i915_gem_gtt.c 106.8 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176
	/* Early VLV doesn't have this */
177
	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 179 180 181
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

182
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 184 185 186 187 188 189
		if (has_full_48bit_ppgtt)
			return 3;

		if (has_full_ppgtt)
			return 2;
	}

190
	return 1;
191 192
}

193 194 195
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
196
{
197
	u32 pte_flags;
198 199 200 201 202 203 204 205
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
206

207
	/* Applicable to VLV, and gen8+ */
208
	pte_flags = 0;
209
	if (i915_gem_object_is_readonly(vma->obj))
210 211
		pte_flags |= PTE_READ_ONLY;

212
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 214

	return 0;
215 216 217 218
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
219
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220
}
221

222 223 224 225 226 227
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

228 229
	vma->page_sizes = vma->obj->mm.page_sizes;

230 231 232 233 234 235 236 237 238 239 240 241
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
242 243

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 245
}

246
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 248
				  enum i915_cache_level level,
				  u32 flags)
B
Ben Widawsky 已提交
249
{
250 251 252 253
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
254 255 256

	switch (level) {
	case I915_CACHE_NONE:
257
		pte |= PPAT_UNCACHED;
258 259
		break;
	case I915_CACHE_WT:
260
		pte |= PPAT_DISPLAY_ELLC;
261 262
		break;
	default:
263
		pte |= PPAT_CACHED;
264 265 266
		break;
	}

B
Ben Widawsky 已提交
267 268 269
	return pte;
}

270 271
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
272
{
273
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
274 275
	pde |= addr;
	if (level != I915_CACHE_NONE)
276
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
277
	else
278
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
279 280 281
	return pde;
}

282 283 284
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

285 286
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
287
				 u32 unused)
288
{
289
	gen6_pte_t pte = GEN6_PTE_VALID;
290
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
291 292

	switch (level) {
293 294 295 296 297 298 299 300
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
301
		MISSING_CASE(level);
302 303 304 305 306
	}

	return pte;
}

307 308
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
309
				 u32 unused)
310
{
311
	gen6_pte_t pte = GEN6_PTE_VALID;
312 313 314 315 316
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
317 318 319 320 321
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
322
		pte |= GEN6_PTE_UNCACHED;
323 324
		break;
	default:
325
		MISSING_CASE(level);
326 327
	}

328 329 330
	return pte;
}

331 332
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
333
				 u32 flags)
334
{
335
	gen6_pte_t pte = GEN6_PTE_VALID;
336 337
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

338 339
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
340 341 342 343 344 345 346

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

347 348
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
349
				 u32 unused)
350
{
351
	gen6_pte_t pte = GEN6_PTE_VALID;
352
	pte |= HSW_PTE_ADDR_ENCODE(addr);
353 354

	if (level != I915_CACHE_NONE)
355
		pte |= HSW_WB_LLC_AGE3;
356 357 358 359

	return pte;
}

360 361
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
362
				  u32 unused)
363
{
364
	gen6_pte_t pte = GEN6_PTE_VALID;
365 366
	pte |= HSW_PTE_ADDR_ENCODE(addr);

367 368 369 370
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
371
		pte |= HSW_WT_ELLC_LLC_AGE3;
372 373
		break;
	default:
374
		pte |= HSW_WB_ELLC_LLC_AGE3;
375 376
		break;
	}
377 378 379 380

	return pte;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

416
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
417
{
418 419
	struct pagevec stack;
	struct page *page;
420

421 422
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
423

424 425 426
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
427 428 429 430 431

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
432 433 434
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
435

436
	/*
437
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
438 439 440 441 442 443
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
444
	pagevec_init(&stack);
445 446
	do {
		struct page *page;
447

448 449 450 451
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

452 453
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
454

455 456
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
457

458 459
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
460

461 462 463
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
464 465
	}

466 467 468 469
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
470
	}
471

472
	return page;
473 474
}

475 476
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
477
{
478 479
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
480

481
	lockdep_assert_held(&vm->free_pages.lock);
482
	GEM_BUG_ON(!pagevec_count(pvec));
483

484
	if (vm->pt_kmap_wc) {
485 486
		/*
		 * When we use WC, first fill up the global stash and then
487 488
		 * only if full immediately free the overflow.
		 */
489
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
490

