intel_pm.c 262.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66 67 68 69 70 71 72 73 74 75 76 77 78
	/*
	 * Display WA#0390: skl,bxt,kbl,glk
	 *
	 * Must match Sampler, Pixel Back End, and Media
	 * (0xE194 bit 8, 0x7014 bit 13, 0x4DDC bits 27 and 31).
	 *
	 * Including bits outside the page in the hash would
	 * require 2 (or 4?) MiB alignment of resources. Just
	 * assume the defaul hashing mode which only uses bits
	 * within the page.
	 */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) & ~SKL_RC_HASH_OUTSIDE);

79 80
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
81

82
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
83 84
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
85

86 87
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
88 89 90
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
91

92
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
93 94
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
95 96 97 98 99 100

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
101 102
}

103
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
104
{
105
	gen9_init_clock_gating(dev_priv);
106

107 108 109 110
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

111 112
	/*
	 * FIXME:
113
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
114 115
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
116
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
117 118 119 120 121

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
122 123
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
124 125
}

126 127 128 129 130 131 132 133 134 135 136
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
137 138 139 140 141 142 143 144 145 146

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

147 148
}

149
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

187
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

214
	dev_priv->ips.r_t = dev_priv->mem_freq;
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
246
		dev_priv->ips.c_m = 0;
247
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
248
		dev_priv->ips.c_m = 1;
249
	} else {
250
		dev_priv->ips.c_m = 2;
251 252 253
	}
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

292 293
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

354 355 356
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

357
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358
{
359
	bool was_enabled;
360
	u32 val;
361

362
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365
		POSTING_READ(FW_BLC_SELF_VLV);
366
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_PINEVIEW(dev_priv)) {
371 372 373 374 375 376
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
377
		I915_WRITE(DSPFW3, val);
378
		POSTING_READ(DSPFW3);
379
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 382 383
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
384
		POSTING_READ(FW_BLC_SELF);
385
	} else if (IS_I915GM(dev_priv)) {
386 387 388 389 390
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
391
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392 393 394
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
395
		POSTING_READ(INSTPM);
396
	} else {
397
		return false;
398
	}
399

400 401
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

402 403 404 405 406
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
407 408
}

V
Ville Syrjälä 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
446
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447
{
448 449
	bool ret;

450
	mutex_lock(&dev_priv->wm.wm_mutex);
451
	ret = _intel_set_memory_cxsr(dev_priv, enable);
452 453 454 455
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
456
	mutex_unlock(&dev_priv->wm.wm_mutex);
457 458

	return ret;
459
}
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
475
static const int pessimal_latency_ns = 5000;
476

477 478 479
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

480
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481
{
482
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
483
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485 486
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
487

488
	switch (pipe) {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
509 510
		MISSING_CASE(pipe);
		return;
511 512
	}

513 514 515 516
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
517 518
}

519
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
520 521 522 523 524 525 526 527 528 529 530 531 532 533
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

534
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

550
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
567 568 569 570 571
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
572 573
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
574 575 576 577 578
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
579 580
};
static const struct intel_watermark_params pineview_cursor_wm = {
581 582 583 584 585
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
586 587
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
588 589 590 591 592
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
593 594
};
static const struct intel_watermark_params i965_cursor_wm_info = {
595 596 597 598 599
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
600 601
};
static const struct intel_watermark_params i945_wm_info = {
602 603 604 605 606
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
607 608
};
static const struct intel_watermark_params i915_wm_info = {
609 610 611 612 613
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
614
};
615
static const struct intel_watermark_params i830_a_wm_info = {
616 617 618 619 620
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
621
};
622 623 624 625 626 627 628
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
629
static const struct intel_watermark_params i845_wm_info = {
630 631 632 633 634
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
635 636
};

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

733 734
/**
 * intel_calculate_wm - calculate watermark level
735
 * @pixel_rate: pixel clock
736
 * @wm: chip FIFO params
737
 * @cpp: bytes per pixel
738 739 740 741 742 743 744 745 746 747 748 749 750
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
751 752 753 754
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
755
{
756
	int entries, wm_size;
757 758 759 760 761 762 763

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
764 765 766 767 768
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
769

770 771
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
772 773

	/* Don't promote wm_size to unsigned... */
774
	if (wm_size > wm->max_wm)
775 776 777
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
778 779 780 781 782 783 784 785 786 787 788

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

789 790 791
	return wm_size;
}

792 793 794 795 796 797 798 799 800 801
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

802 803 804 805 806
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

830
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
831
{
832
	struct intel_crtc *crtc, *enabled = NULL;
833

834
	for_each_intel_crtc(&dev_priv->drm, crtc) {
835
		if (intel_crtc_active(crtc)) {
836 837 838 839 840 841 842 843 844
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

845
static void pineview_update_wm(struct intel_crtc *unused_crtc)
846
{
847
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
848
	struct intel_crtc *crtc;
849 850
	const struct cxsr_latency *latency;
	u32 reg;
851
	unsigned int wm;
852

853 854 855 856
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
857 858
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
859
		intel_set_memory_cxsr(dev_priv, false);
860 861 862
		return;
	}

863
	crtc = single_enabled_crtc(dev_priv);
864
	if (crtc) {
865 866 867 868
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
869
		int cpp = fb->format->cpp[0];
870
		int clock = adjusted_mode->crtc_clock;
871 872 873 874

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
875
					cpp, latency->display_sr);
876 877
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
878
		reg |= FW_WM(wm, SR);
879 880 881 882 883 884
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
885
					4, latency->cursor_sr);
886 887
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
888
		reg |= FW_WM(wm, CURSOR_SR);
889 890 891 892 893
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
894
					cpp, latency->display_hpll_disable);
895 896
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
897
		reg |= FW_WM(wm, HPLL_SR);
898 899 900 901 902
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
903
					4, latency->cursor_hpll_disable);
904 905
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
906
		reg |= FW_WM(wm, HPLL_CURSOR);
907 908 909
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

910
		intel_set_memory_cxsr(dev_priv, true);
911
	} else {
912
		intel_set_memory_cxsr(dev_priv, false);
913 914 915
	}
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

933 934
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
935
{
936 937 938 939 940
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
958

959
	POSTING_READ(DSPFW1);
960 961
}

962 963 964
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

965
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
966 967
				const struct vlv_wm_values *wm)
{
968 969 970
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
971 972
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

973 974 975 976 977 978
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
979

980 981 982 983 984 985 986 987 988 989 990
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

991
	I915_WRITE(DSPFW1,
992
		   FW_WM(wm->sr.plane, SR) |
993 994 995
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
996
	I915_WRITE(DSPFW2,
997 998 999
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1000
	I915_WRITE(DSPFW3,
1001
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1002 1003 1004

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1007
		I915_WRITE(DSPFW8_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1010
		I915_WRITE(DSPFW9_CHV,
1011 1012
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1013
		I915_WRITE(DSPHOWM,
1014
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1015 1016 1017 1018 1019 1020 1021 1022 1023
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024 1025
	} else {
		I915_WRITE(DSPFW7,
1026 1027
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1028
		I915_WRITE(DSPHOWM,
1029
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1030 1031 1032 1033 1034 1035
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1036 1037 1038
	}

	POSTING_READ(DSPFW1);
1039 1040
}

1041 1042
#undef FW_WM_VLV

1043 1044 1045 1046 1047
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1048
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1049

1050
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	int clock, htotal, cpp, width, wm;
	int latency = dev_priv->wm.pri_latency[level] * 10;

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
		int small, large;

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

	return min_t(int, wm, USHRT_MAX);
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;

		if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
	enum plane_id plane_id;

	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
		!crtc_state->disable_cxsr;
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1561 1562
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1563 1564
				   unsigned int htotal,
				   unsigned int width,
1565
				   unsigned int cpp,
1566 1567 1568 1569
				   unsigned int latency)
{
	unsigned int ret;

1570 1571
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1572 1573 1574 1575 1576
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1577
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1578 1579 1580 1581
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1582 1583
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1584 1585 1586
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1587 1588

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1589 1590 1591
	}
}

1592 1593
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1594 1595
				     int level)
{
1596
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1597
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1598 1599
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1600
	int clock, htotal, cpp, width, wm;
1601 1602 1603 1604

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1605
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1606 1607
		return 0;

1608
	cpp = plane_state->base.fb->format->cpp[0];
1609 1610 1611
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1612

1613
	if (plane->id == PLANE_CURSOR) {
1614 1615 1616 1617 1618 1619 1620 1621
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1622
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1623 1624 1625 1626 1627 1628
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1629 1630 1631 1632 1633 1634
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1635
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1636
{
1637
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1638
	const struct g4x_pipe_wm *raw =
1639
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1640
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1641 1642 1643
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1644
	int fifo_extra, fifo_left = fifo_size;
1645
	int sprite0_fifo_extra = 0;
1646 1647
	unsigned int total_rate;
	enum plane_id plane_id;
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1660 1661
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1662 1663
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1664

1665 1666
	if (total_rate > fifo_size)
		return -EINVAL;
1667

1668 1669
	if (total_rate == 0)
		total_rate = 1;
1670

1671
	for_each_plane_id_on_crtc(crtc, plane_id) {
1672 1673
		unsigned int rate;

1674 1675
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1676 1677 1678
			continue;
		}

1679 1680 1681
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1682 1683
	}

1684 1685 1686
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1687 1688 1689
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1690 1691

	/* spread the remainder evenly */
1692
	for_each_plane_id_on_crtc(crtc, plane_id) {
1693 1694 1695 1696 1697
		int plane_extra;

		if (fifo_left == 0)
			break;

1698
		if ((active_planes & BIT(plane_id)) == 0)
1699 1700 1701
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1702
		fifo_state->plane[plane_id] += plane_extra;
1703 1704 1705
		fifo_left -= plane_extra;
	}

1706 1707 1708 1709 1710 1711 1712 1713 1714
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1715 1716
}

1717 1718 1719 1720 1721 1722
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1723
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1734 1735 1736 1737 1738 1739 1740 1741
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1742 1743 1744 1745
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1746
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1747
				 int level, enum plane_id plane_id, u16 value)
1748
{
1749
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1750
	int num_levels = intel_wm_num_levels(dev_priv);
1751
	bool dirty = false;
1752

1753
	for (; level < num_levels; level++) {
1754
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1755

1756
		dirty |= raw->plane[plane_id] != value;
1757
		raw->plane[plane_id] = value;
1758
	}
1759 1760

	return dirty;
1761 1762
}

1763 1764
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1765
{
1766 1767
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1768
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1769
	int level;
1770
	bool dirty = false;
1771

1772
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1773 1774
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1775
	}
1776

1777
	for (level = 0; level < num_levels; level++) {
1778
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1779 1780
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1781

1782 1783
		if (wm > max_wm)
			break;
1784

1785
		dirty |= raw->plane[plane_id] != wm;
1786 1787
		raw->plane[plane_id] = wm;
	}
1788

1789
	/* mark all higher levels as invalid */
1790
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1791

1792 1793
out:
	if (dirty)
1794
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1795 1796 1797 1798 1799 1800
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1801
}
1802

1803 1804
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1805
{
1806
	const struct g4x_pipe_wm *raw =
1807 1808 1809
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1810

1811 1812
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1813

1814
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1815
{
1816 1817 1818 1819
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1833
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1834 1835 1836 1837
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1838
	unsigned int dirty = 0;
1839 1840 1841 1842 1843 1844 1845 1846

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1847

1848
		if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1879
	}
1880

1881
	/* initially allow all levels */
1882
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1883 1884 1885 1886 1887
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1888
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1889

1890
	for (level = 0; level < wm_state->num_levels; level++) {
1891
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1892
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1893

1894
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1895
			break;
1896

1897 1898 1899 1900 1901 1902 1903 1904
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1905
						 raw->plane[PLANE_SPRITE0],
1906 1907
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1908

1909 1910 1911
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1912 1913
	}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1924 1925
}

1926 1927 1928
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1929 1930
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1931
{
1932
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1933
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1934 1935
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1936
	int sprite0_start, sprite1_start, fifo_size;
1937

1938 1939 1940
	if (!crtc_state->fifo_changed)
		return;

1941 1942 1943
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1944

1945 1946
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1947

1948 1949
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1960

1961 1962 1963
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1964 1965
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1977 1978
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1979 1980
		break;
	case PIPE_B:
1981 1982
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1994 1995
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1996 1997
		break;
	case PIPE_C:
1998 1999
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2011 2012
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2013 2014 2015 2016
		break;
	default:
		break;
	}
2017

2018
	POSTING_READ_FW(DSPARB);
2019

2020
	spin_unlock(&dev_priv->uncore.lock);
2021 2022 2023 2024
}

#undef VLV_FIFO

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2035 2036
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2059 2060
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
2061 2062 2063 2064

	return 0;
}

2065
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2066 2067 2068 2069 2070
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2071
	wm->level = dev_priv->wm.max_level;
2072 2073
	wm->cxsr = true;

