intel_pm.c 261.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36
#include "display/intel_atomic.h"
37
#include "display/intel_display_types.h"
38 39 40
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

41
#include "i915_drv.h"
42
#include "i915_irq.h"
43
#include "i915_trace.h"
44
#include "intel_pm.h"
45
#include "intel_sideband.h"
46
#include "../../../platform/x86/intel_ips.h"
47

48
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
49
{
50 51 52
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
53
		 * Display WA #0390: skl,kbl
54 55 56 57 58 59 60 61 62
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
68 69
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
70

71 72
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
73 74 75
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
76

77
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
78 79
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
80 81 82 83 84 85

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
86 87
}

88
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
89
{
90
	gen9_init_clock_gating(dev_priv);
91

92 93 94 95
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

96 97
	/*
	 * FIXME:
98
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
99 100
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
101
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
102 103 104 105 106

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
107 108
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112 113 114 115 116 117 118 119 120 121
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
122 123 124 125 126 127 128 129 130 131

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

132 133
}

134
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

172
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
173 174 175
{
	u16 ddrpll, csipll;

176 177
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

199
	dev_priv->ips.r_t = dev_priv->mem_freq;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
231
		dev_priv->ips.c_m = 0;
232
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
233
		dev_priv->ips.c_m = 1;
234
	} else {
235
		dev_priv->ips.c_m = 2;
236 237 238
	}
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

277 278
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

301 302 303 304
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

305
	vlv_punit_get(dev_priv);
306 307 308 309 310 311 312 313 314 315 316 317 318 319

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

320
	vlv_punit_put(dev_priv);
321 322
}

323 324 325 326
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

327
	vlv_punit_get(dev_priv);
328

329
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
330 331 332 333
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
334
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
335

336
	vlv_punit_put(dev_priv);
337 338
}

339 340 341
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

342
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
343
{
344
	bool was_enabled;
345
	u32 val;
346

347
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
348
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
349
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
350
		POSTING_READ(FW_BLC_SELF_VLV);
351
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
352
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
353
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
354
		POSTING_READ(FW_BLC_SELF);
355
	} else if (IS_PINEVIEW(dev_priv)) {
356 357 358 359 360 361
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
362
		I915_WRITE(DSPFW3, val);
363
		POSTING_READ(DSPFW3);
364
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
365
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
366 367 368
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_I915GM(dev_priv)) {
371 372 373 374 375
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
376
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
377 378 379
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
380
		POSTING_READ(INSTPM);
381
	} else {
382
		return false;
383
	}
384

385 386
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

387 388 389 390 391
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
392 393
}

V
Ville Syrjälä 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
431
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
432
{
433 434
	bool ret;

435
	mutex_lock(&dev_priv->wm.wm_mutex);
436
	ret = _intel_set_memory_cxsr(dev_priv, enable);
437 438 439 440
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
441
	mutex_unlock(&dev_priv->wm.wm_mutex);
442 443

	return ret;
444
}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
460
static const int pessimal_latency_ns = 5000;
461

462 463 464
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

465
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
466
{
467
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
468
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
469
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
470 471
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
472

473
	switch (pipe) {
474
		u32 dsparb, dsparb2, dsparb3;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
494 495
		MISSING_CASE(pipe);
		return;
496 497
	}

498 499 500 501
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
502 503
}

504 505
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
506
{
507
	u32 dsparb = I915_READ(DSPARB);
508 509 510
	int size;

	size = dsparb & 0x7f;
511
	if (i9xx_plane == PLANE_B)
512 513
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

514 515
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
516 517 518 519

	return size;
}

520 521
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
522
{
523
	u32 dsparb = I915_READ(DSPARB);
524 525 526
	int size;

	size = dsparb & 0x1ff;
527
	if (i9xx_plane == PLANE_B)
528 529 530
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

531 532
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
533 534 535 536

	return size;
}

537 538
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
539
{
540
	u32 dsparb = I915_READ(DSPARB);
541 542 543 544 545
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

546 547
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
548 549 550 551 552 553

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
554 555 556 557 558
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 560
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
561 562 563 564 565
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 567
};
static const struct intel_watermark_params pineview_cursor_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 574
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
575 576 577 578 579
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
580 581
};
static const struct intel_watermark_params i965_cursor_wm_info = {
582 583 584 585 586
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
587 588
};
static const struct intel_watermark_params i945_wm_info = {
589 590 591 592 593
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
594 595
};
static const struct intel_watermark_params i915_wm_info = {
596 597 598 599 600
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
601
};
602
static const struct intel_watermark_params i830_a_wm_info = {
603 604 605 606 607
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
608
};
609 610 611 612 613 614 615
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
616
static const struct intel_watermark_params i845_wm_info = {
617 618 619 620 621
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
622 623
};

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
661
	u64 ret;
662

663
	ret = mul_u32_u32(pixel_rate, cpp * latency);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

720 721
/**
 * intel_calculate_wm - calculate watermark level
722
 * @pixel_rate: pixel clock
723
 * @wm: chip FIFO params
724
 * @fifo_size: size of the FIFO buffer
725
 * @cpp: bytes per pixel
726 727 728 729 730 731 732 733 734 735 736 737 738
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
739 740 741 742
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
743
{
744
	int entries, wm_size;
745 746 747 748 749 750 751

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
752 753 754 755 756
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
757

758 759
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
760 761

	/* Don't promote wm_size to unsigned... */
762
	if (wm_size > wm->max_wm)
763 764 765
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
766 767 768 769 770 771 772 773 774 775 776

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

777 778 779
	return wm_size;
}

780 781 782 783 784 785 786 787 788 789
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

790 791 792 793 794
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

818
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
819
{
820
	struct intel_crtc *crtc, *enabled = NULL;
821

822
	for_each_intel_crtc(&dev_priv->drm, crtc) {
823
		if (intel_crtc_active(crtc)) {
824 825 826 827 828 829 830 831 832
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

833
static void pineview_update_wm(struct intel_crtc *unused_crtc)
834
{
835
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
836
	struct intel_crtc *crtc;
837 838
	const struct cxsr_latency *latency;
	u32 reg;
839
	unsigned int wm;
840

841
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
842 843 844
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
845 846
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
847
		intel_set_memory_cxsr(dev_priv, false);
848 849 850
		return;
	}

851
	crtc = single_enabled_crtc(dev_priv);
852
	if (crtc) {
853 854 855 856
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
857
		int cpp = fb->format->cpp[0];
858
		int clock = adjusted_mode->crtc_clock;
859 860 861 862

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
863
					cpp, latency->display_sr);
864 865
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
866
		reg |= FW_WM(wm, SR);
867 868 869 870 871 872
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
873
					4, latency->cursor_sr);
874 875
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
876
		reg |= FW_WM(wm, CURSOR_SR);
877 878 879 880 881
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
882
					cpp, latency->display_hpll_disable);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
885
		reg |= FW_WM(wm, HPLL_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					4, latency->cursor_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
894
		reg |= FW_WM(wm, HPLL_CURSOR);
895 896 897
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

898
		intel_set_memory_cxsr(dev_priv, true);
899
	} else {
900
		intel_set_memory_cxsr(dev_priv, false);
901 902 903
	}
}

904 905 906 907 908 909 910 911 912 913
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
914
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
915 916 917 918 919 920
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

921 922
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
923
{
924 925 926 927 928
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
946

947
	POSTING_READ(DSPFW1);
948 949
}

950 951 952
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

953
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
954 955
				const struct vlv_wm_values *wm)
{
956 957 958
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
959 960
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

961 962 963 964 965 966
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
967

968 969 970 971 972 973 974 975 976 977 978
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

979
	I915_WRITE(DSPFW1,
980
		   FW_WM(wm->sr.plane, SR) |
981 982 983
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
984
	I915_WRITE(DSPFW2,
985 986 987
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
988
	I915_WRITE(DSPFW3,
989
		   FW_WM(wm->sr.cursor, CURSOR_SR));
990 991 992

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
993 994
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
995
		I915_WRITE(DSPFW8_CHV,
996 997
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
998
		I915_WRITE(DSPFW9_CHV,
999 1000
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1001
		I915_WRITE(DSPHOWM,
1002
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1003 1004 1005 1006 1007 1008 1009 1010 1011
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1012 1013
	} else {
		I915_WRITE(DSPFW7,
1014 1015
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1016
		I915_WRITE(DSPHOWM,
1017
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1018 1019 1020 1021 1022 1023
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024 1025 1026
	}

	POSTING_READ(DSPFW1);
1027 1028
}

1029 1030
#undef FW_WM_VLV

1031 1032 1033 1034 1035
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1036
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1037

1038
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1083 1084 1085
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1086 1087 1088 1089 1090
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1091 1092
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1093 1094 1095 1096 1097 1098 1099

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1100 1101
	cpp = plane_state->base.fb->format->cpp[0];

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1115
		cpp = max(cpp, 4u);
1116 1117 1118 1119

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1120
	width = drm_rect_width(&plane_state->base.dst);
1121 1122 1123 1124 1125 1126 1127

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1128
		unsigned int small, large;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1141
	return min_t(unsigned int, wm, USHRT_MAX);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1179 1180
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1181
			      u32 pri_val);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1307 1308
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1309
	const struct g4x_pipe_wm *raw;
1310 1311
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1312 1313 1314 1315 1316
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1317 1318 1319 1320
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1321 1322 1323
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1324
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1390
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1391
{
1392
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1393 1394 1395 1396 1397 1398 1399
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1400 1401
	enum plane_id plane_id;

1402 1403 1404 1405 1406 1407 1408 1409
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1410
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1411
		!new_crtc_state->disable_cxsr;
1412
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1413
		!new_crtc_state->disable_cxsr;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1455
out:
1456 1457 1458 1459 1460
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1461
		new_crtc_state->wm.need_postvbl_update = true;
1462 1463 1464 1465 1466 1467 1468 1469

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1470
	int num_active_pipes = 0;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1489
		num_active_pipes++;
1490 1491
	}

1492
	if (num_active_pipes != 1) {
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548 1549 1550 1551 1552

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1553
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1554 1555 1556 1557
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1558 1559
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1560 1561
				   unsigned int htotal,
				   unsigned int width,
1562
				   unsigned int cpp,
1563 1564 1565 1566
				   unsigned int latency)
{
	unsigned int ret;

1567 1568
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1569 1570 1571 1572 1573
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1574
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1575 1576 1577 1578
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1579 1580
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1581 1582 1583
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1584 1585

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1586 1587 1588
	}
}

1589 1590 1591
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1592
{
1593
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1594
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1595 1596
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1597
	unsigned int clock, htotal, cpp, width, wm;
1598 1599 1600 1601

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1602
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1603 1604
		return 0;

1605
	cpp = plane_state->base.fb->format->cpp[0];
1606 1607 1608
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1609

1610
	if (plane->id == PLANE_CURSOR) {
1611 1612 1613 1614 1615 1616 1617 1618
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1619
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1620 1621 1622
				    dev_priv->wm.pri_latency[level] * 10);
	}

1623
	return min_t(unsigned int, wm, USHRT_MAX);
1624 1625
}

1626 1627 1628 1629 1630 1631
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1632
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1633
{
1634
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1635
	const struct g4x_pipe_wm *raw =
1636
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1637
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1638
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1639
	int num_active_planes = hweight8(active_planes);
1640
	const int fifo_size = 511;
1641
	int fifo_extra, fifo_left = fifo_size;
1642
	int sprite0_fifo_extra = 0;
1643 1644
	unsigned int total_rate;
	enum plane_id plane_id;
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1657 1658
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1659 1660
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1661

1662 1663
	if (total_rate > fifo_size)
		return -EINVAL;
1664

1665 1666
	if (total_rate == 0)
		total_rate = 1;
1667

1668
	for_each_plane_id_on_crtc(crtc, plane_id) {
1669 1670
		unsigned int rate;

1671 1672
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1673 1674 1675
			continue;
		}

1676 1677 1678
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1679 1680
	}

1681 1682 1683
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1684 1685 1686
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1687 1688

	/* spread the remainder evenly */
1689
	for_each_plane_id_on_crtc(crtc, plane_id) {
1690 1691 1692 1693 1694
		int plane_extra;

		if (fifo_left == 0)
			break;

1695
		if ((active_planes & BIT(plane_id)) == 0)
1696 1697 1698
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1699
		fifo_state->plane[plane_id] += plane_extra;
1700 1701 1702
		fifo_left -= plane_extra;
	}

1703 1704 1705 1706 1707 1708 1709 1710 1711
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1712 1713
}

1714 1715 1716 1717 1718 1719
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1720
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1731 1732 1733 1734 1735 1736 1737 1738
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1739 1740 1741 1742
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1743
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1744
				 int level, enum plane_id plane_id, u16 value)
1745
{
1746
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1747
	int num_levels = intel_wm_num_levels(dev_priv);
1748
	bool dirty = false;
1749

1750
	for (; level < num_levels; level++) {
1751
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1752

1753
		dirty |= raw->plane[plane_id] != value;
1754
		raw->plane[plane_id] = value;
1755
	}
1756 1757

	return dirty;
1758 1759
}

1760 1761
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1762
{
1763 1764
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1765
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1766
	int level;
1767
	bool dirty = false;
1768

1769
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1770 1771
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1772
	}
1773

1774
	for (level = 0; level < num_levels; level++) {
1775
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1776 1777
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1778

1779 1780
		if (wm > max_wm)
			break;
1781

1782
		dirty |= raw->plane[plane_id] != wm;
1783 1784
		raw->plane[plane_id] = wm;
	}
1785

1786
	/* mark all higher levels as invalid */
1787
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1788

1789 1790
out:
	if (dirty)
1791
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1792 1793 1794 1795 1796 1797
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1798
}
1799

1800 1801
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1802
{
1803
	const struct g4x_pipe_wm *raw =
1804 1805 1806
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1807

1808 1809
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1810

1811
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1812
{
1813 1814 1815 1816
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1828 1829
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1830
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1831 1832
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1833 1834 1835
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1836
	unsigned int dirty = 0;
1837

1838 1839 1840 1841
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1842 1843
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1844

1845
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1864
			intel_atomic_get_old_crtc_state(state, crtc);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1876
	}
1877

1878
	/* initially allow all levels */
1879
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1880 1881 1882 1883 1884
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1885
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1886

1887
	for (level = 0; level < wm_state->num_levels; level++) {
1888
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1889
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1890

