intel_pm.c 220.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_fixed.h"
44
#include "i915_irq.h"
45
#include "i915_trace.h"
46
#include "display/intel_bw.h"
47
#include "intel_pm.h"
48
#include "intel_sideband.h"
49
#include "../../../platform/x86/intel_ips.h"
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

74
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
75
{
76 77 78
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
79
		 * Display WA #0390: skl,kbl
80 81 82 83 84 85 86 87 88
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

89
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90 91 92
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

93
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94 95
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
96

97 98
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
99 100 101
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
102

103
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
104 105
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
106 107 108 109 110 111

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
112 113
}

114
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
115
{
116
	gen9_init_clock_gating(dev_priv);
117

118 119 120 121
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

122 123
	/*
	 * FIXME:
124
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
125 126
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
127
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
128 129 130 131 132

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
133 134
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
135 136 137 138 139 140 141 142

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
143 144
}

145 146 147 148 149 150 151 152 153 154 155 156 157
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

158
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

196
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
197 198 199
{
	u16 ddrpll, csipll;

200 201
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
217 218
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
246 247
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
248 249 250 251 252
		dev_priv->fsb_freq = 0;
		break;
	}
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

291 292
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

315 316 317 318
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

319
	vlv_punit_get(dev_priv);
320 321 322 323 324 325 326 327 328 329 330 331

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
332 333
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
334

335
	vlv_punit_put(dev_priv);
336 337
}

338 339 340 341
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

342
	vlv_punit_get(dev_priv);
343

344
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
345 346 347 348
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
349
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
350

351
	vlv_punit_put(dev_priv);
352 353
}

354 355 356
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

357
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358
{
359
	bool was_enabled;
360
	u32 val;
361

362
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365
		POSTING_READ(FW_BLC_SELF_VLV);
366
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_PINEVIEW(dev_priv)) {
371 372 373 374 375 376
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
377
		I915_WRITE(DSPFW3, val);
378
		POSTING_READ(DSPFW3);
379
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 382 383
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
384
		POSTING_READ(FW_BLC_SELF);
385
	} else if (IS_I915GM(dev_priv)) {
386 387 388 389 390
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
391
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392 393 394
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
395
		POSTING_READ(INSTPM);
396
	} else {
397
		return false;
398
	}
399

400 401
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

402 403 404
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
405 406

	return was_enabled;
407 408
}

V
Ville Syrjälä 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
446
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447
{
448 449
	bool ret;

450
	mutex_lock(&dev_priv->wm.wm_mutex);
451
	ret = _intel_set_memory_cxsr(dev_priv, enable);
452 453 454 455
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
456
	mutex_unlock(&dev_priv->wm.wm_mutex);
457 458

	return ret;
459
}
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
475
static const int pessimal_latency_ns = 5000;
476

477 478 479
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

480
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481
{
482
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
483
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485 486
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
487
	u32 dsparb, dsparb2, dsparb3;
488

489
	switch (pipe) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
509 510
		MISSING_CASE(pipe);
		return;
511 512
	}

513 514 515 516
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
517 518
}

519 520
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
521
{
522
	u32 dsparb = I915_READ(DSPARB);
523 524 525
	int size;

	size = dsparb & 0x7f;
526
	if (i9xx_plane == PLANE_B)
527 528
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

529 530
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
531 532 533 534

	return size;
}

535 536
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
537
{
538
	u32 dsparb = I915_READ(DSPARB);
539 540 541
	int size;

	size = dsparb & 0x1ff;
542
	if (i9xx_plane == PLANE_B)
543 544 545
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

546 547
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
548 549 550 551

	return size;
}

552 553
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
554
{
555
	u32 dsparb = I915_READ(DSPARB);
556 557 558 559 560
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

561 562
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
563 564 565 566 567

	return size;
}

/* Pineview has different values for various configs */
568
static const struct intel_watermark_params pnv_display_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574
};
575 576

static const struct intel_watermark_params pnv_display_hplloff_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582
};
583 584

static const struct intel_watermark_params pnv_cursor_wm = {
585 586 587 588 589
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
590
};
591 592

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
593 594 595 596 597
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598
};
599

600
static const struct intel_watermark_params i965_cursor_wm_info = {
601 602 603 604 605
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
606
};
607

608
static const struct intel_watermark_params i945_wm_info = {
609 610 611 612 613
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
614
};
615

616
static const struct intel_watermark_params i915_wm_info = {
617 618 619 620 621
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
622
};
623

624
static const struct intel_watermark_params i830_a_wm_info = {
625 626 627 628 629
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
630
};
631

632 633 634 635 636 637 638
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
639

640
static const struct intel_watermark_params i845_wm_info = {
641 642 643 644 645
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
646 647
};

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
685
	u64 ret;
686

687
	ret = mul_u32_u32(pixel_rate, cpp * latency);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

744 745
/**
 * intel_calculate_wm - calculate watermark level
746
 * @pixel_rate: pixel clock
747
 * @wm: chip FIFO params
748
 * @fifo_size: size of the FIFO buffer
749
 * @cpp: bytes per pixel
750 751 752 753 754 755 756 757 758 759 760 761 762
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
763 764 765 766
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
767
{
768
	int entries, wm_size;
769 770 771 772 773 774 775

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
776 777 778 779 780
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
781

782 783
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
784 785

	/* Don't promote wm_size to unsigned... */
786
	if (wm_size > wm->max_wm)
787 788 789
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
790 791 792 793 794 795 796 797 798 799 800

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

801 802 803
	return wm_size;
}

804 805 806 807 808 809 810 811 812 813
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

814 815 816 817 818
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

819 820 821
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
822
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
823 824

	/* FIXME check the 'enable' instead */
825
	if (!crtc_state->hw.active)
826 827 828 829 830 831 832 833 834 835 836
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
837
		return plane_state->hw.fb != NULL;
838
	else
839
		return plane_state->uapi.visible;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

861
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
862
{
863
	struct intel_crtc *crtc, *enabled = NULL;
864

865
	for_each_intel_crtc(&dev_priv->drm, crtc) {
866
		if (intel_crtc_active(crtc)) {
867 868 869 870 871 872 873 874 875
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

876
static void pnv_update_wm(struct intel_crtc *unused_crtc)
877
{
878
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
879
	struct intel_crtc *crtc;
880 881
	const struct cxsr_latency *latency;
	u32 reg;
882
	unsigned int wm;
883

884
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
885 886 887
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
888
	if (!latency) {
889 890
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
891
		intel_set_memory_cxsr(dev_priv, false);
892 893 894
		return;
	}

895
	crtc = single_enabled_crtc(dev_priv);
896
	if (crtc) {
897
		const struct drm_display_mode *adjusted_mode =
898
			&crtc->config->hw.adjusted_mode;
899 900
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
901
		int cpp = fb->format->cpp[0];
902
		int clock = adjusted_mode->crtc_clock;
903 904

		/* Display SR */
905 906
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
907
					cpp, latency->display_sr);
908 909
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
910
		reg |= FW_WM(wm, SR);
911
		I915_WRITE(DSPFW1, reg);
912
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
913 914

		/* cursor SR */
915 916
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
917
					4, latency->cursor_sr);
918 919
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
920
		reg |= FW_WM(wm, CURSOR_SR);
921 922 923
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
924 925
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
926
					cpp, latency->display_hpll_disable);
927 928
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
929
		reg |= FW_WM(wm, HPLL_SR);
930 931 932
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
933 934
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
935
					4, latency->cursor_hpll_disable);
936 937
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
938
		reg |= FW_WM(wm, HPLL_CURSOR);
939
		I915_WRITE(DSPFW3, reg);
940
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
941

942
		intel_set_memory_cxsr(dev_priv, true);
943
	} else {
944
		intel_set_memory_cxsr(dev_priv, false);
945 946 947
	}
}

948 949 950 951 952 953 954 955 956 957
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
958
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
959 960 961 962 963 964
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

965 966
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
967
{
968 969 970 971 972
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
990

991
	POSTING_READ(DSPFW1);
992 993
}

994 995 996
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

997
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
998 999
				const struct vlv_wm_values *wm)
{
1000 1001 1002
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1003 1004
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1005 1006 1007 1008 1009 1010
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

1023
	I915_WRITE(DSPFW1,
1024
		   FW_WM(wm->sr.plane, SR) |
1025 1026 1027
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1028
	I915_WRITE(DSPFW2,
1029 1030 1031
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1032
	I915_WRITE(DSPFW3,
1033
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1034 1035 1036

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1037 1038
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1039
		I915_WRITE(DSPFW8_CHV,
1040 1041
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1042
		I915_WRITE(DSPFW9_CHV,
1043 1044
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1045
		I915_WRITE(DSPHOWM,
1046
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1047 1048 1049 1050 1051 1052 1053 1054 1055
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1056 1057
	} else {
		I915_WRITE(DSPFW7,
1058 1059
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1060
		I915_WRITE(DSPHOWM,
1061
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1062 1063 1064 1065 1066 1067
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1068 1069 1070
	}

	POSTING_READ(DSPFW1);
1071 1072
}

1073 1074
#undef FW_WM_VLV

1075 1076 1077 1078 1079
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1080
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1081

1082
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1127 1128 1129
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1130
{
1131
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1132 1133
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1134
		&crtc_state->hw.adjusted_mode;
1135 1136
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1137 1138 1139 1140 1141 1142 1143

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1144
	cpp = plane_state->hw.fb->format->cpp[0];
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1159
		cpp = max(cpp, 4u);
1160 1161 1162 1163

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1164
	width = drm_rect_width(&plane_state->uapi.dst);
1165 1166 1167 1168 1169 1170 1171

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1172
		unsigned int small, large;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1185
	return min_t(unsigned int, wm, USHRT_MAX);
1186 1187 1188 1189 1190
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1191
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1207
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1223 1224
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1225
			      u32 pri_val);
1226 1227 1228 1229

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1230
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1231
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1284 1285 1286 1287 1288 1289
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1290 1291

		if (plane_id == PLANE_PRIMARY)
1292 1293 1294 1295
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1312
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1350
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1351
	struct intel_atomic_state *state =
1352
		to_intel_atomic_state(crtc_state->uapi.state);
1353
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1354 1355
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1356
	const struct g4x_pipe_wm *raw;
1357 1358
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1359 1360 1361 1362 1363
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1364 1365 1366
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1367 1368
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1369 1370
			continue;

1371
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1437
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1438
{
1439
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1440 1441 1442
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1443
		to_intel_atomic_state(new_crtc_state->uapi.state);
1444 1445 1446
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1447 1448
	enum plane_id plane_id;

1449
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1450 1451 1452 1453 1454 1455 1456
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1457
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1458
		!new_crtc_state->disable_cxsr;
1459
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1460
		!new_crtc_state->disable_cxsr;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1502
out:
1503 1504 1505 1506 1507
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1508
		new_crtc_state->wm.need_postvbl_update = true;
1509 1510 1511 1512 1513 1514 1515 1516

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1517
	int num_active_pipes = 0;
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1536
		num_active_pipes++;
1537 1538
	}

1539
	if (num_active_pipes != 1) {
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1579
				   struct intel_crtc *crtc)
1580
{
1581 1582 1583
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1584 1585 1586 1587 1588 1589 1590 1591

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1592
				    struct intel_crtc *crtc)
1593
{
1594 1595 1596
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1597 1598 1599 1600 1601

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1602
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1603 1604 1605 1606
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1607 1608
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1609 1610
				   unsigned int htotal,
				   unsigned int width,
1611
				   unsigned int cpp,
1612 1613 1614 1615
				   unsigned int latency)
{
	unsigned int ret;

