intel_pm.c 277.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/pm_runtime.h>
30
#include <drm/drm_plane_helper.h>
31 32
#include "i915_drv.h"
#include "intel_drv.h"
33 34
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
35
#include <drm/drm_atomic_helper.h>
36

B
Ben Widawsky 已提交
37
/**
38 39
 * DOC: RC6
 *
B
Ben Widawsky 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

57
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58
{
59 60 61
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62
		 * Display WA #0390: skl,kbl
63 64 65 66 67 68 69 70 71
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

72
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 74 75
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

76
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 78
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79

80 81
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 83 84
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
85

86
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 88
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
89 90 91 92 93 94

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
95 96
}

97
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98
{
99
	gen9_init_clock_gating(dev_priv);
100

101 102 103 104
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

105 106
	/*
	 * FIXME:
107
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 109
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
111 112 113 114 115

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
116 117
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

208
	dev_priv->ips.r_t = dev_priv->mem_freq;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
240
		dev_priv->ips.c_m = 0;
241
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242
		dev_priv->ips.c_m = 1;
243
	} else {
244
		dev_priv->ips.c_m = 2;
245 246 247
	}
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

286 287
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

310 311 312 313
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

314
	mutex_lock(&dev_priv->pcu_lock);
315 316 317 318 319 320 321 322 323 324 325 326 327 328

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

329
	mutex_unlock(&dev_priv->pcu_lock);
330 331
}

332 333 334 335
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

336
	mutex_lock(&dev_priv->pcu_lock);
337 338 339 340 341 342 343 344

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

345
	mutex_unlock(&dev_priv->pcu_lock);
346 347
}

348 349 350
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

351
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
352
{
353
	bool was_enabled;
354
	u32 val;
355

356
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359
		POSTING_READ(FW_BLC_SELF_VLV);
360
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363
		POSTING_READ(FW_BLC_SELF);
364
	} else if (IS_PINEVIEW(dev_priv)) {
365 366 367 368 369 370
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
371
		I915_WRITE(DSPFW3, val);
372
		POSTING_READ(DSPFW3);
373
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 376 377
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
378
		POSTING_READ(FW_BLC_SELF);
379
	} else if (IS_I915GM(dev_priv)) {
380 381 382 383 384
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
385
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
389
		POSTING_READ(INSTPM);
390
	} else {
391
		return false;
392
	}
393

394 395
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

396 397 398 399 400
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
401 402
}

V
Ville Syrjälä 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
440
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
441
{
442 443
	bool ret;

444
	mutex_lock(&dev_priv->wm.wm_mutex);
445
	ret = _intel_set_memory_cxsr(dev_priv, enable);
446 447 448 449
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
450
	mutex_unlock(&dev_priv->wm.wm_mutex);
451 452

	return ret;
453
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
469
static const int pessimal_latency_ns = 5000;
470

471 472 473
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

474
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475
{
476
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 480
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
481

482
	switch (pipe) {
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
503 504
		MISSING_CASE(pipe);
		return;
505 506
	}

507 508 509 510
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
511 512
}

513 514
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
515 516 517 518 519
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
520
	if (i9xx_plane == PLANE_B)
521 522
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

523 524
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
525 526 527 528

	return size;
}

529 530
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
531 532 533 534 535
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
536
	if (i9xx_plane == PLANE_B)
537 538 539
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

540 541
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
542 543 544 545

	return size;
}

546 547
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
548 549 550 551 552 553 554
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

555 556
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
557 558 559 560 561 562

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
563 564 565 566 567
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 571 572 573 574
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 576
};
static const struct intel_watermark_params pineview_cursor_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 583
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 590
};
static const struct intel_watermark_params i965_cursor_wm_info = {
591 592 593 594 595
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
596 597
};
static const struct intel_watermark_params i945_wm_info = {
598 599 600 601 602
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
603 604
};
static const struct intel_watermark_params i915_wm_info = {
605 606 607 608 609
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
610
};
611
static const struct intel_watermark_params i830_a_wm_info = {
612 613 614 615 616
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
617
};
618 619 620 621 622 623 624
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
625
static const struct intel_watermark_params i845_wm_info = {
626 627 628 629 630
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
631 632
};

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

729 730
/**
 * intel_calculate_wm - calculate watermark level
731
 * @pixel_rate: pixel clock
732
 * @wm: chip FIFO params
733
 * @fifo_size: size of the FIFO buffer
734
 * @cpp: bytes per pixel
735 736 737 738 739 740 741 742 743 744 745 746 747
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
748 749 750 751
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
752
{
753
	int entries, wm_size;
754 755 756 757 758 759 760

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
761 762 763 764 765
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766

767 768
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769 770

	/* Don't promote wm_size to unsigned... */
771
	if (wm_size > wm->max_wm)
772 773 774
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
775 776 777 778 779 780 781 782 783 784 785

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

786 787 788
	return wm_size;
}

789 790 791 792 793 794 795 796 797 798
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

799 800 801 802 803
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

827
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828
{
829
	struct intel_crtc *crtc, *enabled = NULL;
830

831
	for_each_intel_crtc(&dev_priv->drm, crtc) {
832
		if (intel_crtc_active(crtc)) {
833 834 835 836 837 838 839 840 841
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

842
static void pineview_update_wm(struct intel_crtc *unused_crtc)
843
{
844
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845
	struct intel_crtc *crtc;
846 847
	const struct cxsr_latency *latency;
	u32 reg;
848
	unsigned int wm;
849

850 851 852 853
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
854 855
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856
		intel_set_memory_cxsr(dev_priv, false);
857 858 859
		return;
	}

860
	crtc = single_enabled_crtc(dev_priv);
861
	if (crtc) {
862 863 864 865
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
866
		int cpp = fb->format->cpp[0];
867
		int clock = adjusted_mode->crtc_clock;
868 869 870 871

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
872
					cpp, latency->display_sr);
873 874
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
875
		reg |= FW_WM(wm, SR);
876 877 878 879 880 881
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
882
					4, latency->cursor_sr);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
885
		reg |= FW_WM(wm, CURSOR_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					cpp, latency->display_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
894
		reg |= FW_WM(wm, HPLL_SR);
895 896 897 898 899
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
900
					4, latency->cursor_hpll_disable);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
903
		reg |= FW_WM(wm, HPLL_CURSOR);
904 905 906
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

907
		intel_set_memory_cxsr(dev_priv, true);
908
	} else {
909
		intel_set_memory_cxsr(dev_priv, false);
910 911 912
	}
}

913 914 915 916 917 918 919 920 921 922
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
923
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 925 926 927 928 929
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

930 931
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
932
{
933 934 935 936 937
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
955

956
	POSTING_READ(DSPFW1);
957 958
}

959 960 961
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

962
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 964
				const struct vlv_wm_values *wm)
{
965 966 967
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
968 969
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

970 971 972 973 974 975
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
976

977 978 979 980 981 982 983 984 985 986 987
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

988
	I915_WRITE(DSPFW1,
989
		   FW_WM(wm->sr.plane, SR) |
990 991 992
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993
	I915_WRITE(DSPFW2,
994 995 996
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997
	I915_WRITE(DSPFW3,
998
		   FW_WM(wm->sr.cursor, CURSOR_SR));
999 1000 1001

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1002 1003
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004
		I915_WRITE(DSPFW8_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007
		I915_WRITE(DSPFW9_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010
		I915_WRITE(DSPHOWM,
1011
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 1013 1014 1015 1016 1017 1018 1019 1020
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1021 1022
	} else {
		I915_WRITE(DSPFW7,
1023 1024
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025
		I915_WRITE(DSPHOWM,
1026
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 1028 1029 1030 1031 1032
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1033 1034 1035
	}

	POSTING_READ(DSPFW1);
1036 1037
}

1038 1039
#undef FW_WM_VLV

1040 1041 1042 1043 1044
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046

1047
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1100 1101
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1140
		unsigned int small, large;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1153
	return min_t(unsigned int, wm, USHRT_MAX);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1322 1323
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1324 1325 1326 1327 1328
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1329 1330 1331 1332
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1333 1334 1335
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1336
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
1404
				       struct intel_crtc_state *new_crtc_state)
1405
{
1406 1407 1408 1409 1410 1411 1412
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1413 1414
	enum plane_id plane_id;

1415 1416 1417 1418 1419 1420 1421 1422
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1423
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1424
		!new_crtc_state->disable_cxsr;
1425
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1426
		!new_crtc_state->disable_cxsr;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1468
out:
1469 1470 1471 1472 1473
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1474
		new_crtc_state->wm.need_postvbl_update = true;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1571 1572
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1573 1574
				   unsigned int htotal,
				   unsigned int width,
1575
				   unsigned int cpp,
1576 1577 1578 1579
				   unsigned int latency)
{
	unsigned int ret;

1580 1581
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1582 1583 1584 1585 1586
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1587
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1588 1589 1590 1591
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1592 1593
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1594 1595 1596
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1597 1598

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1599 1600 1601
	}
}

1602 1603
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1604 1605
				     int level)
{
1606
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1607
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1608 1609
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1610
	unsigned int clock, htotal, cpp, width, wm;
1611 1612 1613 1614

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1615
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1616 1617
		return 0;

1618
	cpp = plane_state->base.fb->format->cpp[0];
1619 1620 1621
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1622

1623
	if (plane->id == PLANE_CURSOR) {
1624 1625 1626 1627 1628 1629 1630 1631
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1632
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1633 1634 1635
				    dev_priv->wm.pri_latency[level] * 10);
	}

1636
	return min_t(unsigned int, wm, USHRT_MAX);
1637 1638
}

1639 1640 1641 1642 1643 1644
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1645
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1646
{
1647
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1648
	const struct g4x_pipe_wm *raw =
1649
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1650
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1651 1652 1653
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1654
	int fifo_extra, fifo_left = fifo_size;
1655
	int sprite0_fifo_extra = 0;
1656 1657
	unsigned int total_rate;
	enum plane_id plane_id;
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1670 1671
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1672 1673
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1674

1675 1676
	if (total_rate > fifo_size)
		return -EINVAL;
1677

1678 1679
	if (total_rate == 0)
		total_rate = 1;
1680

1681
	for_each_plane_id_on_crtc(crtc, plane_id) {
1682 1683
		unsigned int rate;

1684 1685
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1686 1687 1688
			continue;
		}

1689 1690 1691
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1692 1693
	}

1694 1695 1696
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1697 1698 1699
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1700 1701

	/* spread the remainder evenly */
1702
	for_each_plane_id_on_crtc(crtc, plane_id) {
1703 1704 1705 1706 1707
		int plane_extra;

		if (fifo_left == 0)
			break;

1708
		if ((active_planes & BIT(plane_id)) == 0)
1709 1710 1711
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1712
		fifo_state->plane[plane_id] += plane_extra;
1713 1714 1715
		fifo_left -= plane_extra;
	}

1716 1717 1718 1719 1720 1721 1722 1723 1724
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1725 1726
}

1727 1728 1729 1730 1731 1732
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1733
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1744 1745 1746 1747 1748 1749 1750 1751
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1752 1753 1754 1755
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1756
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1757
				 int level, enum plane_id plane_id, u16 value)
1758
{
1759
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1760
	int num_levels = intel_wm_num_levels(dev_priv);
1761
	bool dirty = false;
1762

1763
	for (; level < num_levels; level++) {
1764
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1765

1766
		dirty |= raw->plane[plane_id] != value;
1767
		raw->plane[plane_id] = value;
1768
	}
1769 1770

	return dirty;
1771 1772
}

1773 1774
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1775
{
1776 1777
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1778
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1779
	int level;
1780
	bool dirty = false;
1781

1782
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1783 1784
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1785
	}
1786

1787
	for (level = 0; level < num_levels; level++) {
1788
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1789 1790
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1791

1792 1793
		if (wm > max_wm)
			break;
1794

1795
		dirty |= raw->plane[plane_id] != wm;
1796 1797
		raw->plane[plane_id] = wm;
	}
1798

1799
	/* mark all higher levels as invalid */
1800
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1801

1802 1803
out:
	if (dirty)
1804
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1805 1806 1807 1808 1809 1810
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1811
}
1812

1813 1814
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1815
{
1816
	const struct g4x_pipe_wm *raw =
1817 1818 1819
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1820

1821 1822
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1823

1824
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1825
{
1826 1827 1828 1829
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1843
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1844 1845
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1846 1847 1848
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1849
	unsigned int dirty = 0;
1850

1851 1852 1853 1854
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1855 1856
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1857

1858
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1877
			intel_atomic_get_old_crtc_state(state, crtc);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1889
	}
1890

1891
	/* initially allow all levels */
1892
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1893 1894 1895 1896 1897
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1898
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1899

1900
	for (level = 0; level < wm_state->num_levels; level++) {
1901
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1902
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1903

1904
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1905
			break;
1906

1907 1908 1909 1910 1911 1912 1913 1914
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1915
						 raw->plane[PLANE_SPRITE0],
1916 1917
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1918

1919 1920 1921
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1922 1923
	}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1934 1935
}

1936 1937 1938
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1939 1940
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1941
{
1942
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1943
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1944 1945
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1946
	int sprite0_start, sprite1_start, fifo_size;
1947

1948 1949 1950
	if (!crtc_state->fifo_changed)
		return;

1951 1952 1953
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1954

1955 1956
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1957

1958 1959
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1970

1971 1972 1973
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1974 1975
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1987 1988
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1989 1990
		break;
	case PIPE_B:
1991 1992
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2004 2005
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2006 2007
		break;
	case PIPE_C:
2008 2009
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2021 2022
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2023 2024 2025 2026
		break;
	default:
		break;
	}
2027

2028
	POSTING_READ_FW(DSPARB);
2029

2030
	spin_unlock(&dev_priv->uncore.lock);
2031 2032 2033 2034
}

#undef VLV_FIFO

2035 2036
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
2037
				       struct intel_crtc_state *new_crtc_state)
2038
{
2039 2040 2041 2042 2043 2044 2045
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2046 2047
	int level;

2048 2049 2050 2051 2052 2053 2054
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2055
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2056
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2057
		!new_crtc_state->disable_cxsr;
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2076
out:
2077 2078 2079 2080
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2081
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2082
		new_crtc_state->wm.need_postvbl_update = true;
2083 2084 2085 2086

	return 0;
}

2087
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2088 2089 2090 2091 2092
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2093
	wm->level = dev_priv->wm.max_level;
2094 2095
	wm->cxsr = true;