1891
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1892
			break;
1893

1894 1895 1896 1897 1898 1899 1900 1901
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1902
						 raw->plane[PLANE_SPRITE0],
1903 1904
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1905

1906 1907 1908
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1909 1910
	}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1921 1922
}

1923 1924 1925
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1926 1927
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1928
{
1929
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1930
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1931
	struct intel_uncore *uncore = &dev_priv->uncore;
1932 1933
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1934
	int sprite0_start, sprite1_start, fifo_size;
1935

1936 1937 1938
	if (!crtc_state->fifo_changed)
		return;

1939 1940 1941
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1942

1943 1944
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1945

1946 1947
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1957
	spin_lock(&uncore->lock);
1958

1959
	switch (crtc->pipe) {
1960
		u32 dsparb, dsparb2, dsparb3;
1961
	case PIPE_A:
1962 1963
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1975 1976
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1977 1978
		break;
	case PIPE_B:
1979 1980
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1992 1993
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1994 1995
		break;
	case PIPE_C:
1996 1997
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2009 2010
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2011 2012 2013 2014
		break;
	default:
		break;
	}
2015

2016
	intel_uncore_posting_read_fw(uncore, DSPARB);
2017

2018
	spin_unlock(&uncore->lock);
2019 2020 2021 2022
}

#undef VLV_FIFO

2023
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2024
{
2025
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2026 2027 2028 2029 2030 2031 2032
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2033 2034
	int level;

2035 2036 2037 2038 2039 2040 2041
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2042
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2043
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2044
		!new_crtc_state->disable_cxsr;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2063
out:
2064 2065 2066 2067
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2068
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2069
		new_crtc_state->wm.need_postvbl_update = true;
2070 2071 2072 2073

	return 0;
}

2074
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2075 2076 2077
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2078
	int num_active_pipes = 0;
2079

2080
	wm->level = dev_priv->wm.max_level;
2081 2082
	wm->cxsr = true;

2083
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2084
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2085 2086 2087 2088 2089 2090 2091

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2092
		num_active_pipes++;
2093 2094 2095
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2096
	if (num_active_pipes != 1)
2097 2098
		wm->cxsr = false;

2099
	if (num_active_pipes > 1)
2100 2101
		wm->level = VLV_WM_LEVEL_PM2;

2102
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2103
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2104 2105 2106
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2107
		if (crtc->active && wm->cxsr)
2108 2109
			wm->sr = wm_state->sr[wm->level];

2110 2111 2112 2113
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2114 2115 2116
	}
}

2117
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2118
{
2119 2120
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2121

2122
	vlv_merge_wm(dev_priv, &new_wm);
2123

2124
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2125 2126
		return;

2127
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2128 2129
		chv_set_memory_dvfs(dev_priv, false);

2130
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2131 2132
		chv_set_memory_pm5(dev_priv, false);

2133
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2134
		_intel_set_memory_cxsr(dev_priv, false);
2135

2136
	vlv_write_wm_values(dev_priv, &new_wm);
2137

2138
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2139
		_intel_set_memory_cxsr(dev_priv, true);
2140

2141
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2142 2143
		chv_set_memory_pm5(dev_priv, true);

2144
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2145 2146
		chv_set_memory_dvfs(dev_priv, true);

2147
	*old_wm = new_wm;
2148 2149
}

2150 2151 2152 2153 2154 2155 2156
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2157 2158 2159 2160 2161 2162 2163 2164 2165
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2167 2168 2169 2170 2171

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2172
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2173 2174 2175 2176
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2177
static void i965_update_wm(struct intel_crtc *unused_crtc)
2178
{
2179
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2180
	struct intel_crtc *crtc;
2181 2182
	int srwm = 1;
	int cursor_sr = 16;
2183
	bool cxsr_enabled;
2184 2185

	/* Calc sr entries for one plane configs */
2186
	crtc = single_enabled_crtc(dev_priv);
2187 2188 2189
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2190 2191 2192 2193
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2194
		int clock = adjusted_mode->crtc_clock;
2195
		int htotal = adjusted_mode->crtc_htotal;
2196
		int hdisplay = crtc->config->pipe_src_w;
2197
		int cpp = fb->format->cpp[0];
2198 2199
		int entries;

2200 2201
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2202 2203 2204 2205 2206 2207 2208 2209
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2210 2211 2212
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2213
		entries = DIV_ROUND_UP(entries,
2214 2215
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2216

2217
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2218 2219 2220 2221 2222 2223
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2224
		cxsr_enabled = true;
2225
	} else {
2226
		cxsr_enabled = false;
2227
		/* Turn off self refresh if both pipes are enabled */
2228
		intel_set_memory_cxsr(dev_priv, false);
2229 2230 2231 2232 2233 2234
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2235 2236 2237 2238 2239 2240
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2241
	/* update cursor SR watermark */
2242
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2243 2244 2245

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2246 2247
}

2248 2249
#undef FW_WM

2250
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2251
{
2252
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2253
	const struct intel_watermark_params *wm_info;
2254 2255
	u32 fwater_lo;
	u32 fwater_hi;
2256 2257 2258
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2259
	struct intel_crtc *crtc, *enabled = NULL;
2260

2261
	if (IS_I945GM(dev_priv))
2262
		wm_info = &i945_wm_info;
2263
	else if (!IS_GEN(dev_priv, 2))
2264 2265
		wm_info = &i915_wm_info;
	else
2266
		wm_info = &i830_a_wm_info;
2267

2268 2269
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2270 2271 2272 2273 2274 2275 2276
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2277
		if (IS_GEN(dev_priv, 2))
2278
			cpp = 4;
2279
		else
2280
			cpp = fb->format->cpp[0];
2281

2282
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2283
					       wm_info, fifo_size, cpp,
2284
					       pessimal_latency_ns);
2285
		enabled = crtc;
2286
	} else {
2287
		planea_wm = fifo_size - wm_info->guard_size;
2288 2289 2290 2291
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2292
	if (IS_GEN(dev_priv, 2))
2293
		wm_info = &i830_bc_wm_info;
2294

2295 2296
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2297 2298 2299 2300 2301 2302 2303
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2304
		if (IS_GEN(dev_priv, 2))
2305
			cpp = 4;
2306
		else
2307
			cpp = fb->format->cpp[0];
2308

2309
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2310
					       wm_info, fifo_size, cpp,
2311
					       pessimal_latency_ns);
2312 2313 2314 2315
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2316
	} else {
2317
		planeb_wm = fifo_size - wm_info->guard_size;
2318 2319 2320
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2321 2322 2323

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2324
	if (IS_I915GM(dev_priv) && enabled) {
2325
		struct drm_i915_gem_object *obj;
2326

2327
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2328 2329

		/* self-refresh seems busted with untiled */
2330
		if (!i915_gem_object_is_tiled(obj))
2331 2332 2333
			enabled = NULL;
	}

2334 2335 2336 2337 2338 2339
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2340
	intel_set_memory_cxsr(dev_priv, false);
2341 2342

	/* Calc sr entries for one plane configs */
2343
	if (HAS_FW_BLC(dev_priv) && enabled) {
2344 2345
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2346 2347 2348 2349
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2350
		int clock = adjusted_mode->crtc_clock;
2351
		int htotal = adjusted_mode->crtc_htotal;
2352 2353
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2354 2355
		int entries;

2356
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2357
			cpp = 4;
2358
		else
2359
			cpp = fb->format->cpp[0];
2360

2361 2362
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2363 2364 2365 2366 2367 2368
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2369
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2370 2371
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2372
		else
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2389 2390
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2391 2392
}

2393
static void i845_update_wm(struct intel_crtc *unused_crtc)
2394
{
2395
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2396
	struct intel_crtc *crtc;
2397
	const struct drm_display_mode *adjusted_mode;
2398
	u32 fwater_lo;
2399 2400
	int planea_wm;

2401
	crtc = single_enabled_crtc(dev_priv);
2402 2403 2404
	if (crtc == NULL)
		return;

2405
	adjusted_mode = &crtc->config->base.adjusted_mode;
2406
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2407
				       &i845_wm_info,
2408
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2409
				       4, pessimal_latency_ns);
2410 2411 2412 2413 2414 2415 2416 2417
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2418
/* latency must be in 0.1us units. */
2419 2420 2421
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2422
{
2423
	unsigned int ret;
2424

2425 2426
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2427 2428 2429 2430

	return ret;
}

2431
/* latency must be in 0.1us units. */
2432 2433 2434 2435 2436
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2437
{
2438
	unsigned int ret;
2439

2440 2441
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2442
	ret = DIV_ROUND_UP(ret, 64) + 2;
2443

2444 2445 2446
	return ret;
}

2447
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2448
{
2449 2450 2451 2452 2453 2454
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2455
	if (WARN_ON(!cpp))
2456 2457 2458 2459
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2460
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2461 2462
}

2463
struct ilk_wm_maximums {
2464 2465 2466 2467
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2468 2469
};

2470 2471 2472 2473
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2474 2475
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2476
			      u32 mem_value, bool is_lp)
2477
{
2478
	u32 method1, method2;
2479
	int cpp;
2480

2481 2482 2483
	if (mem_value == 0)
		return U32_MAX;

2484
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2485 2486
		return 0;

2487
	cpp = plane_state->base.fb->format->cpp[0];
2488

2489
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2490 2491 2492 2493

	if (!is_lp)
		return method1;

2494 2495 2496
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
				 crtc_state->base.adjusted_mode.crtc_htotal,
				 drm_rect_width(&plane_state->base.dst),
2497
				 cpp, mem_value);
2498 2499

	return min(method1, method2);
2500 2501
}

2502 2503 2504 2505
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2506 2507
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2508
			      u32 mem_value)
2509
{
2510
	u32 method1, method2;
2511
	int cpp;
2512

2513 2514 2515
	if (mem_value == 0)
		return U32_MAX;

2516
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2517 2518
		return 0;

2519
	cpp = plane_state->base.fb->format->cpp[0];
2520

2521 2522 2523 2524
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
				 crtc_state->base.adjusted_mode.crtc_htotal,
				 drm_rect_width(&plane_state->base.dst),
2525
				 cpp, mem_value);
2526 2527 2528
	return min(method1, method2);
}

2529 2530 2531 2532
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2533 2534
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2535
			      u32 mem_value)
2536
{
2537 2538
	int cpp;

2539 2540 2541
	if (mem_value == 0)
		return U32_MAX;

2542
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2543 2544
		return 0;

2545
	cpp = plane_state->base.fb->format->cpp[0];
2546

2547 2548
	return ilk_wm_method2(crtc_state->pixel_rate,
			      crtc_state->base.adjusted_mode.crtc_htotal,
2549 2550
			      drm_rect_width(&plane_state->base.dst),
			      cpp, mem_value);
2551 2552
}

2553
/* Only for WM_LP. */
2554 2555
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2556
			      u32 pri_val)
2557
{
2558
	int cpp;
2559

2560
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2561 2562
		return 0;

2563
	cpp = plane_state->base.fb->format->cpp[0];
2564

2565
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2566 2567
}

2568 2569
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2570
{
2571
	if (INTEL_GEN(dev_priv) >= 8)
2572
		return 3072;
2573
	else if (INTEL_GEN(dev_priv) >= 7)
2574 2575 2576 2577 2578
		return 768;
	else
		return 512;
}

2579 2580 2581
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2582
{
2583
	if (INTEL_GEN(dev_priv) >= 8)
2584 2585
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2586
	else if (INTEL_GEN(dev_priv) >= 7)
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2597 2598
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2599
{
2600
	if (INTEL_GEN(dev_priv) >= 7)
2601 2602 2603 2604 2605
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2606
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2607
{
2608
	if (INTEL_GEN(dev_priv) >= 8)
2609 2610 2611 2612 2613
		return 31;
	else
		return 15;
}

2614
/* Calculate the maximum primary/sprite plane watermark */
2615
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2616
				     int level,
2617
				     const struct intel_wm_config *config,
2618 2619 2620
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2621
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2622 2623

	/* if sprites aren't enabled, sprites get nothing */
2624
	if (is_sprite && !config->sprites_enabled)
2625 2626 2627
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2628
	if (level == 0 || config->num_pipes_active > 1) {
2629
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2630 2631 2632 2633 2634 2635

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2636
		if (INTEL_GEN(dev_priv) <= 6)
2637 2638 2639
			fifo_size /= 2;
	}

2640
	if (config->sprites_enabled) {
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2652
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2653 2654 2655
}

/* Calculate the maximum cursor plane watermark */
2656
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2657 2658
				      int level,
				      const struct intel_wm_config *config)
2659 2660
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2661
	if (level > 0 && config->num_pipes_active > 1)
2662 2663 2664
		return 64;

	/* otherwise just report max that registers can hold */
2665
	return ilk_cursor_wm_reg_max(dev_priv, level);
2666 2667
}

2668
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2669 2670 2671
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2672
				    struct ilk_wm_maximums *max)
2673
{
2674 2675 2676 2677
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2678 2679
}

2680
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2681 2682 2683
					int level,
					struct ilk_wm_maximums *max)
{
2684 2685 2686 2687
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2688 2689
}

2690
static bool ilk_validate_wm_level(int level,
2691
				  const struct ilk_wm_maximums *max,
2692
				  struct intel_wm_level *result)
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2722 2723 2724
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2725 2726 2727 2728 2729 2730
		result->enable = true;
	}

	return ret;
}

2731
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2732
				 const struct intel_crtc *intel_crtc,
2733
				 int level,
2734
				 struct intel_crtc_state *crtc_state,
2735 2736 2737
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2738
				 struct intel_wm_level *result)
2739
{
2740 2741 2742
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2743 2744 2745 2746 2747 2748 2749 2750

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2751
	if (pristate) {
2752
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2753
						     pri_latency, level);
2754
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2755 2756 2757
	}

	if (sprstate)
2758
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2759 2760

	if (curstate)
2761
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2762

2763 2764 2765
	result->enable = true;
}

2766
static u32
2767
hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2768
{
2769
	const struct intel_atomic_state *intel_state =
2770
		to_intel_atomic_state(crtc_state->base.state);
2771
	const struct drm_display_mode *adjusted_mode =
2772
		&crtc_state->base.adjusted_mode;
2773
	u32 linetime, ips_linetime;
2774

2775
	if (!crtc_state->base.active)
2776 2777 2778
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2779
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2780
		return 0;
2781

2782 2783 2784
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2785 2786 2787
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2788
					 intel_state->cdclk.logical.cdclk);
2789

