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
7969

7970
	/* After setting max-softlimit, find the overclock max freq */
7971
	if (IS_GEN(dev_priv, 6) ||
7972 7973 7974
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

7975 7976
		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
				       &params, NULL);
7977 7978
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7979
					 (rps->max_freq & 0xff) * 50,
7980
					 (params & 0xff) * 50);
7981
			rps->max_freq = params & 0xff;
7982 7983 7984
		}
	}

7985
	/* Finally allow us to boost to max by default */
7986
	rps->boost_freq = rps->max_freq;
7987 7988
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
7989 7990
}

7991 7992
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
7993
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
7994
	intel_disable_gt_powersave(dev_priv);
7995

7996 7997
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
7998
	else if (INTEL_GEN(dev_priv) >= 6)
7999
		gen6_reset_rps_interrupts(dev_priv);
8000 8001
}

8002 8003
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
8004
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8005

8006 8007 8008
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8009
	/* Currently there is no HW configuration to be done to disable. */
8010 8011

	i915->gt_pm.llc_pstate.enabled = false;
8012 8013
}

8014 8015
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
8016
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8017

8018 8019 8020
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8021
	if (INTEL_GEN(dev_priv) >= 9)
8022
		gen9_disable_rps(dev_priv);
8023
	else if (IS_CHERRYVIEW(dev_priv))
8024
		cherryview_disable_rps(dev_priv);
8025
	else if (IS_VALLEYVIEW(dev_priv))
8026
		valleyview_disable_rps(dev_priv);
8027
	else if (INTEL_GEN(dev_priv) >= 6)
8028
		gen6_disable_rps(dev_priv);
8029
	else if (IS_IRONLAKE_M(dev_priv))
8030
		ironlake_disable_drps(dev_priv);
8031 8032

	dev_priv->gt_pm.rps.enabled = false;
8033 8034 8035 8036
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
8037
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8038

8039
	intel_disable_rps(dev_priv);
8040 8041 8042
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8043
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8044 8045
}

8046 8047
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
8048
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8049

8050 8051 8052
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8053
	gen6_update_ring_freq(i915);
8054 8055

	i915->gt_pm.llc_pstate.enabled = true;
8056 8057
}

8058 8059 8060
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8061

8062
	lockdep_assert_held(&rps->lock);
8063

8064 8065 8066
	if (rps->enabled)
		return;

8067 8068 8069 8070
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8071
	} else if (INTEL_GEN(dev_priv) >= 9) {
8072 8073 8074
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8075
	} else if (INTEL_GEN(dev_priv) >= 6) {
8076
		gen6_enable_rps(dev_priv);
8077 8078 8079
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8080
	}
8081

8082 8083
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8084

8085 8086
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8087 8088

	rps->enabled = true;
8089 8090 8091 8092 8093 8094 8095 8096
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

8097
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8098

8099 8100
	if (HAS_RPS(dev_priv))
		intel_enable_rps(dev_priv);
8101 8102
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8103

8104
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8105
}
I
Imre Deak 已提交
8106

8107
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8108 8109 8110 8111 8112 8113 8114 8115 8116
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8117
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8118
{
8119
	enum pipe pipe;
8120

8121
	for_each_pipe(dev_priv, pipe) {
8122 8123 8124
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8125 8126 8127

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8128 8129 8130
	}
}

8131
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8132
{
8133
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8134

8135 8136 8137 8138
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8139 8140 8141
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8159
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8160 8161 8162
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8163

8164 8165 8166 8167 8168 8169 8170
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8171
	if (IS_IRONLAKE_M(dev_priv)) {
8172
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8173 8174 8175 8176 8177 8178 8179 8180
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8181 8182
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8183 8184 8185 8186 8187 8188
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8189

8190
	/* WaDisableRenderCachePipelinedFlush:ilk */
8191 8192
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8193

8194 8195 8196
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8197
	g4x_disable_trickle_feed(dev_priv);
8198

8199
	ibx_init_clock_gating(dev_priv);
8200 8201
}

8202
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8203
{
8204
	enum pipe pipe;
8205
	u32 val;
8206 8207 8208 8209 8210 8211

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8212 8213 8214
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8215 8216
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8217 8218 8219
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8220
	for_each_pipe(dev_priv, pipe) {
8221 8222 8223
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8224
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8225
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8226 8227 8228
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8229 8230
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8231
	/* WADP0ClockGatingDisable */
8232
	for_each_pipe(dev_priv, pipe) {
8233 8234 8235
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8236 8237
}