2096
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2097
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2112 2113 2114
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2115
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2116
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2117 2118 2119
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2120
		if (crtc->active && wm->cxsr)
2121 2122
			wm->sr = wm_state->sr[wm->level];

2123 2124 2125 2126
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2127 2128 2129
	}
}

2130
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2131
{
2132 2133
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2134

2135
	vlv_merge_wm(dev_priv, &new_wm);
2136

2137
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2138 2139
		return;

2140
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141 2142
		chv_set_memory_dvfs(dev_priv, false);

2143
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2144 2145
		chv_set_memory_pm5(dev_priv, false);

2146
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2147
		_intel_set_memory_cxsr(dev_priv, false);
2148

2149
	vlv_write_wm_values(dev_priv, &new_wm);
2150

2151
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2152
		_intel_set_memory_cxsr(dev_priv, true);
2153

2154
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2155 2156
		chv_set_memory_pm5(dev_priv, true);

2157
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2158 2159
		chv_set_memory_dvfs(dev_priv, true);

2160
	*old_wm = new_wm;
2161 2162
}

2163 2164 2165 2166 2167 2168 2169
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2186 2187 2188 2189
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2190
static void i965_update_wm(struct intel_crtc *unused_crtc)
2191
{
2192
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2193
	struct intel_crtc *crtc;
2194 2195
	int srwm = 1;
	int cursor_sr = 16;
2196
	bool cxsr_enabled;
2197 2198

	/* Calc sr entries for one plane configs */
2199
	crtc = single_enabled_crtc(dev_priv);
2200 2201 2202
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2203 2204 2205 2206
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2207
		int clock = adjusted_mode->crtc_clock;
2208
		int htotal = adjusted_mode->crtc_htotal;
2209
		int hdisplay = crtc->config->pipe_src_w;
2210
		int cpp = fb->format->cpp[0];
2211 2212
		int entries;

2213 2214
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2215 2216 2217 2218 2219 2220 2221 2222
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2223 2224 2225
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2226
		entries = DIV_ROUND_UP(entries,
2227 2228
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2229

2230
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2231 2232 2233 2234 2235 2236
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2237
		cxsr_enabled = true;
2238
	} else {
2239
		cxsr_enabled = false;
2240
		/* Turn off self refresh if both pipes are enabled */
2241
		intel_set_memory_cxsr(dev_priv, false);
2242 2243 2244 2245 2246 2247
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2248 2249 2250 2251 2252 2253
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2254
	/* update cursor SR watermark */
2255
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2256 2257 2258

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2259 2260
}

2261 2262
#undef FW_WM

2263
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2264
{
2265
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2266 2267 2268 2269 2270 2271
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2272
	struct intel_crtc *crtc, *enabled = NULL;
2273

2274
	if (IS_I945GM(dev_priv))
2275
		wm_info = &i945_wm_info;
2276
	else if (!IS_GEN2(dev_priv))
2277 2278
		wm_info = &i915_wm_info;
	else
2279
		wm_info = &i830_a_wm_info;
2280

2281 2282
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2283 2284 2285 2286 2287 2288 2289
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2290
		if (IS_GEN2(dev_priv))
2291
			cpp = 4;
2292
		else
2293
			cpp = fb->format->cpp[0];
2294

2295
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2296
					       wm_info, fifo_size, cpp,
2297
					       pessimal_latency_ns);
2298
		enabled = crtc;
2299
	} else {
2300
		planea_wm = fifo_size - wm_info->guard_size;
2301 2302 2303 2304
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2305
	if (IS_GEN2(dev_priv))
2306
		wm_info = &i830_bc_wm_info;
2307

2308 2309
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2310 2311 2312 2313 2314 2315 2316
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2317
		if (IS_GEN2(dev_priv))
2318
			cpp = 4;
2319
		else
2320
			cpp = fb->format->cpp[0];
2321

2322
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2323
					       wm_info, fifo_size, cpp,
2324
					       pessimal_latency_ns);
2325 2326 2327 2328
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2329
	} else {
2330
		planeb_wm = fifo_size - wm_info->guard_size;
2331 2332 2333
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2334 2335 2336

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2337
	if (IS_I915GM(dev_priv) && enabled) {
2338
		struct drm_i915_gem_object *obj;
2339

2340
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2341 2342

		/* self-refresh seems busted with untiled */
2343
		if (!i915_gem_object_is_tiled(obj))
2344 2345 2346
			enabled = NULL;
	}

2347 2348 2349 2350 2351 2352
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2353
	intel_set_memory_cxsr(dev_priv, false);
2354 2355

	/* Calc sr entries for one plane configs */
2356
	if (HAS_FW_BLC(dev_priv) && enabled) {
2357 2358
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2359 2360 2361 2362
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2363
		int clock = adjusted_mode->crtc_clock;
2364
		int htotal = adjusted_mode->crtc_htotal;
2365 2366
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2367 2368
		int entries;

2369
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2370
			cpp = 4;
2371
		else
2372
			cpp = fb->format->cpp[0];
2373

2374 2375
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2376 2377 2378 2379 2380 2381
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2382
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2383 2384
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2385
		else
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2402 2403
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2404 2405
}

2406
static void i845_update_wm(struct intel_crtc *unused_crtc)
2407
{
2408
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2409
	struct intel_crtc *crtc;
2410
	const struct drm_display_mode *adjusted_mode;
2411 2412 2413
	uint32_t fwater_lo;
	int planea_wm;

2414
	crtc = single_enabled_crtc(dev_priv);
2415 2416 2417
	if (crtc == NULL)
		return;

2418
	adjusted_mode = &crtc->config->base.adjusted_mode;
2419
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2420
				       &i845_wm_info,
2421
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2422
				       4, pessimal_latency_ns);
2423 2424 2425 2426 2427 2428 2429 2430
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2431
/* latency must be in 0.1us units. */
2432 2433 2434
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2435
{
2436
	unsigned int ret;
2437

2438 2439
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2440 2441 2442 2443

	return ret;
}

2444
/* latency must be in 0.1us units. */
2445 2446 2447 2448 2449
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2450
{
2451
	unsigned int ret;
2452

2453 2454
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2455
	ret = DIV_ROUND_UP(ret, 64) + 2;
2456

2457 2458 2459
	return ret;
}

2460
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2461
			   uint8_t cpp)
2462
{
2463 2464 2465 2466 2467 2468
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2469
	if (WARN_ON(!cpp))
2470 2471 2472 2473
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2474
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2475 2476
}

2477
struct ilk_wm_maximums {
2478 2479 2480 2481 2482 2483
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2484 2485 2486 2487
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2488
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2489
				   const struct intel_plane_state *pstate,
2490 2491
				   uint32_t mem_value,
				   bool is_lp)
2492
{
2493
	uint32_t method1, method2;
2494
	int cpp;
2495

2496
	if (!intel_wm_plane_visible(cstate, pstate))
2497 2498
		return 0;

2499
	cpp = pstate->base.fb->format->cpp[0];
2500

2501
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2502 2503 2504 2505

	if (!is_lp)
		return method1;

2506
	method2 = ilk_wm_method2(cstate->pixel_rate,
2507
				 cstate->base.adjusted_mode.crtc_htotal,
2508
				 drm_rect_width(&pstate->base.dst),
2509
				 cpp, mem_value);
2510 2511

	return min(method1, method2);
2512 2513
}

2514 2515 2516 2517
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2518
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2519
				   const struct intel_plane_state *pstate,
2520 2521 2522
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2523
	int cpp;
2524

2525
	if (!intel_wm_plane_visible(cstate, pstate))
2526 2527
		return 0;

2528
	cpp = pstate->base.fb->format->cpp[0];
2529

2530 2531
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2532
				 cstate->base.adjusted_mode.crtc_htotal,
2533
				 drm_rect_width(&pstate->base.dst),
2534
				 cpp, mem_value);
2535 2536 2537
	return min(method1, method2);
}

2538 2539 2540 2541
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2542
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2543
				   const struct intel_plane_state *pstate,
2544 2545
				   uint32_t mem_value)
{
2546 2547
	int cpp;

2548
	if (!intel_wm_plane_visible(cstate, pstate))
2549 2550
		return 0;

2551 2552
	cpp = pstate->base.fb->format->cpp[0];

2553
	return ilk_wm_method2(cstate->pixel_rate,
2554
			      cstate->base.adjusted_mode.crtc_htotal,
2555
			      pstate->base.crtc_w, cpp, mem_value);
2556 2557
}

2558
/* Only for WM_LP. */
2559
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2560
				   const struct intel_plane_state *pstate,
2561
				   uint32_t pri_val)
2562
{
2563
	int cpp;
2564

2565
	if (!intel_wm_plane_visible(cstate, pstate))
2566 2567
		return 0;

2568
	cpp = pstate->base.fb->format->cpp[0];
2569

2570
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2571 2572
}

2573 2574
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2575
{
2576
	if (INTEL_GEN(dev_priv) >= 8)
2577
		return 3072;
2578
	else if (INTEL_GEN(dev_priv) >= 7)
2579 2580 2581 2582 2583
		return 768;
	else
		return 512;
}

2584 2585 2586
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2587
{
2588
	if (INTEL_GEN(dev_priv) >= 8)
2589 2590
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2591
	else if (INTEL_GEN(dev_priv) >= 7)
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2602 2603
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2604
{
2605
	if (INTEL_GEN(dev_priv) >= 7)
2606 2607 2608 2609 2610
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2611
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2612
{
2613
	if (INTEL_GEN(dev_priv) >= 8)
2614 2615 2616 2617 2618
		return 31;
	else
		return 15;
}

2619 2620 2621
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2622
				     const struct intel_wm_config *config,
2623 2624 2625
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2626 2627
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2628 2629

	/* if sprites aren't enabled, sprites get nothing */
2630
	if (is_sprite && !config->sprites_enabled)
2631 2632 2633
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2634
	if (level == 0 || config->num_pipes_active > 1) {
2635
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2636 2637 2638 2639 2640 2641

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2642
		if (INTEL_GEN(dev_priv) <= 6)
2643 2644 2645
			fifo_size /= 2;
	}

2646
	if (config->sprites_enabled) {
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2658
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2659 2660 2661 2662
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2663 2664
				      int level,
				      const struct intel_wm_config *config)
2665 2666
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2667
	if (level > 0 && config->num_pipes_active > 1)
2668 2669 2670
		return 64;

	/* otherwise just report max that registers can hold */
2671
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2672 2673
}

2674
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2675 2676 2677
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2678
				    struct ilk_wm_maximums *max)
2679
{
2680 2681 2682
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2683
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2684 2685
}

2686
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2687 2688 2689
					int level,
					struct ilk_wm_maximums *max)
{
2690 2691 2692 2693
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2694 2695
}

2696
static bool ilk_validate_wm_level(int level,
2697
				  const struct ilk_wm_maximums *max,
2698
				  struct intel_wm_level *result)
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2737
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2738
				 const struct intel_crtc *intel_crtc,
2739
				 int level,
2740
				 struct intel_crtc_state *cstate,
2741 2742 2743
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2744
				 struct intel_wm_level *result)
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2769 2770 2771
	result->enable = true;
}

2772
static uint32_t
2773
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2774
{
2775 2776
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2777 2778
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2779
	u32 linetime, ips_linetime;
2780

2781 2782 2783 2784
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2785
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2786
		return 0;
2787

2788 2789 2790
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2791 2792 2793
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2794
					 intel_state->cdclk.logical.cdclk);
2795

2796 2797
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2798 2799
}

2800 2801
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2802
{
2803
	if (INTEL_GEN(dev_priv) >= 9) {
2804
		uint32_t val;
2805
		int ret, i;
2806
		int level, max_level = ilk_wm_max_level(dev_priv);
2807 2808 2809

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2810
		mutex_lock(&dev_priv->pcu_lock);
2811 2812 2813
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2814
		mutex_unlock(&dev_priv->pcu_lock);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2831
		mutex_lock(&dev_priv->pcu_lock);
2832 2833 2834
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2835
		mutex_unlock(&dev_priv->pcu_lock);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2862
		/*
2863
		 * WaWmMemoryReadLatency:skl+,glk
2864
		 *
2865
		 * punit doesn't take into account the read latency so we need
2866 2867
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2868
		 */
2869 2870 2871 2872 2873
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2874
				wm[level] += 2;
2875
			}
2876 2877
		}

2878
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2879 2880 2881 2882 2883
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2884 2885 2886 2887
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2888
	} else if (INTEL_GEN(dev_priv) >= 6) {
2889 2890 2891 2892 2893 2894
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2895
	} else if (INTEL_GEN(dev_priv) >= 5) {
2896 2897 2898 2899 2900 2901
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2902 2903
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2904 2905 2906
	}
}

2907 2908
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2909 2910
{
	/* ILK sprite LP0 latency is 1300 ns */
2911
	if (IS_GEN5(dev_priv))
2912 2913 2914
		wm[0] = 13;
}

2915 2916
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2917 2918
{
	/* ILK cursor LP0 latency is 1300 ns */
2919
	if (IS_GEN5(dev_priv))
2920 2921 2922
		wm[0] = 13;
}

2923
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2924 2925
{
	/* how many WM levels are we expecting */
2926
	if (INTEL_GEN(dev_priv) >= 9)
2927
		return 7;
2928
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2929
		return 4;
2930
	else if (INTEL_GEN(dev_priv) >= 6)
2931
		return 3;
2932
	else
2933 2934
		return 2;
}
2935

2936
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2937
				   const char *name,
2938
				   const uint16_t wm[8])
2939
{
2940
	int level, max_level = ilk_wm_max_level(dev_priv);
2941 2942 2943 2944 2945

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2946 2947
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2948 2949 2950
			continue;
		}

2951 2952 2953 2954
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2955
		if (INTEL_GEN(dev_priv) >= 9)
2956 2957
			latency *= 10;
		else if (level > 0)
2958 2959 2960 2961 2962 2963 2964 2965
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2966 2967 2968
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2969
	int level, max_level = ilk_wm_max_level(dev_priv);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2981
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2997 2998 2999
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3000 3001
}