2790 2791
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2792 2793
}

2794
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2795
				  u16 wm[8])
2796
{
2797 2798
	struct intel_uncore *uncore = &dev_priv->uncore;

2799
	if (INTEL_GEN(dev_priv) >= 9) {
2800
		u32 val;
2801
		int ret, i;
2802
		int level, max_level = ilk_wm_max_level(dev_priv);
2803 2804 2805 2806 2807

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2808
					     &val, NULL);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2827
					     &val, NULL);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2854
		/*
2855
		 * WaWmMemoryReadLatency:skl+,glk
2856
		 *
2857
		 * punit doesn't take into account the read latency so we need
2858 2859
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2860
		 */
2861 2862 2863 2864 2865
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2866
				wm[level] += 2;
2867
			}
2868 2869
		}

2870 2871 2872 2873 2874 2875
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2876
		if (dev_priv->dram_info.is_16gb_dimm)
2877 2878
			wm[0] += 1;

2879
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2880
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2881 2882 2883 2884

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2885 2886 2887 2888
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2889
	} else if (INTEL_GEN(dev_priv) >= 6) {
2890
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2891 2892 2893 2894 2895

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2896
	} else if (INTEL_GEN(dev_priv) >= 5) {
2897
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2898 2899 2900 2901 2902

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2903 2904
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2905 2906 2907
	}
}

2908
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2909
				       u16 wm[5])
2910 2911
{
	/* ILK sprite LP0 latency is 1300 ns */
2912
	if (IS_GEN(dev_priv, 5))
2913 2914 2915
		wm[0] = 13;
}

2916
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2917
				       u16 wm[5])
2918 2919
{
	/* ILK cursor LP0 latency is 1300 ns */
2920
	if (IS_GEN(dev_priv, 5))
2921 2922 2923
		wm[0] = 13;
}

2924
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2925 2926
{
	/* how many WM levels are we expecting */
2927
	if (INTEL_GEN(dev_priv) >= 9)
2928
		return 7;
2929
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2930
		return 4;
2931
	else if (INTEL_GEN(dev_priv) >= 6)
2932
		return 3;
2933
	else
2934 2935
		return 2;
}
2936

2937
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2938
				   const char *name,
2939
				   const u16 wm[8])
2940
{
2941
	int level, max_level = ilk_wm_max_level(dev_priv);
2942 2943 2944 2945 2946

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2947 2948
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2949 2950 2951
			continue;
		}

2952 2953 2954 2955
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2956
		if (INTEL_GEN(dev_priv) >= 9)
2957 2958
			latency *= 10;
		else if (level > 0)
2959 2960 2961 2962 2963 2964 2965 2966
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2967
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2968
				    u16 wm[5], u16 min)
2969
{
2970
	int level, max_level = ilk_wm_max_level(dev_priv);
2971 2972 2973 2974 2975 2976

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2977
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2978 2979 2980 2981

	return true;
}

2982
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2998 2999 3000
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3031
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3032
{
3033
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3034 3035 3036 3037 3038 3039

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3040
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3041
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3042

3043 3044 3045
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3046

3047
	if (IS_GEN(dev_priv, 6)) {
3048
		snb_wm_latency_quirk(dev_priv);
3049 3050
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3051 3052
}

3053
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3054
{
3055
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3056
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3057 3058
}

3059
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3071
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3082
/* Compute new watermarks for the pipe */
3083
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3084
{
3085 3086
	struct drm_atomic_state *state = crtc_state->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3087
	struct intel_pipe_wm *pipe_wm;
3088
	struct drm_device *dev = state->dev;
3089
	const struct drm_i915_private *dev_priv = to_i915(dev);
3090 3091
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3092 3093 3094
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3095
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3096
	struct ilk_wm_maximums max;
3097

3098
	pipe_wm = &crtc_state->wm.ilk.optimal;
3099

3100 3101 3102 3103 3104 3105 3106
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3107 3108
	}

3109
	pipe_wm->pipe_enabled = crtc_state->base.active;
3110
	if (sprstate) {
3111 3112 3113 3114
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3115 3116
	}

3117 3118
	usable_level = max_level;

3119
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3120
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3121
		usable_level = 1;
3122 3123

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3124
	if (pipe_wm->sprites_scaled)
3125
		usable_level = 0;
3126

3127
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3128
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3129
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3130

3131
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3132
		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3133

3134
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3135
		return -EINVAL;
3136

3137
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3138

3139 3140
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3141

3142
		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3143
				     pristate, sprstate, curstate, wm);
3144 3145 3146 3147 3148 3149

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3150 3151 3152 3153
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3154 3155
	}

3156
	return 0;
3157 3158
}

3159 3160 3161 3162 3163
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3164
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3165
{
3166 3167
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3168
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3169 3170 3171 3172 3173
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3174
	int level, max_level = ilk_wm_max_level(dev_priv);
3175 3176 3177 3178 3179 3180

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3181
	*a = newstate->wm.ilk.optimal;
3182 3183
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3184 3185
		return 0;

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3207
	if (!ilk_validate_pipe_wm(dev_priv, a))
3208 3209 3210 3211 3212 3213
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3214 3215
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3216 3217 3218 3219

	return 0;
}

3220 3221 3222
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3223
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3224 3225 3226 3227 3228
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3229 3230
	ret_wm->enable = true;

3231
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3232
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3233 3234 3235 3236
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3237

3238 3239 3240 3241 3242
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3243
		if (!wm->enable)
3244
			ret_wm->enable = false;
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3256
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3257
			 const struct intel_wm_config *config,
3258
			 const struct ilk_wm_maximums *max,
3259 3260
			 struct intel_pipe_wm *merged)
{
3261
	int level, max_level = ilk_wm_max_level(dev_priv);
3262
	int last_enabled_level = max_level;
3263

3264
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3265
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3266
	    config->num_pipes_active > 1)
3267
		last_enabled_level = 0;
3268

3269
	/* ILK: FBC WM must be disabled always */
3270
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3271 3272 3273 3274 3275

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3276
		ilk_merge_wm_level(dev_priv, level, wm);
3277

3278 3279 3280 3281 3282
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3283 3284 3285 3286 3287 3288

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3289 3290
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3291 3292 3293
			wm->fbc_val = 0;
		}
	}
3294 3295 3296 3297 3298 3299 3300

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3301
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3302
	    intel_fbc_is_active(dev_priv)) {
3303 3304 3305 3306 3307 3308
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3309 3310
}

3311 3312 3313 3314 3315 3316
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3317
/* The value we need to program into the WM_LPx latency field */
3318 3319
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3320
{
3321
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3322 3323 3324 3325 3326
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3327
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3328
				   const struct intel_pipe_wm *merged,
3329
				   enum intel_ddb_partitioning partitioning,
3330
				   struct ilk_wm_values *results)
3331
{
3332 3333
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3334

3335
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3336
	results->partitioning = partitioning;
3337

3338
	/* LP1+ register values */
3339
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3340
		const struct intel_wm_level *r;
3341

3342
		level = ilk_wm_lp_to_level(wm_lp, merged);
3343

3344
		r = &merged->wm[level];
3345

3346 3347 3348 3349 3350
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3351
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3352 3353 3354
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3355 3356 3357
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3358
		if (INTEL_GEN(dev_priv) >= 8)
3359 3360 3361 3362 3363 3364
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3365 3366 3367 3368
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3369
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3370 3371 3372 3373
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3374
	}
3375

3376
	/* LP0 register values */
3377
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3378
		enum pipe pipe = intel_crtc->pipe;
3379 3380
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3381 3382 3383 3384

		if (WARN_ON(!r->enable))
			continue;

3385
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3386

3387 3388 3389 3390
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3391 3392 3393
	}
}

3394 3395
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3396 3397 3398 3399
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3400
{
3401
	int level, max_level = ilk_wm_max_level(dev_priv);
3402
	int level1 = 0, level2 = 0;
3403

3404 3405 3406 3407 3408
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3409 3410
	}

3411 3412
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3413 3414 3415
			return r2;
		else
			return r1;
3416
	} else if (level1 > level2) {
3417 3418 3419 3420 3421 3422
		return r1;
	} else {
		return r2;
	}
}

3423 3424 3425 3426 3427 3428 3429 3430
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3431
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3432 3433
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3434 3435 3436 3437 3438
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3439
	for_each_pipe(dev_priv, pipe) {
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3483 3484
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3485
{
3486
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3487
	bool changed = false;
3488

3489 3490 3491
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3492
		changed = true;
3493 3494 3495 3496
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3497
		changed = true;
3498 3499 3500 3501
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3502
		changed = true;
3503
	}
3504

3505 3506 3507 3508
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3509

3510 3511 3512 3513 3514 3515 3516
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3517 3518
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3519
{
3520
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3521
	unsigned int dirty;
3522
	u32 val;
3523

3524
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3525 3526 3527 3528 3529
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3530
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3531
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3532
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3533
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3534
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3535 3536
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3537
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3538
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3539
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3540
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3541
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3542 3543
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3544
	if (dirty & WM_DIRTY_DDB) {
3545
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3560 3561
	}

3562
	if (dirty & WM_DIRTY_FBC) {
3563 3564 3565 3566 3567 3568 3569 3570
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3571 3572 3573 3574
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3575
	if (INTEL_GEN(dev_priv) >= 7) {
3576 3577 3578 3579 3580
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3581

3582
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3583
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3584
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3585
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3586
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3587
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3588 3589

	dev_priv->wm.hw = *results;
3590 3591
}

3592
bool ilk_disable_lp_wm(struct drm_device *dev)
3593
{
3594
	struct drm_i915_private *dev_priv = to_i915(dev);
3595 3596 3597 3598

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3610 3611 3612 3613 3614 3615
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3616 3617 3618 3619 3620
		enabled_slices++;

	return enabled_slices;
}

3621 3622 3623 3624
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3625
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3626
{
3627
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3628 3629
}

3630 3631 3632
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3633 3634 3635 3636
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3637 3638
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3639 3640
}

3641 3642 3643
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

		DRM_DEBUG_DRIVER("Couldn't read SAGV block time!\n");
	} else if (IS_GEN(dev_priv, 11)) {
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3686
intel_enable_sagv(struct drm_i915_private *dev_priv)
3687 3688 3689
{
	int ret;

3690 3691 3692 3693
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3694 3695
		return 0;

3696
	DRM_DEBUG_KMS("Enabling SAGV\n");
3697 3698 3699
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3700
	/* We don't need to wait for SAGV when enabling */
3701 3702 3703

	/*
	 * Some skl systems, pre-release machines in particular,
3704
	 * don't actually have SAGV.
3705
	 */
3706
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3707
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3708
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3709 3710
		return 0;
	} else if (ret < 0) {
3711
		DRM_ERROR("Failed to enable SAGV\n");
3712 3713 3714
		return ret;
	}

3715
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3716 3717 3718 3719
	return 0;
}

int
3720
intel_disable_sagv(struct drm_i915_private *dev_priv)
3721
{
3722
	int ret;
3723

3724 3725 3726 3727
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3728 3729
		return 0;

3730
	DRM_DEBUG_KMS("Disabling SAGV\n");
3731
	/* bspec says to keep retrying for at least 1 ms */
3732 3733 3734 3735
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3736 3737
	/*
	 * Some skl systems, pre-release machines in particular,
3738
	 * don't actually have SAGV.
3739
	 */
3740
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3741
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3742
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3743
		return 0;
3744
	} else if (ret < 0) {
3745
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3746
		return ret;
3747 3748
	}

3749
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3750 3751 3752
	return 0;
}

3753
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3754
{
3755
	struct drm_device *dev = state->base.dev;
3756
	struct drm_i915_private *dev_priv = to_i915(dev);
3757 3758
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3759
	struct intel_crtc_state *crtc_state;
3760
	enum pipe pipe;
3761
	int level, latency;
3762

3763 3764 3765
	if (!intel_has_sagv(dev_priv))
		return false;

3766 3767 3768
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3769
	if (hweight8(state->active_pipes) == 0)
3770
		return true;
3771 3772 3773 3774 3775

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3776
	if (hweight8(state->active_pipes) > 1)
3777 3778 3779
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3780
	pipe = ffs(state->active_pipes) - 1;
3781
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3782
	crtc_state = to_intel_crtc_state(crtc->base.state);
3783

3784
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3785 3786
		return false;

3787
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3788
		struct skl_plane_wm *wm =
3789
			&crtc_state->wm.skl.optimal.planes[plane->id];
3790

3791
		/* Skip this plane if it's not enabled */
3792
		if (!wm->wm[0].plane_en)
3793 3794 3795
			continue;

		/* Find the highest enabled wm level for this plane */
3796
		for (level = ilk_wm_max_level(dev_priv);
3797
		     !wm->wm[level].plane_en; --level)
3798 3799
		     { }

3800 3801
		latency = dev_priv->wm.skl_latency[level];

3802
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3803
		    plane->base.state->fb->modifier ==
3804 3805 3806
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3807
		/*
3808 3809
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3810
		 * can't enable SAGV.
3811
		 */
3812
		if (latency < dev_priv->sagv_block_time_us)
3813 3814 3815 3816 3817 3818
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3819
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3820
			      const struct intel_crtc_state *crtc_state,
3821
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3822 3823
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

3834
	adjusted_mode = &crtc_state->base.adjusted_mode;
3835
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3836 3837 3838

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3839 3840 3841 3842 3843
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3844
	 */
3845
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3846 3847 3848 3849 3850 3851 3852 3853 3854
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3855
static void
3856
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3857
				   const struct intel_crtc_state *crtc_state,
3858
				   const u64 total_data_rate,
3859
				   struct skl_ddb_allocation *ddb,
3860 3861
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3862
{
3863
	struct drm_atomic_state *state = crtc_state->base.state;
3864
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3865 3866
	struct drm_crtc *for_crtc = crtc_state->base.crtc;
	const struct intel_crtc *crtc;
3867 3868 3869 3870
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3871

3872
	if (WARN_ON(!state) || !crtc_state->base.active) {
3873 3874
		alloc->start = 0;
		alloc->end = 0;
3875
		*num_active = hweight8(dev_priv->active_pipes);
3876 3877 3878
		return;
	}

3879
	if (intel_state->active_pipe_changes)
3880
		*num_active = hweight8(intel_state->active_pipes);
3881
	else
3882
		*num_active = hweight8(dev_priv->active_pipes);
3883