491 492 493 494 495 496 497 498
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
499

500 501 502 503 504 505 506 507
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);
508

509
		pvec = &stack;
510
		set_pages_array_wb(pvec->pages, pvec->nr);
511 512

		spin_lock(&vm->free_pages.lock);
513 514 515
	}

	__pagevec_release(pvec);
516 517 518 519
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
520 521 522 523 524 525 526 527
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
528 529
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
530
		vm_free_pages_release(vm, false);
531 532 533 534 535 536
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
537 538 539 540 541 542 543 544
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
	i915_gem_shrinker_taints_mutex(&vm->mutex);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
565 566

	mutex_destroy(&vm->mutex);
567
}
568

569 570 571 572
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
573
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 575
	if (unlikely(!p->page))
		return -ENOMEM;
576

577 578 579
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
580
				      DMA_ATTR_SKIP_CPU_SYNC |
581
				      DMA_ATTR_NO_WARN);
582 583 584
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
585
	}
586 587

	return 0;
588 589
}

590
static int setup_page_dma(struct i915_address_space *vm,
591
			  struct i915_page_dma *p)
592
{
593
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 595
}

596
static void cleanup_page_dma(struct i915_address_space *vm,
597
			     struct i915_page_dma *p)
598
{
599 600
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
601 602
}

603
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604

605 606
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
607 608
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
609

610 611 612
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
613
{
614
	u64 * const vaddr = kmap_atomic(p->page);
615

616
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
617

618
	kunmap_atomic(vaddr);
619 620
}

621 622 623
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
624
{
625
	fill_page_dma(vm, p, (u64)v << 32 | v);
626 627
}

628
static int
629
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
630
{
631
	unsigned long size;
632

633 634 635 636 637 638 639 640 641 642 643 644
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
645
	size = I915_GTT_PAGE_SIZE_4K;
646 647
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
648 649
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
650
	}
651 652 653 654 655 656
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
657

658
		page = alloc_pages(gfp, order);
659
		if (unlikely(!page))
660
			goto skip;
661

662 663 664
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
665
					  DMA_ATTR_SKIP_CPU_SYNC |
666
					  DMA_ATTR_NO_WARN);
667 668
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
669

670 671
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
689 690
}

691
static void cleanup_scratch_page(struct i915_address_space *vm)
692
{
693 694
	struct i915_page_dma *p = &vm->scratch_page;

695 696 697
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
698 699
}

700
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
701
{
702
	struct i915_page_table *pt;
703

704
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
705
	if (unlikely(!pt))
706 707
		return ERR_PTR(-ENOMEM);

708 709 710 711
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
712

713
	pt->used_ptes = 0;
714 715 716
	return pt;
}

717
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
718
{
719
	cleanup_px(vm, pt);
720 721 722 723 724 725
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
726
	fill_px(vm, pt,
727
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
728 729
}

730
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
731 732
			       struct i915_page_table *pt)
{
733
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
734 735
}

736
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
737
{
738
	struct i915_page_directory *pd;
739

740
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
741
	if (unlikely(!pd))
742 743
		return ERR_PTR(-ENOMEM);

744 745 746 747
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
748

749
	pd->used_pdes = 0;
750 751 752
	return pd;
}

753
static void free_pd(struct i915_address_space *vm,
754
		    struct i915_page_directory *pd)
755
{
756 757
	cleanup_px(vm, pd);
	kfree(pd);
758 759 760 761 762
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
763 764
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
765
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
766 767
}

768
static int __pdp_init(struct i915_address_space *vm,
769 770
		      struct i915_page_directory_pointer *pdp)
{
771
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
772

773
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
774
					    I915_GFP_ALLOW_FAIL);
775
	if (unlikely(!pdp->page_directory))
776 777
		return -ENOMEM;

778
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
779

780 781 782 783 784 785 786 787 788
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

789 790 791 792 793
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

794 795
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
796 797 798 799
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

800
	GEM_BUG_ON(!use_4lvl(vm));
801 802 803 804 805

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

806
	ret = __pdp_init(vm, pdp);
807 808 809
	if (ret)
		goto fail_bitmap;