3002
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3003
{
3004
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3005 3006 3007 3008 3009 3010

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3011
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3012
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3013

3014 3015 3016
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3017

3018
	if (IS_GEN6(dev_priv))
3019
		snb_wm_latency_quirk(dev_priv);
3020 3021
}

3022
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3023
{
3024
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3025
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3051
/* Compute new watermarks for the pipe */
3052
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3053
{
3054 3055
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3056
	struct intel_pipe_wm *pipe_wm;
3057
	struct drm_device *dev = state->dev;
3058
	const struct drm_i915_private *dev_priv = to_i915(dev);
3059 3060 3061 3062 3063
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3064
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3065
	struct ilk_wm_maximums max;
3066

3067
	pipe_wm = &cstate->wm.ilk.optimal;
3068

3069 3070
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3071

3072
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3073
			pristate = ps;
3074
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3075
			sprstate = ps;
3076
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3077
			curstate = ps;
3078 3079
	}

3080
	pipe_wm->pipe_enabled = cstate->base.active;
3081
	if (sprstate) {
3082 3083 3084 3085
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3086 3087
	}

3088 3089
	usable_level = max_level;

3090
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3091
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3092
		usable_level = 1;
3093 3094

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3095
	if (pipe_wm->sprites_scaled)
3096
		usable_level = 0;
3097

3098
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3099 3100
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3101

3102
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3103
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3104

3105
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3106
		return -EINVAL;
3107

3108
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3109

3110 3111
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3112

3113
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3114
				     pristate, sprstate, curstate, wm);
3115 3116 3117 3118 3119 3120

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3121 3122 3123 3124
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3125 3126
	}

3127
	return 0;
3128 3129
}

3130 3131 3132 3133 3134 3135 3136 3137 3138
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3139
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3140 3141 3142 3143 3144
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3145
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3146 3147 3148 3149 3150 3151

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3152
	*a = newstate->wm.ilk.optimal;
3153 3154 3155
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
		return 0;

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3184 3185
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3186 3187 3188 3189

	return 0;
}

3190 3191 3192 3193 3194 3195 3196 3197 3198
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3199 3200
	ret_wm->enable = true;

3201
	for_each_intel_crtc(dev, intel_crtc) {
3202
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3203 3204 3205 3206
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3207

3208 3209 3210 3211 3212
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3213
		if (!wm->enable)
3214
			ret_wm->enable = false;
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3227
			 const struct intel_wm_config *config,
3228
			 const struct ilk_wm_maximums *max,
3229 3230
			 struct intel_pipe_wm *merged)
{
3231
	struct drm_i915_private *dev_priv = to_i915(dev);
3232
	int level, max_level = ilk_wm_max_level(dev_priv);
3233
	int last_enabled_level = max_level;
3234

3235
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3236
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3237
	    config->num_pipes_active > 1)
3238
		last_enabled_level = 0;
3239

3240
	/* ILK: FBC WM must be disabled always */
3241
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3242 3243 3244 3245 3246 3247 3248

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3249 3250 3251 3252 3253
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3254 3255 3256 3257 3258 3259

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3260 3261
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3262 3263 3264
			wm->fbc_val = 0;
		}
	}
3265 3266 3267 3268 3269 3270 3271

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3272
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3273
	    intel_fbc_is_active(dev_priv)) {
3274 3275 3276 3277 3278 3279
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3280 3281
}

3282 3283 3284 3285 3286 3287
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3288 3289 3290
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3291
	struct drm_i915_private *dev_priv = to_i915(dev);
3292

3293
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3294 3295 3296 3297 3298
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3299
static void ilk_compute_wm_results(struct drm_device *dev,
3300
				   const struct intel_pipe_wm *merged,
3301
				   enum intel_ddb_partitioning partitioning,
3302
				   struct ilk_wm_values *results)
3303
{
3304
	struct drm_i915_private *dev_priv = to_i915(dev);
3305 3306
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3307

3308
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3309
	results->partitioning = partitioning;
3310

3311
	/* LP1+ register values */
3312
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3313
		const struct intel_wm_level *r;
3314

3315
		level = ilk_wm_lp_to_level(wm_lp, merged);
3316

3317
		r = &merged->wm[level];
3318

3319 3320 3321 3322 3323
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3324
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3325 3326 3327
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3328 3329 3330
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3331
		if (INTEL_GEN(dev_priv) >= 8)
3332 3333 3334 3335 3336 3337
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3338 3339 3340 3341
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3342
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3343 3344 3345 3346
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3347
	}
3348

3349
	/* LP0 register values */
3350
	for_each_intel_crtc(dev, intel_crtc) {
3351
		enum pipe pipe = intel_crtc->pipe;
3352 3353
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3354 3355 3356 3357

		if (WARN_ON(!r->enable))
			continue;

3358
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3359

3360 3361 3362 3363
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3364 3365 3366
	}
}

3367 3368
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3369
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3370 3371
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3372
{
3373
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3374
	int level1 = 0, level2 = 0;
3375

3376 3377 3378 3379 3380
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3381 3382
	}

3383 3384
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3385 3386 3387
			return r2;
		else
			return r1;
3388
	} else if (level1 > level2) {
3389 3390 3391 3392 3393 3394
		return r1;
	} else {
		return r2;
	}
}

3395 3396 3397 3398 3399 3400 3401 3402
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3403
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3404 3405
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3406 3407 3408 3409 3410
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3411
	for_each_pipe(dev_priv, pipe) {
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3455 3456
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3457
{
3458
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3459
	bool changed = false;
3460

3461 3462 3463
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3464
		changed = true;
3465 3466 3467 3468
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3469
		changed = true;
3470 3471 3472 3473
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3474
		changed = true;
3475
	}
3476

3477 3478 3479 3480
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3481

3482 3483 3484 3485 3486 3487 3488
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3489 3490
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3491
{
3492
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3493 3494 3495
	unsigned int dirty;
	uint32_t val;

3496
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3497 3498 3499 3500 3501
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3502
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3503
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3504
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3505
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3506
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3507 3508
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3509
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3510
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3511
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3512
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3513
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3514 3515
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3516
	if (dirty & WM_DIRTY_DDB) {
3517
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3532 3533
	}

3534
	if (dirty & WM_DIRTY_FBC) {
3535 3536 3537 3538 3539 3540 3541 3542
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3543 3544 3545 3546
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3547
	if (INTEL_GEN(dev_priv) >= 7) {
3548 3549 3550 3551 3552
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3553

3554
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3555
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3556
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3557
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3558
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3559
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3560 3561

	dev_priv->wm.hw = *results;
3562 3563
}

3564
bool ilk_disable_lp_wm(struct drm_device *dev)
3565
{
3566
	struct drm_i915_private *dev_priv = to_i915(dev);
3567 3568 3569 3570

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
		enabled_slices++;

	return enabled_slices;
}

3588 3589 3590 3591 3592 3593 3594 3595
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3596
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3597 3598 3599 3600 3601
		return true;

	return false;
}

3602 3603 3604
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3605 3606
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3607 3608 3609 3610 3611 3612 3613
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3614 3615
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3628
intel_enable_sagv(struct drm_i915_private *dev_priv)
3629 3630 3631
{
	int ret;

3632 3633 3634 3635
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3636 3637 3638
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3639
	mutex_lock(&dev_priv->pcu_lock);
3640 3641 3642 3643 3644

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3645
	mutex_unlock(&dev_priv->pcu_lock);
3646 3647 3648 3649 3650

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3651
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3652
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3653
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3654 3655 3656 3657 3658 3659
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3660
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3661 3662 3663 3664
	return 0;
}

int
3665
intel_disable_sagv(struct drm_i915_private *dev_priv)
3666
{
3667
	int ret;
3668

3669 3670 3671 3672
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3673 3674 3675
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3676
	mutex_lock(&dev_priv->pcu_lock);
3677 3678

	/* bspec says to keep retrying for at least 1 ms */
3679 3680 3681 3682
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3683
	mutex_unlock(&dev_priv->pcu_lock);
3684 3685 3686 3687 3688

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3689
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3690
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3691
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3692
		return 0;
3693 3694 3695
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3696 3697
	}

3698
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3699 3700 3701
	return 0;
}

3702
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3703 3704 3705 3706
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3707 3708
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3709
	struct intel_crtc_state *cstate;
3710
	enum pipe pipe;
3711
	int level, latency;
3712
	int sagv_block_time_us;
3713

3714 3715 3716
	if (!intel_has_sagv(dev_priv))
		return false;

3717 3718 3719 3720 3721 3722 3723
	if (IS_GEN9(dev_priv))
		sagv_block_time_us = 30;
	else if (IS_GEN10(dev_priv))
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3724
	/*
3725
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3737
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3738
	cstate = to_intel_crtc_state(crtc->base.state);
3739

3740
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3741 3742
		return false;

3743
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3744 3745
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3746

3747
		/* Skip this plane if it's not enabled */
3748
		if (!wm->wm[0].plane_en)
3749 3750 3751
			continue;

		/* Find the highest enabled wm level for this plane */
3752
		for (level = ilk_wm_max_level(dev_priv);
3753
		     !wm->wm[level].plane_en; --level)
3754 3755
		     { }

3756 3757 3758
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3759
		    plane->base.state->fb->modifier ==
3760 3761 3762
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3763
		/*
3764 3765 3766
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3767
		 */
3768
		if (latency < sagv_block_time_us)
3769 3770 3771 3772 3773 3774
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3775 3776 3777 3778 3779
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
			      const unsigned int total_data_rate,
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
	total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
	 */
	if (total_data_bw >= GBps(12) || num_active > 1) {
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3806 3807
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3808
				   const struct intel_crtc_state *cstate,
3809 3810
				   const unsigned int total_data_rate,
				   struct skl_ddb_allocation *ddb,
3811 3812
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3813
{
3814 3815 3816
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3817
	struct drm_crtc *for_crtc = cstate->base.crtc;
3818 3819 3820 3821 3822 3823
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3824

3825
	if (WARN_ON(!state) || !cstate->base.active) {
3826 3827
		alloc->start = 0;
		alloc->end = 0;
3828
		*num_active = hweight32(dev_priv->active_crtcs);
3829 3830 3831
		return;
	}

3832 3833 3834 3835 3836
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3837 3838
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3839

3840
	/*
3841 3842 3843 3844 3845 3846
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3847
	 */
3848
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3849 3850 3851 3852 3853
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3854
		return;
3855
	}
3856

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3883 3884
}

3885
static unsigned int skl_cursor_allocation(int num_active)
3886
{
3887
	if (num_active == 1)
3888 3889 3890 3891 3892
		return 32;

	return 8;
}

3893 3894
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3895
{
3896 3897 3898 3899 3900 3901 3902 3903 3904
	u16 mask;

	if (INTEL_GEN(dev_priv) >= 11)
		mask = ICL_DDB_ENTRY_MASK;
	else
		mask = SKL_DDB_ENTRY_MASK;
	entry->start = reg & mask;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;

3905 3906
	if (entry->end)
		entry->end += 1;
3907 3908
}

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
			   struct skl_ddb_allocation *ddb /* out */)
{
	u32 val, val2 = 0;
	int fourcc, pixel_format;

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3921 3922
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
	if (!(val & PLANE_CTL_ENABLE))
		return;

	pixel_format = val & PLANE_CTL_FORMAT_MASK;
	fourcc = skl_format_to_fourcc(pixel_format,
				      val & PLANE_CTL_ORDER_RGBX,
				      val & PLANE_CTL_ALPHA_MASK);

	val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3938 3939 3940 3941 3942 3943
	/*
	 * FIXME: add proper NV12 support for ICL. Avoid reading unclaimed
	 * registers for now.
	 */
	if (INTEL_GEN(dev_priv) < 11)
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3944 3945

	if (fourcc == DRM_FORMAT_NV12) {
3946 3947 3948 3949
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val2);
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->uv_plane[pipe][plane_id], val);
3950
	} else {
3951 3952
		skl_ddb_entry_init_from_hw(dev_priv,
					   &ddb->plane[pipe][plane_id], val);
3953 3954 3955
	}
}

3956 3957
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3958
{
3959
	struct intel_crtc *crtc;
3960

3961 3962
	memset(ddb, 0, sizeof(*ddb));

3963 3964
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);

3965
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3966
		enum intel_display_power_domain power_domain;
3967 3968
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3969 3970 3971

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3972 3973
			continue;

3974 3975 3976
		for_each_plane_id_on_crtc(crtc, plane_id)
			skl_ddb_get_hw_plane_state(dev_priv, pipe,
						   plane_id, ddb);
3977 3978

		intel_display_power_put(dev_priv, power_domain);
3979 3980 3981
	}
}

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3998
static uint_fixed_16_16_t
3999 4000
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4001
{
4002
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4003
	uint32_t src_w, src_h, dst_w, dst_h;
4004 4005
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4006

4007
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4008
		return u32_to_fixed16(0);
4009 4010

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4011
	if (plane->id == PLANE_CURSOR) {
4012 4013 4014 4015
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4016 4017
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4018 4019 4020
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4021 4022 4023 4024 4025
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4026 4027
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4028 4029 4030 4031
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4032 4033 4034 4035
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4036

4037
	return mul_fixed16(downscale_w, downscale_h);
4038 4039
}

4040 4041 4042
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4043
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4062 4063 4064 4065
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4076
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4077 4078 4079 4080 4081
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4082
	int crtc_clock, dotclk;
4083 4084
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
4085
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4086 4087 4088 4089 4090 4091

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4092
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4110
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4111 4112 4113 4114 4115 4116
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4117 4118
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4119
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4120 4121 4122
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4123 4124

	if (pipe_max_pixel_rate < crtc_clock) {
4125
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4126 4127 4128 4129 4130 4131
		return -EINVAL;
	}

	return 0;
}

4132
static unsigned int
4133 4134
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
4135
			     const int plane)
4136
{
4137
	struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4138
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4139
	uint32_t data_rate;
4140
	uint32_t width = 0, height = 0;
4141 4142
	struct drm_framebuffer *fb;
	u32 format;
4143
	uint_fixed_16_16_t down_scale_amount;
4144

4145
	if (!intel_pstate->base.visible)
4146
		return 0;
4147 4148

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4149
	format = fb->format->format;
4150