1616 1617
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1618 1619 1620 1621 1622
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1623
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1624 1625 1626 1627
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1628 1629
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1630 1631 1632
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1633 1634

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1635 1636 1637
	}
}

1638 1639 1640
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1641
{
1642
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1643
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1644
	const struct drm_display_mode *adjusted_mode =
1645
		&crtc_state->hw.adjusted_mode;
1646
	unsigned int clock, htotal, cpp, width, wm;
1647 1648 1649 1650

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1651
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1652 1653
		return 0;

1654
	cpp = plane_state->hw.fb->format->cpp[0];
1655 1656 1657
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1658

1659
	if (plane->id == PLANE_CURSOR) {
1660 1661 1662 1663 1664 1665 1666 1667
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1668
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1669 1670 1671
				    dev_priv->wm.pri_latency[level] * 10);
	}

1672
	return min_t(unsigned int, wm, USHRT_MAX);
1673 1674
}

1675 1676 1677 1678 1679 1680
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1681
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1682
{
1683
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1684
	const struct g4x_pipe_wm *raw =
1685
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1686
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1687
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1688
	int num_active_planes = hweight8(active_planes);
1689
	const int fifo_size = 511;
1690
	int fifo_extra, fifo_left = fifo_size;
1691
	int sprite0_fifo_extra = 0;
1692 1693
	unsigned int total_rate;
	enum plane_id plane_id;
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1706 1707
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1708 1709
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1710

1711 1712
	if (total_rate > fifo_size)
		return -EINVAL;
1713

1714 1715
	if (total_rate == 0)
		total_rate = 1;
1716

1717
	for_each_plane_id_on_crtc(crtc, plane_id) {
1718 1719
		unsigned int rate;

1720 1721
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1722 1723 1724
			continue;
		}

1725 1726 1727
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1728 1729
	}

1730 1731 1732
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1733 1734 1735
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1736 1737

	/* spread the remainder evenly */
1738
	for_each_plane_id_on_crtc(crtc, plane_id) {
1739 1740 1741 1742 1743
		int plane_extra;

		if (fifo_left == 0)
			break;

1744
		if ((active_planes & BIT(plane_id)) == 0)
1745 1746 1747
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1748
		fifo_state->plane[plane_id] += plane_extra;
1749 1750 1751
		fifo_left -= plane_extra;
	}

1752 1753 1754 1755 1756 1757 1758 1759 1760
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1761 1762
}

1763 1764 1765 1766 1767 1768
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1769
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1780 1781 1782 1783 1784 1785 1786 1787
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1788 1789 1790 1791
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1792
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1793
				 int level, enum plane_id plane_id, u16 value)
1794
{
1795
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1796
	int num_levels = intel_wm_num_levels(dev_priv);
1797
	bool dirty = false;
1798

1799
	for (; level < num_levels; level++) {
1800
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1801

1802
		dirty |= raw->plane[plane_id] != value;
1803
		raw->plane[plane_id] = value;
1804
	}
1805 1806

	return dirty;
1807 1808
}

1809 1810
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1811
{
1812
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1813
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1814
	enum plane_id plane_id = plane->id;
1815
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1816
	int level;
1817
	bool dirty = false;
1818

1819
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1820 1821
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1822
	}
1823

1824
	for (level = 0; level < num_levels; level++) {
1825
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1826 1827
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1828

1829 1830
		if (wm > max_wm)
			break;
1831

1832
		dirty |= raw->plane[plane_id] != wm;
1833 1834
		raw->plane[plane_id] = wm;
	}
1835

1836
	/* mark all higher levels as invalid */
1837
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1838

1839 1840
out:
	if (dirty)
1841 1842 1843 1844 1845 1846
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1847 1848

	return dirty;
1849
}
1850

1851 1852
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1853
{
1854
	const struct g4x_pipe_wm *raw =
1855 1856 1857
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1858

1859 1860
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1861

1862
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1863
{
1864 1865 1866 1867
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1868 1869 1870 1871
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1872
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1873 1874
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1875
		to_intel_atomic_state(crtc_state->uapi.state);
1876 1877 1878
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1879 1880
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1881
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1882 1883
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1884 1885 1886
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1887
	unsigned int dirty = 0;
1888

1889 1890 1891
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1892 1893
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1894
			continue;
1895

1896
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1915
			intel_atomic_get_old_crtc_state(state, crtc);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1927
	}
1928

1929
	/* initially allow all levels */
1930
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1931 1932 1933 1934 1935
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1936
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1937

1938
	for (level = 0; level < wm_state->num_levels; level++) {
1939
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1940
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1941

1942
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1943
			break;
1944

1945 1946 1947 1948 1949 1950 1951 1952
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1953
						 raw->plane[PLANE_SPRITE0],
1954 1955
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1956

1957 1958 1959
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1960 1961
	}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1972 1973
}

1974 1975 1976
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1977
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1978
				   struct intel_crtc *crtc)
1979
{
1980
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1981
	struct intel_uncore *uncore = &dev_priv->uncore;
1982 1983
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1984 1985
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1986
	int sprite0_start, sprite1_start, fifo_size;
1987
	u32 dsparb, dsparb2, dsparb3;
1988

1989 1990 1991
	if (!crtc_state->fifo_changed)
		return;

1992 1993 1994
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1995

1996 1997
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1998

1999 2000
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2001 2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2010
	spin_lock(&uncore->lock);
2011

2012 2013
	switch (crtc->pipe) {
	case PIPE_A:
2014 2015
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2027 2028
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2029 2030
		break;
	case PIPE_B:
2031 2032
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2044 2045
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2046 2047
		break;
	case PIPE_C:
2048 2049
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2061 2062
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2063 2064 2065 2066
		break;
	default:
		break;
	}
2067

2068
	intel_uncore_posting_read_fw(uncore, DSPARB);
2069

2070
	spin_unlock(&uncore->lock);
2071 2072 2073 2074
}

#undef VLV_FIFO

2075
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2076
{
2077
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2078 2079 2080
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2081
		to_intel_atomic_state(new_crtc_state->uapi.state);
2082 2083 2084
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2085 2086
	int level;

2087
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2088 2089 2090 2091 2092 2093
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2094
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2095
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2096
		!new_crtc_state->disable_cxsr;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2115
out:
2116 2117 2118 2119
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2120
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2121
		new_crtc_state->wm.need_postvbl_update = true;
2122 2123 2124 2125

	return 0;
}

2126
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2127 2128 2129
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2130
	int num_active_pipes = 0;
2131

2132
	wm->level = dev_priv->wm.max_level;
2133 2134
	wm->cxsr = true;

2135
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2136
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2137 2138 2139 2140 2141 2142 2143

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2144
		num_active_pipes++;
2145 2146 2147
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2148
	if (num_active_pipes != 1)
2149 2150
		wm->cxsr = false;

2151
	if (num_active_pipes > 1)
2152 2153
		wm->level = VLV_WM_LEVEL_PM2;

2154
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2155
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2156 2157 2158
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2159
		if (crtc->active && wm->cxsr)
2160 2161
			wm->sr = wm_state->sr[wm->level];

2162 2163 2164 2165
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2166 2167 2168
	}
}

2169
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2170
{
2171 2172
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2173

2174
	vlv_merge_wm(dev_priv, &new_wm);
2175

2176
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2177 2178
		return;

2179
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2180 2181
		chv_set_memory_dvfs(dev_priv, false);

2182
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2183 2184
		chv_set_memory_pm5(dev_priv, false);

2185
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2186
		_intel_set_memory_cxsr(dev_priv, false);
2187

2188
	vlv_write_wm_values(dev_priv, &new_wm);
2189

2190
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2191
		_intel_set_memory_cxsr(dev_priv, true);
2192

2193
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2194 2195
		chv_set_memory_pm5(dev_priv, true);

2196
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2197 2198
		chv_set_memory_dvfs(dev_priv, true);

2199
	*old_wm = new_wm;
2200 2201
}

2202
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2203
				   struct intel_crtc *crtc)
2204
{
2205 2206 2207
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2208 2209

	mutex_lock(&dev_priv->wm.wm_mutex);
2210 2211 2212 2213 2214 2215
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2216
				    struct intel_crtc *crtc)
2217
{
2218 2219 2220
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2221 2222 2223 2224 2225

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2226
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2227 2228 2229 2230
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2231
static void i965_update_wm(struct intel_crtc *unused_crtc)
2232
{
2233
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2234
	struct intel_crtc *crtc;
2235 2236
	int srwm = 1;
	int cursor_sr = 16;
2237
	bool cxsr_enabled;
2238 2239

	/* Calc sr entries for one plane configs */
2240
	crtc = single_enabled_crtc(dev_priv);
2241 2242 2243
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2244
		const struct drm_display_mode *adjusted_mode =
2245
			&crtc->config->hw.adjusted_mode;
2246 2247
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2248
		int clock = adjusted_mode->crtc_clock;
2249
		int htotal = adjusted_mode->crtc_htotal;
2250
		int hdisplay = crtc->config->pipe_src_w;
2251
		int cpp = fb->format->cpp[0];
2252 2253
		int entries;

2254 2255
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2256 2257 2258 2259 2260
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2261 2262 2263
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2264

2265 2266 2267
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2268
		entries = DIV_ROUND_UP(entries,
2269 2270
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2271

2272
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2273 2274 2275
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2276 2277 2278
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2279

2280
		cxsr_enabled = true;
2281
	} else {
2282
		cxsr_enabled = false;
2283
		/* Turn off self refresh if both pipes are enabled */
2284
		intel_set_memory_cxsr(dev_priv, false);
2285 2286
	}

2287 2288 2289
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2290 2291

	/* 965 has limitations... */
2292 2293 2294 2295 2296 2297
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2298
	/* update cursor SR watermark */
2299
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2300 2301 2302

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2303 2304
}

2305 2306
#undef FW_WM

2307
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2308
{
2309
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2310
	const struct intel_watermark_params *wm_info;
2311 2312
	u32 fwater_lo;
	u32 fwater_hi;
2313 2314 2315
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2316
	struct intel_crtc *crtc, *enabled = NULL;
2317

2318
	if (IS_I945GM(dev_priv))
2319
		wm_info = &i945_wm_info;
2320
	else if (!IS_GEN(dev_priv, 2))
2321 2322
		wm_info = &i915_wm_info;
	else
2323
		wm_info = &i830_a_wm_info;
2324

2325 2326
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2327 2328
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2329
			&crtc->config->hw.adjusted_mode;
2330 2331 2332 2333
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2334
		if (IS_GEN(dev_priv, 2))
2335
			cpp = 4;
2336
		else
2337
			cpp = fb->format->cpp[0];
2338

2339
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2340
					       wm_info, fifo_size, cpp,
2341
					       pessimal_latency_ns);
2342
		enabled = crtc;
2343
	} else {
2344
		planea_wm = fifo_size - wm_info->guard_size;
2345 2346 2347 2348
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2349
	if (IS_GEN(dev_priv, 2))
2350
		wm_info = &i830_bc_wm_info;
2351

2352 2353
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2354 2355
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2356
			&crtc->config->hw.adjusted_mode;
2357 2358 2359 2360
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2361
		if (IS_GEN(dev_priv, 2))
2362
			cpp = 4;
2363
		else
2364
			cpp = fb->format->cpp[0];
2365

2366
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2367
					       wm_info, fifo_size, cpp,
2368
					       pessimal_latency_ns);
2369 2370 2371 2372
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2373
	} else {
2374
		planeb_wm = fifo_size - wm_info->guard_size;
2375 2376 2377
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2378