2074
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2075
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2090 2091 2092
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2093
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2094
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2095 2096 2097
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2098
		if (crtc->active && wm->cxsr)
2099 2100
			wm->sr = wm_state->sr[wm->level];

2101 2102 2103 2104
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2105 2106 2107
	}
}

2108
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2109
{
2110 2111
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2112

2113
	vlv_merge_wm(dev_priv, &new_wm);
2114

2115
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2116 2117
		return;

2118
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2119 2120
		chv_set_memory_dvfs(dev_priv, false);

2121
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2122 2123
		chv_set_memory_pm5(dev_priv, false);

2124
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2125
		_intel_set_memory_cxsr(dev_priv, false);
2126

2127
	vlv_write_wm_values(dev_priv, &new_wm);
2128

2129
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2130
		_intel_set_memory_cxsr(dev_priv, true);
2131

2132
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2133 2134
		chv_set_memory_pm5(dev_priv, true);

2135
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2136 2137
		chv_set_memory_dvfs(dev_priv, true);

2138
	*old_wm = new_wm;
2139 2140
}

2141 2142 2143 2144 2145 2146 2147
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2164 2165 2166 2167
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2168
static void i965_update_wm(struct intel_crtc *unused_crtc)
2169
{
2170
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2171
	struct intel_crtc *crtc;
2172 2173
	int srwm = 1;
	int cursor_sr = 16;
2174
	bool cxsr_enabled;
2175 2176

	/* Calc sr entries for one plane configs */
2177
	crtc = single_enabled_crtc(dev_priv);
2178 2179 2180
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2181 2182 2183 2184
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2185
		int clock = adjusted_mode->crtc_clock;
2186
		int htotal = adjusted_mode->crtc_htotal;
2187
		int hdisplay = crtc->config->pipe_src_w;
2188
		int cpp = fb->format->cpp[0];
2189 2190
		int entries;

2191 2192
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2193 2194 2195 2196 2197 2198 2199 2200
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2201 2202 2203
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2204
		entries = DIV_ROUND_UP(entries,
2205 2206
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2207

2208
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2209 2210 2211 2212 2213 2214
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2215
		cxsr_enabled = true;
2216
	} else {
2217
		cxsr_enabled = false;
2218
		/* Turn off self refresh if both pipes are enabled */
2219
		intel_set_memory_cxsr(dev_priv, false);
2220 2221 2222 2223 2224 2225
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2226 2227 2228 2229 2230 2231
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2232
	/* update cursor SR watermark */
2233
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2234 2235 2236

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2237 2238
}

2239 2240
#undef FW_WM

2241
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2242
{
2243
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2244 2245 2246 2247 2248 2249
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2250
	struct intel_crtc *crtc, *enabled = NULL;
2251

2252
	if (IS_I945GM(dev_priv))
2253
		wm_info = &i945_wm_info;
2254
	else if (!IS_GEN2(dev_priv))
2255 2256
		wm_info = &i915_wm_info;
	else
2257
		wm_info = &i830_a_wm_info;
2258

2259
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2260
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2261 2262 2263 2264 2265 2266 2267
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2268
		if (IS_GEN2(dev_priv))
2269
			cpp = 4;
2270
		else
2271
			cpp = fb->format->cpp[0];
2272

2273
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2274
					       wm_info, fifo_size, cpp,
2275
					       pessimal_latency_ns);
2276
		enabled = crtc;
2277
	} else {
2278
		planea_wm = fifo_size - wm_info->guard_size;
2279 2280 2281 2282
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2283
	if (IS_GEN2(dev_priv))
2284
		wm_info = &i830_bc_wm_info;
2285

2286
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2287
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2288 2289 2290 2291 2292 2293 2294
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2295
		if (IS_GEN2(dev_priv))
2296
			cpp = 4;
2297
		else
2298
			cpp = fb->format->cpp[0];
2299

2300
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2301
					       wm_info, fifo_size, cpp,
2302
					       pessimal_latency_ns);
2303 2304 2305 2306
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2307
	} else {
2308
		planeb_wm = fifo_size - wm_info->guard_size;
2309 2310 2311
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2312 2313 2314

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2315
	if (IS_I915GM(dev_priv) && enabled) {
2316
		struct drm_i915_gem_object *obj;
2317

2318
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2319 2320

		/* self-refresh seems busted with untiled */
2321
		if (!i915_gem_object_is_tiled(obj))
2322 2323 2324
			enabled = NULL;
	}

2325 2326 2327 2328 2329 2330
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2331
	intel_set_memory_cxsr(dev_priv, false);
2332 2333

	/* Calc sr entries for one plane configs */
2334
	if (HAS_FW_BLC(dev_priv) && enabled) {
2335 2336
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2337 2338 2339 2340
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2341
		int clock = adjusted_mode->crtc_clock;
2342
		int htotal = adjusted_mode->crtc_htotal;
2343 2344
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2345 2346
		int entries;

2347
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2348
			cpp = 4;
2349
		else
2350
			cpp = fb->format->cpp[0];
2351

2352 2353
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2354 2355 2356 2357 2358 2359
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2360
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2361 2362
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2363
		else
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2380 2381
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2382 2383
}

2384
static void i845_update_wm(struct intel_crtc *unused_crtc)
2385
{
2386
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2387
	struct intel_crtc *crtc;
2388
	const struct drm_display_mode *adjusted_mode;
2389 2390 2391
	uint32_t fwater_lo;
	int planea_wm;

2392
	crtc = single_enabled_crtc(dev_priv);
2393 2394 2395
	if (crtc == NULL)
		return;

2396
	adjusted_mode = &crtc->config->base.adjusted_mode;
2397
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2398
				       &i845_wm_info,
2399
				       dev_priv->display.get_fifo_size(dev_priv, 0),
2400
				       4, pessimal_latency_ns);
2401 2402 2403 2404 2405 2406 2407 2408
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2409
/* latency must be in 0.1us units. */
2410 2411 2412
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2413
{
2414
	unsigned int ret;
2415

2416 2417
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2418 2419 2420 2421

	return ret;
}

2422
/* latency must be in 0.1us units. */
2423 2424 2425 2426 2427
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2428
{
2429
	unsigned int ret;
2430

2431 2432
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2433
	ret = DIV_ROUND_UP(ret, 64) + 2;
2434

2435 2436 2437
	return ret;
}

2438
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2439
			   uint8_t cpp)
2440
{
2441 2442 2443 2444 2445 2446
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2447
	if (WARN_ON(!cpp))
2448 2449 2450 2451
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2452
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2453 2454
}

2455
struct ilk_wm_maximums {
2456 2457 2458 2459 2460 2461
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2462 2463 2464 2465
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2466
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2467
				   const struct intel_plane_state *pstate,
2468 2469
				   uint32_t mem_value,
				   bool is_lp)
2470
{
2471
	uint32_t method1, method2;
2472
	int cpp;
2473

2474
	if (!intel_wm_plane_visible(cstate, pstate))
2475 2476
		return 0;

2477
	cpp = pstate->base.fb->format->cpp[0];
2478

2479
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2480 2481 2482 2483

	if (!is_lp)
		return method1;

2484
	method2 = ilk_wm_method2(cstate->pixel_rate,
2485
				 cstate->base.adjusted_mode.crtc_htotal,
2486
				 drm_rect_width(&pstate->base.dst),
2487
				 cpp, mem_value);
2488 2489

	return min(method1, method2);
2490 2491
}

2492 2493 2494 2495
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2496
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2497
				   const struct intel_plane_state *pstate,
2498 2499 2500
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2501
	int cpp;
2502

2503
	if (!intel_wm_plane_visible(cstate, pstate))
2504 2505
		return 0;

2506
	cpp = pstate->base.fb->format->cpp[0];
2507

2508 2509
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2510
				 cstate->base.adjusted_mode.crtc_htotal,
2511
				 drm_rect_width(&pstate->base.dst),
2512
				 cpp, mem_value);
2513 2514 2515
	return min(method1, method2);
}

2516 2517 2518 2519
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2520
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2521
				   const struct intel_plane_state *pstate,
2522 2523
				   uint32_t mem_value)
{
2524 2525
	int cpp;

2526
	if (!intel_wm_plane_visible(cstate, pstate))
2527 2528
		return 0;

2529 2530
	cpp = pstate->base.fb->format->cpp[0];

2531
	return ilk_wm_method2(cstate->pixel_rate,
2532
			      cstate->base.adjusted_mode.crtc_htotal,
2533
			      pstate->base.crtc_w, cpp, mem_value);
2534 2535
}

2536
/* Only for WM_LP. */
2537
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2538
				   const struct intel_plane_state *pstate,
2539
				   uint32_t pri_val)
2540
{
2541
	int cpp;
2542

2543
	if (!intel_wm_plane_visible(cstate, pstate))
2544 2545
		return 0;

2546
	cpp = pstate->base.fb->format->cpp[0];
2547

2548
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2549 2550
}

2551 2552
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2553
{
2554
	if (INTEL_GEN(dev_priv) >= 8)
2555
		return 3072;
2556
	else if (INTEL_GEN(dev_priv) >= 7)
2557 2558 2559 2560 2561
		return 768;
	else
		return 512;
}

2562 2563 2564
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2565
{
2566
	if (INTEL_GEN(dev_priv) >= 8)
2567 2568
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2569
	else if (INTEL_GEN(dev_priv) >= 7)
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2580 2581
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2582
{
2583
	if (INTEL_GEN(dev_priv) >= 7)
2584 2585 2586 2587 2588
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2589
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2590
{
2591
	if (INTEL_GEN(dev_priv) >= 8)
2592 2593 2594 2595 2596
		return 31;
	else
		return 15;
}

2597 2598 2599
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2600
				     const struct intel_wm_config *config,
2601 2602 2603
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2604 2605
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2606 2607

	/* if sprites aren't enabled, sprites get nothing */
2608
	if (is_sprite && !config->sprites_enabled)
2609 2610 2611
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2612
	if (level == 0 || config->num_pipes_active > 1) {
2613
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2614 2615 2616 2617 2618 2619

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2620
		if (INTEL_GEN(dev_priv) <= 6)
2621 2622 2623
			fifo_size /= 2;
	}

2624
	if (config->sprites_enabled) {
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2636
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2637 2638 2639 2640
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2641 2642
				      int level,
				      const struct intel_wm_config *config)
2643 2644
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2645
	if (level > 0 && config->num_pipes_active > 1)
2646 2647 2648
		return 64;

	/* otherwise just report max that registers can hold */
2649
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2650 2651
}

2652
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2653 2654 2655
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2656
				    struct ilk_wm_maximums *max)
2657
{
2658 2659 2660
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2661
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2662 2663
}

2664
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2665 2666 2667
					int level,
					struct ilk_wm_maximums *max)
{
2668 2669 2670 2671
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2672 2673
}

2674
static bool ilk_validate_wm_level(int level,
2675
				  const struct ilk_wm_maximums *max,
2676
				  struct intel_wm_level *result)
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2715
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2716
				 const struct intel_crtc *intel_crtc,
2717
				 int level,
2718
				 struct intel_crtc_state *cstate,
2719 2720 2721
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2722
				 struct intel_wm_level *result)
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2747 2748 2749
	result->enable = true;
}

2750
static uint32_t
2751
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2752
{
2753 2754
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2755 2756
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2757
	u32 linetime, ips_linetime;
2758

2759 2760 2761 2762
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2763
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2764
		return 0;
2765

2766 2767 2768
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2769 2770 2771
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2772
					 intel_state->cdclk.logical.cdclk);
2773

2774 2775
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2776 2777
}

2778 2779
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2780
{
2781
	if (INTEL_GEN(dev_priv) >= 9) {
2782
		uint32_t val;
2783
		int ret, i;
2784
		int level, max_level = ilk_wm_max_level(dev_priv);
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2840
		/*
2841
		 * WaWmMemoryReadLatency:skl+,glk
2842
		 *
2843
		 * punit doesn't take into account the read latency so we need
2844 2845
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2846
		 */
2847 2848 2849 2850 2851
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2852
				wm[level] += 2;
2853
			}
2854 2855
		}

2856
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2857 2858 2859 2860 2861
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2862 2863 2864 2865
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2866
	} else if (INTEL_GEN(dev_priv) >= 6) {
2867 2868 2869 2870 2871 2872
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2873
	} else if (INTEL_GEN(dev_priv) >= 5) {
2874 2875 2876 2877 2878 2879
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2880 2881
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2882 2883 2884
	}
}

2885 2886
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2887 2888
{
	/* ILK sprite LP0 latency is 1300 ns */
2889
	if (IS_GEN5(dev_priv))
2890 2891 2892
		wm[0] = 13;
}