4151
	if (intel_plane->id == PLANE_CURSOR)
4152
		return 0;
4153
	if (plane == 1 && format != DRM_FORMAT_NV12)
4154
		return 0;
4155

4156 4157 4158 4159 4160
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4161 4162
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4163

4164 4165 4166 4167
	/* UV plane does 1/2 pixel sub-sampling */
	if (plane == 1 && format == DRM_FORMAT_NV12) {
		width /= 2;
		height /= 2;
4168 4169
	}

4170 4171
	data_rate = width * height * fb->format->cpp[plane];

4172
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4173

4174
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4175 4176 4177 4178 4179 4180 4181 4182
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4183
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4184 4185
				 unsigned int *plane_data_rate,
				 unsigned int *uv_plane_data_rate)
4186
{
4187 4188
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4189 4190
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4191
	unsigned int total_data_rate = 0;
4192 4193 4194

	if (WARN_ON(!state))
		return 0;
4195

4196
	/* Calculate and cache data rate for each plane */
4197
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4198 4199
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4200

4201
		/* packed/y */
4202 4203
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4204
		plane_data_rate[plane_id] = rate;
4205 4206

		total_data_rate += rate;
4207

4208
		/* uv-plane */
4209 4210
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4211
		uv_plane_data_rate[plane_id] = rate;
4212

4213
		total_data_rate += rate;
4214 4215 4216 4217 4218
	}

	return total_data_rate;
}

4219
static uint16_t
4220
skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

4231 4232
	/* For packed formats, and uv-plane, return 0 */
	if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4233 4234 4235
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4236
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4237 4238 4239
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4240 4241
		return 8;

4242 4243 4244 4245 4246
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4247 4248
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4249 4250

	/* Halve UV plane width and height for NV12 */
4251
	if (plane == 1) {
4252 4253 4254 4255
		src_w /= 2;
		src_h /= 2;
	}

4256
	plane_bpp = fb->format->cpp[plane];
4257

4258
	if (drm_rotation_90_or_270(pstate->rotation)) {
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4282 4283
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4284
		 uint16_t *minimum, uint16_t *uv_minimum)
4285 4286 4287 4288 4289
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4290
		enum plane_id plane_id = to_intel_plane(plane)->id;
4291

4292
		if (plane_id == PLANE_CURSOR)
4293 4294 4295 4296 4297
			continue;

		if (!pstate->visible)
			continue;

4298
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4299
		uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4300 4301 4302 4303 4304
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4305
static int
4306
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4307 4308
		      struct skl_ddb_allocation *ddb /* out */)
{
4309
	struct drm_atomic_state *state = cstate->base.state;
4310
	struct drm_crtc *crtc = cstate->base.crtc;
4311 4312 4313
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4314
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4315
	uint16_t alloc_size, start;
4316
	uint16_t minimum[I915_MAX_PLANES] = {};
4317
	uint16_t uv_minimum[I915_MAX_PLANES] = {};
4318
	unsigned int total_data_rate;
4319
	enum plane_id plane_id;
4320
	int num_active;
4321 4322
	unsigned int plane_data_rate[I915_MAX_PLANES] = {};
	unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4323
	uint16_t total_min_blocks = 0;
4324

4325 4326
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4327
	memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4328

4329 4330 4331
	if (WARN_ON(!state))
		return 0;

4332
	if (!cstate->base.active) {
4333
		alloc->start = alloc->end = 0;
4334 4335 4336
		return 0;
	}

4337 4338 4339 4340 4341
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   uv_plane_data_rate);
	skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
					   alloc, &num_active);
4342
	alloc_size = skl_ddb_entry_size(alloc);
4343
	if (alloc_size == 0)
4344
		return 0;
4345

4346
	skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4347

4348 4349 4350 4351 4352
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4353

4354
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4355
		total_min_blocks += minimum[plane_id];
4356
		total_min_blocks += uv_minimum[plane_id];
4357 4358
	}

4359 4360 4361 4362 4363 4364 4365
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4366 4367
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4368 4369
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4370
	/*
4371 4372
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4373 4374 4375
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4376
	if (total_data_rate == 0)
4377
		return 0;
4378

4379
	start = alloc->start;
4380
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4381 4382
		unsigned int data_rate, uv_data_rate;
		uint16_t plane_blocks, uv_plane_blocks;
4383

4384
		if (plane_id == PLANE_CURSOR)
4385 4386
			continue;

4387
		data_rate = plane_data_rate[plane_id];
4388 4389

		/*
4390
		 * allocation for (packed formats) or (uv-plane part of planar format):
4391 4392 4393
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4394 4395 4396
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4397

4398 4399
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4400 4401
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4402
		}
4403

4404 4405
		start += plane_blocks;

4406 4407
		/* Allocate DDB for UV plane for planar format/NV12 */
		uv_data_rate = uv_plane_data_rate[plane_id];
4408

4409 4410 4411
		uv_plane_blocks = uv_minimum[plane_id];
		uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
					   total_data_rate);
4412

4413 4414 4415 4416
		if (uv_data_rate) {
			ddb->uv_plane[pipe][plane_id].start = start;
			ddb->uv_plane[pipe][plane_id].end =
				start + uv_plane_blocks;
4417
		}
4418

4419
		start += uv_plane_blocks;
4420 4421
	}

4422
	return 0;
4423 4424
}

4425 4426
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4427
 * for the read latency) and cpp should always be <= 8, so that
4428 4429 4430
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4431 4432
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4433
	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4434
{
4435 4436
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4437 4438

	if (latency == 0)
4439
		return FP_16_16_MAX;
4440

4441
	wm_intermediate_val = latency * pixel_rate * cpp;
4442
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4443 4444 4445 4446

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4447 4448 4449
	return ret;
}

4450 4451 4452 4453
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4454
{
4455
	uint32_t wm_intermediate_val;
4456
	uint_fixed_16_16_t ret;
4457 4458

	if (latency == 0)
4459
		return FP_16_16_MAX;
4460 4461

	wm_intermediate_val = latency * pixel_rate;
4462 4463
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4464
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4465 4466 4467
	return ret;
}

4468 4469 4470 4471 4472 4473 4474 4475
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4476
		return u32_to_fixed16(0);
4477 4478 4479 4480

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4481
		return u32_to_fixed16(0);
4482 4483

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4484
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4485 4486 4487 4488

	return linetime_us;
}

4489 4490 4491
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4492 4493
{
	uint64_t adjusted_pixel_rate;
4494
	uint_fixed_16_16_t downscale_amount;
4495 4496

	/* Shouldn't reach here on disabled planes... */
4497
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4498 4499 4500 4501 4502 4503
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4504
	adjusted_pixel_rate = cstate->pixel_rate;
4505
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4506

4507 4508
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4509 4510
}

4511 4512 4513 4514
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
4515
			    struct skl_wm_params *wp, int plane_id)
4516
{
4517
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4518 4519
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4520
	uint32_t interm_pbpl;
4521 4522 4523
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4524

4525
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4526
		return 0;
4527

4528 4529 4530 4531 4532 4533
	/* only NV12 format has two planes */
	if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
		DRM_DEBUG_KMS("Non NV12 format have single plane\n");
		return -EINVAL;
	}

4534 4535 4536 4537 4538 4539 4540
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4541
	wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4542

4543
	if (plane->id == PLANE_CURSOR) {
4544
		wp->width = intel_pstate->base.crtc_w;
4545
	} else {
4546 4547 4548 4549 4550
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4551
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4552
	}
4553

4554 4555 4556 4557
	if (plane_id == 1 && wp->is_planar)
		wp->width /= 2;

	wp->cpp = fb->format->cpp[plane_id];
4558 4559
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4560

4561 4562 4563 4564 4565 4566
	if (INTEL_GEN(dev_priv) >= 11 &&
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4567
	if (drm_rotation_90_or_270(pstate->rotation)) {
4568

4569
		switch (wp->cpp) {
4570
		case 1:
4571
			wp->y_min_scanlines = 16;
4572 4573
			break;
		case 2:
4574
			wp->y_min_scanlines = 8;
4575 4576
			break;
		case 4:
4577
			wp->y_min_scanlines = 4;
4578
			break;
4579
		default:
4580
			MISSING_CASE(wp->cpp);
4581
			return -EINVAL;
4582 4583
		}
	} else {
4584
		wp->y_min_scanlines = 4;
4585 4586
	}

4587
	if (apply_memory_bw_wa)
4588
		wp->y_min_scanlines *= 2;
4589

4590 4591 4592
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4593 4594
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4595 4596 4597 4598

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4599 4600 4601
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4602 4603
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4604
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4605
	} else {
4606 4607
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4608
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4609 4610
	}

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
4625
				const struct skl_wm_level *result_prev,
4626
				struct skl_wm_level *result /* out */)
4627 4628 4629 4630 4631 4632 4633 4634 4635
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4636
	uint32_t min_disp_buf_needed;
4637 4638 4639

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
4640
		result->plane_en = false;
4641 4642 4643 4644
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4645 4646
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4647 4648 4649 4650 4651 4652 4653
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4654
				 wp->cpp, latency, wp->dbuf_block_size);
4655
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4656
				 cstate->base.adjusted_mode.crtc_htotal,
4657
				 latency,
4658
				 wp->plane_blocks_per_line);
4659

4660 4661
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4662
	} else {
4663
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4664 4665
		     wp->dbuf_block_size < 1) &&
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4666
			selected_result = method2;
4667
		else if (ddb_allocation >=
4668
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4669
			selected_result = min_fixed16(method1, method2);
4670
		else if (latency >= wp->linetime_us)
4671
			selected_result = min_fixed16(method1, method2);
4672 4673 4674
		else
			selected_result = method1;
	}
4675

4676
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4677
	res_lines = div_round_up_fixed16(selected_result,
4678
					 wp->plane_blocks_per_line);
4679

4680
	/* Display WA #1125: skl,bxt,kbl,glk */
4681 4682
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4683 4684

	/* Display WA #1126: skl,bxt,kbl,glk */
4685
	if (level >= 1 && level <= 7) {
4686 4687 4688 4689
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4690
		} else {
4691
			res_blocks++;
4692
		}
4693 4694 4695 4696 4697 4698 4699 4700 4701

		/*
		 * Make sure result blocks for higher latency levels are atleast
		 * as high as level below the current level.
		 * Assumption in DDB algorithm optimization for special cases.
		 * Also covers Display WA #1125 for RC.
		 */
		if (result_prev->plane_res_b > res_blocks)
			res_blocks = result_prev->plane_res_b;
4702
	}
4703

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			uint32_t extra_lines;
			uint_fixed_16_16_t fp_min_disp_buf_needed;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					      res_lines % wp->y_min_scanlines;

			fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
						extra_lines,
						wp->plane_blocks_per_line);
			min_disp_buf_needed = fixed16_to_u32_round_up(
						fp_min_disp_buf_needed);
		} else {
			min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
		}
	} else {
		min_disp_buf_needed = res_blocks;
	}

4727 4728
	if ((level > 0 && res_lines > 31) ||
	    res_blocks >= ddb_allocation ||
4729
	    min_disp_buf_needed >= ddb_allocation) {
4730
		result->plane_en = false;
4731

4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4747
	}
4748

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	/*
	 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
	 * disable wm level 1-7 on NV12 planes
	 */
	if (wp->is_planar && level >= 1 &&
	    (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	     IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
		result->plane_en = false;
		return 0;
	}

4760
	/* The number of lines are ignored for the level 0 watermark. */
4761 4762 4763
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
	result->plane_en = true;
4764

4765
	return 0;
4766 4767
}

4768
static int
4769
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4770
		      struct skl_ddb_allocation *ddb,
4771 4772
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4773
		      const struct skl_wm_params *wm_params,
4774 4775
		      struct skl_plane_wm *wm,
		      int plane_id)
4776
{
4777 4778 4779 4780 4781
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4782
	int level, max_level = ilk_wm_max_level(dev_priv);
4783
	enum plane_id intel_plane_id = intel_plane->id;
4784
	int ret;
L
Lyude 已提交
4785

4786 4787
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4788

4789 4790 4791
	ddb_blocks = plane_id ?
		     skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
		     skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4792

4793
	for (level = 0; level <= max_level; level++) {
4794 4795
		struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
							  &wm->wm[level];
4796 4797 4798 4799 4800 4801 4802
		struct skl_wm_level *result_prev;

		if (level)
			result_prev = plane_id ? &wm->uv_wm[level - 1] :
						  &wm->wm[level - 1];
		else
			result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4803 4804 4805 4806

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4807
					   ddb_blocks,
4808
					   level,
4809
					   wm_params,
4810
					   result_prev,
4811
					   result);
4812 4813 4814
		if (ret)
			return ret;
	}
4815

4816 4817 4818
	if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
		wm->is_planar = true;

4819
	return 0;
4820 4821
}

4822
static uint32_t
4823
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4824
{
M
Mahesh Kumar 已提交
4825 4826
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4827
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4828
	uint32_t linetime_wm;
4829

4830
	linetime_us = intel_get_linetime_us(cstate);
4831

4832
	if (is_fixed16_zero(linetime_us))
4833
		return 0;
4834

4835
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4836

4837 4838 4839 4840
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4841 4842

	return linetime_wm;
4843 4844
}

4845
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4846 4847 4848
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4849
				      struct skl_wm_level *trans_wm /* out */)
4850
{
4851 4852 4853 4854 4855 4856
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4857
	if (!cstate->base.active)
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

4868
	trans_min = 0;
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4893
		return;
4894
	}
4895

4896
exit:
L
Lyude 已提交
4897
	trans_wm->plane_en = false;
4898 4899
}

4900 4901 4902
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4903
{
4904
	struct drm_device *dev = cstate->base.crtc->dev;
4905
	struct drm_crtc_state *crtc_state = &cstate->base;
4906
	const struct drm_i915_private *dev_priv = to_i915(dev);
4907 4908
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4909
	struct skl_plane_wm *wm;
4910
	int ret;
4911

L
Lyude 已提交
4912 4913 4914 4915 4916 4917
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4918 4919 4920 4921
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4922
		struct skl_wm_params wm_params;
4923 4924
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4925 4926

		wm = &pipe_wm->planes[plane_id];
4927
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4928 4929