810
	ret = setup_px(vm, pdp);
811 812 813 814 815 816 817 818 819 820 821 822 823
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

824
static void free_pdp(struct i915_address_space *vm,
825 826 827
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
828 829 830 831 832 833

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
834 835
}

836 837 838 839 840 841 842
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

843
	fill_px(vm, pdp, scratch_pdpe);
844 845 846 847 848
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
849 850
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
851
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
852 853
}

854 855 856 857 858 859 860
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
861
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
862 863
}

864 865 866 867
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
868
				struct i915_page_table *pt,
869
				u64 start, u64 length)
870
{
871
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
872 873
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
874
	const gen8_pte_t scratch_pte =
875
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
876
	gen8_pte_t *vaddr;
877

878
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
879

880 881 882
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
883

884
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
885
	while (pte < pte_end)
886
		vaddr[pte++] = scratch_pte;
887
	kunmap_atomic(vaddr);
888 889

	return false;
890
}
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

906
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
907
				struct i915_page_directory *pd,
908
				u64 start, u64 length)
909 910
{
	struct i915_page_table *pt;
911
	u32 pde;
912 913

	gen8_for_each_pde(pt, pd, start, length, pde) {
914 915
		GEM_BUG_ON(pt == vm->scratch_pt);

916 917
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
918

919
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
920
		GEM_BUG_ON(!pd->used_pdes);
921
		pd->used_pdes--;
922 923

		free_pt(vm, pt);
924 925
	}

926 927
	return !pd->used_pdes;
}
928

929 930 931 932 933 934 935 936
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
937
	if (!use_4lvl(vm))
938 939 940 941 942
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
943
}
944

945 946 947 948
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
949
				 struct i915_page_directory_pointer *pdp,
950
				 u64 start, u64 length)
951 952
{
	struct i915_page_directory *pd;
953
	unsigned int pdpe;
954

955
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
956 957
		GEM_BUG_ON(pd == vm->scratch_pd);

958 959
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
960

961
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
962
		GEM_BUG_ON(!pdp->used_pdpes);
963
		pdp->used_pdpes--;
964

965 966
		free_pd(vm, pd);
	}
967

968
	return !pdp->used_pdpes;
969
}
970

971 972 973 974 975 976
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

977 978 979 980 981 982 983 984 985 986 987 988 989
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

990 991 992 993
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
994 995
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
996
{
997 998
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
999
	struct i915_page_directory_pointer *pdp;
1000
	unsigned int pml4e;
1001

1002
	GEM_BUG_ON(!use_4lvl(vm));
1003

1004
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1005 1006
		GEM_BUG_ON(pdp == vm->scratch_pdp);

1007 1008
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
1009

1010 1011 1012
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
1013 1014 1015
	}
}

1016
static inline struct sgt_dma {
1017 1018
	struct scatterlist *sg;
	dma_addr_t dma, max;
1019 1020 1021 1022 1023
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1042 1043
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1044
			      struct i915_page_directory_pointer *pdp,
1045
			      struct sgt_dma *iter,
1046
			      struct gen8_insert_pte *idx,
1047 1048
			      enum i915_cache_level cache_level,
			      u32 flags)
1049
{
1050
	struct i915_page_directory *pd;
1051
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1052 1053
	gen8_pte_t *vaddr;
	bool ret;
1054

1055
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1056 1057
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1058
	do {
1059 1060
		vaddr[idx->pte] = pte_encode | iter->dma;

1061
		iter->dma += I915_GTT_PAGE_SIZE;
1062 1063 1064 1065 1066 1067
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1068

1069 1070
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1071
		}
1072

1073 1074 1075 1076 1077 1078
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1079
				/* Limited by sg length for 3lvl */
1080 1081
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1082
					ret = true;
1083
					break;
1084 1085
				}

1086
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1087
				pd = pdp->page_directory[idx->pdpe];
1088
			}
1089

1090
			kunmap_atomic(vaddr);
1091
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1092
		}
1093
	} while (1);
1094
	kunmap_atomic(vaddr);
1095