2893 2894
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2895 2896
{
	/* ILK cursor LP0 latency is 1300 ns */
2897
	if (IS_GEN5(dev_priv))
2898 2899 2900
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2901
	if (IS_IVYBRIDGE(dev_priv))
2902 2903 2904
		wm[3] *= 2;
}

2905
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2906 2907
{
	/* how many WM levels are we expecting */
2908
	if (INTEL_GEN(dev_priv) >= 9)
2909
		return 7;
2910
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2911
		return 4;
2912
	else if (INTEL_GEN(dev_priv) >= 6)
2913
		return 3;
2914
	else
2915 2916
		return 2;
}
2917

2918
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2919
				   const char *name,
2920
				   const uint16_t wm[8])
2921
{
2922
	int level, max_level = ilk_wm_max_level(dev_priv);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2933 2934 2935 2936
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2937
		if (INTEL_GEN(dev_priv) >= 9)
2938 2939
			latency *= 10;
		else if (level > 0)
2940 2941 2942 2943 2944 2945 2946 2947
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2948 2949 2950
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2951
	int level, max_level = ilk_wm_max_level(dev_priv);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2963
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2979 2980 2981
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2982 2983
}

2984
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2985
{
2986
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2987 2988 2989 2990 2991 2992

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2993
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2994
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2995

2996 2997 2998
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999

3000
	if (IS_GEN6(dev_priv))
3001
		snb_wm_latency_quirk(dev_priv);
3002 3003
}

3004
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3005
{
3006
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3007
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3008 3009
}

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3033
/* Compute new watermarks for the pipe */
3034
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3035
{
3036 3037
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3038
	struct intel_pipe_wm *pipe_wm;
3039
	struct drm_device *dev = state->dev;
3040
	const struct drm_i915_private *dev_priv = to_i915(dev);
3041
	struct intel_plane *intel_plane;
3042
	struct intel_plane_state *pristate = NULL;
3043
	struct intel_plane_state *sprstate = NULL;
3044
	struct intel_plane_state *curstate = NULL;
3045
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3046
	struct ilk_wm_maximums max;
3047

3048
	pipe_wm = &cstate->wm.ilk.optimal;
3049

3050
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3051 3052 3053 3054 3055 3056
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
3057 3058

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3059
			pristate = ps;
3060
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3061
			sprstate = ps;
3062
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3063
			curstate = ps;
3064 3065
	}

3066
	pipe_wm->pipe_enabled = cstate->base.active;
3067
	if (sprstate) {
3068 3069 3070 3071
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3072 3073
	}

3074 3075
	usable_level = max_level;

3076
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3077
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3078
		usable_level = 1;
3079 3080

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3081
	if (pipe_wm->sprites_scaled)
3082
		usable_level = 0;
3083

3084
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3085 3086 3087 3088
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3089

3090
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3091
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3092

3093
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3094
		return -EINVAL;
3095

3096
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3097 3098

	for (level = 1; level <= max_level; level++) {
3099
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3100

3101
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3102
				     pristate, sprstate, curstate, wm);
3103 3104 3105 3106 3107 3108

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3109 3110 3111 3112 3113 3114
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
3115
			usable_level = level;
3116 3117
	}

3118
	return 0;
3119 3120
}

3121 3122 3123 3124 3125 3126 3127 3128 3129
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3130
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3131
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3132
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3133 3134 3135 3136 3137 3138

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3139
	*a = newstate->wm.ilk.optimal;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3168 3169
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3170 3171 3172 3173

	return 0;
}

3174 3175 3176 3177 3178 3179 3180 3181 3182
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3183 3184
	ret_wm->enable = true;

3185
	for_each_intel_crtc(dev, intel_crtc) {
3186
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3187 3188 3189 3190
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3191

3192 3193 3194 3195 3196
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3197
		if (!wm->enable)
3198
			ret_wm->enable = false;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3211
			 const struct intel_wm_config *config,
3212
			 const struct ilk_wm_maximums *max,
3213 3214
			 struct intel_pipe_wm *merged)
{
3215
	struct drm_i915_private *dev_priv = to_i915(dev);
3216
	int level, max_level = ilk_wm_max_level(dev_priv);
3217
	int last_enabled_level = max_level;
3218

3219
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3220
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3221
	    config->num_pipes_active > 1)
3222
		last_enabled_level = 0;
3223

3224
	/* ILK: FBC WM must be disabled always */
3225
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3226 3227 3228 3229 3230 3231 3232

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3233 3234 3235 3236 3237
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3238 3239 3240 3241 3242 3243

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3244 3245
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3246 3247 3248
			wm->fbc_val = 0;
		}
	}
3249 3250 3251 3252 3253 3254 3255

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3256
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3257
	    intel_fbc_is_active(dev_priv)) {
3258 3259 3260 3261 3262 3263
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3264 3265
}

3266 3267 3268 3269 3270 3271
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3272 3273 3274
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3275
	struct drm_i915_private *dev_priv = to_i915(dev);
3276

3277
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3278 3279 3280 3281 3282
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3283
static void ilk_compute_wm_results(struct drm_device *dev,
3284
				   const struct intel_pipe_wm *merged,
3285
				   enum intel_ddb_partitioning partitioning,
3286
				   struct ilk_wm_values *results)
3287
{
3288
	struct drm_i915_private *dev_priv = to_i915(dev);
3289 3290
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3291

3292
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3293
	results->partitioning = partitioning;
3294

3295
	/* LP1+ register values */
3296
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3297
		const struct intel_wm_level *r;
3298

3299
		level = ilk_wm_lp_to_level(wm_lp, merged);
3300

3301
		r = &merged->wm[level];
3302

3303 3304 3305 3306 3307
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3308
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3309 3310 3311
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3312 3313 3314
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3315
		if (INTEL_GEN(dev_priv) >= 8)
3316 3317 3318 3319 3320 3321
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3322 3323 3324 3325
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3326
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3327 3328 3329 3330
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3331
	}
3332

3333
	/* LP0 register values */
3334
	for_each_intel_crtc(dev, intel_crtc) {
3335
		enum pipe pipe = intel_crtc->pipe;
3336 3337
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3338 3339 3340 3341

		if (WARN_ON(!r->enable))
			continue;

3342
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3343

3344 3345 3346 3347
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3348 3349 3350
	}
}

3351 3352
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3353
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3354 3355
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3356
{
3357
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3358
	int level1 = 0, level2 = 0;
3359

3360 3361 3362 3363 3364
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3365 3366
	}

3367 3368
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3369 3370 3371
			return r2;
		else
			return r1;
3372
	} else if (level1 > level2) {
3373 3374 3375 3376 3377 3378
		return r1;
	} else {
		return r2;
	}
}

3379 3380 3381 3382 3383 3384 3385 3386
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3387
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3388 3389
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3390 3391 3392 3393 3394
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3395
	for_each_pipe(dev_priv, pipe) {
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3439 3440
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3441
{
3442
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3443
	bool changed = false;
3444

3445 3446 3447
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3448
		changed = true;
3449 3450 3451 3452
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3453
		changed = true;
3454 3455 3456 3457
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3458
		changed = true;
3459
	}
3460

3461 3462 3463 3464
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3465

3466 3467 3468 3469 3470 3471 3472
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3473 3474
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3475
{
3476
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3477 3478 3479
	unsigned int dirty;
	uint32_t val;

3480
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3481 3482 3483 3484 3485
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3486
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3487
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3488
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3489
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3490
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3491 3492
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3493
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3494
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3495
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3496
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3497
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3498 3499
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3500
	if (dirty & WM_DIRTY_DDB) {
3501
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3516 3517
	}

3518
	if (dirty & WM_DIRTY_FBC) {
3519 3520 3521 3522 3523 3524 3525 3526
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3527 3528 3529 3530
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3531
	if (INTEL_GEN(dev_priv) >= 7) {
3532 3533 3534 3535 3536
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3537

3538
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3539
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3540
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3541
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3542
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3543
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3544 3545

	dev_priv->wm.hw = *results;
3546 3547
}

3548
bool ilk_disable_lp_wm(struct drm_device *dev)
3549
{
3550
	struct drm_i915_private *dev_priv = to_i915(dev);
3551 3552 3553 3554

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3555 3556 3557 3558 3559 3560 3561 3562
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3563
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3564 3565 3566 3567 3568
		return true;

	return false;
}

3569 3570 3571
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3572 3573
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3574 3575 3576 3577 3578 3579 3580
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3581 3582
}

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3595
intel_enable_sagv(struct drm_i915_private *dev_priv)
3596 3597 3598
{
	int ret;

3599 3600 3601 3602
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3618
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3619
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3620
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3621 3622 3623 3624 3625 3626
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3627
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3628 3629 3630 3631
	return 0;
}

int
3632
intel_disable_sagv(struct drm_i915_private *dev_priv)
3633
{
3634
	int ret;
3635

3636 3637 3638 3639
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3640 3641 3642 3643 3644 3645
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3646 3647 3648 3649
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3650 3651 3652 3653 3654 3655
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3656
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3657
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3658
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3659
		return 0;
3660 3661 3662
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3663 3664
	}

3665
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3666 3667 3668
	return 0;
}

3669
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3670 3671 3672 3673
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3674 3675
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3676
	struct intel_crtc_state *cstate;
3677
	enum pipe pipe;
3678
	int level, latency;
3679
	int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3680

3681 3682 3683
	if (!intel_has_sagv(dev_priv))
		return false;

3684
	/*
3685
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3697
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3698
	cstate = to_intel_crtc_state(crtc->base.state);
3699

3700
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3701 3702
		return false;

3703
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3704 3705
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3706

3707
		/* Skip this plane if it's not enabled */
3708
		if (!wm->wm[0].plane_en)
3709 3710 3711
			continue;

		/* Find the highest enabled wm level for this plane */
3712
		for (level = ilk_wm_max_level(dev_priv);
3713
		     !wm->wm[level].plane_en; --level)
3714 3715
		     { }

3716 3717 3718
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3719
		    plane->base.state->fb->modifier ==
3720 3721 3722
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3723
		/*
3724 3725 3726
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3727
		 */
3728
		if (latency < sagv_block_time_us)
3729 3730 3731 3732 3733 3734
			return false;
	}

	return true;
}

3735 3736
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3737
				   const struct intel_crtc_state *cstate,
3738 3739
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3740
{
3741 3742 3743
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3744
	struct drm_crtc *for_crtc = cstate->base.crtc;
3745 3746
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3747

3748
	if (WARN_ON(!state) || !cstate->base.active) {
3749 3750
		alloc->start = 0;
		alloc->end = 0;
3751
		*num_active = hweight32(dev_priv->active_crtcs);
3752 3753 3754
		return;
	}

3755 3756 3757 3758 3759
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3760 3761
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3762 3763 3764

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3765
	/*
3766 3767 3768 3769 3770 3771
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3772
	 */
3773
	if (!intel_state->active_pipe_changes) {
3774 3775 3776 3777 3778
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3779
		return;
3780
	}
3781 3782 3783 3784 3785 3786

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3787 3788
}

3789
static unsigned int skl_cursor_allocation(int num_active)
3790
{
3791
	if (num_active == 1)
3792 3793 3794 3795 3796
		return 32;

	return 8;
}

3797 3798 3799 3800
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3801 3802
	if (entry->end)
		entry->end += 1;
3803 3804
}

3805 3806
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3807
{
3808
	struct intel_crtc *crtc;
3809

3810 3811
	memset(ddb, 0, sizeof(*ddb));

3812
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3813
		enum intel_display_power_domain power_domain;
3814 3815
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3816 3817 3818

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3819 3820
			continue;

3821 3822 3823 3824 3825 3826 3827
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3828

3829 3830
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3831 3832

		intel_display_power_put(dev_priv, power_domain);
3833 3834 3835
	}
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3852
static uint_fixed_16_16_t
3853 3854
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3855
{
3856
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3857
	uint32_t src_w, src_h, dst_w, dst_h;
3858 3859
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3860

3861
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3862
		return u32_to_fixed16(0);
3863 3864

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3865
	if (plane->id == PLANE_CURSOR) {
3866 3867 3868 3869
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3870 3871
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3872 3873 3874
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3875 3876 3877 3878 3879
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3880 3881
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3882 3883 3884 3885
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3886 3887 3888 3889
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3890

3891
	return mul_fixed16(downscale_w, downscale_h);
3892 3893
}

3894 3895 3896
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
3897
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

3916 3917 3918 3919
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
3935
	int crtc_clock, dotclk;
3936 3937
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
3938
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3939 3940 3941 3942 3943 3944

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
3945
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