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
4930
						  intel_pstate, &wm_params, 0);
4931 4932
		if (ret)
			return ret;
L
Lyude 已提交
4933

4934
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4935
					    intel_pstate, &wm_params, wm, 0);
4936 4937
		if (ret)
			return ret;
4938

4939 4940
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958

		/* uv plane watermarks must also be validated for NV12/Planar */
		if (wm_params.is_planar) {
			memset(&wm_params, 0, sizeof(struct skl_wm_params));
			wm->is_planar = true;

			ret = skl_compute_plane_wm_params(dev_priv, cstate,
							  intel_pstate,
							  &wm_params, 1);
			if (ret)
				return ret;

			ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
						    intel_pstate, &wm_params,
						    wm, 1);
			if (ret)
				return ret;
		}
4959
	}
4960

4961
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4962

4963
	return 0;
4964 4965
}

4966 4967
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4968 4969 4970 4971 4972 4973 4974 4975
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4991 4992 4993
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4994
			       enum plane_id plane_id)
4995 4996 4997 4998
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4999
	int level, max_level = ilk_wm_max_level(dev_priv);
5000 5001 5002
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
5003
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5004
				   &wm->wm[level]);
5005
	}
5006
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5007
			   &wm->trans_wm);
5008

5009 5010
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
5011
	/* FIXME: add proper NV12 support for ICL. */
5012 5013 5014 5015 5016 5017 5018
	if (INTEL_GEN(dev_priv) >= 11)
		return skl_ddb_entry_write(dev_priv,
					   PLANE_BUF_CFG(pipe, plane_id),
					   &ddb->plane[pipe][plane_id]);
	if (wm->is_planar) {
		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
				    &ddb->uv_plane[pipe][plane_id]);
5019 5020
		skl_ddb_entry_write(dev_priv,
				    PLANE_NV12_BUF_CFG(pipe, plane_id),
5021 5022 5023 5024 5025 5026
				    &ddb->plane[pipe][plane_id]);
	} else {
		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
				    &ddb->plane[pipe][plane_id]);
		I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
	}
5027 5028
}

5029 5030 5031
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
5032 5033 5034 5035
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
5036
	int level, max_level = ilk_wm_max_level(dev_priv);
5037 5038 5039
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
5040 5041
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5042
	}
5043
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5044

5045
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5046
			    &ddb->plane[pipe][PLANE_CURSOR]);
5047 5048
}

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

5063 5064
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5065
{
5066
	return a->start < b->end && b->start < a->end;
5067 5068
}

5069 5070
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
				 const struct skl_ddb_entry **entries,
5071 5072
				 const struct skl_ddb_entry *ddb,
				 int ignore)
5073
{
5074
	enum pipe pipe;
5075

5076 5077 5078
	for_each_pipe(dev_priv, pipe) {
		if (pipe != ignore && entries[pipe] &&
		    skl_ddb_entries_overlap(ddb, entries[pipe]))
5079
			return true;
5080
	}
5081

5082
	return false;
5083 5084
}

5085
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5086
			      const struct skl_pipe_wm *old_pipe_wm,
5087
			      struct skl_pipe_wm *pipe_wm, /* out */
5088
			      struct skl_ddb_allocation *ddb, /* out */
5089
			      bool *changed /* out */)
5090
{
5091
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5092
	int ret;
5093

5094 5095 5096
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
5097

5098
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5099 5100 5101
		*changed = false;
	else
		*changed = true;
5102

5103
	return 0;
5104 5105
}

5106 5107 5108 5109 5110 5111 5112
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

5113
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5114 5115 5116 5117 5118
		ret |= drm_crtc_mask(crtc);

	return ret;
}

5119
static int
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
5139 5140
		    skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
					&new_ddb->uv_plane[pipe][plane_id]))
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
5153
{
5154
	const struct drm_i915_private *dev_priv = to_i915(state->dev);
5155
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5156
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5157 5158 5159
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
	int ret, i;
5160

5161 5162
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5163
	for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5164 5165 5166 5167 5168 5169 5170
		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
5171 5172 5173 5174 5175
	}

	return 0;
}

5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5188
	int i;
5189

5190
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5191 5192
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5193

5194
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5195
			enum plane_id plane_id = intel_plane->id;
5196 5197
			const struct skl_ddb_entry *old, *new;

5198 5199
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5200 5201 5202 5203

			if (skl_ddb_entry_equal(old, new))
				continue;

5204 5205 5206 5207 5208
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5209 5210 5211 5212
		}
	}
}

5213
static int
5214
skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5215
{
5216
	struct drm_device *dev = state->dev;
5217 5218 5219 5220 5221 5222
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	struct intel_crtc *intel_crtc;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	uint32_t realloc_pipes = pipes_modified(state);
5223
	int ret, i;
5224

5225 5226 5227 5228
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5229 5230
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5231

5232 5233 5234 5235 5236 5237 5238 5239
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5240
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5241
		(*changed) = true;
5242

5243
	if (!*changed)
5244 5245
		return 0;

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

		intel_state->active_pipe_changes = ~0;

		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5283
	if (intel_state->active_pipe_changes || intel_state->modeset) {
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		realloc_pipes = ~0;
		intel_state->wm_results.dirty_pipes = ~0;
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
	bool changed = false;
	int ret, i;

5314 5315 5316
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5317 5318 5319 5320
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5321
	ret = skl_compute_ddb(state);
5322 5323 5324
	if (ret)
		return ret;

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5335
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5336 5337
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5338 5339
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5340 5341

		pipe_wm = &intel_cstate->wm.skl.optimal;
5342 5343
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5357 5358
	skl_print_wm_changes(state);

5359 5360 5361
	return 0;
}

5362 5363 5364 5365 5366 5367
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5368
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5369
	enum pipe pipe = crtc->pipe;
5370
	enum plane_id plane_id;
5371 5372 5373

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5374 5375

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5376

5377 5378 5379 5380 5381 5382 5383 5384
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5385 5386
}

5387 5388
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5389
{
5390
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5391
	struct drm_device *dev = intel_crtc->base.dev;
5392
	struct drm_i915_private *dev_priv = to_i915(dev);
5393 5394
	struct skl_ddb_values *results = &state->wm_results;
	struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5395
	enum pipe pipe = intel_crtc->pipe;
5396

5397
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5398 5399
		return;

5400
	mutex_lock(&dev_priv->wm.wm_mutex);
5401

5402 5403
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5404

5405 5406 5407 5408
	memcpy(hw_vals->ddb.uv_plane[pipe], results->ddb.uv_plane[pipe],
	       sizeof(hw_vals->ddb.uv_plane[pipe]));
	memcpy(hw_vals->ddb.plane[pipe], results->ddb.plane[pipe],
	       sizeof(hw_vals->ddb.plane[pipe]));
5409 5410

	mutex_unlock(&dev_priv->wm.wm_mutex);
5411 5412
}

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5431
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5432
{
5433
	struct drm_device *dev = &dev_priv->drm;
5434
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5435
	struct ilk_wm_maximums max;
5436
	struct intel_wm_config config = {};
5437
	struct ilk_wm_values results = {};
5438
	enum intel_ddb_partitioning partitioning;
5439

5440 5441 5442 5443
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5444 5445

	/* 5/6 split only in single pipe config on IVB+ */
5446
	if (INTEL_GEN(dev_priv) >= 7 &&
5447 5448 5449
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5450

5451
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5452
	} else {
5453
		best_lp_wm = &lp_wm_1_2;
5454 5455
	}

5456
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5457
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5458

5459
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5460

5461
	ilk_write_wm_values(dev_priv, &results);
5462 5463
}

5464 5465
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5466
{
5467 5468
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5469

5470
	mutex_lock(&dev_priv->wm.wm_mutex);
5471
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5472 5473 5474
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5475

5476 5477
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5478 5479 5480
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5481

5482 5483
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5484
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5485 5486 5487
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5488 5489
}

5490 5491
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5492
{
5493 5494 5495 5496
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5497 5498
}

5499 5500
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5501
{
5502
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5503 5504
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5505 5506
	int level, max_level;
	enum plane_id plane_id;
5507
	uint32_t val;
5508

5509
	max_level = ilk_wm_max_level(dev_priv);
5510

5511 5512
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5513

5514
		for (level = 0; level <= max_level; level++) {
5515 5516
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5517 5518
			else
				val = I915_READ(CUR_WM(pipe, level));
5519

5520
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5521 5522
		}

5523 5524
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5525 5526 5527 5528
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5529 5530
	}

5531 5532
	if (!intel_crtc->active)
		return;
5533

5534
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5535 5536 5537 5538
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5539
	struct drm_i915_private *dev_priv = to_i915(dev);
5540
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5541
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5542
	struct drm_crtc *crtc;
5543 5544
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5545

5546
	skl_ddb_get_hw_state(dev_priv, ddb);
5547 5548 5549 5550 5551 5552
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5553
		if (intel_crtc->active)
5554 5555
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5556

5557 5558 5559 5560
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
5561 5562 5563 5564 5565 5566
		/*
		 * Easy/common case; just sanitize DDB now if everything off
		 * Keep dbuf slice info intact
		 */
		memset(ddb->plane, 0, sizeof(ddb->plane));
		memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5567
	}
5568 5569
}

5570 5571 5572
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5573
	struct drm_i915_private *dev_priv = to_i915(dev);
5574
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5575
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5576
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5577
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5578
	enum pipe pipe = intel_crtc->pipe;
5579
	static const i915_reg_t wm0_pipe_reg[] = {
5580 5581 5582 5583 5584 5585
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5586
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5587
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5588

5589 5590
	memset(active, 0, sizeof(*active));

5591
	active->pipe_enabled = intel_crtc->active;
5592 5593

	if (active->pipe_enabled) {
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5608
		int level, max_level = ilk_wm_max_level(dev_priv);
5609 5610 5611 5612 5613 5614 5615 5616 5617

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5618 5619

	intel_crtc->wm.active.ilk = *active;
5620 5621
}

5622 5623 5624 5625 5626
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5653 5654 5655 5656 5657 5658 5659 5660 5661
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5662
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5663
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5664
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5665
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5666
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5667
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5668
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5669 5670 5671 5672 5673
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5674 5675 5676
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5677 5678

	tmp = I915_READ(DSPFW2);
5679 5680 5681
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5682 5683 5684 5685 5686 5687

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5688 5689
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5690 5691

		tmp = I915_READ(DSPFW8_CHV);
5692 5693
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5694 5695

		tmp = I915_READ(DSPFW9_CHV);
5696 5697
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5698 5699 5700

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5701 5702 5703 5704 5705 5706 5707 5708 5709
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5710 5711
	} else {
		tmp = I915_READ(DSPFW7);
5712 5713
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5714 5715 5716

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5717 5718 5719 5720 5721 5722
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5723 5724 5725 5726 5727 5728
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5870 5871 5872 5873
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5874
	struct intel_crtc *crtc;
5875 5876 5877 5878 5879 5880 5881 5882
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5883
		mutex_lock(&dev_priv->pcu_lock);
5884 5885 5886 5887 5888

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5889 5890 5891 5892 5893 5894 5895 5896 5897
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5898
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5912

5913
		mutex_unlock(&dev_priv->pcu_lock);
5914 5915
	}

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5932
			struct g4x_pipe_wm *raw =
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5954
		crtc_state->wm.vlv.intermediate = *active;
5955

5956
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5957 5958 5959 5960 5961
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5962
	}
5963 5964 5965 5966 5967

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5992
			struct g4x_pipe_wm *raw =
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6033 6034
void ilk_wm_get_hw_state(struct drm_device *dev)
{
6035
	struct drm_i915_private *dev_priv = to_i915(dev);
6036
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6037 6038
	struct drm_crtc *crtc;

6039 6040
	ilk_init_lp_watermarks(dev_priv);

6041
	for_each_crtc(dev, crtc)
6042 6043 6044 6045 6046 6047 6048
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6049
	if (INTEL_GEN(dev_priv) >= 7) {
6050 6051 6052
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6053

6054
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6055 6056
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6057
	else if (IS_IVYBRIDGE(dev_priv))
6058 6059
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6060 6061 6062 6063 6064

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6065 6066
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6067
 * @crtc: the #intel_crtc on which to compute the WM
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6098
void intel_update_watermarks(struct intel_crtc *crtc)
6099
{
6100
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6101 6102

	if (dev_priv->display.update_wm)
6103
		dev_priv->display.update_wm(crtc);
6104 6105
}

6106 6107 6108 6109
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6110 6111 6112 6113 6114 6115
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv)) {
		dev_priv->ipc_enabled = false;
		return;
	}

6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

6136
/*
6137 6138 6139 6140 6141 6142 6143 6144
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

6145
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6146 6147 6148
{
	u16 rgvswctl;

6149
	lockdep_assert_held(&mchdev_lock);
6150

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6168
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6169
{
6170
	u32 rgvmodectl;
6171 6172
	u8 fmax, fmin, fstart, vstart;

6173 6174
	spin_lock_irq(&mchdev_lock);

6175 6176
	rgvmodectl = I915_READ(MEMMODECTL);

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6197
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6198 6199
		PXVFREQ_PX_SHIFT;

6200 6201
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6202

6203 6204 6205
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6222
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6223
		DRM_ERROR("stuck trying to change perf mode\n");
6224
	mdelay(1);
6225

6226
	ironlake_set_drps(dev_priv, fstart);
6227

6228 6229
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6230
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6231
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6232
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6233 6234

	spin_unlock_irq(&mchdev_lock);
6235 6236
}

6237
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6238
{
6239 6240 6241 6242 6243
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6244 6245 6246 6247 6248 6249 6250 6251 6252

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6253
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6254
	mdelay(1);
6255 6256
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6257
	mdelay(1);
6258

6259
	spin_unlock_irq(&mchdev_lock);
6260 6261
}

6262 6263 6264 6265 6266
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6267
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6268
{
6269
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6270
	u32 limits;
6271

6272 6273 6274 6275 6276 6277
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6278
	if (INTEL_GEN(dev_priv) >= 9) {
6279 6280 6281
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6282
	} else {
6283 6284 6285
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6286
	}
6287 6288 6289 6290

	return limits;
}

C
Chris Wilson 已提交
6291
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6292
{
6293
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6294 6295
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6296