1096
	return ret;
1097 1098
}

1099
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1100
				   struct i915_vma *vma,
1101
				   enum i915_cache_level cache_level,
1102
				   u32 flags)
1103
{
1104
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1105
	struct sgt_dma iter = sgt_dma(vma);
1106
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1107

1108
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1109
				      cache_level, flags);
1110 1111

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1112
}
1113

1114 1115 1116
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1117 1118
					   enum i915_cache_level cache_level,
					   u32 flags)
1119
{
1120
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1121 1122 1123 1124 1125 1126 1127 1128
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1129
		bool maybe_64K = false;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1151 1152 1153 1154 1155 1156 1157
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1177 1178 1179 1180 1181 1182
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1183 1184 1185 1186 1187 1188
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1205
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1227
		}
1228 1229

		vma->page_sizes.gtt |= page_size;
1230 1231 1232
	} while (iter->sg);
}

1233
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1234
				   struct i915_vma *vma,
1235
				   enum i915_cache_level cache_level,
1236
				   u32 flags)
1237 1238
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1239
	struct sgt_dma iter = sgt_dma(vma);
1240
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1241

1242
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1243 1244
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1245 1246 1247 1248
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1249 1250
						     &iter, &idx, cache_level,
						     flags))
1251
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1252 1253

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1254
	}
1255 1256
}

1257
static void gen8_free_page_tables(struct i915_address_space *vm,
1258
				  struct i915_page_directory *pd)
1259 1260 1261
{
	int i;

1262
	if (!px_page(pd))
1263 1264
		return;

1265 1266 1267
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1268
	}
B
Ben Widawsky 已提交
1269 1270
}

1271 1272
static int gen8_init_scratch(struct i915_address_space *vm)
{
1273
	int ret;
1274

1275
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1276 1277
	if (ret)
		return ret;
1278

1279
	vm->scratch_pt = alloc_pt(vm);
1280
	if (IS_ERR(vm->scratch_pt)) {
1281 1282
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1283 1284
	}

1285
	vm->scratch_pd = alloc_pd(vm);
1286
	if (IS_ERR(vm->scratch_pd)) {
1287 1288
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1289 1290
	}

1291
	if (use_4lvl(vm)) {
1292
		vm->scratch_pdp = alloc_pdp(vm);
1293
		if (IS_ERR(vm->scratch_pdp)) {
1294 1295
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1296 1297 1298
		}
	}

1299 1300
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1301
	if (use_4lvl(vm))
1302
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1303 1304

	return 0;
1305 1306

free_pd:
1307
	free_pd(vm, vm->scratch_pd);
1308
free_pt:
1309
	free_pt(vm, vm->scratch_pt);
1310
free_scratch_page:
1311
	cleanup_scratch_page(vm);
1312 1313

	return ret;
1314 1315
}

1316 1317
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1318
	struct i915_address_space *vm = &ppgtt->vm;
1319
	struct drm_i915_private *dev_priv = vm->i915;
1320 1321 1322
	enum vgt_g2v_type msg;
	int i;

1323 1324
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1325

1326 1327
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1328 1329 1330 1331

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1332
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1333
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1334

1335 1336
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1348 1349
static void gen8_free_scratch(struct i915_address_space *vm)
{
1350
	if (use_4lvl(vm))
1351 1352 1353 1354
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1355 1356
}

1357
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1358
				    struct i915_page_directory_pointer *pdp)
1359
{
1360
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1361 1362
	int i;

1363
	for (i = 0; i < pdpes; i++) {
1364
		if (pdp->page_directory[i] == vm->scratch_pd)
1365 1366
			continue;

1367 1368
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1369
	}
1370

1371
	free_pdp(vm, pdp);
1372 1373 1374 1375 1376 1377
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1378
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1379
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1380 1381
			continue;

1382
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1383 1384
	}

1385
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1386 1387 1388 1389
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1390
	struct drm_i915_private *dev_priv = vm->i915;
1391
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1392

1393
	if (intel_vgpu_active(dev_priv))
1394 1395
		gen8_ppgtt_notify_vgt(ppgtt, false);

1396
	if (use_4lvl(vm))
1397
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1398
	else
1399
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1400

1401
	gen8_free_scratch(vm);
1402 1403
}

1404 1405 1406
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1407
{
1408
	struct i915_page_table *pt;
1409
	u64 from = start;
1410
	unsigned int pde;
1411