3884
	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3885
				      *num_active, ddb);
3886

3887
	/*
3888 3889 3890 3891 3892 3893
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3894
	 */
3895
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3896 3897 3898 3899 3900
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3901
		return;
3902
	}
3903

3904 3905 3906 3907 3908
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3909 3910 3911 3912
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
			&crtc_state->base.adjusted_mode;
		enum pipe pipe = crtc->pipe;
3913 3914
		int hdisplay, vdisplay;

3915
		if (!crtc_state->base.enable)
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3929 3930
}

3931 3932 3933 3934 3935
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3936
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3937 3938 3939 3940 3941 3942 3943 3944
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3945
{
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3960
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3961 3962 3963 3964 3965
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3966

3967
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3968 3969
}

3970 3971
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3972
{
3973

3974 3975
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3976

3977 3978
	if (entry->end)
		entry->end += 1;
3979 3980
}

3981 3982 3983 3984
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3985 3986
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3987
{
3988 3989
	u32 val, val2;
	u32 fourcc = 0;
3990 3991 3992 3993

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3994
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3995 3996 3997 3998 3999 4000
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4001 4002 4003 4004
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4005

4006 4007 4008 4009 4010
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4011
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4012

4013 4014
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4015 4016 4017 4018
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4019 4020 4021
	}
}

4022 4023 4024
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4025
{
4026 4027 4028
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4029
	intel_wakeref_t wakeref;
4030
	enum plane_id plane_id;
4031

4032
	power_domain = POWER_DOMAIN_PIPE(pipe);
4033 4034
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4035
		return;
4036

4037 4038 4039 4040 4041
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4042

4043
	intel_display_power_put(dev_priv, power_domain, wakeref);
4044
}
4045

4046 4047 4048 4049
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4050 4051
}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4068
static uint_fixed_16_16_t
4069 4070
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4071
{
4072
	u32 src_w, src_h, dst_w, dst_h;
4073 4074
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4075

4076
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4077
		return u32_to_fixed16(0);
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
	src_w = drm_rect_width(&plane_state->base.src) >> 16;
	src_h = drm_rect_height(&plane_state->base.src) >> 16;
	dst_w = drm_rect_width(&plane_state->base.dst);
	dst_h = drm_rect_height(&plane_state->base.dst);
4090

4091 4092 4093 4094
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4095

4096
	return mul_fixed16(downscale_w, downscale_h);
4097 4098
}

4099 4100 4101
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4102
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4103 4104 4105 4106 4107

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4108 4109
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4121 4122 4123 4124
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4125 4126 4127 4128 4129 4130 4131 4132

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4133
				  struct intel_crtc_state *crtc_state)
4134
{
4135
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4136
	struct drm_atomic_state *state = crtc_state->base.state;
4137 4138
	const struct intel_plane_state *plane_state;
	struct intel_plane *plane;
4139
	int crtc_clock, dotclk;
4140
	u32 pipe_max_pixel_rate;
4141
	uint_fixed_16_16_t pipe_downscale;
4142
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4143

4144
	if (!crtc_state->base.enable)
4145 4146
		return 0;

4147
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4148
		uint_fixed_16_16_t plane_downscale;
4149
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4150 4151
		int bpp;

4152
		if (!intel_wm_plane_visible(crtc_state, plane_state))
4153 4154
			continue;

4155
		if (WARN_ON(!plane_state->base.fb))
4156 4157
			return -EINVAL;

4158 4159
		plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
		bpp = plane_state->base.fb->format->cpp[0] * 8;
4160 4161 4162 4163
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4164
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4165
	}
4166
	pipe_downscale = skl_pipe_downscale_amount(crtc_state);
4167 4168 4169

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

4170
	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
4171 4172
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4173
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4174 4175 4176
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4177 4178

	if (pipe_max_pixel_rate < crtc_clock) {
4179
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4180 4181 4182 4183 4184 4185
		return -EINVAL;
	}

	return 0;
}

4186
static u64
4187 4188
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4189
			     int color_plane)
4190
{
4191 4192
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
4193 4194
	u32 data_rate;
	u32 width = 0, height = 0;
4195
	uint_fixed_16_16_t down_scale_amount;
4196
	u64 rate;
4197

4198
	if (!plane_state->base.visible)
4199
		return 0;
4200

4201
	if (plane->id == PLANE_CURSOR)
4202
		return 0;
4203 4204 4205

	if (color_plane == 1 &&
	    !drm_format_info_is_yuv_semiplanar(fb->format))
4206
		return 0;
4207

4208 4209 4210 4211 4212
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4213 4214
	width = drm_rect_width(&plane_state->base.src) >> 16;
	height = drm_rect_height(&plane_state->base.src) >> 16;
4215

4216
	/* UV plane does 1/2 pixel sub-sampling */
4217
	if (color_plane == 1) {
4218 4219
		width /= 2;
		height /= 2;
4220 4221
	}

4222
	data_rate = width * height;
4223

4224
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4225

4226 4227
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4228
	rate *= fb->format->cpp[color_plane];
4229
	return rate;
4230 4231
}

4232
static u64
4233
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4234 4235
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4236
{
4237
	struct drm_atomic_state *state = crtc_state->base.state;
4238 4239
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4240
	u64 total_data_rate = 0;
4241 4242 4243

	if (WARN_ON(!state))
		return 0;
4244

4245
	/* Calculate and cache data rate for each plane */
4246 4247
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4248
		u64 rate;
4249

4250
		/* packed/y */
4251
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4252
		plane_data_rate[plane_id] = rate;
4253
		total_data_rate += rate;
4254

4255
		/* uv-plane */
4256
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4257
		uv_plane_data_rate[plane_id] = rate;
4258
		total_data_rate += rate;
4259 4260 4261 4262 4263
	}

	return total_data_rate;
}

4264
static u64
4265
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4266 4267
				 u64 *plane_data_rate)
{
4268 4269
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4270 4271
	u64 total_data_rate = 0;

4272
	if (WARN_ON(!crtc_state->base.state))
4273 4274 4275
		return 0;

	/* Calculate and cache data rate for each plane */
4276 4277
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4278 4279
		u64 rate;

4280
		if (!plane_state->planar_linked_plane) {
4281
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4282 4283 4284 4285 4286 4287 4288
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4289
			 * intel_atomic_crtc_state_for_each_plane_state(),
4290 4291 4292 4293
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4294
			if (plane_state->planar_slave)
4295 4296 4297
				continue;

			/* Y plane rate is calculated on the slave */
4298
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4299
			y_plane_id = plane_state->planar_linked_plane->id;
4300 4301 4302
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4303
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4304 4305 4306 4307 4308 4309 4310 4311
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4312
static int
4313
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4314 4315
		      struct skl_ddb_allocation *ddb /* out */)
{
4316 4317
	struct drm_atomic_state *state = crtc_state->base.state;
	struct drm_crtc *crtc = crtc_state->base.crtc;
4318
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4319
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4320
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4321 4322 4323
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4324
	u64 total_data_rate;
4325
	enum plane_id plane_id;
4326
	int num_active;
4327 4328
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4329
	u32 blocks;
4330
	int level;
4331

4332
	/* Clear the partitioning for disabled planes. */
4333 4334
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4335

4336 4337 4338
	if (WARN_ON(!state))
		return 0;

4339
	if (!crtc_state->base.active) {
4340
		alloc->start = alloc->end = 0;
4341 4342 4343
		return 0;
	}

4344 4345
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4346
			icl_get_total_relative_data_rate(crtc_state,
4347 4348
							 plane_data_rate);
	else
4349
		total_data_rate =
4350
			skl_get_total_relative_data_rate(crtc_state,
4351 4352
							 plane_data_rate,
							 uv_plane_data_rate);
4353

4354

4355
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4356
					   ddb, alloc, &num_active);
4357
	alloc_size = skl_ddb_entry_size(alloc);
4358
	if (alloc_size == 0)
4359
		return 0;
4360

4361
	/* Allocate fixed number of blocks for cursor. */
4362
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4363
	alloc_size -= total[PLANE_CURSOR];
4364
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4365
		alloc->end - total[PLANE_CURSOR];
4366
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4367 4368 4369

	if (total_data_rate == 0)
		return 0;
4370

4371
	/*
4372 4373
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4374
	 */
4375
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4376
		blocks = 0;
4377
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4378
			const struct skl_plane_wm *wm =
4379
				&crtc_state->wm.skl.optimal.planes[plane_id];
4380 4381 4382 4383 4384 4385 4386

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4387
				continue;
4388
			}
4389

4390 4391
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4392 4393
		}

4394
		if (blocks <= alloc_size) {
4395 4396 4397
			alloc_size -= blocks;
			break;
		}
4398 4399
	}

4400
	if (level < 0) {
4401
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4402 4403
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4404 4405 4406
		return -EINVAL;
	}

4407
	/*
4408 4409 4410
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4411
	 */
4412
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4413
		const struct skl_plane_wm *wm =
4414
			&crtc_state->wm.skl.optimal.planes[plane_id];
4415 4416
		u64 rate;
		u16 extra;
4417

4418
		if (plane_id == PLANE_CURSOR)
4419 4420
			continue;

4421
		/*
4422 4423
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4424
		 */
4425 4426
		if (total_data_rate == 0)
			break;
4427

4428 4429 4430 4431
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4432
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4433 4434
		alloc_size -= extra;
		total_data_rate -= rate;
4435

4436 4437
		if (total_data_rate == 0)
			break;
4438

4439 4440 4441 4442
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4443
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4444 4445 4446 4447 4448 4449 4450 4451
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4452
		struct skl_ddb_entry *plane_alloc =
4453
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4454
		struct skl_ddb_entry *uv_plane_alloc =
4455
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4456 4457 4458 4459

		if (plane_id == PLANE_CURSOR)
			continue;

4460
		/* Gen11+ uses a separate plane for UV watermarks */
4461 4462 4463 4464 4465 4466 4467 4468
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4469

4470 4471 4472 4473
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4474
		}
4475
	}
4476

4477 4478 4479 4480 4481 4482 4483 4484
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4485
			struct skl_plane_wm *wm =
4486
				&crtc_state->wm.skl.optimal.planes[plane_id];
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4503

4504
			/*
4505
			 * Wa_1408961008:icl, ehl
4506 4507
			 * Underruns with WM1+ disabled
			 */
4508
			if (IS_GEN(dev_priv, 11) &&
4509 4510
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4511 4512
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4513
			}
4514 4515 4516 4517 4518 4519 4520 4521
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4522
		struct skl_plane_wm *wm =
4523
			&crtc_state->wm.skl.optimal.planes[plane_id];
4524

4525
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4526
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4527 4528
	}

4529
	return 0;
4530 4531
}

4532 4533
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4534
 * for the read latency) and cpp should always be <= 8, so that
4535 4536 4537
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4538
static uint_fixed_16_16_t
4539 4540
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4541
{
4542
	u32 wm_intermediate_val;
4543
	uint_fixed_16_16_t ret;
4544 4545

	if (latency == 0)
4546
		return FP_16_16_MAX;
4547

4548
	wm_intermediate_val = latency * pixel_rate * cpp;
4549
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4550 4551 4552 4553

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4554 4555 4556
	return ret;
}

4557 4558 4559
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4560
{
4561
	u32 wm_intermediate_val;
4562
	uint_fixed_16_16_t ret;
4563 4564

	if (latency == 0)
4565
		return FP_16_16_MAX;
4566 4567

	wm_intermediate_val = latency * pixel_rate;
4568 4569
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4570
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4571 4572 4573
	return ret;
}

4574
static uint_fixed_16_16_t
4575
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4576
{
4577 4578
	u32 pixel_rate;
	u32 crtc_htotal;
4579 4580
	uint_fixed_16_16_t linetime_us;

4581
	if (!crtc_state->base.active)
4582
		return u32_to_fixed16(0);
4583

4584
	pixel_rate = crtc_state->pixel_rate;
4585 4586

	if (WARN_ON(pixel_rate == 0))
4587
		return u32_to_fixed16(0);
4588

4589
	crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
4590
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4591 4592 4593 4594

	return linetime_us;
}

4595
static u32
4596 4597
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4598
{
4599
	u64 adjusted_pixel_rate;
4600
	uint_fixed_16_16_t downscale_amount;
4601 4602

	/* Shouldn't reach here on disabled planes... */
4603
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4604 4605 4606 4607 4608 4609
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4610 4611
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4612

4613 4614
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4615 4616
}

4617
static int
4618 4619 4620 4621 4622
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4623
{
4624 4625
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4626
	u32 interm_pbpl;
4627

4628
	/* only planar format has two planes */
4629
	if (color_plane == 1 && !drm_format_info_is_yuv_semiplanar(format)) {
4630
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4631 4632 4633
		return -EINVAL;
	}

4634 4635 4636 4637 4638 4639 4640
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4641
	wp->is_planar = drm_format_info_is_yuv_semiplanar(format);
4642

4643
	wp->width = width;
4644
	if (color_plane == 1 && wp->is_planar)
4645 4646
		wp->width /= 2;

4647 4648
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4649

4650
	if (INTEL_GEN(dev_priv) >= 11 &&
4651
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4652 4653 4654 4655
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4656
	if (drm_rotation_90_or_270(rotation)) {
4657
		switch (wp->cpp) {
4658
		case 1:
4659
			wp->y_min_scanlines = 16;
4660 4661
			break;
		case 2:
4662
			wp->y_min_scanlines = 8;
4663 4664
			break;
		case 4:
4665
			wp->y_min_scanlines = 4;
4666
			break;
4667
		default:
4668
			MISSING_CASE(wp->cpp);
4669
			return -EINVAL;
4670 4671
		}
	} else {
4672
		wp->y_min_scanlines = 4;
4673 4674
	}

4675
	if (skl_needs_memory_bw_wa(dev_priv))
4676
		wp->y_min_scanlines *= 2;
4677

4678 4679 4680
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4681 4682
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4683 4684 4685 4686

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4687 4688
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4689
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4690 4691
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4692
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4693
	} else {
4694 4695
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4696
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4697 4698
	}

4699 4700
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4701

4702
	wp->linetime_us = fixed16_to_u32_round_up(
4703
					intel_get_linetime_us(crtc_state));
4704 4705 4706 4707

	return 0;
}

4708 4709 4710 4711 4712 4713 4714 4715
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

4716 4717 4718 4719 4720 4721
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
	width = drm_rect_width(&plane_state->base.src) >> 16;
4722 4723 4724 4725 4726 4727 4728 4729