3963
		max_downscale = max_fixed16(plane_downscale, max_downscale);
3964 3965 3966 3967 3968 3969
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3970 3971 3972 3973 3974 3975
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

	if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3976 3977

	if (pipe_max_pixel_rate < crtc_clock) {
3978
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3979 3980 3981 3982 3983 3984
		return -EINVAL;
	}

	return 0;
}

3985
static unsigned int
3986 3987 3988
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3989
{
3990
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3991
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3992
	uint32_t data_rate;
3993
	uint32_t width = 0, height = 0;
3994 3995
	struct drm_framebuffer *fb;
	u32 format;
3996
	uint_fixed_16_16_t down_scale_amount;
3997

3998
	if (!intel_pstate->base.visible)
3999
		return 0;
4000 4001

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4002
	format = fb->format->format;
4003

4004
	if (plane->id == PLANE_CURSOR)
4005 4006 4007
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
4008

4009 4010 4011 4012 4013
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4014 4015
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4016

4017
	/* for planar format */
4018
	if (format == DRM_FORMAT_NV12) {
4019
		if (y)  /* y-plane data rate */
4020
			data_rate = width * height *
4021
				fb->format->cpp[0];
4022
		else    /* uv-plane data rate */
4023
			data_rate = (width / 2) * (height / 2) *
4024
				fb->format->cpp[1];
4025 4026
	} else {
		/* for packed formats */
4027
		data_rate = width * height * fb->format->cpp[0];
4028 4029
	}

4030
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4031

4032
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4033 4034 4035 4036 4037 4038 4039 4040
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4041 4042 4043
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
4044
{
4045 4046
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4047 4048
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4049
	unsigned int total_data_rate = 0;
4050 4051 4052

	if (WARN_ON(!state))
		return 0;
4053

4054
	/* Calculate and cache data rate for each plane */
4055
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4056 4057
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4058 4059 4060 4061

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4062
		plane_data_rate[plane_id] = rate;
4063 4064

		total_data_rate += rate;
4065 4066 4067 4068

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4069
		plane_y_data_rate[plane_id] = rate;
4070

4071
		total_data_rate += rate;
4072 4073 4074 4075 4076
	}

	return total_data_rate;
}

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
4091
	if (y && fb->format->format != DRM_FORMAT_NV12)
4092 4093 4094
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4095
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4096 4097 4098
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4099 4100
		return 8;

4101 4102 4103 4104 4105
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4106 4107
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4108 4109

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
4110
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4111 4112 4113 4114
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
4115
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4116
		plane_bpp = fb->format->cpp[1];
4117
	else
4118
		plane_bpp = fb->format->cpp[0];
4119

4120
	if (drm_rotation_90_or_270(pstate->rotation)) {
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4144 4145 4146 4147 4148 4149 4150 4151
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4152
		enum plane_id plane_id = to_intel_plane(plane)->id;
4153

4154
		if (plane_id == PLANE_CURSOR)
4155 4156 4157 4158 4159
			continue;

		if (!pstate->visible)
			continue;

4160 4161
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4162 4163 4164 4165 4166
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4167
static int
4168
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4169 4170
		      struct skl_ddb_allocation *ddb /* out */)
{
4171
	struct drm_atomic_state *state = cstate->base.state;
4172
	struct drm_crtc *crtc = cstate->base.crtc;
4173 4174 4175
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4176
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4177
	uint16_t alloc_size, start;
4178 4179
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4180
	unsigned int total_data_rate;
4181
	enum plane_id plane_id;
4182
	int num_active;
4183 4184
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4185
	uint16_t total_min_blocks = 0;
4186

4187 4188 4189 4190
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4191 4192 4193
	if (WARN_ON(!state))
		return 0;

4194
	if (!cstate->base.active) {
4195
		alloc->start = alloc->end = 0;
4196 4197 4198
		return 0;
	}

4199
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4200
	alloc_size = skl_ddb_entry_size(alloc);
4201
	if (alloc_size == 0)
4202
		return 0;
4203

4204
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4205

4206 4207 4208 4209 4210
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4211

4212
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4213 4214
		total_min_blocks += minimum[plane_id];
		total_min_blocks += y_minimum[plane_id];
4215 4216
	}

4217 4218 4219 4220 4221 4222 4223
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4224 4225
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4226 4227
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4228
	/*
4229 4230
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4231 4232 4233
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4234 4235 4236
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4237
	if (total_data_rate == 0)
4238
		return 0;
4239

4240
	start = alloc->start;
4241
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4242
		unsigned int data_rate, y_data_rate;
4243
		uint16_t plane_blocks, y_plane_blocks = 0;
4244

4245
		if (plane_id == PLANE_CURSOR)
4246 4247
			continue;

4248
		data_rate = plane_data_rate[plane_id];
4249 4250

		/*
4251
		 * allocation for (packed formats) or (uv-plane part of planar format):
4252 4253 4254
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4255 4256 4257
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4258

4259 4260
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4261 4262
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4263
		}
4264

4265 4266
		start += plane_blocks;

4267 4268 4269
		/*
		 * allocation for y_plane part of planar format:
		 */
4270
		y_data_rate = plane_y_data_rate[plane_id];
4271

4272 4273 4274 4275
		y_plane_blocks = y_minimum[plane_id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);

4276
		if (y_data_rate) {
4277 4278
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4279
		}
4280 4281

		start += y_plane_blocks;
4282 4283
	}

4284
	return 0;
4285 4286
}

4287 4288
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4289
 * for the read latency) and cpp should always be <= 8, so that
4290 4291 4292
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4293 4294 4295
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
	       uint8_t cpp, uint32_t latency)
4296
{
4297 4298
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4299 4300

	if (latency == 0)
4301
		return FP_16_16_MAX;
4302

4303
	wm_intermediate_val = latency * pixel_rate * cpp;
4304
	ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4305 4306 4307 4308

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4309 4310 4311
	return ret;
}

4312 4313 4314 4315
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4316
{
4317
	uint32_t wm_intermediate_val;
4318
	uint_fixed_16_16_t ret;
4319 4320

	if (latency == 0)
4321
		return FP_16_16_MAX;
4322 4323

	wm_intermediate_val = latency * pixel_rate;
4324 4325
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4326
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4327 4328 4329
	return ret;
}

4330 4331 4332 4333 4334 4335 4336 4337
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4338
		return u32_to_fixed16(0);
4339 4340 4341 4342

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4343
		return u32_to_fixed16(0);
4344 4345

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4346
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4347 4348 4349 4350

	return linetime_us;
}

4351 4352 4353
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4354 4355
{
	uint64_t adjusted_pixel_rate;
4356
	uint_fixed_16_16_t downscale_amount;
4357 4358

	/* Shouldn't reach here on disabled planes... */
4359
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4360 4361 4362 4363 4364 4365
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4366
	adjusted_pixel_rate = cstate->pixel_rate;
4367
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4368

4369 4370
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4371 4372
}

4373 4374
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
4375
				const struct intel_plane_state *intel_pstate,
4376
				uint16_t ddb_allocation,
4377 4378
				int level,
				uint16_t *out_blocks, /* out */
4379 4380
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
4381
{
4382
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4383 4384
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4385
	uint32_t latency = dev_priv->wm.skl_latency[level];
4386 4387 4388 4389 4390
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
4391
	uint32_t res_blocks, res_lines;
4392
	uint8_t cpp;
4393
	uint32_t width = 0;
4394
	uint32_t plane_pixel_rate;
4395 4396
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
4397 4398 4399
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4400
	bool y_tiled, x_tiled;
4401

4402
	if (latency == 0 ||
4403 4404
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
		*enabled = false;
4405
		return 0;
4406
	}
4407

4408
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4409 4410 4411
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4412 4413
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

4414 4415 4416
	/* Display WA #1141: kbl,cfl */
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
4417 4418
		latency += 4;

4419
	if (apply_memory_bw_wa && x_tiled)
4420 4421
		latency += 15;

4422 4423 4424
	if (plane->id == PLANE_CURSOR) {
		width = intel_pstate->base.crtc_w;
	} else {
4425 4426 4427 4428 4429
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4430 4431
		width = drm_rect_width(&intel_pstate->base.src) >> 16;
	}
4432

4433 4434
	cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
							fb->format->cpp[0];
4435 4436
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

4437
	if (drm_rotation_90_or_270(pstate->rotation)) {
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
4449 4450 4451
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
4452 4453 4454 4455 4456
		}
	} else {
		y_min_scanlines = 4;
	}

4457 4458 4459
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

4460
	plane_bytes_per_line = width * cpp;
4461
	if (y_tiled) {
4462 4463
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
4464 4465 4466 4467

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4468
		plane_blocks_per_line = div_fixed16(interm_pbpl,
4469
							y_min_scanlines);
4470
	} else if (x_tiled && INTEL_GEN(dev_priv) == 9) {
4471
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
4472
		plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4473
	} else {
4474
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
4475
		plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4476 4477
	}

4478
	method1 = skl_wm_method1(dev_priv, plane_pixel_rate, cpp, latency);
4479
	method2 = skl_wm_method2(plane_pixel_rate,
4480
				 cstate->base.adjusted_mode.crtc_htotal,
4481
				 latency,
4482
				 plane_blocks_per_line);
4483

4484 4485
	y_tile_minimum = mul_u32_fixed16(y_min_scanlines,
					 plane_blocks_per_line);
4486

4487
	if (y_tiled) {
4488
		selected_result = max_fixed16(method2, y_tile_minimum);
4489
	} else {
4490 4491
		uint32_t linetime_us;

4492
		linetime_us = fixed16_to_u32_round_up(
4493
				intel_get_linetime_us(cstate));
4494 4495 4496
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
4497 4498
		else if (ddb_allocation >=
			 fixed16_to_u32_round_up(plane_blocks_per_line))
4499
			selected_result = min_fixed16(method1, method2);
4500
		else if (latency >= linetime_us)
4501
			selected_result = min_fixed16(method1, method2);
4502 4503 4504
		else
			selected_result = method1;
	}
4505

4506
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4507 4508
	res_lines = div_round_up_fixed16(selected_result,
					 plane_blocks_per_line);
4509

4510 4511 4512 4513 4514 4515 4516
	/* Display WA #1125: skl,bxt,kbl,glk */
	if (level == 0 &&
	    (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
	     fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
		res_blocks += fixed16_to_u32_round_up(y_tile_minimum);

	/* Display WA #1126: skl,bxt,kbl,glk */
4517
	if (level >= 1 && level <= 7) {
4518
		if (y_tiled) {
4519
			res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
4520
			res_lines += y_min_scanlines;
4521
		} else {
4522
			res_blocks++;
4523
		}
4524
	}
4525

4526 4527
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
4528

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4544
	}
4545 4546 4547

	*out_blocks = res_blocks;
	*out_lines = res_lines;
4548
	*enabled = true;
4549

4550
	return 0;
4551 4552
}

4553
static int
4554
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4555
		      struct skl_ddb_allocation *ddb,
4556 4557 4558
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
		      struct skl_plane_wm *wm)
4559
{
4560 4561 4562 4563 4564
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4565
	int level, max_level = ilk_wm_max_level(dev_priv);
4566
	int ret;
L
Lyude 已提交
4567

4568 4569
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4570

4571 4572
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);

4573 4574 4575 4576 4577 4578
	for (level = 0; level <= max_level; level++) {
		struct skl_wm_level *result = &wm->wm[level];

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4579
					   ddb_blocks,
4580 4581
					   level,
					   &result->plane_res_b,
4582 4583
					   &result->plane_res_l,
					   &result->plane_en);
4584 4585 4586
		if (ret)
			return ret;
	}
4587 4588

	return 0;
4589 4590
}

4591
static uint32_t
4592
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4593
{
M
Mahesh Kumar 已提交
4594 4595
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4596
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4597
	uint32_t linetime_wm;
4598

4599
	linetime_us = intel_get_linetime_us(cstate);
4600

4601
	if (is_fixed16_zero(linetime_us))
4602
		return 0;
4603

4604
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4605 4606 4607 4608 4609 4610

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
4611 4612
}

4613
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4614
				      struct skl_wm_level *trans_wm /* out */)
4615
{
4616
	if (!cstate->base.active)
4617
		return;
4618 4619

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
4620
	trans_wm->plane_en = false;
4621 4622
}

4623 4624 4625
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4626
{
4627
	struct drm_device *dev = cstate->base.crtc->dev;
4628
	struct drm_crtc_state *crtc_state = &cstate->base;
4629
	const struct drm_i915_private *dev_priv = to_i915(dev);
4630 4631
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4632
	struct skl_plane_wm *wm;
4633
	int ret;
4634

L
Lyude 已提交
4635 4636 4637 4638 4639 4640
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4641 4642 4643 4644 4645 4646
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;

		wm = &pipe_wm->planes[plane_id];
L
Lyude 已提交
4647

4648 4649
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
					    intel_pstate, wm);
4650 4651
		if (ret)
			return ret;
L
Lyude 已提交
4652
		skl_compute_transition_wm(cstate, &wm->trans_wm);
4653
	}
4654
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4655