1412
	gen8_for_each_pde(pt, pd, start, length, pde) {
1413 1414
		int count = gen8_pte_count(start, length);

1415
		if (pt == vm->scratch_pt) {
1416 1417
			pd->used_pdes++;

1418
			pt = alloc_pt(vm);
1419 1420
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1421
				goto unwind;
1422
			}
1423

1424
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1425
				gen8_initialize_pt(vm, pt);
1426 1427

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1428
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1429
		}
1430

1431
		pt->used_ptes += count;
1432
	}
1433
	return 0;
1434

1435 1436
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1437
	return -ENOMEM;
1438 1439
}

1440 1441 1442
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1443
{
1444
	struct i915_page_directory *pd;
1445 1446
	u64 from = start;
	unsigned int pdpe;
1447 1448
	int ret;

1449
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1450
		if (pd == vm->scratch_pd) {
1451 1452
			pdp->used_pdpes++;

1453
			pd = alloc_pd(vm);
1454 1455
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1456
				goto unwind;
1457
			}
1458

1459
			gen8_initialize_pd(vm, pd);
1460
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1461
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1462 1463

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1464 1465 1466
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1467 1468
		if (unlikely(ret))
			goto unwind_pd;
1469
	}
1470

B
Ben Widawsky 已提交
1471
	return 0;
1472

1473 1474 1475 1476 1477 1478 1479
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1480 1481 1482
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1483 1484
}

1485 1486
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1487
{
1488 1489 1490
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1501

1502
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1503 1504 1505 1506
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1507

1508 1509 1510
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1511

1512
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1513 1514
		if (unlikely(ret))
			goto unwind_pdp;
1515 1516 1517 1518
	}

	return 0;

1519 1520 1521 1522 1523
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1524 1525 1526
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1527 1528
}

1529 1530
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1531
			  u64 start, u64 length,
1532 1533 1534
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1535
	struct i915_address_space *vm = &ppgtt->vm;
1536
	struct i915_page_directory *pd;
1537
	u32 pdpe;
1538

1539
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1540
		struct i915_page_table *pt;
1541 1542 1543
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1544

1545
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1546 1547 1548
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1549
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1550
			u32 pte;
1551 1552
			gen8_pte_t *pt_vaddr;

1553
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1554 1555
				continue;

1556
			pt_vaddr = kmap_atomic_px(pt);
1557
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1558 1559 1560
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1586
	struct i915_address_space *vm = &ppgtt->vm;
1587
	const gen8_pte_t scratch_pte =
1588
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1589
	u64 start = 0, length = ppgtt->vm.total;
1590

1591
	if (use_4lvl(vm)) {
1592
		u64 pml4e;
1593 1594 1595
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1596
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1597
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1598 1599 1600
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1601
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1602
		}
1603 1604
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1605 1606 1607
	}
}

1608
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1609
{
1610
	struct i915_address_space *vm = &ppgtt->vm;
1611 1612
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1613
	u64 start = 0, length = ppgtt->vm.total;
1614 1615
	u64 from = start;
	unsigned int pdpe;
1616

1617 1618 1619 1620
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1621

1622 1623 1624 1625
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1626

1627 1628
	pdp->used_pdpes++; /* never remove */
	return 0;
1629

1630 1631 1632 1633 1634 1635 1636 1637
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1638 1639
}

1640
/*
1641 1642 1643 1644
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1645
 *
1646
 */
1647
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1648
{
1649 1650 1651 1652 1653 1654 1655
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1656 1657
	kref_init(&ppgtt->ref);

1658 1659
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1660

1661
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1662 1663 1664
		1ULL << 48 :
		1ULL << 32;

1665 1666 1667 1668 1669 1670
	/*
	 * From bdw, there is support for read-only pages in the PPGTT.
	 *
	 * XXX GVT is not honouring the lack of RW in the PTE bits.
	 */
	ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1671

1672 1673
	i915_address_space_init(&ppgtt->vm, i915);

1674 1675 1676
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1677
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1678
		ppgtt->vm.pt_kmap_wc = true;
1679