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4730 4731 4732 4733 4734 4735 4736 4737 4738
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4739
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4740 4741 4742 4743
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4744
{
4745
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4746
	u32 latency = dev_priv->wm.skl_latency[level];
4747 4748
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4749
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4750

4751 4752 4753
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4754
		return;
4755
	}
4756

4757 4758 4759 4760
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4761
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4762 4763 4764
	    dev_priv->ipc_enabled)
		latency += 4;

4765
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4766 4767 4768
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4769
				 wp->cpp, latency, wp->dbuf_block_size);
4770
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4771
				 crtc_state->base.adjusted_mode.crtc_htotal,
4772
				 latency,
4773
				 wp->plane_blocks_per_line);
4774

4775 4776
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4777
	} else {
4778
		if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
4779
		     wp->dbuf_block_size < 1) &&
4780
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4781
			selected_result = method2;
4782
		} else if (latency >= wp->linetime_us) {
4783
			if (IS_GEN(dev_priv, 9) &&
4784 4785 4786 4787 4788
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4789
			selected_result = method1;
4790
		}
4791
	}
4792

4793
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4794
	res_lines = div_round_up_fixed16(selected_result,
4795
					 wp->plane_blocks_per_line);
4796

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4812

4813 4814 4815 4816 4817 4818 4819 4820 4821
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4822
	}
4823

4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4842 4843 4844
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4845 4846 4847
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4848
		return;
4849
	}
4850 4851 4852 4853 4854 4855 4856

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4857 4858
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4859 4860
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4861
	result->plane_en = true;
4862 4863
}

4864
static void
4865
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4866
		      const struct skl_wm_params *wm_params,
4867
		      struct skl_wm_level *levels)
4868
{
4869
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4870
	int level, max_level = ilk_wm_max_level(dev_priv);
4871
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4872

4873
	for (level = 0; level <= max_level; level++) {
4874
		struct skl_wm_level *result = &levels[level];
4875

4876
		skl_compute_plane_wm(crtc_state, level, wm_params,
4877
				     result_prev, result);
4878 4879

		result_prev = result;
4880
	}
4881 4882
}

4883
static u32
4884
skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4885
{
4886
	struct drm_atomic_state *state = crtc_state->base.state;
M
Mahesh Kumar 已提交
4887
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4888
	uint_fixed_16_16_t linetime_us;
4889
	u32 linetime_wm;
4890

4891
	linetime_us = intel_get_linetime_us(crtc_state);
4892
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4893

4894 4895
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4896
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4897 4898

	return linetime_wm;
4899 4900
}

4901
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4902
				      const struct skl_wm_params *wp,
4903
				      struct skl_plane_wm *wm)
4904
{
4905
	struct drm_device *dev = crtc_state->base.crtc->dev;
4906
	const struct drm_i915_private *dev_priv = to_i915(dev);
4907 4908 4909
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4910 4911 4912

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4913
		return;
4914 4915 4916

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4917
		return;
4918

4919 4920
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4921 4922 4923 4924
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4935
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4936

4937
	if (wp->y_tiled) {
4938 4939
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4940
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4941 4942
				trans_offset_b;
	} else {
4943
		res_blocks = wm0_sel_res_b + trans_offset_b;
4944 4945 4946 4947 4948 4949 4950

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4951 4952 4953 4954 4955 4956 4957
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4958 4959
}

4960
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4961 4962
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4963
{
4964
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4965 4966 4967
	struct skl_wm_params wm_params;
	int ret;

4968
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4969 4970 4971 4972
					  &wm_params, color_plane);
	if (ret)
		return ret;

4973
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4974
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4975 4976 4977 4978

	return 0;
}

4979
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4980 4981
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4982
{
4983
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4984 4985 4986
	struct skl_wm_params wm_params;
	int ret;

4987
	wm->is_planar = true;
4988 4989

	/* uv plane watermarks must also be validated for NV12/Planar */
4990
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4991 4992 4993
					  &wm_params, 1);
	if (ret)
		return ret;
4994

4995
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4996

4997
	return 0;
4998 4999
}

5000
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5001
			      const struct intel_plane_state *plane_state)
5002
{
5003 5004 5005
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
5006 5007
	int ret;

5008 5009 5010
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5011
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5012
					plane_id, 0);
5013 5014 5015
	if (ret)
		return ret;

5016
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5017
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5018 5019 5020 5021 5022 5023 5024 5025
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5026
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5027 5028 5029 5030 5031 5032
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
5033
	if (plane_state->planar_slave)
5034 5035
		return 0;

5036
	if (plane_state->planar_linked_plane) {
5037
		const struct drm_framebuffer *fb = plane_state->base.fb;
5038
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5039 5040 5041 5042 5043

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5044
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5045 5046 5047 5048
						y_plane_id, 0);
		if (ret)
			return ret;

5049
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5050 5051 5052 5053
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5054
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5055 5056 5057 5058 5059 5060
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5061 5062
}

5063
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5064
{
5065 5066
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5067 5068
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5069
	int ret;
5070

L
Lyude 已提交
5071 5072 5073 5074 5075 5076
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5077 5078
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5079

5080
		if (INTEL_GEN(dev_priv) >= 11)
5081
			ret = icl_build_plane_wm(crtc_state, plane_state);
5082
		else
5083
			ret = skl_build_plane_wm(crtc_state, plane_state);
5084 5085
		if (ret)
			return ret;
5086
	}
5087

5088
	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5089

5090
	return 0;
5091 5092
}

5093 5094
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5095 5096 5097
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5098
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5099
	else
5100
		I915_WRITE_FW(reg, 0);
5101 5102
}

5103 5104 5105 5106
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5107
	u32 val = 0;
5108

5109
	if (level->plane_en)
5110
		val |= PLANE_WM_EN;
5111 5112 5113 5114
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5115

5116
	I915_WRITE_FW(reg, val);
5117 5118
}

5119 5120
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5121
{
5122
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5123
	int level, max_level = ilk_wm_max_level(dev_priv);
5124 5125 5126 5127 5128 5129 5130 5131
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5132 5133

	for (level = 0; level <= max_level; level++) {
5134
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5135
				   &wm->wm[level]);
5136
	}
5137
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5138
			   &wm->trans_wm);
5139

5140
	if (INTEL_GEN(dev_priv) >= 11) {
5141
		skl_ddb_entry_write(dev_priv,
5142 5143
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5144
	}
5145 5146 5147 5148 5149 5150 5151 5152

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5153 5154
}

5155 5156
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5157
{
5158
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5159
	int level, max_level = ilk_wm_max_level(dev_priv);
5160 5161 5162 5163 5164 5165
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5166 5167

	for (level = 0; level <= max_level; level++) {
5168 5169
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5170
	}
5171
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5172

5173
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5174 5175
}

5176 5177 5178
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5179
	return l1->plane_en == l2->plane_en &&
5180
		l1->ignore_lines == l2->ignore_lines &&
5181 5182 5183
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5184

5185 5186 5187 5188 5189
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5190

5191 5192 5193 5194 5195 5196 5197
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5198 5199
}

5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5217 5218
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5219
{
5220
	return a->start < b->end && b->start < a->end;
5221 5222
}

5223
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5224
				 const struct skl_ddb_entry *entries,
5225
				 int num_entries, int ignore_idx)
5226
{
5227
	int i;
5228

5229 5230 5231
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5232
			return true;
5233
	}
5234

5235
	return false;
5236 5237
}

5238
static int
5239 5240
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5241
{
5242 5243 5244 5245
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5246

5247 5248 5249
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5250

5251 5252 5253 5254
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5255 5256
			continue;

5257
		plane_state = intel_atomic_get_plane_state(state, plane);
5258 5259
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5260

5261
		new_crtc_state->update_planes |= BIT(plane_id);
5262 5263 5264 5265 5266 5267
	}

	return 0;
}

static int
5268
skl_compute_ddb(struct intel_atomic_state *state)
5269
{
5270 5271
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5272 5273
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5274 5275
	struct intel_crtc *crtc;
	int ret, i;
5276

5277 5278
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5279
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5280 5281
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5282 5283 5284
		if (ret)
			return ret;

5285 5286
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5287 5288
		if (ret)
			return ret;
5289 5290 5291 5292 5293
	}

	return 0;
}

5294 5295 5296 5297 5298
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5299
static void
5300
skl_print_wm_changes(struct intel_atomic_state *state)
5301
{
5302 5303 5304 5305 5306
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5307
	int i;
5308

5309 5310 5311
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5312 5313
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5314 5315 5316 5317 5318
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5319 5320
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5321 5322
			const struct skl_ddb_entry *old, *new;

5323 5324
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5325 5326 5327 5328

			if (skl_ddb_entry_equal(old, new))
				continue;

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5359 5360
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5361
				      plane->base.base.id, plane->base.name,
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5398
				      plane->base.base.id, plane->base.name,
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5409 5410 5411 5412
		}
	}
}

V
Ville Syrjälä 已提交
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5429
static int
5430
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5431
{
V
Ville Syrjälä 已提交
5432
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5433
	int ret;
5434

5435 5436 5437 5438 5439 5440 5441
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5442
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5443
				       state->base.acquire_ctx);
5444 5445 5446
		if (ret)
			return ret;

5447
		state->active_pipe_changes = ~0;
5448 5449

		/*
5450
		 * We usually only initialize state->active_pipes if we
5451 5452 5453 5454
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5455
		if (!state->modeset)
5456
			state->active_pipes = dev_priv->active_pipes;
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5472 5473
	if (state->active_pipe_changes || state->modeset) {
		state->wm_results.dirty_pipes = ~0;
5474

V
Ville Syrjälä 已提交
5475 5476 5477
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5478 5479 5480 5481 5482
	}

	return 0;
}

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5543
static int
5544
skl_compute_wm(struct intel_atomic_state *state)
5545
{
5546
	struct intel_crtc *crtc;
5547
	struct intel_crtc_state *new_crtc_state;
5548 5549
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5550 5551
	int ret, i;

5552 5553 5554
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5555 5556
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5557 5558
		return ret;

5559 5560
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5561
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5562 5563 5564
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5565
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5566 5567
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5568 5569 5570
		if (ret)
			return ret;

5571
		ret = skl_wm_add_affected_planes(state, crtc);
5572 5573 5574
		if (ret)
			return ret;

5575 5576 5577
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5578
			results->dirty_pipes |= BIT(crtc->pipe);
5579 5580
	}

5581 5582 5583 5584
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5585
	skl_print_wm_changes(state);
5586

5587 5588 5589
	return 0;
}

5590
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5591
				      struct intel_crtc_state *crtc_state)
5592
{
5593
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5594
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5595
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5596
	enum pipe pipe = crtc->pipe;
5597

5598
	if ((state->wm_results.dirty_pipes & BIT(crtc->pipe)) == 0)
5599
		return;
5600 5601 5602 5603

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5604
static void skl_initial_wm(struct intel_atomic_state *state,
5605
			   struct intel_crtc_state *crtc_state)
5606
{
5607 5608
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5609
	struct skl_ddb_values *results = &state->wm_results;
5610

5611
	if ((results->dirty_pipes & BIT(crtc->pipe)) == 0)
5612 5613
		return;

5614
	mutex_lock(&dev_priv->wm.wm_mutex);
5615

5616 5617
	if (crtc_state->base.active_changed)
		skl_atomic_update_crtc_wm(state, crtc_state);
5618

5619
	mutex_unlock(&dev_priv->wm.wm_mutex);
5620 5621
}

5622
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5623 5624 5625 5626 5627
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5628
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5640
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5641
{
5642
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5643
	struct ilk_wm_maximums max;
5644
	struct intel_wm_config config = {};
5645
	struct ilk_wm_values results = {};
5646
	enum intel_ddb_partitioning partitioning;
5647

5648
	ilk_compute_wm_config(dev_priv, &config);
5649

5650 5651
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5652 5653

	/* 5/6 split only in single pipe config on IVB+ */
5654
	if (INTEL_GEN(dev_priv) >= 7 &&
5655
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5656 5657
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5658

5659
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5660
	} else {
5661
		best_lp_wm = &lp_wm_1_2;
5662 5663
	}

5664
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5665
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5666

5667
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5668

5669
	ilk_write_wm_values(dev_priv, &results);
5670 5671
}

5672
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5673
				   struct intel_crtc_state *crtc_state)
5674
{
5675
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5676
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5677

5678
	mutex_lock(&dev_priv->wm.wm_mutex);
5679
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5680 5681 5682
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5683

5684
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5685
				    struct intel_crtc_state *crtc_state)
5686
{
5687
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5688 5689 5690 5691
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;
5692

5693
	mutex_lock(&dev_priv->wm.wm_mutex);
5694 5695
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5696
	mutex_unlock(&dev_priv->wm.wm_mutex);
5697 5698
}

5699
static inline void skl_wm_level_from_reg_val(u32 val,
5700
					     struct skl_wm_level *level)
5701
{
5702
	level->plane_en = val & PLANE_WM_EN;
5703
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5704 5705 5706
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5707 5708
}

5709
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5710
			      struct skl_pipe_wm *out)
5711
{
5712 5713
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5714 5715
	int level, max_level;
	enum plane_id plane_id;
5716
	u32 val;
5717

5718
	max_level = ilk_wm_max_level(dev_priv);
5719

5720
	for_each_plane_id_on_crtc(crtc, plane_id) {
5721
		struct skl_plane_wm *wm = &out->planes[plane_id];
5722

5723
		for (level = 0; level <= max_level; level++) {
5724 5725
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5726 5727
			else
				val = I915_READ(CUR_WM(pipe, level));
5728

5729
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5730 5731
		}

5732 5733
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5734 5735 5736 5737
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5738 5739
	}

5740
	if (!crtc->active)
5741
		return;
5742

5743
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5744 5745
}

5746
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5747
{
5748
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5749
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5750
	struct intel_crtc *crtc;
5751
	struct intel_crtc_state *crtc_state;
5752

5753
	skl_ddb_get_hw_state(dev_priv, ddb);
5754
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5755
		crtc_state = to_intel_crtc_state(crtc->base.state);
5756

5757
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5758

5759
		if (crtc->active)
5760
			hw->dirty_pipes |= BIT(crtc->pipe);
5761
	}
5762

5763
	if (dev_priv->active_pipes) {
5764 5765 5766
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5767 5768
}