4656
	return 0;
4657 4658
}

4659 4660
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4661 4662 4663 4664 4665 4666 4667 4668
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4684 4685 4686
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4687
			       enum plane_id plane_id)
4688 4689 4690 4691
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4692
	int level, max_level = ilk_wm_max_level(dev_priv);
4693 4694 4695
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4696
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4697
				   &wm->wm[level]);
4698
	}
4699
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4700
			   &wm->trans_wm);
4701

4702 4703 4704 4705
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4706 4707
}

4708 4709 4710
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4711 4712 4713 4714
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4715
	int level, max_level = ilk_wm_max_level(dev_priv);
4716 4717 4718
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4719 4720
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4721
	}
4722
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4723

4724
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4725
			    &ddb->plane[pipe][PLANE_CURSOR]);
4726 4727
}

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4742 4743
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4744
{
4745
	return a->start < b->end && b->start < a->end;
4746 4747
}

4748 4749 4750
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4751
{
4752
	int i;
4753

4754 4755 4756
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4757
			return true;
4758

4759
	return false;
4760 4761
}

4762
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4763
			      const struct skl_pipe_wm *old_pipe_wm,
4764
			      struct skl_pipe_wm *pipe_wm, /* out */
4765
			      struct skl_ddb_allocation *ddb, /* out */
4766
			      bool *changed /* out */)
4767
{
4768
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4769
	int ret;
4770

4771 4772 4773
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4774

4775
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4776 4777 4778
		*changed = false;
	else
		*changed = true;
4779

4780
	return 0;
4781 4782
}

4783 4784 4785 4786 4787 4788 4789
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4790
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4791 4792 4793 4794 4795
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4796
static int
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
4832 4833 4834 4835 4836
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4837
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4838
	uint32_t realloc_pipes = pipes_modified(state);
4839 4840 4841 4842 4843 4844 4845 4846
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4847 4848 4849 4850 4851 4852
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4853 4854
		intel_state->active_pipe_changes = ~0;

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4878
	if (intel_state->active_pipe_changes) {
4879
		realloc_pipes = ~0;
4880 4881
		intel_state->wm_results.dirty_pipes = ~0;
	}
4882

4883 4884 4885 4886 4887 4888
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4889 4890 4891 4892 4893 4894
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
4895 4896 4897 4898 4899 4900 4901 4902

		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
4903 4904 4905 4906 4907
	}

	return 0;
}

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4931
	int i;
4932

4933
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4934 4935
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4936

4937
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4938
			enum plane_id plane_id = intel_plane->id;
4939 4940
			const struct skl_ddb_entry *old, *new;

4941 4942
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4943 4944 4945 4946

			if (skl_ddb_entry_equal(old, new))
				continue;

4947 4948 4949 4950 4951
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4952 4953 4954 4955
		}
	}
}

4956 4957 4958 4959 4960
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4961 4962
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
4963
	struct drm_device *dev = state->dev;
4964
	struct skl_pipe_wm *pipe_wm;
4965
	bool changed = false;
4966
	int ret, i;
4967

4968 4969 4970 4971 4972 4973 4974
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

4975 4976 4977 4978 4979 4980 4981 4982
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4983
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4984
		changed = true;
4985

4986 4987 4988
	if (!changed)
		return 0;

4989 4990 4991
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4992
	ret = skl_compute_ddb(state);
4993 4994 4995
	if (ret)
		return ret;

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5006
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5007 5008
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5009 5010
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5011 5012

		pipe_wm = &intel_cstate->wm.skl.optimal;
5013 5014
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5028 5029
	skl_print_wm_changes(state);

5030 5031 5032
	return 0;
}

5033 5034 5035 5036 5037 5038
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5039
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5040
	enum pipe pipe = crtc->pipe;
5041
	enum plane_id plane_id;
5042 5043 5044

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5045 5046

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5047

5048 5049 5050 5051 5052 5053 5054 5055
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5056 5057
}

5058 5059
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5060
{
5061
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5062
	struct drm_device *dev = intel_crtc->base.dev;
5063
	struct drm_i915_private *dev_priv = to_i915(dev);
5064
	struct skl_wm_values *results = &state->wm_results;
5065
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5066
	enum pipe pipe = intel_crtc->pipe;
5067

5068
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5069 5070
		return;

5071
	mutex_lock(&dev_priv->wm.wm_mutex);
5072

5073 5074
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5075 5076

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5077 5078

	mutex_unlock(&dev_priv->wm.wm_mutex);
5079 5080
}

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5099
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5100
{
5101
	struct drm_device *dev = &dev_priv->drm;
5102
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5103
	struct ilk_wm_maximums max;
5104
	struct intel_wm_config config = {};
5105
	struct ilk_wm_values results = {};
5106
	enum intel_ddb_partitioning partitioning;
5107

5108 5109 5110 5111
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5112 5113

	/* 5/6 split only in single pipe config on IVB+ */
5114
	if (INTEL_GEN(dev_priv) >= 7 &&
5115 5116 5117
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5118

5119
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5120
	} else {
5121
		best_lp_wm = &lp_wm_1_2;
5122 5123
	}

5124
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5125
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5126

5127
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5128

5129
	ilk_write_wm_values(dev_priv, &results);
5130 5131
}

5132 5133
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5134
{
5135 5136
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5137

5138
	mutex_lock(&dev_priv->wm.wm_mutex);
5139
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5140 5141 5142
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5143

5144 5145
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5146 5147 5148
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5149

5150 5151
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5152
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5153 5154 5155
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5156 5157
}

5158 5159
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5160
{
5161 5162 5163 5164
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5165 5166
}

5167 5168
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5169
{
5170
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5171 5172
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5173 5174
	int level, max_level;
	enum plane_id plane_id;
5175
	uint32_t val;
5176

5177
	max_level = ilk_wm_max_level(dev_priv);
5178

5179 5180
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5181

5182
		for (level = 0; level <= max_level; level++) {
5183 5184
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5185 5186
			else
				val = I915_READ(CUR_WM(pipe, level));
5187

5188
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5189 5190
		}

5191 5192
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5193 5194 5195 5196
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5197 5198
	}

5199 5200
	if (!intel_crtc->active)
		return;
5201

5202
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5203 5204 5205 5206
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5207
	struct drm_i915_private *dev_priv = to_i915(dev);
5208
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5209
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5210
	struct drm_crtc *crtc;
5211 5212
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5213

5214
	skl_ddb_get_hw_state(dev_priv, ddb);
5215 5216 5217 5218 5219 5220
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5221
		if (intel_crtc->active)
5222 5223
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5224

5225 5226 5227 5228 5229 5230 5231
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5232 5233
}

5234 5235 5236
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5237
	struct drm_i915_private *dev_priv = to_i915(dev);
5238
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5239
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5241
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5242
	enum pipe pipe = intel_crtc->pipe;
5243
	static const i915_reg_t wm0_pipe_reg[] = {
5244 5245 5246 5247 5248 5249
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5250
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5251
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5252

5253 5254
	memset(active, 0, sizeof(*active));

5255
	active->pipe_enabled = intel_crtc->active;
5256 5257

	if (active->pipe_enabled) {
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5272
		int level, max_level = ilk_wm_max_level(dev_priv);
5273 5274 5275 5276 5277 5278 5279 5280 5281

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5282 5283

	intel_crtc->wm.active.ilk = *active;
5284 5285
}

5286 5287 5288 5289 5290
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5317 5318 5319 5320 5321 5322 5323 5324 5325
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5326
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5327
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5328
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5329
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5330
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5331
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5332
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5333 5334 5335 5336 5337
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5338 5339 5340
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5341 5342

	tmp = I915_READ(DSPFW2);
5343 5344 5345
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5346 5347 5348 5349 5350 5351

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5352 5353
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5354 5355

		tmp = I915_READ(DSPFW8_CHV);
5356 5357
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5358 5359

		tmp = I915_READ(DSPFW9_CHV);
5360 5361
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5362 5363 5364

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5365 5366 5367 5368 5369 5370 5371 5372 5373
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5374 5375
	} else {
		tmp = I915_READ(DSPFW7);
5376 5377
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5378 5379 5380

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5381 5382 5383 5384 5385 5386
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5387 5388 5389 5390 5391 5392
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5534 5535 5536 5537
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5538
	struct intel_crtc *crtc;
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5553 5554 5555 5556 5557 5558 5559 5560 5561
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5562
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5576 5577 5578 5579

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5596
			struct g4x_pipe_wm *raw =
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5618
		crtc_state->wm.vlv.intermediate = *active;
5619

5620
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5621 5622 5623 5624 5625
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5626
	}
5627 5628 5629 5630 5631

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5656
			struct g4x_pipe_wm *raw =
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5681 5682
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5683
	struct drm_i915_private *dev_priv = to_i915(dev);
5684
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5685 5686
	struct drm_crtc *crtc;

5687
	for_each_crtc(dev, crtc)
5688 5689 5690 5691 5692 5693 5694
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5695
	if (INTEL_GEN(dev_priv) >= 7) {
5696 5697 5698
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5699

5700
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5701 5702
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5703
	else if (IS_IVYBRIDGE(dev_priv))
5704 5705
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5706 5707 5708 5709 5710

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5743
void intel_update_watermarks(struct intel_crtc *crtc)
5744
{
5745
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5746 5747

	if (dev_priv->display.update_wm)
5748
		dev_priv->display.update_wm(crtc);
5749 5750
}

5751
/*
5752 5753 5754 5755 5756 5757 5758 5759
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5760
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5761 5762 5763
{
	u16 rgvswctl;

5764
	lockdep_assert_held(&mchdev_lock);
5765

5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5783
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5784
{
5785
	u32 rgvmodectl;
5786 5787
	u8 fmax, fmin, fstart, vstart;

5788 5789
	spin_lock_irq(&mchdev_lock);

5790 5791
	rgvmodectl = I915_READ(MEMMODECTL);

5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5812
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5813 5814
		PXVFREQ_PX_SHIFT;

5815 5816
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5817

5818 5819 5820
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5837
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5838
		DRM_ERROR("stuck trying to change perf mode\n");
5839
	mdelay(1);
5840

5841
	ironlake_set_drps(dev_priv, fstart);
5842

5843 5844
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5845
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5846
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5847
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5848 5849

	spin_unlock_irq(&mchdev_lock);
5850 5851
}

5852
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5853
{
5854 5855 5856 5857 5858
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5859 5860 5861 5862 5863 5864 5865 5866 5867

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5868
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5869
	mdelay(1);
5870 5871
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5872
	mdelay(1);
5873

5874
	spin_unlock_irq(&mchdev_lock);
5875 5876
}

5877 5878 5879 5880 5881
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5882
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5883
{
5884
	u32 limits;
5885

5886 5887 5888 5889 5890 5891
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5892
	if (INTEL_GEN(dev_priv) >= 9) {
5893 5894 5895 5896 5897 5898 5899 5900
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5901 5902 5903 5904

	return limits;
}

5905 5906 5907
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5908 5909
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5910 5911 5912 5913

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5914 5915
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5916 5917 5918 5919
			new_power = BETWEEN;
		break;

	case BETWEEN:
5920 5921
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5922
			new_power = LOW_POWER;
5923 5924
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5925 5926 5927 5928
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5929 5930
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5931 5932 5933 5934
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5935
	if (val <= dev_priv->rps.min_freq_softlimit)
5936
		new_power = LOW_POWER;
5937
	if (val >= dev_priv->rps.max_freq_softlimit)
5938 5939 5940 5941 5942 5943 5944 5945
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5946 5947
		ei_up = 16000;
		threshold_up = 95;
5948 5949

		/* Downclock if less than 85% busy over 32ms */
5950 5951
		ei_down = 32000;
		threshold_down = 85;
5952 5953 5954 5955
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5956 5957
		ei_up = 13000;
		threshold_up = 90;
5958 5959

		/* Downclock if less than 75% busy over 32ms */
5960 5961
		ei_down = 32000;
		threshold_down = 75;
5962 5963 5964 5965
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5966 5967
		ei_up = 10000;
		threshold_up = 85;
5968 5969

		/* Downclock if less than 60% busy over 32ms */
5970 5971
		ei_down = 32000;
		threshold_down = 60;
5972 5973 5974
		break;
	}

5975 5976 5977 5978 5979 5980
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5981
	I915_WRITE(GEN6_RP_UP_EI,
5982
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5983
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5984 5985
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5986 5987

	I915_WRITE(GEN6_RP_DOWN_EI,
5988
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5989
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6000

6001
skip_hw_write:
6002
	dev_priv->rps.power = new_power;
6003 6004
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
6005 6006 6007
	dev_priv->rps.last_adj = 0;
}