2379 2380
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2381

2382
	if (IS_I915GM(dev_priv) && enabled) {
2383
		struct drm_i915_gem_object *obj;
2384

2385
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2386 2387

		/* self-refresh seems busted with untiled */
2388
		if (!i915_gem_object_is_tiled(obj))
2389 2390 2391
			enabled = NULL;
	}

2392 2393 2394 2395 2396 2397
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2398
	intel_set_memory_cxsr(dev_priv, false);
2399 2400

	/* Calc sr entries for one plane configs */
2401
	if (HAS_FW_BLC(dev_priv) && enabled) {
2402 2403
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2404
		const struct drm_display_mode *adjusted_mode =
2405
			&enabled->config->hw.adjusted_mode;
2406 2407
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2408
		int clock = adjusted_mode->crtc_clock;
2409
		int htotal = adjusted_mode->crtc_htotal;
2410 2411
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2412 2413
		int entries;

2414
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2415
			cpp = 4;
2416
		else
2417
			cpp = fb->format->cpp[0];
2418

2419 2420
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2421
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2422 2423
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2424 2425 2426 2427
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2428
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2429 2430
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2431
		else
2432 2433 2434
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

2435 2436 2437
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2449 2450
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2451 2452
}

2453
static void i845_update_wm(struct intel_crtc *unused_crtc)
2454
{
2455
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2456
	struct intel_crtc *crtc;
2457
	const struct drm_display_mode *adjusted_mode;
2458
	u32 fwater_lo;
2459 2460
	int planea_wm;

2461
	crtc = single_enabled_crtc(dev_priv);
2462 2463 2464
	if (crtc == NULL)
		return;

2465
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2466
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2467
				       &i845_wm_info,
2468
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2469
				       4, pessimal_latency_ns);
2470 2471 2472
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

2473 2474
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2475 2476 2477 2478

	I915_WRITE(FW_BLC, fwater_lo);
}

2479
/* latency must be in 0.1us units. */
2480 2481 2482
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2483
{
2484
	unsigned int ret;
2485

2486 2487
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2488 2489 2490 2491

	return ret;
}

2492
/* latency must be in 0.1us units. */
2493 2494 2495 2496 2497
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2498
{
2499
	unsigned int ret;
2500

2501 2502
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2503
	ret = DIV_ROUND_UP(ret, 64) + 2;
2504

2505 2506 2507
	return ret;
}

2508
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2509
{
2510 2511 2512 2513 2514 2515
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2516
	if (WARN_ON(!cpp))
2517 2518 2519 2520
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2521
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2522 2523
}

2524
struct ilk_wm_maximums {
2525 2526 2527 2528
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2529 2530
};

2531 2532 2533 2534
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2535 2536
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2537
			      u32 mem_value, bool is_lp)
2538
{
2539
	u32 method1, method2;
2540
	int cpp;
2541

2542 2543 2544
	if (mem_value == 0)
		return U32_MAX;

2545
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2546 2547
		return 0;

2548
	cpp = plane_state->hw.fb->format->cpp[0];
2549

2550
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2551 2552 2553 2554

	if (!is_lp)
		return method1;

2555
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2556
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2557
				 drm_rect_width(&plane_state->uapi.dst),
2558
				 cpp, mem_value);
2559 2560

	return min(method1, method2);
2561 2562
}

2563 2564 2565 2566
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2567 2568
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2569
			      u32 mem_value)
2570
{
2571
	u32 method1, method2;
2572
	int cpp;
2573

2574 2575 2576
	if (mem_value == 0)
		return U32_MAX;

2577
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2578 2579
		return 0;

2580
	cpp = plane_state->hw.fb->format->cpp[0];
2581

2582 2583
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2584
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2585
				 drm_rect_width(&plane_state->uapi.dst),
2586
				 cpp, mem_value);
2587 2588 2589
	return min(method1, method2);
}

2590 2591 2592 2593
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2594 2595
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2596
			      u32 mem_value)
2597
{
2598 2599
	int cpp;

2600 2601 2602
	if (mem_value == 0)
		return U32_MAX;

2603
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2604 2605
		return 0;

2606
	cpp = plane_state->hw.fb->format->cpp[0];
2607

2608
	return ilk_wm_method2(crtc_state->pixel_rate,
2609
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2610
			      drm_rect_width(&plane_state->uapi.dst),
2611
			      cpp, mem_value);
2612 2613
}

2614
/* Only for WM_LP. */
2615 2616
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2617
			      u32 pri_val)
2618
{
2619
	int cpp;
2620

2621
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2622 2623
		return 0;

2624
	cpp = plane_state->hw.fb->format->cpp[0];
2625

2626 2627
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2628 2629
}

2630 2631
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2632
{
2633
	if (INTEL_GEN(dev_priv) >= 8)
2634
		return 3072;
2635
	else if (INTEL_GEN(dev_priv) >= 7)
2636 2637 2638 2639 2640
		return 768;
	else
		return 512;
}

2641 2642 2643
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2644
{
2645
	if (INTEL_GEN(dev_priv) >= 8)
2646 2647
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2648
	else if (INTEL_GEN(dev_priv) >= 7)
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2659 2660
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2661
{
2662
	if (INTEL_GEN(dev_priv) >= 7)
2663 2664 2665 2666 2667
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2668
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2669
{
2670
	if (INTEL_GEN(dev_priv) >= 8)
2671 2672 2673 2674 2675
		return 31;
	else
		return 15;
}

2676
/* Calculate the maximum primary/sprite plane watermark */
2677
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2678
				     int level,
2679
				     const struct intel_wm_config *config,
2680 2681 2682
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2683
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2684 2685

	/* if sprites aren't enabled, sprites get nothing */
2686
	if (is_sprite && !config->sprites_enabled)
2687 2688 2689
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2690
	if (level == 0 || config->num_pipes_active > 1) {
2691
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2692 2693 2694 2695 2696 2697

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2698
		if (INTEL_GEN(dev_priv) <= 6)
2699 2700 2701
			fifo_size /= 2;
	}

2702
	if (config->sprites_enabled) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2714
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2715 2716 2717
}

/* Calculate the maximum cursor plane watermark */
2718
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2719 2720
				      int level,
				      const struct intel_wm_config *config)
2721 2722
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2723
	if (level > 0 && config->num_pipes_active > 1)
2724 2725 2726
		return 64;

	/* otherwise just report max that registers can hold */
2727
	return ilk_cursor_wm_reg_max(dev_priv, level);
2728 2729
}

2730
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2731 2732 2733
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2734
				    struct ilk_wm_maximums *max)
2735
{
2736 2737 2738 2739
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2740 2741
}

2742
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2743 2744 2745
					int level,
					struct ilk_wm_maximums *max)
{
2746 2747 2748 2749
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2750 2751
}

2752
static bool ilk_validate_wm_level(int level,
2753
				  const struct ilk_wm_maximums *max,
2754
				  struct intel_wm_level *result)
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2784 2785 2786
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2787 2788 2789 2790 2791 2792
		result->enable = true;
	}

	return ret;
}

2793
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2794
				 const struct intel_crtc *crtc,
2795
				 int level,
2796
				 struct intel_crtc_state *crtc_state,
2797 2798 2799
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2800
				 struct intel_wm_level *result)
2801
{
2802 2803 2804
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2805 2806 2807 2808 2809 2810 2811 2812

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2813
	if (pristate) {
2814
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2815
						     pri_latency, level);
2816
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2817 2818 2819
	}

	if (sprstate)
2820
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2821 2822

	if (curstate)
2823
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2824

2825 2826 2827
	result->enable = true;
}

2828
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2829
				  u16 wm[8])
2830
{
2831 2832
	struct intel_uncore *uncore = &dev_priv->uncore;

2833
	if (INTEL_GEN(dev_priv) >= 9) {
2834
		u32 val;
2835
		int ret, i;
2836
		int level, max_level = ilk_wm_max_level(dev_priv);
2837 2838 2839 2840 2841

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2842
					     &val, NULL);
2843 2844

		if (ret) {
2845 2846
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2862
					     &val, NULL);
2863
		if (ret) {
2864 2865
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2890
		/*
2891
		 * WaWmMemoryReadLatency:skl+,glk
2892
		 *
2893
		 * punit doesn't take into account the read latency so we need
2894 2895
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2896
		 */
2897 2898 2899 2900 2901
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2902
				wm[level] += 2;
2903
			}
2904 2905
		}

2906 2907 2908 2909 2910 2911
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2912
		if (dev_priv->dram_info.is_16gb_dimm)
2913 2914
			wm[0] += 1;

2915
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2916
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2917 2918 2919 2920

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2921 2922 2923 2924
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2925
	} else if (INTEL_GEN(dev_priv) >= 6) {
2926
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2927 2928 2929 2930 2931

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2932
	} else if (INTEL_GEN(dev_priv) >= 5) {
2933
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2934 2935 2936 2937 2938

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2939 2940
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2941 2942 2943
	}
}

2944
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2945
				       u16 wm[5])
2946 2947
{
	/* ILK sprite LP0 latency is 1300 ns */
2948
	if (IS_GEN(dev_priv, 5))
2949 2950 2951
		wm[0] = 13;
}

2952
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2953
				       u16 wm[5])
2954 2955
{
	/* ILK cursor LP0 latency is 1300 ns */
2956
	if (IS_GEN(dev_priv, 5))
2957 2958 2959
		wm[0] = 13;
}

2960
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2961 2962
{
	/* how many WM levels are we expecting */
2963
	if (INTEL_GEN(dev_priv) >= 9)
2964
		return 7;
2965
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2966
		return 4;
2967
	else if (INTEL_GEN(dev_priv) >= 6)
2968
		return 3;
2969
	else
2970 2971
		return 2;
}
2972

2973
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2974
				   const char *name,
2975
				   const u16 wm[8])
2976
{
2977
	int level, max_level = ilk_wm_max_level(dev_priv);
2978 2979 2980 2981 2982

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2983 2984 2985
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
2986 2987 2988
			continue;
		}

2989 2990 2991 2992
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2993
		if (INTEL_GEN(dev_priv) >= 9)
2994 2995
			latency *= 10;
		else if (level > 0)
2996 2997
			latency *= 5;

2998 2999 3000
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3001 3002 3003
	}
}

3004
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3005
				    u16 wm[5], u16 min)
3006
{
3007
	int level, max_level = ilk_wm_max_level(dev_priv);
3008 3009 3010 3011 3012 3013

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3014
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3015 3016 3017 3018

	return true;
}

3019
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3034 3035
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3036 3037 3038
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3063 3064
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3065 3066 3067 3068 3069
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3070
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3071
{
3072
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3073 3074 3075 3076 3077 3078

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3079
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3080
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3081

3082 3083 3084
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3085

3086
	if (IS_GEN(dev_priv, 6)) {
3087
		snb_wm_latency_quirk(dev_priv);
3088 3089
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3090 3091
}

3092
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3093
{
3094
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3095
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3096 3097
}

3098
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3110
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3111 3112 3113

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3114
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3115 3116 3117 3118 3119 3120
		return false;
	}

	return true;
}

3121
/* Compute new watermarks for the pipe */
3122
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3123
{
3124
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3125
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3126
	struct intel_pipe_wm *pipe_wm;
3127 3128
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3129 3130 3131
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3132
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3133
	struct ilk_wm_maximums max;
3134

3135
	pipe_wm = &crtc_state->wm.ilk.optimal;
3136

3137 3138 3139 3140 3141 3142 3143
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3144 3145
	}