C
Chris Wilson 已提交
6297
	lockdep_assert_held(&rps->power.mutex);
6298

C
Chris Wilson 已提交
6299
	if (new_power == rps->power.mode)
6300 6301 6302 6303 6304 6305
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6306 6307
		ei_up = 16000;
		threshold_up = 95;
6308 6309

		/* Downclock if less than 85% busy over 32ms */
6310 6311
		ei_down = 32000;
		threshold_down = 85;
6312 6313 6314 6315
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6316 6317
		ei_up = 13000;
		threshold_up = 90;
6318 6319

		/* Downclock if less than 75% busy over 32ms */
6320 6321
		ei_down = 32000;
		threshold_down = 75;
6322 6323 6324 6325
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6326 6327
		ei_up = 10000;
		threshold_up = 85;
6328 6329

		/* Downclock if less than 60% busy over 32ms */
6330 6331
		ei_down = 32000;
		threshold_down = 60;
6332 6333 6334
		break;
	}

6335 6336 6337 6338 6339 6340
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6341
	I915_WRITE(GEN6_RP_UP_EI,
6342
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6343
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6344 6345
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6346 6347

	I915_WRITE(GEN6_RP_DOWN_EI,
6348
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6349
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6360

6361
skip_hw_write:
C
Chris Wilson 已提交
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6406 6407
}

C
Chris Wilson 已提交
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6426 6427
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6428
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6429 6430
	u32 mask = 0;

6431
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6432
	if (val > rps->min_freq_softlimit)
6433
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6434
	if (val < rps->max_freq_softlimit)
6435
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6436

6437 6438
	mask &= dev_priv->pm_rps_events;

6439
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6440 6441
}

6442 6443 6444
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6445
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6446
{
6447 6448
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6449 6450 6451
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6452
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6453
		gen6_set_rps_thresholds(dev_priv, val);
6454

6455
		if (INTEL_GEN(dev_priv) >= 9)
6456 6457
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6458
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6459 6460 6461 6462 6463 6464 6465
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6466
	}
6467 6468 6469 6470

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6471
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6472
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6473

6474
	rps->cur_freq = val;
6475
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6476 6477

	return 0;
6478 6479
}

6480
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6481
{
6482 6483
	int err;

6484
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6485 6486 6487
		      "Odd GPU freq value\n"))
		val &= ~1;

6488 6489
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6490
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6491 6492 6493 6494
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6495
		gen6_set_rps_thresholds(dev_priv, val);
6496
	}
6497

6498
	dev_priv->gt_pm.rps.cur_freq = val;
6499
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6500 6501

	return 0;
6502 6503
}

6504
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6505 6506
 *
 * * If Gfx is Idle, then
6507 6508 6509
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6510 6511 6512
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6513 6514
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6515
	int err;
6516

6517
	if (rps->cur_freq <= val)
6518 6519
		return;

6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6532
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6533
	err = valleyview_set_rps(dev_priv, val);
6534
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6535 6536 6537

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6538 6539
}

6540 6541
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6542 6543
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6544
	mutex_lock(&dev_priv->pcu_lock);
6545
	if (rps->enabled) {
6546 6547
		u8 freq;

6548
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6549 6550
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6551
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6552

6553 6554
		gen6_enable_rps_interrupts(dev_priv);

6555 6556 6557
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6558 6559
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6560

6561
		if (intel_set_rps(dev_priv,
6562
				  clamp(freq,
6563 6564
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6565
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6566
	}
6567
	mutex_unlock(&dev_priv->pcu_lock);
6568 6569
}

6570 6571
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6572 6573
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6574 6575 6576 6577 6578 6579 6580
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6581
	mutex_lock(&dev_priv->pcu_lock);
6582
	if (rps->enabled) {
6583
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6584
			vlv_set_rps_idle(dev_priv);
6585
		else
6586 6587
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6588 6589
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6590
	}
6591
	mutex_unlock(&dev_priv->pcu_lock);
6592 6593
}

6594
void gen6_rps_boost(struct i915_request *rq,
6595
		    struct intel_rps_client *rps_client)
6596
{
6597
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6598
	unsigned long flags;
6599 6600
	bool boost;

6601 6602 6603
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6604
	if (!rps->enabled)
6605
		return;
6606

6607 6608 6609
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return;

6610
	/* Serializes with i915_request_retire() */
6611
	boost = false;
6612
	spin_lock_irqsave(&rq->lock, flags);
6613 6614
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6615
		rq->waitboost = true;
6616
	}
6617
	spin_unlock_irqrestore(&rq->lock, flags);
6618 6619 6620
	if (!boost)
		return;

6621 6622
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6623

6624
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6625 6626
}

6627
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6628
{
6629
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6630 6631
	int err;

6632
	lockdep_assert_held(&dev_priv->pcu_lock);
6633 6634
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6635

6636 6637
	if (!rps->enabled) {
		rps->cur_freq = val;
6638 6639 6640
		return 0;
	}

6641
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6642
		err = valleyview_set_rps(dev_priv, val);
6643
	else
6644 6645 6646
		err = gen6_set_rps(dev_priv, val);

	return err;
6647 6648
}

6649
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6650 6651
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6652
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6653 6654
}

6655
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6656 6657 6658 6659
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6660
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6661 6662
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6663 6664 6665 6666
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6667
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6668
	I915_WRITE(GEN6_RP_CONTROL, 0);
6669 6670
}

6671
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6672 6673 6674 6675
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6676 6677 6678 6679 6680
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6681
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6682
{
6683
	/* We're doing forcewake before Disabling RC6,
6684
	 * This what the BIOS expects when going into suspend */
6685
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6686

6687
	I915_WRITE(GEN6_RC_CONTROL, 0);
6688

6689
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6690 6691
}

6692 6693 6694 6695 6696
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6697
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6698 6699 6700
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6712 6713

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6714
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6715 6716 6717 6718 6719 6720 6721 6722
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6723 6724
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6725
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6726 6727 6728 6729 6730 6731 6732
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6733
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6734 6735 6736
		enable_rc6 = false;
	}

6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6751 6752 6753 6754 6755 6756
		enable_rc6 = false;
	}

	return enable_rc6;
}

6757
static bool sanitize_rc6(struct drm_i915_private *i915)
6758
{
6759
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6760

6761 6762 6763
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6764

6765 6766
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6767
		DRM_INFO("RC6 disabled by BIOS\n");
6768
		info->has_rc6 = 0;
6769 6770
	}

6771 6772 6773 6774 6775 6776 6777 6778
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6779

6780
	return info->has_rc6;
6781 6782
}

6783
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6784
{
6785 6786
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6787
	/* All of these values are in units of 50MHz */
6788

6789
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6790
	if (IS_GEN9_LP(dev_priv)) {
6791
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6792 6793 6794
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6795
	} else {
6796
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6797 6798 6799
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6800
	}
6801
	/* hw_max = RP0 until we check for overclocking */
6802
	rps->max_freq = rps->rp0_freq;
6803

6804
	rps->efficient_freq = rps->rp1_freq;
6805
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6806
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6807 6808 6809 6810 6811
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6812
			rps->efficient_freq =
6813 6814
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6815 6816
					rps->min_freq,
					rps->max_freq);
6817 6818
	}

6819
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6820
		/* Store the frequency values in 16.66 MHZ units, which is
6821 6822
		 * the natural hardware unit for SKL
		 */
6823 6824 6825 6826 6827
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6828
	}
6829 6830
}

6831
static void reset_rps(struct drm_i915_private *dev_priv,
6832
		      int (*set)(struct drm_i915_private *, u8))
6833
{
6834 6835
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6836 6837

	/* force a reset */
C
Chris Wilson 已提交
6838
	rps->power.mode = -1;
6839
	rps->cur_freq = -1;
6840

6841 6842
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6843 6844
}

J
Jesse Barnes 已提交
6845
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6846
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6847 6848 6849
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6850 6851 6852 6853
	/* Program defaults and thresholds for RPS */
	if (IS_GEN9(dev_priv))
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6854 6855 6856 6857 6858

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6859 6860
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6861 6862 6863
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6864
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6865 6866 6867 6868

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6869
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6870
{
6871
	struct intel_engine_cs *engine;
6872
	enum intel_engine_id id;
6873
	u32 rc6_mode;
Z
Zhe Wang 已提交
6874 6875 6876 6877 6878 6879

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6880
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6881 6882 6883 6884 6885

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6886 6887 6888 6889 6890 6891 6892 6893
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6894
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6895
	} else {
6896
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6897 6898
	}

Z
Zhe Wang 已提交
6899 6900
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6901
	for_each_engine(engine, dev_priv, id)
6902
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6903

6904
	if (HAS_GUC(dev_priv))
6905 6906
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6907 6908
	I915_WRITE(GEN6_RC_SLEEP, 0);

6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6932

Z
Zhe Wang 已提交
6933
	/* 3a: Enable RC6 */
6934
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6935 6936 6937 6938 6939 6940 6941

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

6942
	I915_WRITE(GEN6_RC_CONTROL,
6943 6944 6945
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
6946

6947 6948
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6949
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6950
	 */
6951
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6952 6953
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
6954 6955
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6956

6957
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6958 6959
}

6960
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6961
{
6962
	struct intel_engine_cs *engine;
6963
	enum intel_engine_id id;
6964 6965 6966 6967

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

6968
	/* 1b: Get forcewake during program sequence. Although the driver
6969
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6970
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6971 6972 6973 6974 6975 6976 6977 6978

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6979
	for_each_engine(engine, dev_priv, id)
6980
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6981
	I915_WRITE(GEN6_RC_SLEEP, 0);
6982
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6983 6984

	/* 3: Enable RC6 */
6985

6986 6987 6988 6989
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
6990

6991 6992 6993 6994 6995
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6996 6997
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6998 6999 7000
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
7001
	I915_WRITE(GEN6_RPNSWREQ,
7002
		   HSW_FREQUENCY(rps->rp1_freq));
7003
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7004
		   HSW_FREQUENCY(rps->rp1_freq));
7005 7006 7007 7008 7009
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7010 7011
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7012 7013 7014 7015 7016 7017 7018

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7019

7020
	/* 2: Enable RPS */
7021 7022 7023 7024 7025 7026 7027 7028
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7029
	reset_rps(dev_priv, gen6_set_rps);
7030

7031
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7032 7033
}

7034
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7035
{
7036
	struct intel_engine_cs *engine;
7037
	enum intel_engine_id id;
7038
	u32 rc6vids, rc6_mask;
7039
	u32 gtfifodbg;
7040
	int ret;
7041 7042 7043 7044

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7045 7046
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7047 7048 7049 7050
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7051
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7062
	for_each_engine(engine, dev_priv, id)
7063
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7064 7065 7066

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7067
	if (IS_IVYBRIDGE(dev_priv))
7068 7069 7070
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7071
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7072 7073
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7074
	/* We don't use those on Haswell */
7075 7076 7077 7078 7079
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7080 7081 7082 7083 7084
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7085 7086
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7087
	if (IS_GEN6(dev_priv) && ret) {
7088
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7089
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7090 7091 7092 7093 7094 7095 7096 7097 7098
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7099
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7100 7101
}

7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7121
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7122
{
7123
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7124 7125
	const int min_freq = 15;
	const int scaling_factor = 180;
7126 7127
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7128
	unsigned int max_gpu_freq, min_gpu_freq;
7129
	struct cpufreq_policy *policy;
7130

7131
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7132

7133 7134 7135
	if (rps->max_freq <= rps->min_freq)
		return;

7136 7137 7138 7139 7140 7141 7142 7143 7144
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7145
		max_ia_freq = tsc_khz;
7146
	}
7147 7148 7149 7150

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7151
	min_ring_freq = I915_READ(DCLK) & 0xf;
7152 7153
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7154

7155 7156
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7157
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7158
		/* Convert GT frequency to 50 HZ units */
7159 7160
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7161 7162
	}

7163 7164 7165 7166 7167
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7168
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7169
		const int diff = max_gpu_freq - gpu_freq;
7170 7171
		unsigned int ia_freq = 0, ring_freq = 0;

7172
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7173 7174 7175 7176 7177
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7178
		} else if (INTEL_GEN(dev_priv) >= 8) {
7179 7180
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7181
		} else if (IS_HASWELL(dev_priv)) {
7182
			ring_freq = mult_frac(gpu_freq, 5, 4);
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7199

B
Ben Widawsky 已提交
7200 7201
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7202 7203 7204
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7205 7206 7207
	}
}

7208
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7209 7210 7211
{
	u32 val, rp0;

7212
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7213

7214
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7229
	}
7230 7231 7232

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7246 7247 7248 7249
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7250 7251 7252
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7253 7254 7255
	return rp1;
}

7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7278
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7279 7280 7281
{
	u32 val, rp0;

7282
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7295
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7296
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7297
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7298 7299 7300 7301 7302
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7303
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7304
{
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7316 7317
}

7318 7319 7320 7321 7322
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7323
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7324 7325 7326
			     dev_priv->vlv_pctx->stolen->start);
}

7327 7328 7329 7330 7331 7332 7333 7334 7335

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7336
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7337
{
7338 7339
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7340 7341 7342 7343
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7344
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7345 7346
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7347 7348 7349 7350

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7351 7352

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7353 7354
}

7355
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7356 7357
{
	struct drm_i915_gem_object *pctx;
7358 7359
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7360 7361 7362 7363 7364
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7365
		resource_size_t pcbr_offset;
7366

7367
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7368
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7369
								      pcbr_offset,
7370
								      I915_GTT_OFFSET_NONE,
7371 7372 7373 7374
								      pctx_size);
		goto out;
	}

7375 7376
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7377 7378 7379 7380 7381 7382 7383 7384
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7385
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7386 7387
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7388
		goto out;
7389 7390
	}

7391 7392 7393 7394 7395
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7396 7397 7398
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7399
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7400 7401 7402
	dev_priv->vlv_pctx = pctx;
}

7403
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7404
{
7405
	struct drm_i915_gem_object *pctx;
7406

7407 7408 7409
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7410 7411
}

7412 7413
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7414
	dev_priv->gt_pm.rps.gpll_ref_freq =
7415 7416 7417 7418 7419
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7420
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7421 7422
}

7423
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7424
{
7425
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7426
	u32 val;
7427