6008 6009 6010 6011
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

6012
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6013
	if (val > dev_priv->rps.min_freq_softlimit)
6014
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6015
	if (val < dev_priv->rps.max_freq_softlimit)
6016
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6017

6018 6019
	mask &= dev_priv->pm_rps_events;

6020
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6021 6022
}

6023 6024 6025
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6026
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6027
{
C
Chris Wilson 已提交
6028 6029 6030 6031 6032
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
6033

6034
		if (INTEL_GEN(dev_priv) >= 9)
6035 6036
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6037
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6038 6039 6040 6041 6042 6043 6044
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6045
	}
6046 6047 6048 6049

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6050
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6051
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6052

6053
	dev_priv->rps.cur_freq = val;
6054
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6055 6056

	return 0;
6057 6058
}

6059
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6060
{
6061 6062
	int err;

6063
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6064 6065 6066
		      "Odd GPU freq value\n"))
		val &= ~1;

6067 6068
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6069
	if (val != dev_priv->rps.cur_freq) {
6070 6071 6072 6073
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6074
		gen6_set_rps_thresholds(dev_priv, val);
6075
	}
6076 6077 6078

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6079 6080

	return 0;
6081 6082
}

6083
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6084 6085
 *
 * * If Gfx is Idle, then
6086 6087 6088
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6089 6090 6091
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6092
	u32 val = dev_priv->rps.idle_freq;
6093
	int err;
6094

6095
	if (dev_priv->rps.cur_freq <= val)
6096 6097
		return;

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6110
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6111
	err = valleyview_set_rps(dev_priv, val);
6112
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6113 6114 6115

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6116 6117
}

6118 6119 6120 6121
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
6122 6123
		u8 freq;

6124
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6125 6126 6127
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6128

6129 6130
		gen6_enable_rps_interrupts(dev_priv);

6131 6132 6133 6134 6135 6136
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

6137
		if (intel_set_rps(dev_priv,
6138
				  clamp(freq,
6139 6140 6141
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6142 6143 6144 6145
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

6146 6147
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6148 6149 6150 6151 6152 6153 6154
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6155
	mutex_lock(&dev_priv->rps.hw_lock);
6156
	if (dev_priv->rps.enabled) {
6157
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6158
			vlv_set_rps_idle(dev_priv);
6159
		else
6160
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6161
		dev_priv->rps.last_adj = 0;
6162 6163
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6164
	}
6165
	mutex_unlock(&dev_priv->rps.hw_lock);
6166 6167
}

6168 6169
void gen6_rps_boost(struct drm_i915_gem_request *rq,
		    struct intel_rps_client *rps)
6170
{
6171
	struct drm_i915_private *i915 = rq->i915;
6172
	unsigned long flags;
6173 6174
	bool boost;

6175 6176 6177
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6178
	if (!i915->rps.enabled)
6179
		return;
6180

6181
	boost = false;
6182
	spin_lock_irqsave(&rq->lock, flags);
6183 6184 6185 6186
	if (!rq->waitboost && !i915_gem_request_completed(rq)) {
		atomic_inc(&i915->rps.num_waiters);
		rq->waitboost = true;
		boost = true;
6187
	}
6188
	spin_unlock_irqrestore(&rq->lock, flags);
6189 6190 6191 6192 6193 6194 6195
	if (!boost)
		return;

	if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq)
		schedule_work(&i915->rps.work);

	atomic_inc(rps ? &rps->boosts : &i915->rps.boosts);
6196 6197
}

6198
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6199
{
6200 6201
	int err;

6202 6203 6204 6205
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

6206 6207 6208 6209 6210
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

6211
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6212
		err = valleyview_set_rps(dev_priv, val);
6213
	else
6214 6215 6216
		err = gen6_set_rps(dev_priv, val);

	return err;
6217 6218
}

6219
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6220 6221
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6222
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6223 6224
}

6225
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6226 6227 6228 6229
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6230
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6231 6232
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6233
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6234
	I915_WRITE(GEN6_RP_CONTROL, 0);
6235 6236
}

6237
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6238 6239 6240 6241
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6242
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6243
{
6244 6245
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
6246
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6247

6248
	I915_WRITE(GEN6_RC_CONTROL, 0);
6249

6250
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6251 6252
}

6253
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
6254
{
6255
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6256 6257 6258 6259 6260
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
6261
	if (HAS_RC6p(dev_priv))
6262 6263 6264 6265 6266
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6267 6268

	else
6269 6270
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
6271 6272
}

6273
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6274
{
6275
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6276 6277
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6289 6290

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6291
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6292 6293 6294 6295 6296 6297 6298 6299
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6300 6301 6302
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
6303
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6304 6305 6306 6307 6308 6309 6310
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6311
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6312 6313 6314
		enable_rc6 = false;
	}

6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6329 6330 6331 6332 6333 6334
		enable_rc6 = false;
	}

	return enable_rc6;
}

6335
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6336
{
6337
	/* No RC6 before Ironlake and code is gone for ilk. */
6338
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
6339 6340
		return 0;

6341 6342 6343
	if (!enable_rc6)
		return 0;

6344
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6345 6346 6347 6348
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

6349
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
6350 6351 6352
	if (enable_rc6 >= 0) {
		int mask;

6353
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
6354 6355 6356 6357 6358 6359
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
6360 6361 6362
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
6363 6364 6365

		return enable_rc6 & mask;
	}
6366

6367
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
6368
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6369 6370

	return INTEL_RC6_ENABLE;
6371 6372
}

6373
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6374 6375
{
	/* All of these values are in units of 50MHz */
6376

6377
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6378
	if (IS_GEN9_LP(dev_priv)) {
6379
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6380 6381 6382 6383
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
6384
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6385 6386 6387 6388
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
6389
	/* hw_max = RP0 until we check for overclocking */
6390
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6391

6392
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6393
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6394
	    IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6395 6396 6397 6398 6399
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6400
			dev_priv->rps.efficient_freq =
6401 6402 6403 6404
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
6405 6406
	}

6407
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6408
		/* Store the frequency values in 16.66 MHZ units, which is
6409 6410
		 * the natural hardware unit for SKL
		 */
6411 6412 6413 6414 6415 6416
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
6417 6418
}

6419
static void reset_rps(struct drm_i915_private *dev_priv,
6420
		      int (*set)(struct drm_i915_private *, u8))
6421 6422 6423 6424 6425 6426 6427
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

6428 6429
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6430 6431
}

J
Jesse Barnes 已提交
6432
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6433
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6434 6435 6436
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6437 6438 6439 6440 6441 6442 6443 6444
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6445 6446
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6447 6448 6449
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6450
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6451 6452 6453 6454

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6455
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6456
{
6457
	struct intel_engine_cs *engine;
6458
	enum intel_engine_id id;
Z
Zhe Wang 已提交
6459 6460 6461 6462 6463 6464 6465
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6466
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6467 6468 6469 6470 6471

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
6472 6473

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6474
	if (IS_SKYLAKE(dev_priv))
6475 6476 6477
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
6478 6479
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6480
	for_each_engine(engine, dev_priv, id)
6481
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6482

6483
	if (HAS_GUC(dev_priv))
6484 6485
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6486 6487
	I915_WRITE(GEN6_RC_SLEEP, 0);

6488 6489 6490 6491
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
6492
	/* 3a: Enable RC6 */
6493
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
6494
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6495
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6496 6497 6498
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
6499

6500 6501
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6502
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6503
	 */
6504
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6505 6506 6507 6508
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6509

6510
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6511 6512
}

6513
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6514
{
6515
	struct intel_engine_cs *engine;
6516
	enum intel_engine_id id;
6517
	uint32_t rc6_mask = 0;
6518 6519 6520 6521 6522 6523

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6524
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6525 6526 6527 6528 6529 6530 6531 6532

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6533
	for_each_engine(engine, dev_priv, id)
6534
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6535
	I915_WRITE(GEN6_RC_SLEEP, 0);
6536
	if (IS_BROADWELL(dev_priv))
6537 6538 6539
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6540 6541

	/* 3: Enable RC6 */
6542
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6543
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6544 6545
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
6546 6547 6548 6549 6550 6551 6552
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
6553 6554

	/* 4 Program defaults and thresholds for RPS*/
6555 6556 6557 6558
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6573 6574

	/* 5: Enable RPS */
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

6585
	reset_rps(dev_priv, gen6_set_rps);
6586

6587
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6588 6589
}

6590
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6591
{
6592
	struct intel_engine_cs *engine;
6593
	enum intel_engine_id id;
6594
	u32 rc6vids, rc6_mask = 0;
6595 6596
	u32 gtfifodbg;
	int rc6_mode;
6597
	int ret;
6598

6599
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6600

6601 6602 6603 6604 6605 6606 6607 6608 6609
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6610 6611
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6612 6613 6614 6615
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6616
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6627
	for_each_engine(engine, dev_priv, id)
6628
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6629 6630 6631

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6632
	if (IS_IVYBRIDGE(dev_priv))
6633 6634 6635
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6636
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6637 6638
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6639
	/* Check if we are enabling RC6 */
6640
	rc6_mode = intel_enable_rc6();
6641 6642 6643
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

6644
	/* We don't use those on Haswell */
6645
	if (!IS_HASWELL(dev_priv)) {
6646 6647
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6648

6649 6650 6651
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
6652

6653
	intel_print_rc6_info(dev_priv, rc6_mask);
6654 6655 6656 6657 6658 6659

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6660 6661
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6662 6663
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

6664
	reset_rps(dev_priv, gen6_set_rps);
6665

6666 6667
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6668
	if (IS_GEN6(dev_priv) && ret) {
6669
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6670
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6671 6672 6673 6674 6675 6676 6677 6678 6679
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6680
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6681 6682
}

6683
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6684 6685
{
	int min_freq = 15;
6686 6687
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6688
	unsigned int max_gpu_freq, min_gpu_freq;
6689
	int scaling_factor = 180;
6690
	struct cpufreq_policy *policy;
6691

6692
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6693

6694 6695 6696 6697 6698 6699 6700 6701 6702
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6703
		max_ia_freq = tsc_khz;
6704
	}
6705 6706 6707 6708

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6709
	min_ring_freq = I915_READ(DCLK) & 0xf;
6710 6711
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6712

6713
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6714 6715 6716 6717 6718 6719 6720 6721
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

6722 6723 6724 6725 6726
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6727 6728
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6729 6730
		unsigned int ia_freq = 0, ring_freq = 0;

6731
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6732 6733 6734 6735 6736
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6737
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6738 6739
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6740
		} else if (IS_HASWELL(dev_priv)) {
6741
			ring_freq = mult_frac(gpu_freq, 5, 4);
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6758

B
Ben Widawsky 已提交
6759 6760
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6761 6762 6763
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6764 6765 6766
	}
}

6767
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6768 6769 6770
{
	u32 val, rp0;

6771
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6772

6773
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6788
	}
6789 6790 6791

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6805 6806 6807 6808
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6809 6810 6811
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6812 6813 6814
	return rp1;
}

6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6837
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6838 6839 6840
{
	u32 val, rp0;

6841
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6854
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6855
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6856
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6857 6858 6859 6860 6861
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6862
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6863
{
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6875 6876
}

6877 6878 6879 6880 6881 6882 6883 6884 6885
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6886 6887 6888 6889 6890 6891 6892 6893 6894

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6895
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6896
{
6897
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6898
	unsigned long pctx_paddr, paddr;
6899 6900 6901 6902 6903
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6904
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6905
		paddr = (dev_priv->mm.stolen_base +
6906
			 (ggtt->stolen_size - pctx_size));
6907 6908 6909 6910

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6911 6912

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6913 6914
}

6915
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6928
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6929
								      pcbr_offset,
6930
								      I915_GTT_OFFSET_NONE,
6931 6932 6933 6934
								      pctx_size);
		goto out;
	}

6935 6936
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6937 6938 6939 6940 6941 6942 6943 6944
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6945
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6946 6947
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6948
		goto out;
6949 6950 6951 6952 6953 6954
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6955
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6956 6957 6958
	dev_priv->vlv_pctx = pctx;
}

6959
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6960 6961 6962 6963
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6964
	i915_gem_object_put(dev_priv->vlv_pctx);
6965 6966 6967
	dev_priv->vlv_pctx = NULL;
}

6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6979
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6980
{
6981
	u32 val;
6982

6983
	valleyview_setup_pctx(dev_priv);
6984

6985 6986
	vlv_init_gpll_ref_freq(dev_priv);

6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7000
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7001

7002 7003 7004
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7005
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7006 7007 7008 7009
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7010
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7011 7012
			 dev_priv->rps.efficient_freq);

7013 7014
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7015
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7016 7017
			 dev_priv->rps.rp1_freq);