3146
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3147
	if (sprstate) {
3148 3149 3150 3151
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3152 3153
	}

3154 3155
	usable_level = max_level;

3156
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3157
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3158
		usable_level = 1;
3159 3160

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3161
	if (pipe_wm->sprites_scaled)
3162
		usable_level = 0;
3163

3164
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3165
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3166
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3167

3168
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3169
		return -EINVAL;
3170

3171
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3172

3173 3174
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3175

3176
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3177
				     pristate, sprstate, curstate, wm);
3178 3179 3180 3181 3182 3183

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3184 3185 3186 3187
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3188 3189
	}

3190
	return 0;
3191 3192
}

3193 3194 3195 3196 3197
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3198
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3199
{
3200
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3201
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3202
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3203
	struct intel_atomic_state *intel_state =
3204
		to_intel_atomic_state(newstate->uapi.state);
3205 3206 3207
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3208
	int level, max_level = ilk_wm_max_level(dev_priv);
3209 3210 3211 3212 3213 3214

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3215
	*a = newstate->wm.ilk.optimal;
3216
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3217
	    intel_state->skip_intermediate_wm)
3218 3219
		return 0;

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3241
	if (!ilk_validate_pipe_wm(dev_priv, a))
3242 3243 3244 3245 3246 3247
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3248 3249
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3250 3251 3252 3253

	return 0;
}

3254 3255 3256
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3257
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3258 3259 3260 3261 3262
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3263 3264
	ret_wm->enable = true;

3265
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3266
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3267 3268 3269 3270
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3271

3272 3273 3274 3275 3276
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3277
		if (!wm->enable)
3278
			ret_wm->enable = false;
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3290
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3291
			 const struct intel_wm_config *config,
3292
			 const struct ilk_wm_maximums *max,
3293 3294
			 struct intel_pipe_wm *merged)
{
3295
	int level, max_level = ilk_wm_max_level(dev_priv);
3296
	int last_enabled_level = max_level;
3297

3298
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3299
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3300
	    config->num_pipes_active > 1)
3301
		last_enabled_level = 0;
3302

3303
	/* ILK: FBC WM must be disabled always */
3304
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3305 3306 3307 3308 3309

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3310
		ilk_merge_wm_level(dev_priv, level, wm);
3311

3312 3313 3314 3315 3316
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3317 3318 3319 3320 3321 3322

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3323 3324
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3325 3326 3327
			wm->fbc_val = 0;
		}
	}
3328 3329 3330 3331 3332 3333 3334

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3335
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3336
	    intel_fbc_is_active(dev_priv)) {
3337 3338 3339 3340 3341 3342
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3343 3344
}

3345 3346 3347 3348 3349 3350
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3351
/* The value we need to program into the WM_LPx latency field */
3352 3353
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3354
{
3355
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3356 3357 3358 3359 3360
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3361
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3362
				   const struct intel_pipe_wm *merged,
3363
				   enum intel_ddb_partitioning partitioning,
3364
				   struct ilk_wm_values *results)
3365
{
3366 3367
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3368

3369
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3370
	results->partitioning = partitioning;
3371

3372
	/* LP1+ register values */
3373
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3374
		const struct intel_wm_level *r;
3375

3376
		level = ilk_wm_lp_to_level(wm_lp, merged);
3377

3378
		r = &merged->wm[level];
3379

3380 3381 3382 3383 3384
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3385
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3386 3387 3388
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3389 3390 3391
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3392
		if (INTEL_GEN(dev_priv) >= 8)
3393 3394 3395 3396 3397 3398
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3399 3400 3401 3402
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3403
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3404
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3405 3406 3407
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3408
	}
3409

3410
	/* LP0 register values */
3411
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3412
		enum pipe pipe = intel_crtc->pipe;
3413 3414
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3415

3416
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3417
			continue;
3418

3419 3420 3421 3422
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3423 3424 3425
	}
}

3426 3427
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3428 3429 3430 3431
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3432
{
3433
	int level, max_level = ilk_wm_max_level(dev_priv);
3434
	int level1 = 0, level2 = 0;
3435

3436 3437 3438 3439 3440
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3441 3442
	}

3443 3444
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3445 3446 3447
			return r2;
		else
			return r1;
3448
	} else if (level1 > level2) {
3449 3450 3451 3452 3453 3454
		return r1;
	} else {
		return r2;
	}
}

3455 3456 3457 3458 3459 3460 3461
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3462
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3463 3464
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3465 3466 3467 3468 3469
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3470
	for_each_pipe(dev_priv, pipe) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3508 3509
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3510
{
3511
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3512
	bool changed = false;
3513

3514 3515 3516
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3517
		changed = true;
3518 3519 3520 3521
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3522
		changed = true;
3523 3524 3525 3526
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3527
		changed = true;
3528
	}
3529

3530 3531 3532 3533
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3534

3535 3536 3537 3538 3539 3540 3541
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3542 3543
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3544
{
3545
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3546
	unsigned int dirty;
3547
	u32 val;
3548

3549
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3550 3551 3552 3553 3554
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3555
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3556
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3557
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3558
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3559
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3560 3561
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3562
	if (dirty & WM_DIRTY_DDB) {
3563
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3578 3579
	}

3580
	if (dirty & WM_DIRTY_FBC) {
3581 3582 3583 3584 3585 3586 3587 3588
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3589 3590 3591 3592
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3593
	if (INTEL_GEN(dev_priv) >= 7) {
3594 3595 3596 3597 3598
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3599

3600
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3601
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3602
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3603
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3604
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3605
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3606 3607

	dev_priv->wm.hw = *results;
3608 3609
}

3610
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3611 3612 3613 3614
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3615
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3616
{
3617 3618 3619
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3620

3621 3622 3623 3624
	for (i = 0; i < max_slices; i++) {
		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
			enabled_slices_mask |= BIT(i);
	}
3625

3626
	return enabled_slices_mask;
3627 3628
}

3629 3630 3631 3632
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3633
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3634
{
3635
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3636 3637
}

3638 3639 3640
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3641 3642 3643 3644
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3645 3646
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3647 3648
}

3649 3650 3651
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3664
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3665
	} else if (IS_GEN(dev_priv, 11)) {
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3694
intel_enable_sagv(struct drm_i915_private *dev_priv)
3695 3696 3697
{
	int ret;

3698 3699 3700 3701
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3702 3703
		return 0;

3704
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3705 3706 3707
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3708
	/* We don't need to wait for SAGV when enabling */
3709 3710 3711

	/*
	 * Some skl systems, pre-release machines in particular,
3712
	 * don't actually have SAGV.
3713
	 */
3714
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3715
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3716
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3717 3718
		return 0;
	} else if (ret < 0) {
3719
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3720 3721 3722
		return ret;
	}

3723
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3724 3725 3726 3727
	return 0;
}

int
3728
intel_disable_sagv(struct drm_i915_private *dev_priv)
3729
{
3730
	int ret;
3731

3732 3733 3734 3735
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3736 3737
		return 0;

3738
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3739
	/* bspec says to keep retrying for at least 1 ms */
3740 3741 3742 3743
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3744 3745
	/*
	 * Some skl systems, pre-release machines in particular,
3746
	 * don't actually have SAGV.
3747
	 */
3748
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3749
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3750
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3751
		return 0;
3752
	} else if (ret < 0) {
3753
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3754
		return ret;
3755 3756
	}

3757
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3758 3759 3760
	return 0;
}

3761 3762 3763
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3764
	const struct intel_bw_state *new_bw_state;
3765

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;

	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

	if (!intel_can_enable_sagv(new_bw_state))
3781 3782 3783 3784 3785 3786
		intel_disable_sagv(dev_priv);
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	const struct intel_bw_state *new_bw_state;

	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;
3798

3799 3800 3801 3802 3803
	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

	if (intel_can_enable_sagv(new_bw_state))
3804 3805 3806
		intel_enable_sagv(dev_priv);
}

3807
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3808
{
3809
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3810
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3811
	struct intel_plane *plane;
3812
	const struct intel_plane_state *plane_state;
3813
	int level, latency;
3814

3815 3816 3817
	if (!intel_has_sagv(dev_priv))
		return false;

3818
	if (!crtc_state->hw.active)
3819
		return true;
3820

3821
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3822 3823
		return false;

3824
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3825
		const struct skl_plane_wm *wm =
3826
			&crtc_state->wm.skl.optimal.planes[plane->id];
3827

3828
		/* Skip this plane if it's not enabled */
3829
		if (!wm->wm[0].plane_en)
3830 3831 3832
			continue;

		/* Find the highest enabled wm level for this plane */
3833
		for (level = ilk_wm_max_level(dev_priv);
3834
		     !wm->wm[level].plane_en; --level)
3835 3836
		     { }

3837 3838
		latency = dev_priv->wm.skl_latency[level];

3839
		if (skl_needs_memory_bw_wa(dev_priv) &&
3840
		    plane_state->uapi.fb->modifier ==
3841 3842 3843
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3844
		/*
3845 3846
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3847
		 * can't enable SAGV.
3848
		 */
3849
		if (latency < dev_priv->sagv_block_time_us)
3850 3851 3852 3853 3854 3855
			return false;
	}

	return true;
}

3856
bool intel_can_enable_sagv(const struct intel_bw_state *bw_state)
3857
{
3858 3859 3860
	if (bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
		return false;

3861 3862 3863 3864 3865 3866
	return bw_state->pipe_sagv_reject == 0;
}

static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
	int ret;
3867
	struct intel_crtc *crtc;
3868 3869 3870 3871
	struct intel_crtc_state *new_crtc_state;
	struct intel_bw_state *new_bw_state = NULL;
	const struct intel_bw_state *old_bw_state = NULL;
	int i;
3872

3873 3874 3875 3876 3877
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
3878

3879
		old_bw_state = intel_atomic_get_old_bw_state(state);
3880

3881 3882 3883 3884 3885
		if (intel_crtc_can_enable_sagv(new_crtc_state))
			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
		else
			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
	}
3886

3887 3888
	if (!new_bw_state)
		return 0;
3889

3890 3891 3892 3893 3894 3895 3896 3897
	new_bw_state->active_pipes =
		intel_calc_active_pipes(state, old_bw_state->active_pipes);
	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	if (intel_can_enable_sagv(new_bw_state) != intel_can_enable_sagv(old_bw_state)) {
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

	return 0;
3909 3910
}

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3933 3934 3935
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

3936
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3937 3938 3939 3940 3941 3942 3943

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

3944
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
3945
				  u8 active_pipes);
3946

3947
static void
3948
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3949
				   const struct intel_crtc_state *crtc_state,
3950
				   const u64 total_data_rate,
3951 3952
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3953
{
3954
	struct drm_atomic_state *state = crtc_state->uapi.state;
3955
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3956
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3957
	const struct intel_crtc *crtc;
3958
	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3959 3960
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
3961
	u32 ddb_range_size;
3962
	u32 i;
3963 3964 3965 3966 3967 3968
	u32 dbuf_slice_mask;
	u32 active_pipes;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
3969

3970
	if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3971 3972
		alloc->start = 0;
		alloc->end = 0;
3973
		*num_active = hweight8(dev_priv->active_pipes);
3974 3975 3976
		return;
	}

3977
	if (intel_state->active_pipe_changes)
3978
		active_pipes = intel_state->active_pipes;
3979
	else
3980 3981 3982 3983 3984
		active_pipes = dev_priv->active_pipes;