7428
	valleyview_setup_pctx(dev_priv);
7429

7430 7431
	vlv_init_gpll_ref_freq(dev_priv);

7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7445
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7446

7447 7448
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7449
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7450 7451
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7452

7453
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7454
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7455 7456
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7457

7458
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7459
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7460 7461
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7462

7463
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7464
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7465 7466
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7467 7468
}

7469
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7470
{
7471
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7472
	u32 val;
7473

7474
	cherryview_setup_pctx(dev_priv);
7475

7476 7477
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7478
	mutex_lock(&dev_priv->sb_lock);
7479
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7480
	mutex_unlock(&dev_priv->sb_lock);
7481

7482 7483 7484 7485
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7486
	default:
7487 7488 7489
		dev_priv->mem_freq = 1600;
		break;
	}
7490
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7491

7492 7493
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7494
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7495 7496
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7497

7498
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7499
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7500 7501
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7502

7503
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7504
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7505 7506
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7507

7508
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7509
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7510 7511
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7512

7513 7514
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7515
		  "Odd GPU freq values\n");
7516 7517
}

7518
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7519
{
7520
	valleyview_cleanup_pctx(dev_priv);
7521 7522
}

7523
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7524
{
7525
	struct intel_engine_cs *engine;
7526
	enum intel_engine_id id;
7527
	u32 gtfifodbg, rc6_mode, pcbr;
7528

7529 7530
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7541
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7542

7543 7544 7545
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7546 7547 7548 7549 7550
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7551
	for_each_engine(engine, dev_priv, id)
7552
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7553 7554
	I915_WRITE(GEN6_RC_SLEEP, 0);

7555 7556
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7557

7558
	/* Allows RC6 residency counter to work */
7559 7560 7561 7562 7563 7564 7565 7566 7567
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7568 7569
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7570
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7571 7572
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7583
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7584 7585 7586 7587 7588 7589 7590
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7591
	/* 2: Enable RPS */
7592 7593
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7594
		   GEN6_RP_MEDIA_IS_GFX |
7595 7596 7597 7598
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7599 7600 7601 7602 7603 7604
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7605 7606
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7607 7608 7609
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7610
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7611 7612
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7613
	reset_rps(dev_priv, valleyview_set_rps);
7614

7615
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7616 7617
}

7618
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7619
{
7620
	struct intel_engine_cs *engine;
7621
	enum intel_engine_id id;
7622
	u32 gtfifodbg;
7623

7624 7625
	valleyview_check_pctx(dev_priv);

7626 7627
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7628 7629
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7630 7631 7632
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7633
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7634

7635 7636 7637
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7638 7639 7640 7641
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7642
	for_each_engine(engine, dev_priv, id)
7643
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7644

7645
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7646

7647
	/* Allows RC6 residency counter to work */
7648
	I915_WRITE(VLV_COUNTER_CONTROL,
7649 7650
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7651
				      VLV_RENDER_RC0_COUNT_EN |
7652 7653
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7654

7655 7656
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7657

7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7683 7684 7685 7686 7687 7688
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7689
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7690

7691 7692 7693
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7694
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7695 7696
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7697
	reset_rps(dev_priv, valleyview_set_rps);
7698

7699
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7700 7701
}

7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7731
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7732 7733 7734 7735 7736 7737
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7738
	lockdep_assert_held(&mchdev_lock);
7739

7740
	diff1 = now - dev_priv->ips.last_time1;
7741 7742 7743 7744 7745 7746 7747

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7748
		return dev_priv->ips.chipset_power;
7749 7750 7751 7752 7753 7754 7755 7756

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7757 7758
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7759 7760
		diff += total_count;
	} else {
7761
		diff = total_count - dev_priv->ips.last_count1;
7762 7763 7764
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7765 7766
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7777 7778
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7779

7780
	dev_priv->ips.chipset_power = ret;
7781 7782 7783 7784

	return ret;
}

7785 7786 7787 7788
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7789
	if (!IS_GEN5(dev_priv))
7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7828
{
7829 7830 7831
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7832
	if (INTEL_INFO(dev_priv)->is_mobile)
7833 7834 7835
		return vm > 0 ? vm : 0;

	return vd;
7836 7837
}

7838
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7839
{
7840
	u64 now, diff, diffms;
7841 7842
	u32 count;

7843
	lockdep_assert_held(&mchdev_lock);
7844

7845 7846 7847
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7848 7849 7850 7851 7852 7853 7854

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7855 7856
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7857 7858
		diff += count;
	} else {
7859
		diff = count - dev_priv->ips.last_count2;
7860 7861
	}

7862 7863
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7864 7865 7866 7867

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7868
	dev_priv->ips.gfx_power = diff;
7869 7870
}

7871 7872
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7873
	if (!IS_GEN5(dev_priv))
7874 7875
		return;

7876
	spin_lock_irq(&mchdev_lock);
7877 7878 7879

	__i915_update_gfx_val(dev_priv);

7880
	spin_unlock_irq(&mchdev_lock);
7881 7882
}

7883
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7884 7885 7886 7887
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7888
	lockdep_assert_held(&mchdev_lock);
7889

7890
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7910
	corr2 = (corr * dev_priv->ips.corr);
7911 7912 7913 7914

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7915
	__i915_update_gfx_val(dev_priv);
7916

7917
	return dev_priv->ips.gfx_power + state2;
7918 7919
}

7920 7921 7922 7923
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7924
	if (!IS_GEN5(dev_priv))
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7947
	spin_lock_irq(&mchdev_lock);
7948 7949 7950 7951
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7952 7953
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7954 7955 7956 7957

	ret = chipset_val + graphics_val;

out_unlock:
7958
	spin_unlock_irq(&mchdev_lock);
7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7974
	spin_lock_irq(&mchdev_lock);
7975 7976 7977 7978 7979 7980
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7981 7982
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7983 7984

out_unlock:
7985
	spin_unlock_irq(&mchdev_lock);
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

8002
	spin_lock_irq(&mchdev_lock);
8003 8004 8005 8006 8007 8008
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8009 8010
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
8011 8012

out_unlock:
8013
	spin_unlock_irq(&mchdev_lock);
8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

8028
	spin_lock_irq(&mchdev_lock);
8029 8030
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
8031
	spin_unlock_irq(&mchdev_lock);
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

8048
	spin_lock_irq(&mchdev_lock);
8049 8050 8051 8052 8053 8054
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8055
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
8056

8057
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8058 8059 8060
		ret = false;

out_unlock:
8061
	spin_unlock_irq(&mchdev_lock);
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8089 8090
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8091
	spin_lock_irq(&mchdev_lock);
8092
	i915_mch_dev = dev_priv;
8093
	spin_unlock_irq(&mchdev_lock);
8094 8095 8096 8097 8098 8099

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8100
	spin_lock_irq(&mchdev_lock);
8101
	i915_mch_dev = NULL;
8102
	spin_unlock_irq(&mchdev_lock);
8103
}
8104

8105
static void intel_init_emon(struct drm_i915_private *dev_priv)
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8122
		I915_WRITE(PEW(i), 0);
8123
	for (i = 0; i < 3; i++)
8124
		I915_WRITE(DEW(i), 0);
8125 8126 8127

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8128
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8149
		I915_WRITE(PXW(i), val);
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8165
		I915_WRITE(PXWL(i), 0);
8166 8167 8168 8169 8170 8171

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8172
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8173 8174
}

8175
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8176
{
8177 8178
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8179 8180 8181 8182
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8183
	if (!sanitize_rc6(dev_priv)) {
8184
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8185
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8186
	}
I
Imre Deak 已提交
8187

8188
	mutex_lock(&dev_priv->pcu_lock);
8189 8190

	/* Initialize RPS limits (for userspace) */
8191 8192 8193 8194
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8195
	else if (INTEL_GEN(dev_priv) >= 6)
8196 8197 8198
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8199 8200
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8201

8202 8203
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8204 8205

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8206
		rps->min_freq_softlimit =
8207
			max_t(int,
8208
			      rps->efficient_freq,
8209 8210
			      intel_freq_opcode(dev_priv, 450));

8211 8212 8213 8214 8215 8216 8217 8218
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8219
					 (rps->max_freq & 0xff) * 50,
8220
					 (params & 0xff) * 50);
8221
			rps->max_freq = params & 0xff;
8222 8223 8224
		}
	}

8225
	/* Finally allow us to boost to max by default */
8226
	rps->boost_freq = rps->max_freq;
8227

8228
	mutex_unlock(&dev_priv->pcu_lock);
8229 8230
}

8231
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8232
{
8233
	if (IS_VALLEYVIEW(dev_priv))
8234
		valleyview_cleanup_gt_powersave(dev_priv);
8235

8236
	if (!HAS_RC6(dev_priv))
8237
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8238 8239
}

8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8256 8257
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8258 8259
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8260
	intel_disable_gt_powersave(dev_priv);
8261

8262 8263
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8264
	else if (INTEL_GEN(dev_priv) >= 6)
8265
		gen6_reset_rps_interrupts(dev_priv);
8266 8267
}

8268 8269 8270 8271
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8272 8273 8274
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8275
	/* Currently there is no HW configuration to be done to disable. */
8276 8277

	i915->gt_pm.llc_pstate.enabled = false;
8278 8279
}

8280
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8281
{
8282
	lockdep_assert_held(&dev_priv->pcu_lock);
8283

8284 8285 8286
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8287 8288 8289 8290 8291 8292 8293 8294
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8295 8296

	dev_priv->gt_pm.rc6.enabled = false;
8297
}
8298

8299 8300 8301
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8302

8303 8304 8305
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8306
	if (INTEL_GEN(dev_priv) >= 9)
8307
		gen9_disable_rps(dev_priv);
8308
	else if (IS_CHERRYVIEW(dev_priv))
8309
		cherryview_disable_rps(dev_priv);
8310
	else if (IS_VALLEYVIEW(dev_priv))
8311
		valleyview_disable_rps(dev_priv);
8312
	else if (INTEL_GEN(dev_priv) >= 6)
8313
		gen6_disable_rps(dev_priv);
8314
	else if (IS_IRONLAKE_M(dev_priv))
8315
		ironlake_disable_drps(dev_priv);
8316 8317

	dev_priv->gt_pm.rps.enabled = false;
8318 8319 8320 8321 8322
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8323

8324 8325
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8326 8327 8328
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8329
	mutex_unlock(&dev_priv->pcu_lock);
8330 8331
}

8332 8333 8334 8335
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8336 8337 8338
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8339
	gen6_update_ring_freq(i915);
8340 8341

	i915->gt_pm.llc_pstate.enabled = true;
8342 8343
}

8344
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8345
{
8346
	lockdep_assert_held(&dev_priv->pcu_lock);
8347

8348 8349 8350
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8351 8352 8353 8354 8355 8356 8357 8358 8359 8360
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8361 8362

	dev_priv->gt_pm.rc6.enabled = true;
8363
}
8364

8365 8366 8367
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8368

8369
	lockdep_assert_held(&dev_priv->pcu_lock);
8370

8371 8372 8373
	if (rps->enabled)
		return;

8374 8375 8376 8377
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8378
	} else if (INTEL_GEN(dev_priv) >= 9) {
8379 8380 8381
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8382
	} else if (INTEL_GEN(dev_priv) >= 6) {
8383
		gen6_enable_rps(dev_priv);
8384 8385 8386
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8387
	}
8388

8389 8390
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8391

8392 8393
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8394 8395

	rps->enabled = true;
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8406 8407
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8408 8409 8410
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8411

8412
	mutex_unlock(&dev_priv->pcu_lock);
8413
}
I
Imre Deak 已提交
8414

8415
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8416 8417 8418 8419 8420 8421 8422 8423 8424
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8425
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8426
{
8427
	enum pipe pipe;
8428

8429
	for_each_pipe(dev_priv, pipe) {
8430 8431 8432
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8433 8434 8435

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8436 8437 8438
	}
}

8439
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8440
{
8441
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8442

8443 8444 8445 8446
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8447 8448 8449
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8467
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8468 8469 8470
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8471

8472 8473 8474 8475 8476 8477 8478
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8479
	if (IS_IRONLAKE_M(dev_priv)) {
8480
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8481 8482 8483 8484 8485 8486 8487 8488
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8489 8490
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8491 8492 8493 8494 8495 8496
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8497

8498
	/* WaDisableRenderCachePipelinedFlush:ilk */
8499 8500
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8501

8502 8503 8504
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8505
	g4x_disable_trickle_feed(dev_priv);
8506

8507
	ibx_init_clock_gating(dev_priv);
8508 8509
}

8510
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8511 8512
{
	int pipe;
8513
	uint32_t val;
8514 8515 8516 8517 8518 8519

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8520 8521 8522
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8523 8524
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8525 8526 8527
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8528
	for_each_pipe(dev_priv, pipe) {
8529 8530 8531
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8532
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8533
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8534 8535 8536
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8537 8538
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8539
	/* WADP0ClockGatingDisable */
8540
	for_each_pipe(dev_priv, pipe) {
8541 8542 8543
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8544 8545
}

8546
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8547 8548 8549 8550
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8551 8552 8553
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8554 8555
}

8556
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8557
{
8558
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8559

8560
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8561 8562 8563 8564 8565

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8566
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8567 8568 8569
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8570 8571 8572
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8573 8574 8575
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8576 8577 8578 8579
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8580 8581
	 */
	I915_WRITE(GEN6_GT_MODE,
8582
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8583

8584
	I915_WRITE(CACHE_MODE_0,
8585
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8601
	 *
8602 8603
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8604 8605 8606 8607 8608
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8609
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8610 8611
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8612

8613 8614 8615 8616 8617 8618 8619 8620
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8621 8622 8623 8624 8625 8626 8627 8628
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8629 8630
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8631 8632 8633 8634 8635 8636 8637
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8638 8639 8640 8641
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8642

8643
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8644

8645
	cpt_init_clock_gating(dev_priv);
8646

8647
	gen6_check_mch_setup(dev_priv);
8648 8649 8650 8651 8652 8653
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8654
	/*
8655
	 * WaVSThreadDispatchOverride:ivb,vlv
8656 8657 8658 8659
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8660 8661 8662 8663 8664 8665 8666 8667
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8668
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8669 8670 8671 8672 8673
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8674
	if (HAS_PCH_LPT_LP(dev_priv))
8675 8676 8677
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8678 8679