8238
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8239
{
8240
	u32 tmp;
8241 8242

	tmp = I915_READ(MCH_SSKPD);
8243 8244 8245
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8246 8247
}

8248
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8249
{
8250
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8251

8252
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8253 8254 8255 8256 8257

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8258
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8259 8260 8261
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8262 8263 8264
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8265 8266 8267
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8268 8269 8270 8271
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8272 8273
	 */
	I915_WRITE(GEN6_GT_MODE,
8274
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8275

8276
	I915_WRITE(CACHE_MODE_0,
8277
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8293
	 *
8294 8295
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8296 8297 8298 8299 8300
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8301
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8302 8303
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8304

8305 8306 8307 8308 8309 8310 8311 8312
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8313 8314 8315 8316 8317 8318 8319 8320
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8321 8322
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8323 8324 8325 8326 8327 8328 8329
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8330 8331 8332 8333
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8334

8335
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8336

8337
	cpt_init_clock_gating(dev_priv);
8338

8339
	gen6_check_mch_setup(dev_priv);
8340 8341 8342 8343
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8344
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8345

8346
	/*
8347
	 * WaVSThreadDispatchOverride:ivb,vlv
8348 8349 8350 8351
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8352 8353 8354 8355 8356 8357 8358 8359
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8360
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8361 8362 8363 8364 8365
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8366
	if (HAS_PCH_LPT_LP(dev_priv))
8367 8368 8369
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8370 8371

	/* WADPOClockGatingDisable:hsw */
8372 8373
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8374
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8375 8376
}

8377
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8378
{
8379
	if (HAS_PCH_LPT_LP(dev_priv)) {
8380
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8381 8382 8383 8384 8385 8386

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8387 8388 8389 8390 8391
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8392
	u32 val;
8393 8394 8395 8396 8397

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8398 8399 8400 8401 8402
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8403 8404 8405 8406 8407 8408 8409 8410 8411 8412

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8413 8414 8415 8416 8417
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8418 8419 8420 8421

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8422 8423
}

8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
}

8440 8441 8442 8443 8444
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8445
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8446 8447
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8448 8449
}

8450
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8451
{
8452
	u32 val;
8453 8454
	cnp_init_clock_gating(dev_priv);

8455 8456 8457 8458
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8459 8460 8461 8462 8463 8464 8465 8466
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8467 8468 8469
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8470 8471
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8472 8473
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8474

R
Rodrigo Vivi 已提交
8475 8476 8477 8478 8479
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8480
	/* WaDisableVFclkgate:cnl */
8481
	/* WaVFUnitClockGatingDisable:cnl */
8482 8483 8484
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8485 8486
}

8487 8488 8489 8490 8491 8492 8493 8494 8495 8496
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8497
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8498
{
8499
	gen9_init_clock_gating(dev_priv);
8500 8501 8502 8503 8504

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8505 8506 8507 8508 8509

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8510

8511
	/* WaFbcNukeOnHostModify:kbl */
8512 8513
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8514 8515
}

8516
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8517
{
8518
	gen9_init_clock_gating(dev_priv);
8519 8520 8521 8522

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8523 8524 8525 8526

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8527 8528
}

8529
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8530
{
8531
	enum pipe pipe;
B
Ben Widawsky 已提交
8532

8533
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8534
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8535

8536
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8537 8538 8539
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8540
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8541
	for_each_pipe(dev_priv, pipe) {
8542
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8543
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8544
			   BDW_DPRS_MASK_VBLANK_SRD);
8545
	}
8546

8547 8548 8549 8550 8551
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8552

8553 8554
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8555 8556 8557 8558

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8559

8560 8561
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8562

8563 8564 8565 8566
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8567
	lpt_init_clock_gating(dev_priv);
8568 8569 8570 8571 8572 8573 8574 8575

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8576 8577
}

8578
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8579
{
8580 8581 8582 8583 8584
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8585
	/* This is required by WaCatErrorRejectionIssue:hsw */
8586 8587 8588 8589
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8590 8591 8592
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8593

8594 8595 8596
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8597 8598 8599 8600
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8601
	/* WaDisable4x2SubspanOptimization:hsw */
8602 8603
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8604

8605 8606 8607
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8608 8609 8610 8611
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8612 8613
	 */
	I915_WRITE(GEN7_GT_MODE,
8614
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8615

8616 8617 8618 8619
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8620
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8621 8622
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8623
	lpt_init_clock_gating(dev_priv);
8624 8625
}

8626
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8627
{
8628
	u32 snpcr;
8629