	*num_active = hweight8(active_pipes);

	ddb_size = intel_get_ddb_size(dev_priv);
3985

3986
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3987

3988
	/*
3989 3990 3991 3992 3993 3994
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3995
	 */
3996
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3997 3998 3999 4000 4001
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4002
		return;
4003
	}
4004

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);

	DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
		      dbuf_slice_mask,
		      pipe_name(for_pipe), active_pipes);

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

4029 4030 4031 4032 4033
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
4034
	total_slice_mask = dbuf_slice_mask;
4035 4036
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
4037
			&crtc_state->hw.adjusted_mode;
4038
		enum pipe pipe = crtc->pipe;
4039
		int hdisplay, vdisplay;
4040
		u32 pipe_dbuf_slice_mask;
4041

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		if (!crtc_state->hw.active)
			continue;

		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
							       active_pipes);

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4065 4066 4067
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4068 4069

		total_width_in_range += hdisplay;
4070 4071

		if (pipe < for_pipe)
4072
			width_before_pipe_in_range += hdisplay;
4073 4074 4075 4076
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
	intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);

	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
	end = ddb_range_size *
		(width_before_pipe_in_range + pipe_width) / total_width_in_range;

	alloc->start = offset + start;
	alloc->end = offset + end;

	DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
		      alloc->start, alloc->end);
	DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
		      intel_state->enabled_dbuf_slices_mask,
		      INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4095 4096
}

4097 4098 4099 4100 4101
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4102
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4103
				 int level,
4104
				 unsigned int latency,
4105 4106 4107 4108 4109 4110 4111
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4112
{
4113
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4124
	drm_WARN_ON(&dev_priv->drm, ret);
4125 4126

	for (level = 0; level <= max_level; level++) {
4127 4128 4129
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4130 4131 4132 4133 4134
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4135

4136
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4137 4138
}

4139 4140
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4141
{
4142

4143 4144
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4145

4146 4147
	if (entry->end)
		entry->end += 1;
4148 4149
}

4150 4151 4152 4153
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4154 4155
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4156
{
4157 4158
	u32 val, val2;
	u32 fourcc = 0;
4159 4160 4161 4162

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4163
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4164 4165 4166 4167 4168 4169
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4170 4171 4172 4173
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4174

4175 4176 4177 4178 4179
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4180
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4181

4182 4183
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4184 4185 4186 4187
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4188 4189 4190
	}
}

4191 4192 4193
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4194
{
4195 4196 4197
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4198
	intel_wakeref_t wakeref;
4199
	enum plane_id plane_id;
4200

4201
	power_domain = POWER_DOMAIN_PIPE(pipe);
4202 4203
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4204
		return;
4205

4206 4207 4208 4209 4210
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4211

4212
	intel_display_power_put(dev_priv, power_domain, wakeref);
4213
}
4214

4215
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4216
{
4217 4218
	dev_priv->enabled_dbuf_slices_mask =
				intel_enabled_dbuf_slices_mask(dev_priv);
4219 4220
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4237
static uint_fixed_16_16_t
4238 4239
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4240
{
4241
	u32 src_w, src_h, dst_w, dst_h;
4242 4243
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4244

4245
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4246
		return u32_to_fixed16(0);
4247

4248 4249 4250 4251 4252 4253 4254
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4255 4256 4257 4258
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4259

4260 4261 4262 4263
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4264

4265
	return mul_fixed16(downscale_w, downscale_h);
4266 4267
}

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4283
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4284 4285 4286 4287 4288
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4289 4290
			[PIPE_A] = BIT(DBUF_S1),
		},
4291 4292 4293 4294
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4295 4296
			[PIPE_B] = BIT(DBUF_S1),
		},
4297 4298 4299 4300 4301
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4302 4303
			[PIPE_B] = BIT(DBUF_S2),
		},
4304 4305 4306 4307
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4308 4309
			[PIPE_C] = BIT(DBUF_S2),
		},
4310 4311 4312 4313 4314
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4315 4316
			[PIPE_C] = BIT(DBUF_S2),
		},
4317 4318 4319 4320 4321
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4322 4323
			[PIPE_C] = BIT(DBUF_S2),
		},
4324 4325 4326 4327 4328 4329
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4330 4331
			[PIPE_C] = BIT(DBUF_S2),
		},
4332
	},
4333
	{}
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4346
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4347 4348 4349 4350 4351
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4352 4353
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4354 4355 4356 4357
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4358 4359
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4360 4361 4362 4363 4364
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4365 4366
			[PIPE_B] = BIT(DBUF_S1),
		},
4367 4368 4369 4370
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4371 4372
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4373 4374 4375 4376 4377
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4378 4379
			[PIPE_C] = BIT(DBUF_S2),
		},
4380 4381 4382 4383 4384
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4385 4386
			[PIPE_C] = BIT(DBUF_S2),
		},
4387 4388 4389 4390 4391 4392
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4393 4394
			[PIPE_C] = BIT(DBUF_S2),
		},
4395 4396 4397 4398
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4399 4400
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4401 4402 4403 4404 4405
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4406 4407
			[PIPE_D] = BIT(DBUF_S2),
		},
4408 4409 4410 4411 4412
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4413 4414
			[PIPE_D] = BIT(DBUF_S2),
		},
4415 4416 4417 4418 4419 4420
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4421 4422
			[PIPE_D] = BIT(DBUF_S2),
		},
4423 4424 4425 4426 4427
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4428 4429
			[PIPE_D] = BIT(DBUF_S2),
		},
4430 4431 4432 4433 4434 4435
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4436 4437
			[PIPE_D] = BIT(DBUF_S2),
		},
4438 4439 4440 4441 4442 4443
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4444 4445
			[PIPE_D] = BIT(DBUF_S2),
		},
4446 4447 4448 4449 4450 4451 4452
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4453 4454
			[PIPE_D] = BIT(DBUF_S2),
		},
4455
	},
4456
	{}
4457 4458
};

4459 4460
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4461 4462 4463
{
	int i;

4464
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4476
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4490
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4491 4492
}

4493
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4494
{
4495
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4496 4497 4498
}

static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4499
				  u8 active_pipes)
4500 4501 4502 4503 4504 4505
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4506
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4507
	else if (IS_GEN(dev_priv, 11))
4508
		return icl_compute_dbuf_slices(pipe, active_pipes);
4509 4510 4511 4512 4513 4514 4515
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
	return BIT(DBUF_S1);
}

4516
static u64
4517 4518
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4519
			     int color_plane)
4520
{
4521
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4522
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4523 4524
	u32 data_rate;
	u32 width = 0, height = 0;
4525
	uint_fixed_16_16_t down_scale_amount;
4526
	u64 rate;
4527

4528
	if (!plane_state->uapi.visible)
4529
		return 0;
4530

4531
	if (plane->id == PLANE_CURSOR)
4532
		return 0;
4533 4534

	if (color_plane == 1 &&
4535
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4536
		return 0;
4537

4538 4539 4540 4541 4542
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4543 4544
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4545

4546
	/* UV plane does 1/2 pixel sub-sampling */
4547
	if (color_plane == 1) {
4548 4549
		width /= 2;
		height /= 2;
4550 4551
	}

4552
	data_rate = width * height;
4553

4554
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4555

4556 4557
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4558
	rate *= fb->format->cpp[color_plane];
4559
	return rate;
4560 4561
}

4562
static u64
4563
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4564 4565
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4566
{
4567 4568
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4569
	u64 total_data_rate = 0;
4570

4571
	/* Calculate and cache data rate for each plane */
4572 4573
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4574
		u64 rate;
4575

4576
		/* packed/y */
4577
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4578
		plane_data_rate[plane_id] = rate;
4579
		total_data_rate += rate;
4580

4581
		/* uv-plane */
4582
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4583
		uv_plane_data_rate[plane_id] = rate;
4584
		total_data_rate += rate;
4585 4586 4587 4588 4589
	}

	return total_data_rate;
}

4590
static u64
4591
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4592 4593
				 u64 *plane_data_rate)
{
4594 4595
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4596 4597 4598
	u64 total_data_rate = 0;

	/* Calculate and cache data rate for each plane */
4599 4600
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4601 4602
		u64 rate;

4603
		if (!plane_state->planar_linked_plane) {
4604
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4605 4606 4607 4608 4609 4610 4611
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4612
			 * intel_atomic_crtc_state_for_each_plane_state(),
4613 4614 4615 4616
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4617
			if (plane_state->planar_slave)
4618 4619 4620
				continue;

			/* Y plane rate is calculated on the slave */
4621
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4622
			y_plane_id = plane_state->planar_linked_plane->id;
4623 4624 4625
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4626
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4627 4628 4629 4630 4631 4632 4633 4634
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4635
static int
4636
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4637
{
4638 4639
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4640
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4641 4642 4643
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4644
	u64 total_data_rate;
4645
	enum plane_id plane_id;
4646
	int num_active;
4647 4648
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4649
	u32 blocks;
4650
	int level;
4651

4652
	/* Clear the partitioning for disabled planes. */
4653 4654
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4655

4656
	if (!crtc_state->hw.active) {
4657
		alloc->start = alloc->end = 0;
4658 4659 4660
		return 0;
	}

4661 4662
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4663
			icl_get_total_relative_data_rate(crtc_state,
4664 4665
							 plane_data_rate);
	else
4666
		total_data_rate =
4667
			skl_get_total_relative_data_rate(crtc_state,
4668 4669
							 plane_data_rate,
							 uv_plane_data_rate);
4670

4671

4672
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4673
					   alloc, &num_active);
4674
	alloc_size = skl_ddb_entry_size(alloc);
4675
	if (alloc_size == 0)
4676
		return 0;
4677

4678
	/* Allocate fixed number of blocks for cursor. */
4679
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4680
	alloc_size -= total[PLANE_CURSOR];
4681
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4682
		alloc->end - total[PLANE_CURSOR];
4683
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4684 4685 4686

	if (total_data_rate == 0)
		return 0;
4687

4688
	/*
4689 4690
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4691
	 */
4692
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4693
		blocks = 0;
4694
		for_each_plane_id_on_crtc(crtc, plane_id) {
4695
			const struct skl_plane_wm *wm =
4696
				&crtc_state->wm.skl.optimal.planes[plane_id];
4697 4698

			if (plane_id == PLANE_CURSOR) {
4699
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4700 4701
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4702 4703 4704
					blocks = U32_MAX;
					break;
				}
4705
				continue;
4706
			}
4707

4708 4709
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4710 4711
		}

4712
		if (blocks <= alloc_size) {
4713 4714 4715
			alloc_size -= blocks;
			break;
		}
4716 4717
	}

4718
	if (level < 0) {
4719 4720 4721 4722
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4723 4724 4725
		return -EINVAL;
	}

4726
	/*
4727 4728 4729
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4730
	 */
4731
	for_each_plane_id_on_crtc(crtc, plane_id) {
4732
		const struct skl_plane_wm *wm =
4733
			&crtc_state->wm.skl.optimal.planes[plane_id];
4734 4735
		u64 rate;
		u16 extra;
4736

4737
		if (plane_id == PLANE_CURSOR)
4738 4739
			continue;

4740
		/*
4741 4742
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4743
		 */
4744 4745
		if (total_data_rate == 0)
			break;
4746

4747 4748 4749 4750
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4751
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4752 4753
		alloc_size -= extra;
		total_data_rate -= rate;
4754

4755 4756
		if (total_data_rate == 0)
			break;
4757

4758 4759 4760 4761
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4762
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4763 4764 4765
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4766
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4767 4768 4769