7018 7019
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7020
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7021 7022 7023
			 dev_priv->rps.min_freq);
}

7024
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7025
{
7026
	u32 val;
7027

7028
	cherryview_setup_pctx(dev_priv);
7029

7030 7031
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7032
	mutex_lock(&dev_priv->sb_lock);
7033
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7034
	mutex_unlock(&dev_priv->sb_lock);
7035

7036 7037 7038 7039
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7040
	default:
7041 7042 7043
		dev_priv->mem_freq = 1600;
		break;
	}
7044
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7045

7046 7047 7048
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7049
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7050 7051 7052 7053
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7054
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7055 7056
			 dev_priv->rps.efficient_freq);

7057 7058
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7059
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7060 7061
			 dev_priv->rps.rp1_freq);

7062
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7063
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7064
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7065 7066
			 dev_priv->rps.min_freq);

7067 7068 7069 7070 7071
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
7072 7073
}

7074
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7075
{
7076
	valleyview_cleanup_pctx(dev_priv);
7077 7078
}

7079
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7080
{
7081
	struct intel_engine_cs *engine;
7082
	enum intel_engine_id id;
7083
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7084 7085 7086

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7087 7088
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7099
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7100

7101 7102 7103
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7104 7105 7106 7107 7108
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7109
	for_each_engine(engine, dev_priv, id)
7110
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7111 7112
	I915_WRITE(GEN6_RC_SLEEP, 0);

7113 7114
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7126 7127
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
7128
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7129 7130 7131

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7132
	/* 4 Program defaults and thresholds for RPS*/
7133
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7144
		   GEN6_RP_MEDIA_IS_GFX |
7145 7146 7147 7148
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7149 7150 7151 7152 7153 7154
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7155 7156
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7157 7158 7159
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7160
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7161 7162
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7163
	reset_rps(dev_priv, valleyview_set_rps);
7164

7165
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7166 7167
}

7168
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7169
{
7170
	struct intel_engine_cs *engine;
7171
	enum intel_engine_id id;
7172
	u32 gtfifodbg, val, rc6_mode = 0;
7173 7174 7175

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7176 7177
	valleyview_check_pctx(dev_priv);

7178 7179
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7180 7181
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7182 7183 7184
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7185
	/* If VLV, Forcewake all wells, else re-direct to regular path */
7186
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7187

7188 7189 7190
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7191
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7211
	for_each_engine(engine, dev_priv, id)
7212
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7213

7214
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7215 7216

	/* allows RC6 residency counter to work */
7217
	I915_WRITE(VLV_COUNTER_CONTROL,
7218 7219
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7220
				      VLV_RENDER_RC0_COUNT_EN |
7221 7222
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7223

7224
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7225
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
7226

7227
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
7228

7229
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7230

D
Deepak S 已提交
7231 7232 7233 7234 7235 7236
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7237
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7238

7239 7240 7241
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7242
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7243 7244
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7245
	reset_rps(dev_priv, valleyview_set_rps);
7246

7247
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7248 7249
}

7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7279
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7280 7281 7282 7283 7284 7285
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7286
	lockdep_assert_held(&mchdev_lock);
7287

7288
	diff1 = now - dev_priv->ips.last_time1;
7289 7290 7291 7292 7293 7294 7295

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7296
		return dev_priv->ips.chipset_power;
7297 7298 7299 7300 7301 7302 7303 7304

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7305 7306
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7307 7308
		diff += total_count;
	} else {
7309
		diff = total_count - dev_priv->ips.last_count1;
7310 7311 7312
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7313 7314
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7325 7326
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7327

7328
	dev_priv->ips.chipset_power = ret;
7329 7330 7331 7332

	return ret;
}

7333 7334 7335 7336
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7337
	if (INTEL_INFO(dev_priv)->gen != 5)
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7376
{
7377 7378 7379
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7380
	if (INTEL_INFO(dev_priv)->is_mobile)
7381 7382 7383
		return vm > 0 ? vm : 0;

	return vd;
7384 7385
}

7386
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7387
{
7388
	u64 now, diff, diffms;
7389 7390
	u32 count;

7391
	lockdep_assert_held(&mchdev_lock);
7392

7393 7394 7395
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7396 7397 7398 7399 7400 7401 7402

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7403 7404
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7405 7406
		diff += count;
	} else {
7407
		diff = count - dev_priv->ips.last_count2;
7408 7409
	}

7410 7411
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7412 7413 7414 7415

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7416
	dev_priv->ips.gfx_power = diff;
7417 7418
}

7419 7420
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7421
	if (INTEL_INFO(dev_priv)->gen != 5)
7422 7423
		return;

7424
	spin_lock_irq(&mchdev_lock);
7425 7426 7427

	__i915_update_gfx_val(dev_priv);

7428
	spin_unlock_irq(&mchdev_lock);
7429 7430
}

7431
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7432 7433 7434 7435
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7436
	lockdep_assert_held(&mchdev_lock);
7437

7438
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7458
	corr2 = (corr * dev_priv->ips.corr);
7459 7460 7461 7462

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7463
	__i915_update_gfx_val(dev_priv);
7464

7465
	return dev_priv->ips.gfx_power + state2;
7466 7467
}

7468 7469 7470 7471
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7472
	if (INTEL_INFO(dev_priv)->gen != 5)
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7495
	spin_lock_irq(&mchdev_lock);
7496 7497 7498 7499
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7500 7501
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7502 7503 7504 7505

	ret = chipset_val + graphics_val;

out_unlock:
7506
	spin_unlock_irq(&mchdev_lock);
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7522
	spin_lock_irq(&mchdev_lock);
7523 7524 7525 7526 7527 7528
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7529 7530
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7531 7532

out_unlock:
7533
	spin_unlock_irq(&mchdev_lock);
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7550
	spin_lock_irq(&mchdev_lock);
7551 7552 7553 7554 7555 7556
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7557 7558
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7559 7560

out_unlock:
7561
	spin_unlock_irq(&mchdev_lock);
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7576
	spin_lock_irq(&mchdev_lock);
7577 7578
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7579
	spin_unlock_irq(&mchdev_lock);
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7596
	spin_lock_irq(&mchdev_lock);
7597 7598 7599 7600 7601 7602
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7603
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7604

7605
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7606 7607 7608
		ret = false;

out_unlock:
7609
	spin_unlock_irq(&mchdev_lock);
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7637 7638
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7639
	spin_lock_irq(&mchdev_lock);
7640
	i915_mch_dev = dev_priv;
7641
	spin_unlock_irq(&mchdev_lock);
7642 7643 7644 7645 7646 7647

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7648
	spin_lock_irq(&mchdev_lock);
7649
	i915_mch_dev = NULL;
7650
	spin_unlock_irq(&mchdev_lock);
7651
}
7652

7653
static void intel_init_emon(struct drm_i915_private *dev_priv)
7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7670
		I915_WRITE(PEW(i), 0);
7671
	for (i = 0; i < 3; i++)
7672
		I915_WRITE(DEW(i), 0);
7673 7674 7675

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7676
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7697
		I915_WRITE(PXW(i), val);
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7713
		I915_WRITE(PXWL(i), 0);
7714 7715 7716 7717 7718 7719

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7720
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7721 7722
}

7723
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7724
{
7725 7726 7727 7728 7729 7730 7731 7732
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7733

7734
	mutex_lock(&dev_priv->drm.struct_mutex);
7735 7736 7737
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
7738 7739 7740 7741
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7742
	else if (INTEL_GEN(dev_priv) >= 6)
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

7772 7773 7774
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

7775
	mutex_unlock(&dev_priv->rps.hw_lock);
7776
	mutex_unlock(&dev_priv->drm.struct_mutex);
7777 7778

	intel_autoenable_gt_powersave(dev_priv);
7779 7780
}

7781
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7782
{
7783
	if (IS_VALLEYVIEW(dev_priv))
7784
		valleyview_cleanup_gt_powersave(dev_priv);
7785 7786 7787

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
7788 7789
}

7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7809 7810 7811 7812
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
7813 7814

	gen6_reset_rps_interrupts(dev_priv);
7815 7816
}

7817
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7818
{
7819 7820
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
7821

7822
	mutex_lock(&dev_priv->rps.hw_lock);
7823

7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7835
	}
7836 7837 7838

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7839 7840
}

7841
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7842
{
7843 7844 7845
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7846 7847
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7848

7849 7850 7851
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7852

7853
	mutex_lock(&dev_priv->rps.hw_lock);
7854 7855 7856 7857 7858

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7859
	} else if (INTEL_GEN(dev_priv) >= 9) {
7860 7861
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7862
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
7863
			gen6_update_ring_freq(dev_priv);
7864 7865
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7866
		gen6_update_ring_freq(dev_priv);
7867
	} else if (INTEL_GEN(dev_priv) >= 6) {
7868
		gen6_enable_rps(dev_priv);
7869
		gen6_update_ring_freq(dev_priv);
7870 7871 7872
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7873
	}
7874 7875 7876 7877 7878 7879 7880

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7881
	dev_priv->rps.enabled = true;
7882 7883
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7884

7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7895
	rcs = dev_priv->engine[RCS];
7896
	if (rcs->last_retired_context)
7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
7912
	i915_add_request(req);
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7948
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7949 7950 7951 7952 7953 7954 7955 7956 7957
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7958
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7959
{
7960
	enum pipe pipe;
7961

7962
	for_each_pipe(dev_priv, pipe) {
7963 7964 7965
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7966 7967 7968

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7969 7970 7971
	}
}

7972
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7984
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7985
{
7986
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7987

7988 7989 7990 7991
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7992 7993 7994
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8012
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8013 8014 8015
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8016

8017
	ilk_init_lp_watermarks(dev_priv);
8018 8019 8020 8021 8022 8023 8024 8025

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8026
	if (IS_IRONLAKE_M(dev_priv)) {
8027
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8028 8029 8030 8031 8032 8033 8034 8035
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8036 8037
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8038 8039 8040 8041 8042 8043
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8044

8045
	/* WaDisableRenderCachePipelinedFlush:ilk */
8046 8047
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8048

8049 8050 8051
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8052
	g4x_disable_trickle_feed(dev_priv);
8053

8054
	ibx_init_clock_gating(dev_priv);
8055 8056
}

8057
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8058 8059
{
	int pipe;
8060
	uint32_t val;
8061 8062 8063 8064 8065 8066

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8067 8068 8069
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8070 8071
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8072 8073 8074
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8075
	for_each_pipe(dev_priv, pipe) {
8076 8077 8078
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8079
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8080
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8081 8082 8083
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8084 8085
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8086
	/* WADP0ClockGatingDisable */
8087
	for_each_pipe(dev_priv, pipe) {
8088 8089 8090
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8091 8092
}

8093
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8094 8095 8096 8097
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8098 8099 8100
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8101 8102
}

8103
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8104
{
8105
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8106

8107
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8108 8109 8110 8111 8112

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8113
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8114 8115 8116
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8117 8118 8119
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8120 8121 8122
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8123 8124 8125 8126
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8127 8128
	 */
	I915_WRITE(GEN6_GT_MODE,
8129
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8130

8131
	ilk_init_lp_watermarks(dev_priv);
8132 8133

	I915_WRITE(CACHE_MODE_0,
8134
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8150
	 *
8151 8152
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8153 8154 8155 8156 8157
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8158
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8159 8160
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8161

8162 8163 8164 8165 8166 8167 8168 8169
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8170 8171 8172 8173 8174 8175 8176 8177
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8178 8179
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8180 8181 8182 8183 8184 8185 8186
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8187 8188 8189 8190
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8191

8192
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8193

8194
	cpt_init_clock_gating(dev_priv);
8195

8196
	gen6_check_mch_setup(dev_priv);
8197 8198 8199 8200 8201 8202
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8203
	/*
8204
	 * WaVSThreadDispatchOverride:ivb,vlv
8205 8206 8207 8208
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8209 8210 8211 8212 8213 8214 8215 8216
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8217
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8218 8219 8220 8221 8222
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8223
	if (HAS_PCH_LPT_LP(dev_priv))
8224 8225 8226
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8227 8228

	/* WADPOClockGatingDisable:hsw */
8229 8230
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8231
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8232 8233
}

8234
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8235
{
8236
	if (HAS_PCH_LPT_LP(dev_priv)) {
8237 8238 8239 8240 8241 8242 8243
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8267
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8268
{
8269 8270 8271 8272
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
		I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
			   I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
			   SARBUNIT_CLKGATE_DIS);
}

8288
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8289
{
8290
	gen9_init_clock_gating(dev_priv);
8291 8292 8293 8294 8295

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8296 8297 8298 8299 8300

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8301

8302
	/* WaFbcNukeOnHostModify:kbl,cfl */
8303 8304
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8305 8306
}