5769
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5770
{
5771
	struct drm_device *dev = crtc->base.dev;
5772
	struct drm_i915_private *dev_priv = to_i915(dev);
5773
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5774 5775
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5776
	enum pipe pipe = crtc->pipe;
5777
	static const i915_reg_t wm0_pipe_reg[] = {
5778 5779 5780 5781 5782 5783
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5784
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5785
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5786

5787 5788
	memset(active, 0, sizeof(*active));

5789
	active->pipe_enabled = crtc->active;
5790 5791

	if (active->pipe_enabled) {
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5806
		int level, max_level = ilk_wm_max_level(dev_priv);
5807 5808 5809 5810 5811 5812 5813 5814 5815

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5816

5817
	crtc->wm.active.ilk = *active;
5818 5819
}

5820 5821 5822 5823 5824
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5825 5826 5827
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5828
	u32 tmp;
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5851 5852 5853 5854
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5855
	u32 tmp;
5856 5857 5858 5859

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5860
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5861
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5862
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5863
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5864
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5865
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5866
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5867 5868 5869 5870 5871
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5872 5873 5874
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5875 5876

	tmp = I915_READ(DSPFW2);
5877 5878 5879
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5880 5881 5882 5883 5884 5885

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5886 5887
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5888 5889

		tmp = I915_READ(DSPFW8_CHV);
5890 5891
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5892 5893

		tmp = I915_READ(DSPFW9_CHV);
5894 5895
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5896 5897 5898

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5899 5900 5901 5902 5903 5904 5905 5906 5907
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5908 5909
	} else {
		tmp = I915_READ(DSPFW7);
5910 5911
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5912 5913 5914

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5915 5916 5917 5918 5919 5920
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5921 5922 5923 5924 5925 5926
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5927
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5928 5929 5930 5931 5932 5933 5934 5935
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5936
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6067
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6068 6069
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6070
	struct intel_crtc *crtc;
6071 6072 6073 6074 6075 6076 6077 6078
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6079
		vlv_punit_get(dev_priv);
6080

6081
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6082 6083 6084
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6085 6086 6087 6088 6089 6090 6091 6092 6093
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6094
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6108

6109
		vlv_punit_put(dev_priv);
6110 6111
	}

6112
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6128
			struct g4x_pipe_wm *raw =
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6150
		crtc_state->wm.vlv.intermediate = *active;
6151

6152
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6153 6154 6155 6156 6157
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6158
	}
6159 6160 6161 6162 6163

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6188
			struct g4x_pipe_wm *raw =
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6229
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6230
{
6231
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6232
	struct intel_crtc *crtc;
6233

6234 6235
	ilk_init_lp_watermarks(dev_priv);

6236
	for_each_intel_crtc(&dev_priv->drm, crtc)
6237 6238 6239 6240 6241 6242 6243
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6244
	if (INTEL_GEN(dev_priv) >= 7) {
6245 6246 6247
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6248

6249
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6250 6251
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6252
	else if (IS_IVYBRIDGE(dev_priv))
6253 6254
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6255 6256 6257 6258 6259

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6260 6261
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6262
 * @crtc: the #intel_crtc on which to compute the WM
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6293
void intel_update_watermarks(struct intel_crtc *crtc)
6294
{
6295
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6296 6297

	if (dev_priv->display.update_wm)
6298
		dev_priv->display.update_wm(crtc);
6299 6300
}

6301 6302 6303 6304
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6305 6306 6307
	if (!HAS_IPC(dev_priv))
		return;

6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6331 6332 6333 6334 6335
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6336
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6337

6338 6339 6340
	intel_enable_ipc(dev_priv);
}

6341
/*
6342 6343 6344 6345
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

T
Tvrtko Ursulin 已提交
6346
bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6347
{
T
Tvrtko Ursulin 已提交
6348
	struct intel_uncore *uncore = &i915->uncore;
6349 6350
	u16 rgvswctl;

6351
	lockdep_assert_held(&mchdev_lock);
6352

T
Tvrtko Ursulin 已提交
6353
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6354 6355 6356 6357 6358 6359 6360
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
T
Tvrtko Ursulin 已提交
6361 6362
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
	intel_uncore_posting_read16(uncore, MEMSWCTL);
6363 6364

	rgvswctl |= MEMCTL_CMD_STS;
T
Tvrtko Ursulin 已提交
6365
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6366 6367 6368 6369

	return true;
}

6370
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6371
{
6372
	struct intel_uncore *uncore = &dev_priv->uncore;
6373
	u32 rgvmodectl;
6374 6375
	u8 fmax, fmin, fstart, vstart;

6376 6377
	spin_lock_irq(&mchdev_lock);

6378
	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6379

6380
	/* Enable temp reporting */
6381 6382
	intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6383 6384

	/* 100ms RC evaluation intervals */
6385 6386
	intel_uncore_write(uncore, RCUPEI, 100000);
	intel_uncore_write(uncore, RCDNEI, 100000);
6387 6388

	/* Set max/min thresholds to 90ms and 80ms respectively */
6389 6390
	intel_uncore_write(uncore, RCBMAXAVG, 90000);
	intel_uncore_write(uncore, RCBMINAVG, 80000);
6391

6392
	intel_uncore_write(uncore, MEMIHYST, 1);
6393 6394 6395 6396 6397 6398 6399

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6400 6401
	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6402

6403 6404
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6405

6406 6407 6408
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6409 6410 6411 6412

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

6413 6414 6415
	intel_uncore_write(uncore,
			   MEMINTREN,
			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6416 6417 6418 6419 6420

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

6421 6422
	intel_uncore_write(uncore, VIDSTART, vstart);
	intel_uncore_posting_read(uncore, VIDSTART);
6423 6424

	rgvmodectl |= MEMMODE_SWMODE_EN;
6425
	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6426

6427 6428
	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
			     MEMCTL_CMD_STS) == 0, 10))
6429
		DRM_ERROR("stuck trying to change perf mode\n");
6430
	mdelay(1);
6431

6432
	ironlake_set_drps(dev_priv, fstart);
6433

6434 6435 6436 6437
	dev_priv->ips.last_count1 =
		intel_uncore_read(uncore, DMIEC) +
		intel_uncore_read(uncore, DDREC) +
		intel_uncore_read(uncore, CSIEC);
6438
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6439
	dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6440
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6441 6442

	spin_unlock_irq(&mchdev_lock);
6443 6444
}

6445
static void ironlake_disable_drps(struct drm_i915_private *i915)
6446
{
6447
	struct intel_uncore *uncore = &i915->uncore;
6448 6449 6450 6451
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

6452
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6453 6454

	/* Ack interrupts, disable EFC interrupt */
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
	intel_uncore_write(uncore,
			   MEMINTREN,
			   intel_uncore_read(uncore, MEMINTREN) &
			   ~MEMINT_EVAL_CHG_EN);
	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
	intel_uncore_write(uncore,
			   DEIER,
			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
	intel_uncore_write(uncore,
			   DEIMR,
			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6467 6468

	/* Go back to the starting frequency */
6469
	ironlake_set_drps(i915, i915->ips.fstart);
6470
	mdelay(1);
6471
	rgvswctl |= MEMCTL_CMD_STS;
6472
	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6473
	mdelay(1);
6474

6475
	spin_unlock_irq(&mchdev_lock);
6476 6477
}

6478 6479 6480 6481 6482
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6483
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6484
{
6485
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6486
	u32 limits;
6487

6488 6489 6490 6491 6492 6493
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6494
	if (INTEL_GEN(dev_priv) >= 9) {
6495 6496 6497
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6498
	} else {
6499 6500 6501
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6502
	}
6503 6504 6505 6506

	return limits;
}

C
Chris Wilson 已提交
6507
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6508
{
6509
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6510 6511
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6512

C
Chris Wilson 已提交
6513
	lockdep_assert_held(&rps->power.mutex);
6514

C
Chris Wilson 已提交
6515
	if (new_power == rps->power.mode)
6516 6517 6518 6519 6520 6521
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6522 6523
		ei_up = 16000;
		threshold_up = 95;
6524 6525

		/* Downclock if less than 85% busy over 32ms */
6526 6527
		ei_down = 32000;
		threshold_down = 85;
6528 6529 6530 6531
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6532 6533
		ei_up = 13000;
		threshold_up = 90;
6534 6535

		/* Downclock if less than 75% busy over 32ms */
6536 6537
		ei_down = 32000;
		threshold_down = 75;
6538 6539 6540 6541
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6542 6543
		ei_up = 10000;
		threshold_up = 85;
6544 6545

		/* Downclock if less than 60% busy over 32ms */
6546 6547
		ei_down = 32000;
		threshold_down = 60;
6548 6549 6550
		break;
	}

6551 6552 6553 6554 6555 6556
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6557
	I915_WRITE(GEN6_RP_UP_EI,
6558
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6559
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6560 6561
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6562 6563

	I915_WRITE(GEN6_RP_DOWN_EI,
6564
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6565
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6566 6567 6568 6569
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
6570
		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6571 6572 6573 6574 6575
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6576

6577
skip_hw_write:
C
Chris Wilson 已提交
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6622 6623
}

C
Chris Wilson 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6642 6643
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6644
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6645 6646
	u32 mask = 0;

6647
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6648
	if (val > rps->min_freq_softlimit)
6649
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6650
	if (val < rps->max_freq_softlimit)
6651
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6652

6653 6654
	mask &= dev_priv->pm_rps_events;

6655
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6656 6657
}

6658 6659 6660
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6661
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6662
{
6663 6664
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6665 6666 6667
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6668
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6669
		gen6_set_rps_thresholds(dev_priv, val);
6670

6671
		if (INTEL_GEN(dev_priv) >= 9)
6672 6673
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6674
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6675 6676 6677 6678 6679 6680 6681
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6682
	}
6683 6684 6685 6686

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6687
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6688
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6689

6690
	rps->cur_freq = val;
6691
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6692 6693

	return 0;
6694 6695
}

6696
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6697
{
6698 6699
	int err;

6700
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6701 6702 6703
		      "Odd GPU freq value\n"))
		val &= ~1;

6704 6705
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6706
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6707
		vlv_punit_get(dev_priv);
6708
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6709
		vlv_punit_put(dev_priv);
6710 6711 6712
		if (err)
			return err;

6713
		gen6_set_rps_thresholds(dev_priv, val);
6714
	}
6715

6716
	dev_priv->gt_pm.rps.cur_freq = val;
6717
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6718 6719

	return 0;
6720 6721
}

6722
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6723 6724
 *
 * * If Gfx is Idle, then
6725 6726 6727
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6728 6729 6730
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6731 6732
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6733
	int err;
6734

6735
	if (rps->cur_freq <= val)
6736 6737
		return;

6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6750
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6751
	err = valleyview_set_rps(dev_priv, val);
6752
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6753 6754 6755

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6756 6757
}

6758 6759
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6760 6761
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6762
	mutex_lock(&rps->lock);
6763
	if (rps->enabled) {
6764 6765
		u8 freq;

6766
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6767 6768
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6769
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6770

6771 6772
		gen6_enable_rps_interrupts(dev_priv);

6773 6774 6775
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6776 6777
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6778

6779
		if (intel_set_rps(dev_priv,
6780
				  clamp(freq,
6781 6782
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6783
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6784
	}
6785
	mutex_unlock(&rps->lock);
6786 6787
}

6788 6789
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6790 6791
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6792 6793 6794 6795 6796 6797 6798
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6799
	mutex_lock(&rps->lock);
6800
	if (rps->enabled) {
6801
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6802
			vlv_set_rps_idle(dev_priv);
6803
		else
6804 6805
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6806 6807
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6808
	}
6809
	mutex_unlock(&rps->lock);
6810 6811
}

6812
void gen6_rps_boost(struct i915_request *rq)
6813
{
6814
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6815
	unsigned long flags;
6816 6817
	bool boost;

6818 6819 6820
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6821
	if (!rps->enabled)
6822
		return;
6823

6824
	if (i915_request_signaled(rq))
6825 6826
		return;

6827
	/* Serializes with i915_request_retire() */
6828
	boost = false;
6829
	spin_lock_irqsave(&rq->lock, flags);
6830 6831
	if (!i915_request_has_waitboost(rq) &&
	    !dma_fence_is_signaled_locked(&rq->fence)) {
6832
		boost = !atomic_fetch_inc(&rps->num_waiters);
6833
		rq->flags |= I915_REQUEST_WAITBOOST;
6834
	}
6835
	spin_unlock_irqrestore(&rq->lock, flags);
6836 6837 6838
	if (!boost)
		return;

6839 6840
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6841

6842
	atomic_inc(&rps->boosts);
6843 6844
}

6845
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6846
{
6847
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6848 6849
	int err;

6850
	lockdep_assert_held(&rps->lock);
6851 6852
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6853

6854 6855
	if (!rps->enabled) {
		rps->cur_freq = val;
6856 6857 6858
		return 0;
	}

6859
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6860
		err = valleyview_set_rps(dev_priv, val);
6861
	else
6862 6863 6864
		err = gen6_set_rps(dev_priv, val);

	return err;
6865 6866
}

6867
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6868 6869 6870 6871
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6872 6873
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6874
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6875
	I915_WRITE(GEN6_RP_CONTROL, 0);
6876 6877
}

6878 6879 6880 6881 6882
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6883 6884 6885 6886 6887
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6888
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6889
{
6890 6891
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6892
	/* All of these values are in units of 50MHz */
6893

6894
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6895
	if (IS_GEN9_LP(dev_priv)) {
6896
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6897 6898 6899
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6900
	} else {
6901
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6902 6903 6904
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6905
	}
6906
	/* hw_max = RP0 until we check for overclocking */
6907
	rps->max_freq = rps->rp0_freq;
6908

6909
	rps->efficient_freq = rps->rp1_freq;
6910
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6911
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6912 6913 6914 6915
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6916
					   &ddcc_status, NULL) == 0)
6917
			rps->efficient_freq =
6918 6919
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6920 6921
					rps->min_freq,
					rps->max_freq);
6922 6923
	}

6924
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6925
		/* Store the frequency values in 16.66 MHZ units, which is
6926 6927
		 * the natural hardware unit for SKL
		 */
6928 6929 6930 6931 6932
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6933
	}
6934 6935
}

6936
static void reset_rps(struct drm_i915_private *dev_priv,
6937
		      int (*set)(struct drm_i915_private *, u8))
6938
{
6939 6940
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6941 6942