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4770
	for_each_plane_id_on_crtc(crtc, plane_id) {
4771
		struct skl_ddb_entry *plane_alloc =
4772
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4773
		struct skl_ddb_entry *uv_plane_alloc =
4774
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4775 4776 4777 4778

		if (plane_id == PLANE_CURSOR)
			continue;

4779
		/* Gen11+ uses a separate plane for UV watermarks */
4780 4781
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4782 4783 4784 4785 4786 4787 4788

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4789

4790 4791 4792 4793
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4794
		}
4795
	}
4796

4797 4798 4799 4800 4801 4802 4803
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4804
		for_each_plane_id_on_crtc(crtc, plane_id) {
4805
			struct skl_plane_wm *wm =
4806
				&crtc_state->wm.skl.optimal.planes[plane_id];
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4823

4824
			/*
4825
			 * Wa_1408961008:icl, ehl
4826 4827
			 * Underruns with WM1+ disabled
			 */
4828
			if (IS_GEN(dev_priv, 11) &&
4829 4830
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4831 4832
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4833
			}
4834 4835 4836 4837 4838 4839 4840
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
4841
	for_each_plane_id_on_crtc(crtc, plane_id) {
4842
		struct skl_plane_wm *wm =
4843
			&crtc_state->wm.skl.optimal.planes[plane_id];
4844

4845
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4846
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4847 4848
	}

4849
	return 0;
4850 4851
}

4852 4853
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4854
 * for the read latency) and cpp should always be <= 8, so that
4855 4856 4857
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4858
static uint_fixed_16_16_t
4859 4860
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4861
{
4862
	u32 wm_intermediate_val;
4863
	uint_fixed_16_16_t ret;
4864 4865

	if (latency == 0)
4866
		return FP_16_16_MAX;
4867

4868
	wm_intermediate_val = latency * pixel_rate * cpp;
4869
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4870 4871 4872 4873

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4874 4875 4876
	return ret;
}

4877 4878 4879
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4880
{
4881
	u32 wm_intermediate_val;
4882
	uint_fixed_16_16_t ret;
4883 4884

	if (latency == 0)
4885
		return FP_16_16_MAX;
4886 4887

	wm_intermediate_val = latency * pixel_rate;
4888 4889
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4890
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4891 4892 4893
	return ret;
}

4894
static uint_fixed_16_16_t
4895
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4896
{
4897 4898
	u32 pixel_rate;
	u32 crtc_htotal;
4899 4900
	uint_fixed_16_16_t linetime_us;

4901
	if (!crtc_state->hw.active)
4902
		return u32_to_fixed16(0);
4903

4904
	pixel_rate = crtc_state->pixel_rate;
4905 4906

	if (WARN_ON(pixel_rate == 0))
4907
		return u32_to_fixed16(0);
4908

4909
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4910
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4911 4912 4913 4914

	return linetime_us;
}

4915
static u32
4916 4917
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4918
{
4919
	u64 adjusted_pixel_rate;
4920
	uint_fixed_16_16_t downscale_amount;
4921 4922

	/* Shouldn't reach here on disabled planes... */
4923
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4924 4925 4926 4927 4928 4929
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4930 4931
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4932

4933 4934
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4935 4936
}

4937
static int
4938 4939 4940 4941 4942
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4943
{
4944
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4945
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4946
	u32 interm_pbpl;
4947

4948
	/* only planar format has two planes */
4949 4950
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4951 4952
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
4953 4954 4955
		return -EINVAL;
	}

4956 4957 4958 4959 4960 4961 4962
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4963
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4964

4965
	wp->width = width;
4966
	if (color_plane == 1 && wp->is_planar)
4967 4968
		wp->width /= 2;

4969 4970
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4971

4972
	if (INTEL_GEN(dev_priv) >= 11 &&
4973
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4974 4975 4976 4977
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4978
	if (drm_rotation_90_or_270(rotation)) {
4979
		switch (wp->cpp) {
4980
		case 1:
4981
			wp->y_min_scanlines = 16;
4982 4983
			break;
		case 2:
4984
			wp->y_min_scanlines = 8;
4985 4986
			break;
		case 4:
4987
			wp->y_min_scanlines = 4;
4988
			break;
4989
		default:
4990
			MISSING_CASE(wp->cpp);
4991
			return -EINVAL;
4992 4993
		}
	} else {
4994
		wp->y_min_scanlines = 4;
4995 4996
	}

4997
	if (skl_needs_memory_bw_wa(dev_priv))
4998
		wp->y_min_scanlines *= 2;
4999

5000 5001 5002
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5003 5004
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
5005 5006 5007 5008

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

5009 5010
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
5011
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
5012 5013
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
5014
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5015
	} else {
5016 5017
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
5018
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5019 5020
	}

5021 5022
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
5023

5024
	wp->linetime_us = fixed16_to_u32_round_up(
5025
					intel_get_linetime_us(crtc_state));
5026 5027 5028 5029

	return 0;
}

5030 5031 5032 5033 5034
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
5035
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5036 5037
	int width;

5038 5039 5040 5041 5042
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
5043
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5044 5045 5046

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
5047
				     plane_state->hw.rotation,
5048 5049 5050 5051
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

5052 5053 5054 5055 5056 5057 5058 5059 5060
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5061
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5062
				 int level,
5063
				 unsigned int latency,
5064 5065 5066
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5067
{
5068
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5069 5070
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5071
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5072

5073 5074 5075
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5076
		return;
5077
	}
5078

5079 5080 5081 5082
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5083
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
5084 5085 5086
	    dev_priv->ipc_enabled)
		latency += 4;

5087
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5088 5089 5090
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5091
				 wp->cpp, latency, wp->dbuf_block_size);
5092
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5093
				 crtc_state->hw.adjusted_mode.crtc_htotal,
5094
				 latency,
5095
				 wp->plane_blocks_per_line);
5096

5097 5098
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5099
	} else {
5100
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5101
		     wp->dbuf_block_size < 1) &&
5102
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5103
			selected_result = method2;
5104
		} else if (latency >= wp->linetime_us) {
5105
			if (IS_GEN(dev_priv, 9) &&
5106 5107 5108 5109 5110
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5111
			selected_result = method1;
5112
		}
5113
	}
5114

5115
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5116
	res_lines = div_round_up_fixed16(selected_result,
5117
					 wp->plane_blocks_per_line);
5118

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5134

5135 5136 5137 5138 5139 5140 5141 5142 5143
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5144
	}
5145

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5164 5165 5166
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5167 5168 5169
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5170
		return;
5171
	}
5172 5173 5174 5175 5176 5177 5178

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5179 5180
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5181 5182
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5183
	result->plane_en = true;
5184 5185
}

5186
static void
5187
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5188
		      const struct skl_wm_params *wm_params,
5189
		      struct skl_wm_level *levels)
5190
{
5191
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5192
	int level, max_level = ilk_wm_max_level(dev_priv);
5193
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5194

5195
	for (level = 0; level <= max_level; level++) {
5196
		struct skl_wm_level *result = &levels[level];
5197
		unsigned int latency = dev_priv->wm.skl_latency[level];
5198

5199 5200
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5201 5202

		result_prev = result;
5203
	}
5204 5205
}

5206
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5207
				      const struct skl_wm_params *wp,
5208
				      struct skl_plane_wm *wm)
5209
{
5210
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5211
	const struct drm_i915_private *dev_priv = to_i915(dev);
5212
	u16 trans_min, trans_amount, trans_y_tile_min;
5213
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5214 5215 5216

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5217
		return;
5218

5219 5220 5221 5222 5223 5224 5225
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5226
	if (INTEL_GEN(dev_priv) >= 11)
5227
		trans_min = 4;
5228 5229 5230 5231 5232 5233 5234 5235
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5236 5237 5238

	trans_offset_b = trans_min + trans_amount;

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5249
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5250

5251
	if (wp->y_tiled) {
5252 5253
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5254
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5255 5256
				trans_offset_b;
	} else {
5257
		res_blocks = wm0_sel_res_b + trans_offset_b;
5258 5259
	}

5260 5261 5262 5263 5264 5265 5266
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5267 5268
}

5269
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5270 5271
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5272
{
5273
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5274 5275 5276
	struct skl_wm_params wm_params;
	int ret;

5277
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5278 5279 5280 5281
					  &wm_params, color_plane);
	if (ret)
		return ret;

5282
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5283
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5284 5285 5286 5287

	return 0;
}

5288
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5289 5290
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5291
{
5292
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5293 5294 5295
	struct skl_wm_params wm_params;
	int ret;

5296
	wm->is_planar = true;
5297 5298

	/* uv plane watermarks must also be validated for NV12/Planar */
5299
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5300 5301 5302
					  &wm_params, 1);
	if (ret)
		return ret;
5303

5304
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5305

5306
	return 0;
5307 5308
}

5309
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5310
			      const struct intel_plane_state *plane_state)
5311
{
5312
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5313
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5314
	enum plane_id plane_id = plane->id;
5315 5316
	int ret;

5317 5318 5319
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5320
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5321
					plane_id, 0);
5322 5323 5324
	if (ret)
		return ret;

5325
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5326
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5327 5328 5329 5330 5331 5332 5333 5334
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5335
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5336 5337
			      const struct intel_plane_state *plane_state)
{
5338
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5339 5340 5341
	int ret;

	/* Watermarks calculated in master */
5342
	if (plane_state->planar_slave)
5343 5344
		return 0;

5345
	if (plane_state->planar_linked_plane) {
5346
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5347
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5348 5349 5350 5351 5352

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5353
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5354 5355 5356 5357
						y_plane_id, 0);
		if (ret)
			return ret;

5358
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5359 5360 5361 5362
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5363
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5364 5365 5366 5367 5368 5369
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5370 5371
}

5372
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5373
{
5374
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5375
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5376 5377
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5378
	int ret;
5379

L
Lyude 已提交
5380 5381 5382 5383 5384 5385
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5386 5387
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5388

5389
		if (INTEL_GEN(dev_priv) >= 11)
5390
			ret = icl_build_plane_wm(crtc_state, plane_state);
5391
		else
5392
			ret = skl_build_plane_wm(crtc_state, plane_state);
5393 5394
		if (ret)
			return ret;
5395
	}
5396

5397
	return 0;
5398 5399
}

5400 5401
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5402 5403 5404
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5405 5406
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5407
	else
5408
		intel_de_write_fw(dev_priv, reg, 0);
5409 5410
}

5411 5412 5413 5414
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5415
	u32 val = 0;
5416

5417
	if (level->plane_en)
5418
		val |= PLANE_WM_EN;
5419 5420 5421 5422
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5423

5424
	intel_de_write_fw(dev_priv, reg, val);
5425 5426
}

5427 5428
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5429
{
5430
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5431
	int level, max_level = ilk_wm_max_level(dev_priv);
5432 5433 5434 5435 5436 5437 5438 5439
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5440 5441

	for (level = 0; level <= max_level; level++) {
5442
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5443
				   &wm->wm[level]);
5444
	}
5445
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5446
			   &wm->trans_wm);
5447

5448
	if (INTEL_GEN(dev_priv) >= 11) {
5449
		skl_ddb_entry_write(dev_priv,
5450 5451
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5452
	}
5453 5454 5455 5456 5457 5458 5459 5460

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5461 5462
}

5463 5464
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5465
{
5466
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5467
	int level, max_level = ilk_wm_max_level(dev_priv);
5468 5469 5470 5471 5472 5473
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5474 5475

	for (level = 0; level <= max_level; level++) {
5476 5477
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5478
	}
5479
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5480