	/* WADPOClockGatingDisable:hsw */
8680 8681
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8682
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8683 8684
}

8685
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8686
{
8687
	if (HAS_PCH_LPT_LP(dev_priv)) {
8688 8689 8690 8691 8692 8693 8694
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8695 8696 8697 8698 8699
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8700
	u32 val;
8701 8702 8703 8704 8705

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8706 8707 8708 8709 8710
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8721 8722 8723 8724 8725 8726 8727
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
}

8728 8729 8730 8731 8732
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8733
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8734 8735
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8736 8737
}

8738
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8739
{
8740
	u32 val;
8741 8742
	cnp_init_clock_gating(dev_priv);

8743 8744 8745 8746
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8747 8748 8749 8750 8751 8752 8753 8754
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8755 8756 8757
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8758 8759
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8760 8761
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8762

R
Rodrigo Vivi 已提交
8763 8764 8765 8766 8767
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8768
	/* WaDisableVFclkgate:cnl */
8769
	/* WaVFUnitClockGatingDisable:cnl */
8770 8771 8772
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8773 8774
}

8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8785
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8786
{
8787
	gen9_init_clock_gating(dev_priv);
8788 8789 8790 8791 8792

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8793 8794 8795 8796 8797

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8798

8799
	/* WaFbcNukeOnHostModify:kbl */
8800 8801
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8802 8803
}

8804
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8805
{
8806
	gen9_init_clock_gating(dev_priv);
8807 8808 8809 8810

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8811 8812 8813 8814

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8815 8816
}

8817
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8818
{
8819 8820 8821
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8822
	enum pipe pipe;
B
Ben Widawsky 已提交
8823

8824
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8825
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8826

8827
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8828 8829 8830
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8831
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8832
	for_each_pipe(dev_priv, pipe) {
8833
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8834
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8835
			   BDW_DPRS_MASK_VBLANK_SRD);
8836
	}
8837

8838 8839 8840 8841 8842
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8843

8844 8845
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8846 8847 8848 8849

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8850

8851 8852
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8853

8854 8855
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8856

8857 8858 8859 8860
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8861
	lpt_init_clock_gating(dev_priv);
8862 8863 8864 8865 8866 8867 8868 8869

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8870 8871
}

8872
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8873
{
8874 8875 8876 8877 8878
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8879
	/* This is required by WaCatErrorRejectionIssue:hsw */
8880 8881 8882 8883
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8884 8885 8886
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8887

8888 8889 8890
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8891 8892 8893 8894
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8895
	/* WaDisable4x2SubspanOptimization:hsw */
8896 8897
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8898

8899 8900 8901
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8902 8903 8904 8905
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8906 8907
	 */
	I915_WRITE(GEN7_GT_MODE,
8908
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8909

8910 8911 8912 8913
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8914
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8915 8916
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8917
	lpt_init_clock_gating(dev_priv);
8918 8919
}

8920
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8921
{
8922
	uint32_t snpcr;
8923

8924
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8925

8926
	/* WaDisableEarlyCull:ivb */
8927 8928 8929
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8930
	/* WaDisableBackToBackFlipFix:ivb */
8931 8932 8933 8934
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8935
	/* WaDisablePSDDualDispatchEnable:ivb */
8936
	if (IS_IVB_GT1(dev_priv))
8937 8938 8939
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8940 8941 8942
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8943
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8944 8945 8946
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8947
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8948 8949 8950
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8951
		   GEN7_WA_L3_CHICKEN_MODE);
8952
	if (IS_IVB_GT1(dev_priv))
8953 8954
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8955 8956 8957 8958
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8959 8960
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8961
	}
8962

8963
	/* WaForceL3Serialization:ivb */
8964 8965 8966
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8967
	/*
8968
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8969
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8970 8971
	 */
	I915_WRITE(GEN6_UCGCTL2,
8972
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8973

8974
	/* This is required by WaCatErrorRejectionIssue:ivb */
8975 8976 8977 8978
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8979
	g4x_disable_trickle_feed(dev_priv);
8980 8981

	gen7_setup_fixed_func_scheduler(dev_priv);
8982

8983 8984 8985 8986 8987
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8988

8989
	/* WaDisable4x2SubspanOptimization:ivb */
8990 8991
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8992

8993 8994 8995
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8996 8997 8998 8999
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9000 9001
	 */
	I915_WRITE(GEN7_GT_MODE,
9002
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9003

9004 9005 9006 9007
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9008

9009
	if (!HAS_PCH_NOP(dev_priv))
9010
		cpt_init_clock_gating(dev_priv);
9011

9012
	gen6_check_mch_setup(dev_priv);
9013 9014
}

9015
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9016
{
9017
	/* WaDisableEarlyCull:vlv */
9018 9019 9020
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9021
	/* WaDisableBackToBackFlipFix:vlv */
9022 9023 9024 9025
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9026
	/* WaPsdDispatchEnable:vlv */
9027
	/* WaDisablePSDDualDispatchEnable:vlv */
9028
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9029 9030
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9031

9032 9033 9034
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9035
	/* WaForceL3Serialization:vlv */
9036 9037 9038
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9039
	/* WaDisableDopClockGating:vlv */
9040 9041 9042
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9043
	/* This is required by WaCatErrorRejectionIssue:vlv */
9044 9045 9046 9047
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9048 9049
	gen7_setup_fixed_func_scheduler(dev_priv);

9050
	/*
9051
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9052
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9053 9054
	 */
	I915_WRITE(GEN6_UCGCTL2,
9055
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9056

9057 9058 9059 9060 9061
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9062

9063 9064 9065 9066
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9067 9068
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9069

9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9081 9082 9083 9084 9085 9086
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9087
	/*
9088
	 * WaDisableVLVClockGating_VBIIssue:vlv
9089 9090 9091
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9092
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9093 9094
}

9095
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9096
{
9097 9098 9099 9100 9101
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9102 9103 9104 9105

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9106 9107 9108 9109

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9110 9111 9112 9113

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9114

9115 9116 9117 9118 9119 9120 9121
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9122 9123 9124 9125 9126
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9127 9128
}

9129
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9141
	if (IS_GM45(dev_priv))
9142 9143
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9144 9145 9146 9147

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9148

9149 9150 9151
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9152
	g4x_disable_trickle_feed(dev_priv);
9153 9154
}

9155
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9156 9157 9158 9159 9160 9161
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9162 9163
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9164 9165 9166

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9167 9168
}

9169
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9170 9171 9172 9173 9174 9175 9176
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9177 9178
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9179 9180 9181

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9182 9183
}

9184
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9185 9186 9187 9188 9189 9190
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9191

9192
	if (IS_PINEVIEW(dev_priv))
9193
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9194 9195 9196

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9197 9198

	/* interrupts should cause a wake up from C3 */
9199
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9200 9201 9202

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9203 9204 9205

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9206 9207
}

9208
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9209 9210
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9211 9212 9213 9214

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9215 9216 9217

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9218 9219
}

9220
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9221
{
9222 9223 9224
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9225 9226
}

9227
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9228
{
9229
	dev_priv->display.init_clock_gating(dev_priv);
9230 9231
}

9232
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9233
{
9234 9235
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9236 9237
}

9238
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9254
	if (IS_ICELAKE(dev_priv))
O
Oscar Mateo 已提交
9255
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9256
	else if (IS_CANNONLAKE(dev_priv))
9257
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9258 9259
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9260
	else if (IS_SKYLAKE(dev_priv))
9261
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9262
	else if (IS_KABYLAKE(dev_priv))
9263
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9264
	else if (IS_BROXTON(dev_priv))
9265
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9266 9267
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9268
	else if (IS_BROADWELL(dev_priv))
9269
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9270
	else if (IS_CHERRYVIEW(dev_priv))
9271
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9272
	else if (IS_HASWELL(dev_priv))
9273
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9274
	else if (IS_IVYBRIDGE(dev_priv))
9275
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9276
	else if (IS_VALLEYVIEW(dev_priv))
9277
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9278 9279 9280
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
9281
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9282 9283
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9284
	else if (IS_I965GM(dev_priv))
9285
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9286
	else if (IS_I965G(dev_priv))
9287
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9300
/* Set up chip specific power management-related functions */
9301
void intel_init_pm(struct drm_i915_private *dev_priv)
9302
{
9303
	intel_fbc_init(dev_priv);
9304

9305
	/* For cxsr */
9306
	if (IS_PINEVIEW(dev_priv))
9307
		i915_pineview_get_mem_freq(dev_priv);
9308
	else if (IS_GEN5(dev_priv))
9309
		i915_ironlake_get_mem_freq(dev_priv);
9310

9311
	/* For FIFO watermark updates */
9312
	if (INTEL_GEN(dev_priv) >= 9) {
9313
		skl_setup_wm_latency(dev_priv);
9314
		dev_priv->display.initial_watermarks = skl_initial_wm;
9315
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9316
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9317
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9318
		ilk_setup_wm_latency(dev_priv);
9319

9320
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9321
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9322
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9323
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9324
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9325 9326 9327 9328 9329 9330
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9331 9332 9333 9334
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9335
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9336
		vlv_setup_wm_latency(dev_priv);
9337
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9338
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9339
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9340
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9341
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9342 9343 9344 9345 9346 9347
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9348
	} else if (IS_PINEVIEW(dev_priv)) {
9349
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9350 9351 9352 9353 9354 9355 9356 9357 9358
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9359
			intel_set_memory_cxsr(dev_priv, false);
9360 9361 9362
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9363
	} else if (IS_GEN4(dev_priv)) {
9364
		dev_priv->display.update_wm = i965_update_wm;
9365
	} else if (IS_GEN3(dev_priv)) {
9366 9367
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9368
	} else if (IS_GEN2(dev_priv)) {
9369
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9370
			dev_priv->display.update_wm = i845_update_wm;
9371
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9372 9373
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9374
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9375 9376 9377
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9378 9379 9380
	}
}

9381 9382 9383 9384 9385 9386 9387 9388 9389
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9390
		return -ENODEV;
9391 9392 9393
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9394
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9395 9396 9397 9398
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9399
		MISSING_CASE(flags);
9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9426
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9427
{
9428 9429
	int status;

9430
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9431

9432 9433 9434 9435 9436 9437
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9438 9439
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9440 9441 9442
		return -EAGAIN;
	}

9443 9444 9445
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9446

9447 9448 9449
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9450 9451
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9452 9453 9454
		return -ETIMEDOUT;
	}

9455 9456
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9457

9458 9459 9460 9461 9462 9463
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9464 9465
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9466 9467 9468
		return status;
	}

B
Ben Widawsky 已提交
9469 9470 9471
	return 0;
}

9472
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9473 9474
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9475
{
9476 9477
	int status;

9478
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9479

9480 9481 9482 9483 9484 9485
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9486 9487
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9488 9489 9490
		return -EAGAIN;
	}

9491
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9492
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9493
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9494

9495 9496
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9497 9498
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9499 9500
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9501 9502 9503
		return -ETIMEDOUT;
	}

9504
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9505

9506 9507 9508 9509 9510 9511
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9512 9513
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9514 9515 9516
		return status;
	}

B
Ben Widawsky 已提交
9517 9518
	return 0;
}
9519

9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9541
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9542 9543
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9544
 * for @timeout_base_ms and if this times out for another 50 ms with
9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9556
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9571
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9572 9573 9574 9575 9576 9577 9578 9579
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9580
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9581
	 * account for interrupts that could reduce the number of these
9582 9583
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9584 9585 9586 9587
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9588
	ret = wait_for_atomic(COND, 50);
9589 9590 9591 9592 9593 9594 9595
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9596 9597
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9598 9599
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9600 9601 9602 9603
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9604
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9605 9606
}

9607
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9608
{
9609 9610 9611
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9612 9613
}

9614
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9615
{
9616 9617
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9618 9619 9620 9621
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9622
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9623 9624
}

9625
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9626
{
9627 9628
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9629
	/* CHV needs even values */
9630
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9631 9632
}

9633
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9634
{
9635
	if (INTEL_GEN(dev_priv) >= 9)
9636 9637
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9638
	else if (IS_CHERRYVIEW(dev_priv))
9639
		return chv_gpu_freq(dev_priv, val);
9640
	else if (IS_VALLEYVIEW(dev_priv))
9641 9642 9643
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9644 9645
}

9646 9647
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9648
	if (INTEL_GEN(dev_priv) >= 9)
9649 9650
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9651
	else if (IS_CHERRYVIEW(dev_priv))
9652
		return chv_freq_opcode(dev_priv, val);
9653
	else if (IS_VALLEYVIEW(dev_priv))
9654 9655
		return byt_freq_opcode(dev_priv, val);
	else
9656
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9657
}
9658

9659
void intel_pm_setup(struct drm_i915_private *dev_priv)
9660
{
9661
	mutex_init(&dev_priv->pcu_lock);
C
Chris Wilson 已提交
9662
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9663

9664
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9665

9666 9667
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9668
}
9669

9670 9671 9672
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9673
	u32 lower, upper, tmp;
9674
	int loop = 2;
9675

9676 9677
	/*
	 * The register accessed do not need forcewake. We borrow
9678 9679
	 * uncore lock to prevent concurrent access to range reg.
	 */
9680
	lockdep_assert_held(&dev_priv->uncore.lock);
9681

9682 9683
	/*
	 * vlv and chv residency counters are 40 bits in width.
9684 9685
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9686 9687 9688 9689 9690
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9691
	 */
9692 9693
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9705
	} while (upper != tmp && --loop);
9706

9707 9708
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9709 9710 9711 9712
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9713 9714 9715
	return lower | (u64)upper << 8;
}

9716
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9717
			   const i915_reg_t reg)
9718
{
9719 9720 9721 9722
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9723
	u32 mul, div;
9724

9725
	if (!HAS_RC6(dev_priv))
9726 9727
		return 0;

9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9745 9746
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9747
		mul = 1000000;
9748
		div = dev_priv->czclk_freq;
9749
		overflow_hw = BIT_ULL(40);
9750 9751
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9752 9753 9754 9755 9756 9757 9758 9759
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9760

9761 9762
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9763
	}
9764

9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9788
}
T
Tvrtko Ursulin 已提交
9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}