	/* force a reset */
C
Chris Wilson 已提交
6943
	rps->power.mode = -1;
6944
	rps->cur_freq = -1;
6945

6946 6947
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6948 6949
}

J
Jesse Barnes 已提交
6950
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6951
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6952
{
6953
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
6954

6955
	/* Program defaults and thresholds for RPS */
6956
	if (IS_GEN(dev_priv, 9))
6957 6958
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6959 6960 6961 6962 6963

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6964 6965
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6966 6967 6968
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6969
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6970

6971
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
6972 6973
}

6974 6975
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6976 6977
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6978
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6979 6980

	/* 1 Program defaults and thresholds for RPS*/
6981
	I915_WRITE(GEN6_RPNSWREQ,
6982
		   HSW_FREQUENCY(rps->rp1_freq));
6983
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6984
		   HSW_FREQUENCY(rps->rp1_freq));
6985 6986 6987 6988 6989
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6990 6991
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
6992 6993 6994 6995 6996 6997 6998

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6999

7000
	/* 2: Enable RPS */
7001 7002 7003 7004 7005 7006 7007 7008
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7009
	reset_rps(dev_priv, gen6_set_rps);
7010

7011
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7012 7013
}

7014 7015 7016 7017 7018 7019 7020 7021
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
7022
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7023 7024 7025 7026 7027 7028 7029

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

7030
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7031 7032
}

7033
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7034
{
7035
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7036 7037
	const int min_freq = 15;
	const int scaling_factor = 180;
7038 7039
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7040
	unsigned int max_gpu_freq, min_gpu_freq;
7041
	struct cpufreq_policy *policy;
7042

7043
	lockdep_assert_held(&rps->lock);
7044

7045 7046 7047
	if (rps->max_freq <= rps->min_freq)
		return;

7048 7049 7050 7051 7052 7053 7054 7055 7056
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7057
		max_ia_freq = tsc_khz;
7058
	}
7059 7060 7061 7062

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7063
	min_ring_freq = I915_READ(DCLK) & 0xf;
7064 7065
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7066

7067 7068
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7069
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7070
		/* Convert GT frequency to 50 HZ units */
7071 7072
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7073 7074
	}

7075 7076 7077 7078 7079
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7080
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7081
		const int diff = max_gpu_freq - gpu_freq;
7082 7083
		unsigned int ia_freq = 0, ring_freq = 0;

7084
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7085 7086 7087 7088 7089
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7090
		} else if (INTEL_GEN(dev_priv) >= 8) {
7091 7092
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7093
		} else if (IS_HASWELL(dev_priv)) {
7094
			ring_freq = mult_frac(gpu_freq, 5, 4);
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7111

B
Ben Widawsky 已提交
7112 7113
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7114 7115 7116
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7117 7118 7119
	}
}

7120
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7121 7122 7123
{
	u32 val, rp0;

7124
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7125

7126
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7141
	}
7142 7143 7144

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7158 7159 7160 7161
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7162 7163 7164
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7165 7166 7167
	return rp1;
}

7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7190
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7191 7192 7193
{
	u32 val, rp0;

7194
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7207
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7208
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7209
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7210 7211 7212 7213 7214
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7215
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7216
{
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7228 7229
}

7230 7231
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7232
	dev_priv->gt_pm.rps.gpll_ref_freq =
7233 7234 7235 7236 7237
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7238
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7239 7240
}

7241
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7242
{
7243
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7244
	u32 val;
7245

7246 7247 7248 7249 7250
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7251 7252
	vlv_init_gpll_ref_freq(dev_priv);

7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7266
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7267

7268 7269
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7270
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7271 7272
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7273

7274
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7275
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7276 7277
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7278

7279
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7280
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7281 7282
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7283

7284
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7285
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7286 7287
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7288 7289 7290 7291 7292

	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));
7293 7294
}

7295
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7296
{
7297
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7298
	u32 val;
7299

7300 7301 7302 7303 7304
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7305 7306
	vlv_init_gpll_ref_freq(dev_priv);

7307 7308
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);

7309 7310 7311 7312
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7313
	default:
7314 7315 7316
		dev_priv->mem_freq = 1600;
		break;
	}
7317
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7318

7319 7320
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7321
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7322 7323
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7324

7325
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7326
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7327 7328
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7329

7330
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7331
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7332 7333
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7334

7335
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7336
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7337 7338
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7339

7340 7341 7342 7343 7344
	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7345 7346
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7347
		  "Odd GPU freq values\n");
7348 7349
}

7350 7351 7352 7353
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7354
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7355 7356

	/* 1: Program defaults and thresholds for RPS*/
7357
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7358 7359 7360 7361 7362 7363 7364
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7365
	/* 2: Enable RPS */
7366 7367
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7368
		   GEN6_RP_MEDIA_IS_GFX |
7369 7370 7371 7372
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7373
	/* Setting Fixed Bias */
7374 7375 7376
	vlv_punit_get(dev_priv);

	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
D
Deepak S 已提交
7377 7378
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7379 7380
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7381 7382
	vlv_punit_put(dev_priv);

7383 7384 7385
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7386
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7387 7388
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7389
	reset_rps(dev_priv, valleyview_set_rps);
7390

7391
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7392 7393
}

7394 7395 7396 7397
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7398
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

7416 7417
	vlv_punit_get(dev_priv);

D
Deepak S 已提交
7418
	/* Setting Fixed Bias */
7419
	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
D
Deepak S 已提交
7420 7421
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7422
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7423

7424 7425
	vlv_punit_put(dev_priv);

7426 7427 7428
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7429
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7430 7431
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7432
	reset_rps(dev_priv, valleyview_set_rps);
7433

7434
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7435 7436
}

7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7466
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7467 7468 7469 7470 7471 7472
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7473
	lockdep_assert_held(&mchdev_lock);
7474

7475
	diff1 = now - dev_priv->ips.last_time1;
7476 7477 7478 7479 7480 7481 7482

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7483
		return dev_priv->ips.chipset_power;
7484 7485 7486 7487 7488 7489 7490 7491

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7492 7493
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7494 7495
		diff += total_count;
	} else {
7496
		diff = total_count - dev_priv->ips.last_count1;
7497 7498 7499
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7500 7501
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7512 7513
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7514

7515
	dev_priv->ips.chipset_power = ret;
7516 7517 7518 7519

	return ret;
}

7520 7521
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
7522 7523
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7524

7525
	if (!IS_GEN(dev_priv, 5))
7526 7527
		return 0;

7528
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7529 7530 7531 7532
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7533 7534 7535 7536

	return val;
}

T
Tvrtko Ursulin 已提交
7537
unsigned long i915_mch_val(struct drm_i915_private *i915)
7538 7539 7540 7541
{
	unsigned long m, x, b;
	u32 tsfs;

T
Tvrtko Ursulin 已提交
7542
	tsfs = intel_uncore_read(&i915->uncore, TSFS);
7543 7544

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
T
Tvrtko Ursulin 已提交
7545
	x = intel_uncore_read8(&i915->uncore, TR1);
7546 7547 7548 7549 7550 7551

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7564
{
7565 7566 7567
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7568
	if (INTEL_INFO(dev_priv)->is_mobile)
7569 7570 7571
		return vm > 0 ? vm : 0;

	return vd;
7572 7573
}

7574
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7575
{
7576
	u64 now, diff, diffms;
7577 7578
	u32 count;

7579
	lockdep_assert_held(&mchdev_lock);
7580

7581 7582 7583
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7584 7585 7586 7587 7588 7589 7590

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7591 7592
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7593 7594
		diff += count;
	} else {
7595
		diff = count - dev_priv->ips.last_count2;
7596 7597
	}

7598 7599
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7600 7601 7602 7603

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7604
	dev_priv->ips.gfx_power = diff;
7605 7606
}

7607 7608
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7609 7610
	intel_wakeref_t wakeref;

7611
	if (!IS_GEN(dev_priv, 5))
7612 7613
		return;

7614
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7615 7616 7617 7618
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7619 7620
}

7621
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7622 7623 7624 7625
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7626
	lockdep_assert_held(&mchdev_lock);
7627

7628
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7648
	corr2 = (corr * dev_priv->ips.corr);
7649 7650 7651 7652

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7653
	__i915_update_gfx_val(dev_priv);
7654

7655
	return dev_priv->ips.gfx_power + state2;
7656 7657
}

7658 7659
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
7660 7661
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7662

7663
	if (!IS_GEN(dev_priv, 5))
7664 7665
		return 0;

7666
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7667 7668 7669 7670
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7671

7672 7673
	return val;
}
7674

7675
static struct drm_i915_private __rcu *i915_mch_dev;
7676

7677 7678 7679 7680 7681
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
7682
	i915 = rcu_dereference(i915_mch_dev);
7683 7684 7685 7686 7687
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
7688 7689
}

7690 7691 7692 7693 7694 7695 7696 7697
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
7698 7699 7700 7701
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
7702

7703 7704 7705
	i915 = mchdev_get();
	if (!i915)
		return 0;
7706

7707
	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
7708 7709 7710 7711 7712
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
7713

7714 7715
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
7726
	struct drm_i915_private *i915;
7727

7728 7729 7730
	i915 = mchdev_get();
	if (!i915)
		return false;
7731

7732 7733 7734
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
7735
	spin_unlock_irq(&mchdev_lock);
7736

7737 7738
	drm_dev_put(&i915->drm);
	return true;
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
7750
	struct drm_i915_private *i915;
7751

7752 7753 7754
	i915 = mchdev_get();
	if (!i915)
		return false;
7755

7756 7757 7758
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
7759
	spin_unlock_irq(&mchdev_lock);
7760

7761 7762
	drm_dev_put(&i915->drm);
	return true;
7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
7773 7774
	struct drm_i915_private *i915;
	bool ret;
7775

7776 7777 7778
	i915 = mchdev_get();
	if (!i915)
		return false;
7779

7780 7781 7782
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
7795 7796
	struct drm_i915_private *i915;
	bool ret;
7797

7798 7799 7800
	i915 = mchdev_get();
	if (!i915)
		return false;
7801

7802 7803 7804
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
7805
	spin_unlock_irq(&mchdev_lock);
7806

7807
	drm_dev_put(&i915->drm);
7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7834 7835
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7836
	rcu_assign_pointer(i915_mch_dev, dev_priv);
7837 7838 7839 7840 7841 7842

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7843
	rcu_assign_pointer(i915_mch_dev, NULL);
7844
}
7845

7846
static void intel_init_emon(struct drm_i915_private *dev_priv)
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7863
		I915_WRITE(PEW(i), 0);
7864
	for (i = 0; i < 3; i++)
7865
		I915_WRITE(DEW(i), 0);
7866 7867 7868

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7869
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7890
		I915_WRITE(PXW(i), val);
7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7906
		I915_WRITE(PXWL(i), 0);
7907 7908 7909 7910 7911 7912

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7913
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7914 7915
}

7916
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7917
{
7918 7919
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7920 7921 7922
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->has_rps = false;
I
Imre Deak 已提交
7923

7924
	/* Initialize RPS limits (for userspace) */
7925 7926 7927 7928
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7929
	else if (INTEL_GEN(dev_priv) >= 6)
7930 7931 7932
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
7933 7934
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
7935

7936
	/* After setting max-softlimit, find the overclock max freq */
7937
	if (IS_GEN(dev_priv, 6) ||
7938 7939 7940
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

7941 7942
		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
				       &params, NULL);
7943 7944
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7945
					 (rps->max_freq & 0xff) * 50,
7946
					 (params & 0xff) * 50);
7947
			rps->max_freq = params & 0xff;
7948 7949 7950
		}
	}

7951
	/* Finally allow us to boost to max by default */
7952
	rps->boost_freq = rps->max_freq;
7953 7954
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
7955 7956
}

7957 7958
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
7959
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
7960
	intel_disable_gt_powersave(dev_priv);
7961

7962 7963
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
7964
	else if (INTEL_GEN(dev_priv) >= 6)
7965
		gen6_reset_rps_interrupts(dev_priv);
7966 7967
}

7968 7969
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
7970
	lockdep_assert_held(&i915->gt_pm.rps.lock);
7971

7972 7973 7974
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

7975
	/* Currently there is no HW configuration to be done to disable. */
7976 7977

	i915->gt_pm.llc_pstate.enabled = false;
7978 7979
}

7980 7981
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
7982
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
7983

7984 7985 7986
	if (!dev_priv->gt_pm.rps.enabled)
		return;

7987
	if (INTEL_GEN(dev_priv) >= 9)
7988
		gen9_disable_rps(dev_priv);
7989
	else if (IS_CHERRYVIEW(dev_priv))
7990
		cherryview_disable_rps(dev_priv);
7991
	else if (IS_VALLEYVIEW(dev_priv))
7992
		valleyview_disable_rps(dev_priv);
7993
	else if (INTEL_GEN(dev_priv) >= 6)
7994
		gen6_disable_rps(dev_priv);
7995
	else if (IS_IRONLAKE_M(dev_priv))
7996
		ironlake_disable_drps(dev_priv);
7997 7998

	dev_priv->gt_pm.rps.enabled = false;
7999 8000 8001 8002
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
8003
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8004

8005
	intel_disable_rps(dev_priv);
8006 8007 8008
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8009
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8010 8011
}

8012 8013
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
8014
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8015

8016 8017 8018
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8019
	gen6_update_ring_freq(i915);
8020 8021

	i915->gt_pm.llc_pstate.enabled = true;
8022 8023
}

8024 8025 8026
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8027

8028
	lockdep_assert_held(&rps->lock);
8029

8030 8031 8032
	if (rps->enabled)
		return;

8033 8034 8035 8036
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8037
	} else if (INTEL_GEN(dev_priv) >= 9) {
8038 8039 8040
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8041
	} else if (INTEL_GEN(dev_priv) >= 6) {
8042
		gen6_enable_rps(dev_priv);
8043 8044 8045
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8046
	}
8047

8048 8049
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8050

8051 8052
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8053 8054

	rps->enabled = true;
8055 8056 8057 8058 8059 8060 8061 8062
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

8063
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8064

8065 8066
	if (HAS_RPS(dev_priv))
		intel_enable_rps(dev_priv);
8067 8068
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8069

8070
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8071
}
I
Imre Deak 已提交
8072

8073
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8074 8075 8076 8077 8078 8079 8080 8081 8082
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8083
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8084
{
8085
	enum pipe pipe;
8086

8087
	for_each_pipe(dev_priv, pipe) {
8088 8089 8090
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8091 8092 8093