5481
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5482 5483
}

5484 5485 5486
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5487
	return l1->plane_en == l2->plane_en &&
5488
		l1->ignore_lines == l2->ignore_lines &&
5489 5490 5491
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5492

5493 5494 5495 5496 5497
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5498

5499
	for (level = 0; level <= max_level; level++) {
5500 5501 5502 5503 5504 5505
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5506 5507 5508 5509
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5510 5511
}

5512 5513
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5514
{
5515
	return a->start < b->end && b->start < a->end;
5516 5517
}

5518
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5519
				 const struct skl_ddb_entry *entries,
5520
				 int num_entries, int ignore_idx)
5521
{
5522
	int i;
5523

5524 5525 5526
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5527
			return true;
5528
	}
5529

5530
	return false;
5531 5532
}

5533
static int
5534 5535
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5536
{
5537 5538
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5539 5540
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5541

5542 5543 5544
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5545

5546 5547 5548 5549
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5550 5551
			continue;

5552
		plane_state = intel_atomic_get_plane_state(state, plane);
5553 5554
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5555

5556
		new_crtc_state->update_planes |= BIT(plane_id);
5557 5558 5559 5560 5561 5562
	}

	return 0;
}

static int
5563
skl_compute_ddb(struct intel_atomic_state *state)
5564
{
5565
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5566 5567
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5568 5569
	struct intel_crtc *crtc;
	int ret, i;
5570

5571
	state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5572

5573
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5574
					    new_crtc_state, i) {
5575
		ret = skl_allocate_pipe_ddb(new_crtc_state);
5576 5577 5578
		if (ret)
			return ret;

5579 5580
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5581 5582
		if (ret)
			return ret;
5583 5584 5585 5586 5587
	}

	return 0;
}

5588 5589 5590 5591 5592
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5593
static void
5594
skl_print_wm_changes(struct intel_atomic_state *state)
5595
{
5596 5597 5598 5599 5600
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5601
	int i;
5602

5603
	if (!drm_debug_enabled(DRM_UT_KMS))
5604 5605
		return;

5606 5607
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5608 5609 5610 5611 5612
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5613 5614
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5615 5616
			const struct skl_ddb_entry *old, *new;

5617 5618
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5619 5620 5621 5622

			if (skl_ddb_entry_equal(old, new))
				continue;

5623 5624 5625 5626 5627
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				    enast(new_wm->trans_wm.plane_en));

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5657
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				    new_wm->trans_wm.plane_res_b);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				    new_wm->trans_wm.min_ddb_alloc);
5708 5709 5710 5711
		}
	}
}

V
Ville Syrjälä 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5728
static int
5729
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5730
{
V
Ville Syrjälä 已提交
5731
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5732
	int ret;
5733

5734 5735 5736 5737 5738 5739 5740
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5741
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5742
				       state->base.acquire_ctx);
5743 5744 5745
		if (ret)
			return ret;

5746
		state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5747 5748

		/*
5749
		 * We usually only initialize state->active_pipes if we
5750 5751 5752 5753
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5754
		if (!state->modeset)
5755
			state->active_pipes = dev_priv->active_pipes;
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5771
	if (state->active_pipe_changes || state->modeset) {
V
Ville Syrjälä 已提交
5772 5773 5774
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5775 5776 5777 5778 5779
	}

	return 0;
}

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5824
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5840
static int
5841
skl_compute_wm(struct intel_atomic_state *state)
5842
{
5843
	struct intel_crtc *crtc;
5844
	struct intel_crtc_state *new_crtc_state;
5845
	struct intel_crtc_state *old_crtc_state;
5846 5847
	int ret, i;

5848 5849
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5850 5851
		return ret;

5852 5853
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5854
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5855
	 * weren't otherwise being modified if pipe allocations had to change.
5856
	 */
5857
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5858 5859
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5860 5861
		if (ret)
			return ret;
5862 5863
	}

5864 5865 5866 5867
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5868 5869 5870
	ret = intel_compute_sagv_mask(state);
	if (ret)
		return ret;
5871

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

5884
	skl_print_wm_changes(state);
5885

5886 5887 5888
	return 0;
}

5889
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5890 5891 5892 5893 5894
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5895
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5907
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5908
{
5909
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5910
	struct ilk_wm_maximums max;
5911
	struct intel_wm_config config = {};
5912
	struct ilk_wm_values results = {};
5913
	enum intel_ddb_partitioning partitioning;
5914

5915
	ilk_compute_wm_config(dev_priv, &config);
5916

5917 5918
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5919 5920

	/* 5/6 split only in single pipe config on IVB+ */
5921
	if (INTEL_GEN(dev_priv) >= 7 &&
5922
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5923 5924
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5925

5926
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5927
	} else {
5928
		best_lp_wm = &lp_wm_1_2;
5929 5930
	}

5931
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5932
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5933

5934
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5935

5936
	ilk_write_wm_values(dev_priv, &results);
5937 5938
}

5939
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5940
				   struct intel_crtc *crtc)
5941
{
5942 5943 5944
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5945

5946
	mutex_lock(&dev_priv->wm.wm_mutex);
5947
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5948 5949 5950
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5951

5952
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5953
				    struct intel_crtc *crtc)
5954
{
5955 5956 5957
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5958 5959 5960

	if (!crtc_state->wm.need_postvbl_update)
		return;
5961

5962
	mutex_lock(&dev_priv->wm.wm_mutex);
5963 5964
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5965
	mutex_unlock(&dev_priv->wm.wm_mutex);
5966 5967
}

5968
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
5969
{
5970
	level->plane_en = val & PLANE_WM_EN;
5971
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5972 5973 5974
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5975 5976
}

5977
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5978
			      struct skl_pipe_wm *out)
5979
{
5980 5981
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5982 5983
	int level, max_level;
	enum plane_id plane_id;
5984
	u32 val;
5985

5986
	max_level = ilk_wm_max_level(dev_priv);
5987

5988
	for_each_plane_id_on_crtc(crtc, plane_id) {
5989
		struct skl_plane_wm *wm = &out->planes[plane_id];
5990

5991
		for (level = 0; level <= max_level; level++) {
5992 5993
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5994 5995
			else
				val = I915_READ(CUR_WM(pipe, level));
5996

5997
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5998 5999
		}

6000 6001
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6002 6003 6004 6005
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6006 6007
	}

6008
	if (!crtc->active)
6009
		return;
6010 6011
}

6012
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6013
{
6014
	struct intel_crtc *crtc;
6015
	struct intel_crtc_state *crtc_state;
6016

6017
	skl_ddb_get_hw_state(dev_priv);
6018
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6019
		crtc_state = to_intel_crtc_state(crtc->base.state);
6020

6021
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6022
	}
6023

6024
	if (dev_priv->active_pipes) {
6025 6026 6027
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
6028 6029
}

6030
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6031
{
6032
	struct drm_device *dev = crtc->base.dev;
6033
	struct drm_i915_private *dev_priv = to_i915(dev);
6034
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6035 6036
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6037
	enum pipe pipe = crtc->pipe;
6038
	static const i915_reg_t wm0_pipe_reg[] = {
6039 6040 6041 6042 6043 6044 6045
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);

6046 6047
	memset(active, 0, sizeof(*active));

6048
	active->pipe_enabled = crtc->active;
6049 6050

	if (active->pipe_enabled) {
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6064
		int level, max_level = ilk_wm_max_level(dev_priv);
6065 6066 6067 6068 6069 6070 6071 6072 6073

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6074

6075
	crtc->wm.active.ilk = *active;
6076 6077
}

6078 6079 6080 6081 6082
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6083 6084 6085
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6086
	u32 tmp;
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6109 6110 6111 6112
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6113
	u32 tmp;
6114 6115 6116 6117

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

6118
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6119
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6120
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6121
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6122
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6123
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6124
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6125 6126 6127 6128 6129
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
6130 6131 6132
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6133 6134

	tmp = I915_READ(DSPFW2);
6135 6136 6137
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6138 6139 6140 6141 6142 6143

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
6144 6145
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6146 6147

		tmp = I915_READ(DSPFW8_CHV);
6148 6149
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6150 6151

		tmp = I915_READ(DSPFW9_CHV);
6152 6153
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6154 6155 6156

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6157 6158 6159 6160 6161 6162 6163 6164 6165
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6166 6167
	} else {
		tmp = I915_READ(DSPFW7);
6168 6169
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6170 6171 6172

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6173 6174 6175 6176 6177 6178
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6179 6180 6181 6182 6183 6184
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6185
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6186 6187 6188 6189 6190 6191 6192 6193
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

6194
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6254 6255 6256 6257 6258 6259
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6260 6261
	}

6262 6263 6264 6265 6266 6267 6268 6269
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6290
		if (plane_state->uapi.visible)
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6328
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6329 6330
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6331
	struct intel_crtc *crtc;
6332 6333 6334 6335 6336 6337 6338 6339
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6340
		vlv_punit_get(dev_priv);
6341

6342
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6343 6344 6345
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6346 6347 6348 6349 6350 6351 6352 6353 6354
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6355
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6356 6357 6358 6359 6360
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6361 6362 6363
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6364 6365 6366 6367 6368 6369
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6370

6371
		vlv_punit_put(dev_priv);
6372 6373
	}

6374
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6390
			struct g4x_pipe_wm *raw =
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6412
		crtc_state->wm.vlv.intermediate = *active;
6413

6414 6415 6416 6417 6418 6419 6420
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6421
	}
6422

6423 6424 6425
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6426 6427
}

6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6448
		if (plane_state->uapi.visible)
6449 6450 6451
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6452
			struct g4x_pipe_wm *raw =
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6493
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6494
{
6495
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6496
	struct intel_crtc *crtc;
6497

6498 6499
	ilk_init_lp_watermarks(dev_priv);

6500
	for_each_intel_crtc(&dev_priv->drm, crtc)
6501 6502 6503 6504 6505 6506 6507
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6508
	if (INTEL_GEN(dev_priv) >= 7) {
6509 6510 6511
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6512

6513
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6514 6515
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6516
	else if (IS_IVYBRIDGE(dev_priv))
6517 6518
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6519 6520 6521 6522 6523

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6524 6525
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6526
 * @crtc: the #intel_crtc on which to compute the WM
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6557
void intel_update_watermarks(struct intel_crtc *crtc)
6558
{
6559
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6560 6561

	if (dev_priv->display.update_wm)
6562
		dev_priv->display.update_wm(crtc);
6563 6564
}

6565 6566 6567 6568
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6569 6570 6571
	if (!HAS_IPC(dev_priv))
		return;

6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6595 6596 6597 6598 6599
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6600
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6601

6602 6603 6604
	intel_enable_ipc(dev_priv);
}

6605 6606 6607 6608 6609 6610 6611 6612 6613
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6614

6615
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6616
{
6617
	enum pipe pipe;
6618

6619 6620 6621 6622
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6623

6624 6625
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6626 6627 6628
	}
}

6629
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6630
{
6631
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6632

6633 6634 6635 6636 6637 6638 6639
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6640

6641 6642 6643 6644 6645
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6646

6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6661 6662

	/*
6663 6664 6665 6666 6667
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6668
	 */
6669 6670 6671 6672 6673 6674 6675 6676 6677
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6678

6679
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6680

6681 6682 6683 6684 6685 6686
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6687

6688 6689 6690
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6691

6692 6693
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6694

6695
	g4x_disable_trickle_feed(dev_priv);
6696

6697
	ibx_init_clock_gating(dev_priv);
6698 6699
}

6700
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6701
{
6702 6703
	enum pipe pipe;
	u32 val;
6704