8307
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8308
{
8309
	gen9_init_clock_gating(dev_priv);
8310 8311 8312 8313

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8314 8315 8316 8317

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8318 8319
}

8320
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8321
{
8322
	enum pipe pipe;
B
Ben Widawsky 已提交
8323

8324
	ilk_init_lp_watermarks(dev_priv);
8325

8326
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8327
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8328

8329
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8330 8331 8332
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8333
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8334
	for_each_pipe(dev_priv, pipe) {
8335
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8336
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8337
			   BDW_DPRS_MASK_VBLANK_SRD);
8338
	}
8339

8340 8341 8342 8343 8344
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8345

8346 8347
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8348 8349 8350 8351

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8352

8353 8354
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8355

8356 8357 8358 8359 8360 8361 8362
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

8363 8364 8365 8366
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8367
	lpt_init_clock_gating(dev_priv);
8368 8369 8370 8371 8372 8373 8374 8375

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8376 8377
}

8378
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8379
{
8380
	ilk_init_lp_watermarks(dev_priv);
8381

8382 8383 8384 8385 8386
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8387
	/* This is required by WaCatErrorRejectionIssue:hsw */
8388 8389 8390 8391
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8392 8393 8394
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8395

8396 8397 8398
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8399 8400 8401 8402
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8403
	/* WaDisable4x2SubspanOptimization:hsw */
8404 8405
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8406

8407 8408 8409
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8410 8411 8412 8413
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8414 8415
	 */
	I915_WRITE(GEN7_GT_MODE,
8416
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8417

8418 8419 8420 8421
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8422
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8423 8424
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8425 8426 8427
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8428

8429
	lpt_init_clock_gating(dev_priv);
8430 8431
}

8432
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8433
{
8434
	uint32_t snpcr;
8435

8436
	ilk_init_lp_watermarks(dev_priv);
8437

8438
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8439

8440
	/* WaDisableEarlyCull:ivb */
8441 8442 8443
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8444
	/* WaDisableBackToBackFlipFix:ivb */
8445 8446 8447 8448
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8449
	/* WaDisablePSDDualDispatchEnable:ivb */
8450
	if (IS_IVB_GT1(dev_priv))
8451 8452 8453
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8454 8455 8456
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8457
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8458 8459 8460
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8461
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8462 8463 8464
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8465
		   GEN7_WA_L3_CHICKEN_MODE);
8466
	if (IS_IVB_GT1(dev_priv))
8467 8468
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8469 8470 8471 8472
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8473 8474
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8475
	}
8476

8477
	/* WaForceL3Serialization:ivb */
8478 8479 8480
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8481
	/*
8482
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8483
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8484 8485
	 */
	I915_WRITE(GEN6_UCGCTL2,
8486
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8487

8488
	/* This is required by WaCatErrorRejectionIssue:ivb */
8489 8490 8491 8492
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8493
	g4x_disable_trickle_feed(dev_priv);
8494 8495

	gen7_setup_fixed_func_scheduler(dev_priv);
8496

8497 8498 8499 8500 8501
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8502

8503
	/* WaDisable4x2SubspanOptimization:ivb */
8504 8505
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8506

8507 8508 8509
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8510 8511 8512 8513
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8514 8515
	 */
	I915_WRITE(GEN7_GT_MODE,
8516
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8517

8518 8519 8520 8521
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8522

8523
	if (!HAS_PCH_NOP(dev_priv))
8524
		cpt_init_clock_gating(dev_priv);
8525

8526
	gen6_check_mch_setup(dev_priv);
8527 8528
}

8529
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8530
{
8531
	/* WaDisableEarlyCull:vlv */
8532 8533 8534
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8535
	/* WaDisableBackToBackFlipFix:vlv */
8536 8537 8538 8539
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8540
	/* WaPsdDispatchEnable:vlv */
8541
	/* WaDisablePSDDualDispatchEnable:vlv */
8542
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8543 8544
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8545

8546 8547 8548
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8549
	/* WaForceL3Serialization:vlv */
8550 8551 8552
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8553
	/* WaDisableDopClockGating:vlv */
8554 8555 8556
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8557
	/* This is required by WaCatErrorRejectionIssue:vlv */
8558 8559 8560 8561
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8562 8563
	gen7_setup_fixed_func_scheduler(dev_priv);

8564
	/*
8565
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8566
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8567 8568
	 */
	I915_WRITE(GEN6_UCGCTL2,
8569
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8570

8571 8572 8573 8574 8575
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8576

8577 8578 8579 8580
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8581 8582
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8583

8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8595 8596 8597 8598 8599 8600
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8601
	/*
8602
	 * WaDisableVLVClockGating_VBIIssue:vlv
8603 8604 8605
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8606
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8607 8608
}

8609
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8610
{
8611 8612 8613 8614 8615
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8616 8617 8618 8619

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8620 8621 8622 8623

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8624 8625 8626 8627

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8628

8629 8630 8631 8632 8633 8634 8635
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8636 8637 8638 8639 8640
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8641 8642
}

8643
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8655
	if (IS_GM45(dev_priv))
8656 8657
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8658 8659 8660 8661

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8662

8663 8664 8665
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8666
	g4x_disable_trickle_feed(dev_priv);
8667 8668
}

8669
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8670 8671 8672 8673 8674 8675
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8676 8677
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8678 8679 8680

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8681 8682
}

8683
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8684 8685 8686 8687 8688 8689 8690
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8691 8692
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8693 8694 8695

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8696 8697
}

8698
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8699 8700 8701 8702 8703 8704
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8705

8706
	if (IS_PINEVIEW(dev_priv))
8707
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8708 8709 8710

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8711 8712

	/* interrupts should cause a wake up from C3 */
8713
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8714 8715 8716

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8717 8718 8719

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8720 8721
}

8722
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8723 8724
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8725 8726 8727 8728

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8729 8730 8731

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8732 8733
}

8734
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8735
{
8736 8737 8738
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8739 8740
}

8741
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8742
{
8743
	dev_priv->display.init_clock_gating(dev_priv);
8744 8745
}

8746
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8747
{
8748 8749
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8750 8751
}

8752
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
8768
	if (IS_CANNONLAKE(dev_priv))
8769
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
8770
	else if (IS_SKYLAKE(dev_priv))
8771
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
8772
	else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
8773
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
8774
	else if (IS_BROXTON(dev_priv))
8775
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8776 8777
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8778
	else if (IS_BROADWELL(dev_priv))
8779
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
8780
	else if (IS_CHERRYVIEW(dev_priv))
8781
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
8782
	else if (IS_HASWELL(dev_priv))
8783
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
8784
	else if (IS_IVYBRIDGE(dev_priv))
8785
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
8786
	else if (IS_VALLEYVIEW(dev_priv))
8787
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
8788 8789 8790
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
8791
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
8792 8793
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8794
	else if (IS_I965GM(dev_priv))
8795
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
8796
	else if (IS_I965G(dev_priv))
8797
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8810
/* Set up chip specific power management-related functions */
8811
void intel_init_pm(struct drm_i915_private *dev_priv)
8812
{
8813
	intel_fbc_init(dev_priv);
8814

8815
	/* For cxsr */
8816
	if (IS_PINEVIEW(dev_priv))
8817
		i915_pineview_get_mem_freq(dev_priv);
8818
	else if (IS_GEN5(dev_priv))
8819
		i915_ironlake_get_mem_freq(dev_priv);
8820

8821
	/* For FIFO watermark updates */
8822
	if (INTEL_GEN(dev_priv) >= 9) {
8823
		skl_setup_wm_latency(dev_priv);
8824
		dev_priv->display.initial_watermarks = skl_initial_wm;
8825
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8826
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8827
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8828
		ilk_setup_wm_latency(dev_priv);
8829

8830
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8831
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8832
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8833
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8834
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8835 8836 8837 8838 8839 8840
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
8841 8842 8843 8844
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
8845
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8846
		vlv_setup_wm_latency(dev_priv);
8847
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8848
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8849
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8850
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8851
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8852 8853 8854 8855 8856 8857
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8858
	} else if (IS_PINEVIEW(dev_priv)) {
8859
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8860 8861 8862 8863 8864 8865 8866 8867 8868
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8869
			intel_set_memory_cxsr(dev_priv, false);
8870 8871 8872
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8873
	} else if (IS_GEN4(dev_priv)) {
8874
		dev_priv->display.update_wm = i965_update_wm;
8875
	} else if (IS_GEN3(dev_priv)) {
8876 8877
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8878
	} else if (IS_GEN2(dev_priv)) {
8879
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8880
			dev_priv->display.update_wm = i845_update_wm;
8881
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8882 8883
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8884
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8885 8886 8887
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8888 8889 8890
	}
}

8891 8892 8893 8894 8895 8896 8897 8898 8899
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
8900
		return -ENODEV;
8901 8902 8903
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8904
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8905 8906 8907 8908
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
8909
		MISSING_CASE(flags);
8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8936
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8937
{
8938 8939
	int status;

8940
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8941

8942 8943 8944 8945 8946 8947
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8948 8949
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
8950 8951 8952
		return -EAGAIN;
	}

8953 8954 8955
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8956

8957 8958 8959
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
8960 8961
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
8962 8963 8964
		return -ETIMEDOUT;
	}

8965 8966
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8967

8968 8969 8970 8971 8972 8973
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
8974 8975
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
8976 8977 8978
		return status;
	}

B
Ben Widawsky 已提交
8979 8980 8981
	return 0;
}

8982
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8983
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8984
{
8985 8986
	int status;

8987
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8988

8989 8990 8991 8992 8993 8994
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8995 8996
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
8997 8998 8999
		return -EAGAIN;
	}

9000
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9001
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9002
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9003

9004 9005 9006
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9007 9008
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9009 9010 9011
		return -ETIMEDOUT;
	}

9012
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9013

9014 9015 9016 9017 9018 9019
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9020 9021
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9022 9023 9024
		return status;
	}

B
Ben Widawsky 已提交
9025 9026
	return 0;
}
9027

9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9049
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9050 9051
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9052
 * for @timeout_base_ms and if this times out for another 50 ms with
9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9088
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9089
	 * account for interrupts that could reduce the number of these
9090 9091
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9092 9093 9094 9095
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9096
	ret = wait_for_atomic(COND, 50);
9097 9098 9099 9100 9101 9102 9103
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9104 9105
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9106 9107 9108 9109 9110
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9111 9112
}

9113
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9114
{
9115
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9116 9117
}

9118
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9119
{
9120 9121 9122 9123 9124
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9125 9126
}

9127
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9128
{
9129
	/* CHV needs even values */
9130
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9131 9132
}

9133
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9134
{
9135
	if (INTEL_GEN(dev_priv) >= 9)
9136 9137
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9138
	else if (IS_CHERRYVIEW(dev_priv))
9139
		return chv_gpu_freq(dev_priv, val);
9140
	else if (IS_VALLEYVIEW(dev_priv))
9141 9142 9143
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9144 9145
}

9146 9147
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9148
	if (INTEL_GEN(dev_priv) >= 9)
9149 9150
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9151
	else if (IS_CHERRYVIEW(dev_priv))
9152
		return chv_freq_opcode(dev_priv, val);
9153
	else if (IS_VALLEYVIEW(dev_priv))
9154 9155
		return byt_freq_opcode(dev_priv, val);
	else
9156
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9157
}
9158

9159
void intel_pm_setup(struct drm_i915_private *dev_priv)
9160
{
D
Daniel Vetter 已提交
9161 9162
	mutex_init(&dev_priv->rps.hw_lock);

9163 9164
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
9165
	atomic_set(&dev_priv->rps.num_waiters, 0);
9166

9167
	dev_priv->pm.suspended = false;
9168
	atomic_set(&dev_priv->pm.wakeref_count, 0);
9169
}
9170

9171 9172 9173
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9174
	u32 lower, upper, tmp;
9175
	int loop = 2;
9176 9177 9178 9179 9180 9181 9182 9183 9184

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9185 9186 9187 9188 9189
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9190
	 */
9191 9192
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9204
	} while (upper != tmp && --loop);
9205

9206 9207 9208 9209 9210
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9211 9212 9213 9214 9215
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

9216 9217
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
9218
{
9219
	u64 time_hw, units, div;
9220 9221 9222 9223 9224 9225 9226 9227

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9228
		units = 1000;
9229 9230
		div = dev_priv->czclk_freq;

9231
		time_hw = vlv_residency_raw(dev_priv, reg);
9232
	} else if (IS_GEN9_LP(dev_priv)) {
9233
		units = 1000;
9234 9235
		div = 1200;		/* 833.33ns */

9236 9237 9238 9239 9240 9241 9242
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
9243 9244

	intel_runtime_pm_put(dev_priv);
9245
	return DIV_ROUND_UP_ULL(time_hw * units, div);
9246
}