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8094 8095 8096
	}
}

8097
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8098
{
8099
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8100

8101 8102 8103 8104
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8105 8106 8107
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8125
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8126 8127 8128
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8129

8130 8131 8132 8133 8134 8135 8136
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8137
	if (IS_IRONLAKE_M(dev_priv)) {
8138
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8139 8140 8141 8142 8143 8144 8145 8146
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8147 8148
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8149 8150 8151 8152 8153 8154
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8155

8156
	/* WaDisableRenderCachePipelinedFlush:ilk */
8157 8158
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8159

8160 8161 8162
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8163
	g4x_disable_trickle_feed(dev_priv);
8164

8165
	ibx_init_clock_gating(dev_priv);
8166 8167
}

8168
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8169
{
8170
	enum pipe pipe;
8171
	u32 val;
8172 8173 8174 8175 8176 8177

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8178 8179 8180
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8181 8182
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8183 8184 8185
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8186
	for_each_pipe(dev_priv, pipe) {
8187 8188 8189
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8190
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8191
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8192 8193 8194
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8195 8196
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8197
	/* WADP0ClockGatingDisable */
8198
	for_each_pipe(dev_priv, pipe) {
8199 8200 8201
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8202 8203
}

8204
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8205
{
8206
	u32 tmp;
8207 8208

	tmp = I915_READ(MCH_SSKPD);
8209 8210 8211
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8212 8213
}

8214
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8215
{
8216
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8217

8218
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8219 8220 8221 8222 8223

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8224
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8225 8226 8227
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8228 8229 8230
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8231 8232 8233
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8234 8235 8236 8237
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8238 8239
	 */
	I915_WRITE(GEN6_GT_MODE,
8240
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8241

8242
	I915_WRITE(CACHE_MODE_0,
8243
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8259
	 *
8260 8261
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8262 8263 8264 8265 8266
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8267
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8268 8269
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8270

8271 8272 8273 8274 8275 8276 8277 8278
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8279 8280 8281 8282 8283 8284 8285 8286
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8287 8288
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8289 8290 8291 8292 8293 8294 8295
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8296 8297 8298 8299
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8300

8301
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8302

8303
	cpt_init_clock_gating(dev_priv);
8304

8305
	gen6_check_mch_setup(dev_priv);
8306 8307 8308 8309
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8310
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8311

8312
	/*
8313
	 * WaVSThreadDispatchOverride:ivb,vlv
8314 8315 8316 8317
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8318 8319 8320 8321 8322 8323 8324 8325
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8326
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8327 8328 8329 8330 8331
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8332
	if (HAS_PCH_LPT_LP(dev_priv))
8333 8334 8335
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8336 8337

	/* WADPOClockGatingDisable:hsw */
8338 8339
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8340
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8341 8342
}

8343
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8344
{
8345
	if (HAS_PCH_LPT_LP(dev_priv)) {
8346
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8347 8348 8349 8350 8351 8352

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8353 8354 8355 8356 8357
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8358
	u32 val;
8359 8360 8361 8362 8363

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8364 8365 8366 8367 8368
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8379 8380 8381 8382 8383
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8384 8385 8386 8387

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8388 8389
}

8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
}

8406 8407 8408 8409 8410
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8411
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8412 8413
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8414 8415
}

8416
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8417
{
8418
	u32 val;
8419 8420
	cnp_init_clock_gating(dev_priv);

8421 8422 8423 8424
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8425 8426 8427 8428 8429 8430 8431 8432
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8433 8434 8435
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8436 8437
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8438 8439
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8440

R
Rodrigo Vivi 已提交
8441 8442 8443 8444 8445
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8446
	/* WaDisableVFclkgate:cnl */
8447
	/* WaVFUnitClockGatingDisable:cnl */
8448 8449 8450
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8451 8452
}

8453 8454 8455 8456 8457 8458 8459 8460 8461 8462
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8463
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8464
{
8465
	gen9_init_clock_gating(dev_priv);
8466 8467 8468 8469 8470

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8471 8472 8473 8474 8475

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8476

8477
	/* WaFbcNukeOnHostModify:kbl */
8478 8479
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8480 8481
}

8482
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8483
{
8484
	gen9_init_clock_gating(dev_priv);
8485 8486 8487 8488

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8489 8490 8491 8492

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8493 8494
}

8495
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8496
{
8497
	enum pipe pipe;
B
Ben Widawsky 已提交
8498

8499
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8500
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8501

8502
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8503 8504 8505
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8506
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8507
	for_each_pipe(dev_priv, pipe) {
8508
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8509
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8510
			   BDW_DPRS_MASK_VBLANK_SRD);
8511
	}
8512

8513 8514 8515 8516 8517
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8518

8519 8520
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8521 8522 8523 8524

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8525

8526 8527
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8528

8529 8530 8531 8532
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8533
	lpt_init_clock_gating(dev_priv);
8534 8535 8536 8537 8538 8539 8540 8541

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8542 8543
}

8544
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8545
{
8546 8547 8548 8549 8550
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8551
	/* This is required by WaCatErrorRejectionIssue:hsw */
8552 8553 8554 8555
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8556 8557 8558
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8559

8560 8561 8562
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8563 8564 8565 8566
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8567
	/* WaDisable4x2SubspanOptimization:hsw */
8568 8569
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8570

8571 8572 8573
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8574 8575 8576 8577
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8578 8579
	 */
	I915_WRITE(GEN7_GT_MODE,
8580
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8581

8582 8583 8584 8585
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8586
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8587 8588
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8589
	lpt_init_clock_gating(dev_priv);
8590 8591
}

8592
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8593
{
8594
	u32 snpcr;
8595

8596
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8597

8598
	/* WaDisableEarlyCull:ivb */
8599 8600 8601
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8602
	/* WaDisableBackToBackFlipFix:ivb */
8603 8604 8605 8606
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8607
	/* WaDisablePSDDualDispatchEnable:ivb */
8608
	if (IS_IVB_GT1(dev_priv))
8609 8610 8611
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8612 8613 8614
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8615
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8616 8617 8618
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8619
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8620 8621 8622
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8623
		   GEN7_WA_L3_CHICKEN_MODE);
8624
	if (IS_IVB_GT1(dev_priv))
8625 8626
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8627 8628 8629 8630
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8631 8632
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8633
	}
8634

8635
	/* WaForceL3Serialization:ivb */
8636 8637 8638
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8639
	/*
8640
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8641
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8642 8643
	 */
	I915_WRITE(GEN6_UCGCTL2,
8644
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8645

8646
	/* This is required by WaCatErrorRejectionIssue:ivb */
8647 8648 8649 8650
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8651
	g4x_disable_trickle_feed(dev_priv);
8652 8653

	gen7_setup_fixed_func_scheduler(dev_priv);
8654

8655 8656 8657 8658 8659
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8660

8661
	/* WaDisable4x2SubspanOptimization:ivb */
8662 8663
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8664

8665 8666 8667
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8668 8669 8670 8671
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8672 8673
	 */
	I915_WRITE(GEN7_GT_MODE,
8674
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8675

8676 8677 8678 8679
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8680

8681
	if (!HAS_PCH_NOP(dev_priv))
8682
		cpt_init_clock_gating(dev_priv);
8683

8684
	gen6_check_mch_setup(dev_priv);
8685 8686
}

8687
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8688
{
8689
	/* WaDisableEarlyCull:vlv */
8690 8691 8692
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8693
	/* WaDisableBackToBackFlipFix:vlv */
8694 8695 8696 8697
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8698
	/* WaPsdDispatchEnable:vlv */
8699
	/* WaDisablePSDDualDispatchEnable:vlv */
8700
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8701 8702
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8703

8704 8705 8706
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8707
	/* WaForceL3Serialization:vlv */
8708 8709 8710
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8711
	/* WaDisableDopClockGating:vlv */
8712 8713 8714
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8715
	/* This is required by WaCatErrorRejectionIssue:vlv */
8716 8717 8718 8719
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8720 8721
	gen7_setup_fixed_func_scheduler(dev_priv);

8722
	/*
8723
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8724
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8725 8726
	 */
	I915_WRITE(GEN6_UCGCTL2,
8727
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8728

8729 8730 8731 8732 8733
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8734

8735 8736 8737 8738
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8739 8740
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8741

8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8753 8754 8755 8756 8757 8758
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8759
	/*
8760
	 * WaDisableVLVClockGating_VBIIssue:vlv
8761 8762 8763
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8764
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8765 8766
}

8767
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8768
{
8769 8770 8771 8772 8773
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8774 8775 8776 8777

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8778 8779 8780 8781

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8782 8783 8784 8785

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8786

8787 8788 8789 8790 8791 8792
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
8793 8794
}

8795
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8796
{
8797
	u32 dspclk_gate;
8798 8799 8800 8801 8802 8803 8804 8805 8806

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8807
	if (IS_GM45(dev_priv))
8808 8809
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8810 8811 8812 8813

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8814

8815 8816 8817
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8818
	g4x_disable_trickle_feed(dev_priv);
8819 8820
}

8821
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8822
{
8823 8824 8825 8826 8827 8828 8829 8830 8831 8832
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8833 8834

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
8835 8836 8837
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8838 8839
}

8840
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8841 8842 8843 8844 8845 8846 8847
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8848 8849
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8850 8851 8852

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8853 8854
}

8855
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8856 8857 8858 8859 8860 8861
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8862

8863
	if (IS_PINEVIEW(dev_priv))
8864
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8865 8866 8867

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8868 8869

	/* interrupts should cause a wake up from C3 */
8870
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8871 8872 8873

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8874 8875 8876

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8877 8878
}

8879
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8880 8881
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8882 8883 8884 8885

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8886 8887 8888

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8889 8890
}

8891
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8892
{
8893 8894 8895
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8896 8897
}

8898
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8899
{
8900
	dev_priv->display.init_clock_gating(dev_priv);
8901 8902
}

8903
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8904
{
8905 8906
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8907 8908
}

8909
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
8925
	if (IS_GEN(dev_priv, 12))
8926
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
8927
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
8928
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
8929
	else if (IS_CANNONLAKE(dev_priv))
8930
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
8931 8932
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
8933
	else if (IS_SKYLAKE(dev_priv))
8934
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
8935
	else if (IS_KABYLAKE(dev_priv))
8936
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
8937
	else if (IS_BROXTON(dev_priv))
8938
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8939 8940
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8941
	else if (IS_BROADWELL(dev_priv))
8942
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
8943
	else if (IS_CHERRYVIEW(dev_priv))
8944
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
8945
	else if (IS_HASWELL(dev_priv))
8946
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
8947
	else if (IS_IVYBRIDGE(dev_priv))
8948
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
8949
	else if (IS_VALLEYVIEW(dev_priv))
8950
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
8951
	else if (IS_GEN(dev_priv, 6))
8952
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8953
	else if (IS_GEN(dev_priv, 5))
8954
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
8955 8956
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8957
	else if (IS_I965GM(dev_priv))
8958
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
8959
	else if (IS_I965G(dev_priv))
8960
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
8961
	else if (IS_GEN(dev_priv, 3))
8962 8963 8964
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8965
	else if (IS_GEN(dev_priv, 2))
8966 8967 8968 8969 8970 8971 8972
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8973
/* Set up chip specific power management-related functions */
8974
void intel_init_pm(struct drm_i915_private *dev_priv)
8975
{
8976
	/* For cxsr */
8977
	if (IS_PINEVIEW(dev_priv))
8978
		i915_pineview_get_mem_freq(dev_priv);
8979
	else if (IS_GEN(dev_priv, 5))
8980
		i915_ironlake_get_mem_freq(dev_priv);
8981

8982 8983 8984
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

8985
	/* For FIFO watermark updates */
8986
	if (INTEL_GEN(dev_priv) >= 9) {
8987
		skl_setup_wm_latency(dev_priv);
8988
		dev_priv->display.initial_watermarks = skl_initial_wm;
8989
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8990
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8991
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8992
		ilk_setup_wm_latency(dev_priv);
8993

8994
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
8995
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8996
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
8997
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8998
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8999 9000 9001 9002 9003 9004
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9005 9006 9007 9008
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9009
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9010
		vlv_setup_wm_latency(dev_priv);
9011
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9012
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9013
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9014
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9015
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9016 9017 9018 9019 9020 9021
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9022
	} else if (IS_PINEVIEW(dev_priv)) {
9023
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9024 9025 9026 9027 9028 9029 9030 9031 9032
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9033
			intel_set_memory_cxsr(dev_priv, false);
9034 9035 9036
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9037
	} else if (IS_GEN(dev_priv, 4)) {
9038
		dev_priv->display.update_wm = i965_update_wm;
9039
	} else if (IS_GEN(dev_priv, 3)) {
9040 9041
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9042
	} else if (IS_GEN(dev_priv, 2)) {
9043
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
9044
			dev_priv->display.update_wm = i845_update_wm;
9045
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9046 9047
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9048
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9049 9050 9051
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9052 9053 9054
	}
}

9055 9056
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9057 9058
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9059 9060 9061 9062
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9063
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9064 9065
}

9066
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9067
{
9068 9069 9070
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9071 9072
}

9073
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9074
{
9075 9076
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9077 9078 9079 9080
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9081
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9082 9083
}

9084
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9085
{
9086 9087
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9088
	/* CHV needs even values */
9089
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9090 9091
}

9092
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9093
{
9094
	if (INTEL_GEN(dev_priv) >= 9)
9095 9096
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9097
	else if (IS_CHERRYVIEW(dev_priv))
9098
		return chv_gpu_freq(dev_priv, val);
9099
	else if (IS_VALLEYVIEW(dev_priv))
9100 9101 9102
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9103 9104
}

9105 9106
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9107
	if (INTEL_GEN(dev_priv) >= 9)
9108 9109
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9110
	else if (IS_CHERRYVIEW(dev_priv))
9111
		return chv_freq_opcode(dev_priv, val);
9112
	else if (IS_VALLEYVIEW(dev_priv))
9113 9114
		return byt_freq_opcode(dev_priv, val);
	else
9115
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9116
}
9117

9118
void intel_pm_setup(struct drm_i915_private *dev_priv)
9119
{
9120
	mutex_init(&dev_priv->gt_pm.rps.lock);
C
Chris Wilson 已提交
9121
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9122

9123
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9124

9125 9126
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9127
}
9128

T
Tvrtko Ursulin 已提交
9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141
u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}