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6733 6734
}

6735
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6736
{
6737
	u32 tmp;
6738

6739 6740
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6741 6742 6743
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6744 6745
}

6746
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6747
{
6748
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6749

6750
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6751

6752 6753 6754
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6755

6756 6757 6758
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6759

6760 6761
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6762

6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6773

6774 6775
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6776

6777 6778 6779 6780
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6781

6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6794
	 */
6795 6796 6797
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6798

6799 6800 6801
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6802

6803 6804 6805 6806 6807 6808 6809
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6810

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6832

6833
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6834

6835
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6836

6837
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6838 6839
}

6840
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6841
{
6842
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6843

6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6854

6855
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6856 6857
}

6858
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6859
{
6860 6861 6862
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6863
	 */
6864
	if (HAS_PCH_LPT_LP(dev_priv))
6865 6866 6867
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6868 6869

	/* WADPOClockGatingDisable:hsw */
6870 6871
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6872
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6873 6874
}

6875
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6876
{
6877
	if (HAS_PCH_LPT_LP(dev_priv)) {
6878
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6879 6880 6881 6882 6883 6884

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6885 6886 6887 6888 6889
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6890
	u32 val;
6891 6892 6893 6894 6895

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6896 6897 6898 6899 6900
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6911 6912 6913 6914 6915
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6916

6917 6918 6919
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
6920 6921
}

6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6936 6937 6938 6939 6940

	/* Wa_1409825376:tgl (pre-prod)*/
	if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   TGL_VRH_GATING_DIS);
M
Matt Atwood 已提交
6941 6942 6943 6944

	/* Wa_14011059788:tgl */
	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
			 0, DFR_DISABLE);
6945 6946
}

6947 6948 6949 6950 6951
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6952
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6953 6954
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6955 6956
}

6957
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6958
{
6959
	u32 val;
6960 6961
	cnp_init_clock_gating(dev_priv);

6962 6963 6964 6965
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6966 6967 6968 6969 6970 6971 6972 6973
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6974 6975 6976 6977
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6978

R
Rodrigo Vivi 已提交
6979 6980 6981 6982 6983
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6984
	/* WaDisableVFclkgate:cnl */
6985
	/* WaVFUnitClockGatingDisable:cnl */
6986 6987 6988
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6989 6990
}

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

7001
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7002
{
7003
	gen9_init_clock_gating(dev_priv);
7004 7005 7006 7007 7008

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7009 7010 7011 7012 7013

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7014

7015
	/* WaFbcNukeOnHostModify:kbl */
7016 7017
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7018 7019
}

7020
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7021
{
7022
	gen9_init_clock_gating(dev_priv);
7023 7024 7025 7026

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7027 7028 7029 7030

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7031 7032
}

7033
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7034
{
7035
	enum pipe pipe;
B
Ben Widawsky 已提交
7036

7037
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7038
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7039

7040
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7041 7042 7043
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7044
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7045
	for_each_pipe(dev_priv, pipe) {
7046
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7047
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7048
			   BDW_DPRS_MASK_VBLANK_SRD);
7049
	}
7050

7051 7052 7053 7054 7055
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7056

7057 7058
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7059 7060 7061 7062

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7063

7064 7065
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7066

7067 7068 7069 7070
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7071
	lpt_init_clock_gating(dev_priv);
7072 7073 7074 7075 7076 7077 7078 7079

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7080 7081
}

7082
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7083
{
7084 7085 7086 7087 7088
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7089
	/* This is required by WaCatErrorRejectionIssue:hsw */
7090 7091 7092 7093
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7094 7095 7096
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7097

7098 7099 7100
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7101 7102 7103 7104
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7105
	/* WaDisable4x2SubspanOptimization:hsw */
7106 7107
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7108

7109 7110 7111
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7112 7113 7114 7115
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7116 7117
	 */
	I915_WRITE(GEN7_GT_MODE,
7118
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7119

7120 7121 7122 7123
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7124
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7125 7126
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7127
	lpt_init_clock_gating(dev_priv);
7128 7129
}

7130
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7131
{
7132
	u32 snpcr;
7133

7134
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7135

7136
	/* WaDisableEarlyCull:ivb */
7137 7138 7139
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7140
	/* WaDisableBackToBackFlipFix:ivb */
7141 7142 7143 7144
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7145
	/* WaDisablePSDDualDispatchEnable:ivb */
7146
	if (IS_IVB_GT1(dev_priv))
7147 7148 7149
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7150 7151 7152
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7153
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7154 7155 7156
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7157
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7158 7159 7160
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7161
		   GEN7_WA_L3_CHICKEN_MODE);
7162
	if (IS_IVB_GT1(dev_priv))
7163 7164
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7165 7166 7167 7168
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7169 7170
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7171
	}
7172

7173
	/* WaForceL3Serialization:ivb */
7174 7175 7176
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7177
	/*
7178
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7179
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7180 7181
	 */
	I915_WRITE(GEN6_UCGCTL2,
7182
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7183

7184
	/* This is required by WaCatErrorRejectionIssue:ivb */
7185 7186 7187 7188
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7189
	g4x_disable_trickle_feed(dev_priv);
7190 7191

	gen7_setup_fixed_func_scheduler(dev_priv);
7192

7193 7194 7195 7196 7197
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7198

7199
	/* WaDisable4x2SubspanOptimization:ivb */
7200 7201
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7202

7203 7204 7205
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7206 7207 7208 7209
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7210 7211
	 */
	I915_WRITE(GEN7_GT_MODE,
7212
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7213

7214 7215 7216 7217
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7218

7219
	if (!HAS_PCH_NOP(dev_priv))
7220
		cpt_init_clock_gating(dev_priv);
7221

7222
	gen6_check_mch_setup(dev_priv);
7223 7224
}

7225
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7226
{
7227
	/* WaDisableEarlyCull:vlv */
7228 7229 7230
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7231
	/* WaDisableBackToBackFlipFix:vlv */
7232 7233 7234 7235
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7236
	/* WaPsdDispatchEnable:vlv */
7237
	/* WaDisablePSDDualDispatchEnable:vlv */
7238
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7239 7240
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7241

7242 7243 7244
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7245
	/* WaForceL3Serialization:vlv */
7246 7247 7248
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7249
	/* WaDisableDopClockGating:vlv */
7250 7251 7252
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7253
	/* This is required by WaCatErrorRejectionIssue:vlv */
7254 7255 7256 7257
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7258 7259
	gen7_setup_fixed_func_scheduler(dev_priv);

7260
	/*
7261
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7262
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7263 7264
	 */
	I915_WRITE(GEN6_UCGCTL2,
7265
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7266

7267 7268 7269 7270 7271
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7272

7273 7274 7275 7276
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7277 7278
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7279

7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7291 7292 7293 7294 7295 7296
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7297
	/*
7298
	 * WaDisableVLVClockGating_VBIIssue:vlv
7299 7300 7301
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7302
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7303 7304
}

7305
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7306
{
7307 7308 7309 7310 7311
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7312 7313 7314 7315

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7316 7317 7318 7319

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7320 7321 7322 7323

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7324

7325 7326 7327 7328 7329 7330
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7331 7332
}

7333
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7334
{
7335
	u32 dspclk_gate;
7336 7337 7338 7339 7340 7341 7342 7343 7344

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7345
	if (IS_GM45(dev_priv))
7346 7347
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7348 7349 7350 7351

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7352

7353 7354 7355
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7356
	g4x_disable_trickle_feed(dev_priv);
7357 7358
}

7359
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7360
{
7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7371 7372

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7373 7374 7375
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7376 7377
}

7378
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7379 7380 7381 7382 7383 7384 7385
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7386 7387
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7388 7389 7390

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7391 7392
}

7393
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7394 7395 7396 7397 7398 7399
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7400

7401
	if (IS_PINEVIEW(dev_priv))
7402
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7403 7404 7405

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7406 7407

	/* interrupts should cause a wake up from C3 */
7408
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7409 7410 7411

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7412 7413 7414

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7415 7416
}

7417
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7418 7419
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7420 7421 7422 7423

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7424 7425 7426

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7427 7428
}

7429
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7430
{
7431 7432 7433
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7434 7435
}

7436
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7437
{
7438
	dev_priv->display.init_clock_gating(dev_priv);
7439 7440
}

7441
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7442
{
7443 7444
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7445 7446
}

7447
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7448
{
7449 7450
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7464
	if (IS_GEN(dev_priv, 12))
7465
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7466
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7467
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7468
	else if (IS_CANNONLAKE(dev_priv))
7469
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7470 7471
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7472
	else if (IS_SKYLAKE(dev_priv))
7473
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7474
	else if (IS_KABYLAKE(dev_priv))
7475
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7476
	else if (IS_BROXTON(dev_priv))
7477
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7478 7479
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7480
	else if (IS_BROADWELL(dev_priv))
7481
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7482
	else if (IS_CHERRYVIEW(dev_priv))
7483
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7484
	else if (IS_HASWELL(dev_priv))
7485
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7486
	else if (IS_IVYBRIDGE(dev_priv))
7487
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7488
	else if (IS_VALLEYVIEW(dev_priv))
7489
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7490
	else if (IS_GEN(dev_priv, 6))
7491
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7492
	else if (IS_GEN(dev_priv, 5))
7493
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7494 7495
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7496
	else if (IS_I965GM(dev_priv))
7497
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7498
	else if (IS_I965G(dev_priv))
7499
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7500
	else if (IS_GEN(dev_priv, 3))
7501 7502 7503
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7504
	else if (IS_GEN(dev_priv, 2))
7505 7506 7507 7508 7509 7510 7511
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7512
/* Set up chip specific power management-related functions */
7513
void intel_init_pm(struct drm_i915_private *dev_priv)
7514
{
7515
	/* For cxsr */
7516
	if (IS_PINEVIEW(dev_priv))
7517
		pnv_get_mem_freq(dev_priv);
7518
	else if (IS_GEN(dev_priv, 5))
7519
		ilk_get_mem_freq(dev_priv);
7520

7521 7522 7523
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7524
	/* For FIFO watermark updates */
7525
	if (INTEL_GEN(dev_priv) >= 9) {
7526
		skl_setup_wm_latency(dev_priv);
7527
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7528
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7529
		ilk_setup_wm_latency(dev_priv);
7530

7531
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7532
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7533
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7534
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7535
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7536 7537 7538 7539 7540 7541
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7542
		} else {
7543 7544 7545
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7546
		}
7547
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7548
		vlv_setup_wm_latency(dev_priv);
7549
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7550
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7551
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7552
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7553
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7554 7555 7556 7557 7558 7559
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7560
	} else if (IS_PINEVIEW(dev_priv)) {
7561
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7562 7563 7564
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7565 7566
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7567 7568 7569 7570 7571
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7572
			intel_set_memory_cxsr(dev_priv, false);
7573 7574
			dev_priv->display.update_wm = NULL;
		} else
7575
			dev_priv->display.update_wm = pnv_update_wm;
7576
	} else if (IS_GEN(dev_priv, 4)) {
7577
		dev_priv->display.update_wm = i965_update_wm;
7578
	} else if (IS_GEN(dev_priv, 3)) {
7579 7580
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7581
	} else if (IS_GEN(dev_priv, 2)) {
7582
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7583
			dev_priv->display.update_wm = i845_update_wm;
7584
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7585 7586
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7587
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7588 7589
		}
	} else {
7590 7591
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7592 7593 7594
	}
}

7595
void intel_pm_setup(struct drm_i915_private *dev_priv)
7596
{
7597 7598
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7599
}