8630
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8631

8632
	/* WaDisableEarlyCull:ivb */
8633 8634 8635
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8636
	/* WaDisableBackToBackFlipFix:ivb */
8637 8638 8639 8640
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8641
	/* WaDisablePSDDualDispatchEnable:ivb */
8642
	if (IS_IVB_GT1(dev_priv))
8643 8644 8645
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8646 8647 8648
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8649
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8650 8651 8652
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8653
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8654 8655 8656
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8657
		   GEN7_WA_L3_CHICKEN_MODE);
8658
	if (IS_IVB_GT1(dev_priv))
8659 8660
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8661 8662 8663 8664
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8665 8666
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8667
	}
8668

8669
	/* WaForceL3Serialization:ivb */
8670 8671 8672
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8673
	/*
8674
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8675
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8676 8677
	 */
	I915_WRITE(GEN6_UCGCTL2,
8678
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8679

8680
	/* This is required by WaCatErrorRejectionIssue:ivb */
8681 8682 8683 8684
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8685
	g4x_disable_trickle_feed(dev_priv);
8686 8687

	gen7_setup_fixed_func_scheduler(dev_priv);
8688

8689 8690 8691 8692 8693
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8694

8695
	/* WaDisable4x2SubspanOptimization:ivb */
8696 8697
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8698

8699 8700 8701
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8702 8703 8704 8705
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8706 8707
	 */
	I915_WRITE(GEN7_GT_MODE,
8708
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8709

8710 8711 8712 8713
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8714

8715
	if (!HAS_PCH_NOP(dev_priv))
8716
		cpt_init_clock_gating(dev_priv);
8717

8718
	gen6_check_mch_setup(dev_priv);
8719 8720
}

8721
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8722
{
8723
	/* WaDisableEarlyCull:vlv */
8724 8725 8726
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8727
	/* WaDisableBackToBackFlipFix:vlv */
8728 8729 8730 8731
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8732
	/* WaPsdDispatchEnable:vlv */
8733
	/* WaDisablePSDDualDispatchEnable:vlv */
8734
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8735 8736
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8737

8738 8739 8740
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8741
	/* WaForceL3Serialization:vlv */
8742 8743 8744
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8745
	/* WaDisableDopClockGating:vlv */
8746 8747 8748
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8749
	/* This is required by WaCatErrorRejectionIssue:vlv */
8750 8751 8752 8753
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8754 8755
	gen7_setup_fixed_func_scheduler(dev_priv);

8756
	/*
8757
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8758
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8759 8760
	 */
	I915_WRITE(GEN6_UCGCTL2,
8761
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8762

8763 8764 8765 8766 8767
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8768

8769 8770 8771 8772
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8773 8774
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8775

8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8787 8788 8789 8790 8791 8792
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8793
	/*
8794
	 * WaDisableVLVClockGating_VBIIssue:vlv
8795 8796 8797
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8798
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8799 8800
}

8801
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8802
{
8803 8804 8805 8806 8807
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8808 8809 8810 8811

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8812 8813 8814 8815

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8816 8817 8818 8819

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8820

8821 8822 8823 8824 8825 8826
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
8827 8828
}

8829
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8830
{
8831
	u32 dspclk_gate;
8832 8833 8834 8835 8836 8837 8838 8839 8840

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8841
	if (IS_GM45(dev_priv))
8842 8843
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8844 8845 8846 8847

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8848

8849 8850 8851
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8852
	g4x_disable_trickle_feed(dev_priv);
8853 8854
}

8855
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8856
{
8857 8858 8859 8860 8861 8862 8863 8864 8865 8866
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8867 8868

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
8869 8870 8871
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8872 8873
}

8874
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8875 8876 8877 8878 8879 8880 8881
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8882 8883
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8884 8885 8886

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8887 8888
}

8889
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8890 8891 8892 8893 8894 8895
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8896

8897
	if (IS_PINEVIEW(dev_priv))
8898
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8899 8900 8901

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8902 8903

	/* interrupts should cause a wake up from C3 */
8904
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8905 8906 8907

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8908 8909 8910

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8911 8912
}

8913
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8914 8915
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8916 8917 8918 8919

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8920 8921 8922

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8923 8924
}

8925
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8926
{
8927 8928 8929
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8930 8931
}

8932
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8933
{
8934
	dev_priv->display.init_clock_gating(dev_priv);
8935 8936
}

8937
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8938
{
8939 8940
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8941 8942
}

8943
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
8959
	if (IS_GEN(dev_priv, 12))
8960
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
8961
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
8962
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
8963
	else if (IS_CANNONLAKE(dev_priv))
8964
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
8965 8966
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
8967
	else if (IS_SKYLAKE(dev_priv))
8968
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
8969
	else if (IS_KABYLAKE(dev_priv))
8970
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
8971
	else if (IS_BROXTON(dev_priv))
8972
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8973 8974
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8975
	else if (IS_BROADWELL(dev_priv))
8976
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
8977
	else if (IS_CHERRYVIEW(dev_priv))
8978
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
8979
	else if (IS_HASWELL(dev_priv))
8980
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
8981
	else if (IS_IVYBRIDGE(dev_priv))
8982
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
8983
	else if (IS_VALLEYVIEW(dev_priv))
8984
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
8985
	else if (IS_GEN(dev_priv, 6))
8986
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8987
	else if (IS_GEN(dev_priv, 5))
8988
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
8989 8990
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8991
	else if (IS_I965GM(dev_priv))
8992
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
8993
	else if (IS_I965G(dev_priv))
8994
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
8995
	else if (IS_GEN(dev_priv, 3))
8996 8997 8998
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8999
	else if (IS_GEN(dev_priv, 2))
9000 9001 9002 9003 9004 9005 9006
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9007
/* Set up chip specific power management-related functions */
9008
void intel_init_pm(struct drm_i915_private *dev_priv)
9009
{
9010
	/* For cxsr */
9011
	if (IS_PINEVIEW(dev_priv))
9012
		i915_pineview_get_mem_freq(dev_priv);
9013
	else if (IS_GEN(dev_priv, 5))
9014
		i915_ironlake_get_mem_freq(dev_priv);
9015

9016
	/* For FIFO watermark updates */
9017
	if (INTEL_GEN(dev_priv) >= 9) {
9018
		skl_setup_wm_latency(dev_priv);
9019
		dev_priv->display.initial_watermarks = skl_initial_wm;
9020
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9021
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9022
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9023
		ilk_setup_wm_latency(dev_priv);
9024

9025
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9026
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9027
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9028
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9029
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9030 9031 9032 9033 9034 9035
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9036 9037 9038 9039
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9040
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9041
		vlv_setup_wm_latency(dev_priv);
9042
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9043
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9044
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9045
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9046
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9047 9048 9049 9050 9051 9052
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9053
	} else if (IS_PINEVIEW(dev_priv)) {
9054
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9055 9056 9057 9058 9059 9060 9061 9062 9063
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9064
			intel_set_memory_cxsr(dev_priv, false);
9065 9066 9067
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9068
	} else if (IS_GEN(dev_priv, 4)) {
9069
		dev_priv->display.update_wm = i965_update_wm;
9070
	} else if (IS_GEN(dev_priv, 3)) {
9071 9072
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9073
	} else if (IS_GEN(dev_priv, 2)) {
9074
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
9075
			dev_priv->display.update_wm = i845_update_wm;
9076
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9077 9078
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9079
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9080 9081 9082
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9083 9084 9085
	}
}

9086 9087
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9088 9089
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9090 9091 9092 9093
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9094
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9095 9096
}

9097
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9098
{
9099 9100 9101
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9102 9103
}

9104
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9105
{
9106 9107
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9108 9109 9110 9111
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9112
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9113 9114
}

9115
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9116
{
9117 9118
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9119
	/* CHV needs even values */
9120
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9121 9122
}

9123
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9124
{
9125
	if (INTEL_GEN(dev_priv) >= 9)
9126 9127
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9128
	else if (IS_CHERRYVIEW(dev_priv))
9129
		return chv_gpu_freq(dev_priv, val);
9130
	else if (IS_VALLEYVIEW(dev_priv))
9131 9132 9133
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9134 9135
}

9136 9137
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9138
	if (INTEL_GEN(dev_priv) >= 9)
9139 9140
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9141
	else if (IS_CHERRYVIEW(dev_priv))
9142
		return chv_freq_opcode(dev_priv, val);
9143
	else if (IS_VALLEYVIEW(dev_priv))
9144 9145
		return byt_freq_opcode(dev_priv, val);
	else
9146
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9147
}
9148

9149
void intel_pm_setup(struct drm_i915_private *dev_priv)
9150
{
9151
	mutex_init(&dev_priv->gt_pm.rps.lock);
C
Chris Wilson 已提交
9152
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9153

9154
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9155

9156 9157
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9158
}
9159

T
Tvrtko Ursulin 已提交
9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172
u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}