1680 1681 1682
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1683

1684 1685 1686 1687
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1688

1689
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1690

1691 1692 1693
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1694
	} else {
1695 1696 1697
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1698

1699 1700 1701
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1702
				__pdp_fini(&ppgtt->pdp);
1703
				goto err_scratch;
1704
			}
1705
		}
1706

1707 1708 1709
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1710
	}
1711

1712
	if (intel_vgpu_active(i915))
1713 1714
		gen8_ppgtt_notify_vgt(ppgtt, true);

1715
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1716 1717
	ppgtt->debug_dump = gen8_dump_ppgtt;

1718
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1719 1720 1721
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
1722

1723
	return ppgtt;
1724

1725
err_scratch:
1726
	gen8_free_scratch(&ppgtt->vm);
1727 1728 1729
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1730 1731
}

1732
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1733
{
1734
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1735
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1736 1737
	struct i915_page_table *pt;
	u32 pte, pde;
B
Ben Widawsky 已提交
1738

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);
B
Ben Widawsky 已提交
1757

1758 1759 1760 1761 1762
			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1763
			int i;
1764

B
Ben Widawsky 已提交
1765
			for (i = 0; i < 4; i++)
1766 1767 1768
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1769 1770
				continue;

C
Chris Wilson 已提交
1771
			seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1772
				   pde, pte,
1773
				   (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
B
Ben Widawsky 已提交
1774
			for (i = 0; i < 4; i++) {
1775 1776
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1777
				else
1778
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1779 1780 1781
			}
			seq_puts(m, "\n");
		}
1782
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1783 1784 1785
	}
}

1786
/* Write pde (index) from the page directory @pd to the page table @pt */
1787
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1788 1789
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1790
{
1791
	/* Caller needs to make sure the write completes if necessary */
1792 1793
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1794 1795
}

1796
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1797
{
1798
	struct intel_engine_cs *engine;
1799
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1800

1801
	for_each_engine(engine, dev_priv, id) {
1802 1803
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1804
		I915_WRITE(RING_MODE_GEN7(engine),
1805
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1806 1807
	}
}
B
Ben Widawsky 已提交
1808

1809
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1810
{
1811
	struct intel_engine_cs *engine;
1812
	u32 ecochk, ecobits;
1813
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1814

1815 1816
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1817

1818
	ecochk = I915_READ(GAM_ECOCHK);
1819
	if (IS_HASWELL(dev_priv)) {
1820 1821 1822 1823 1824 1825
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1826

1827
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1828
		/* GFX_MODE is per-ring on gen7+ */
1829
		I915_WRITE(RING_MODE_GEN7(engine),
1830
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1831
	}
1832
}
B
Ben Widawsky 已提交
1833

1834
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1835
{
1836
	u32 ecochk, gab_ctl, ecobits;
1837

1838 1839 1840
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1841

1842 1843 1844 1845 1846 1847 1848
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1849 1850
}

1851
/* PPGTT support for Sandybdrige/Gen6 and later */
1852
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1853
				   u64 start, u64 length)
1854
{
1855
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1856 1857 1858 1859
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
1860
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1861

1862
	while (num_entries) {
1863 1864 1865
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1866
		gen6_pte_t *vaddr;
1867

1868 1869 1870
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;
1871

1872 1873 1874 1875
		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1876

1877 1878
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1879 1880 1881 1882
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1883

1884 1885 1886 1887 1888
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1889

1890
		pte = 0;
1891
	}
1892 1893
}

1894
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1895
				      struct i915_vma *vma,
1896 1897
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1898
{
1899
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1900
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1901 1902
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1903
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1904
	struct sgt_dma iter = sgt_dma(vma);
1905 1906
	gen6_pte_t *vaddr;

1907 1908
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1909
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1910 1911
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1912

1913
		iter.dma += I915_GTT_PAGE_SIZE;
1914 1915 1916 1917
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1918

1919 1920 1921
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1922

1923
		if (++act_pte == GEN6_PTES) {
1924 1925
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1926
			act_pte = 0;
D
Daniel Vetter 已提交
1927
		}
1928
	} while (1);
1929
	kunmap_atomic(vaddr);
1930 1931

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1932 1933
}

1934
static int gen6_alloc_va_range(struct i915_address_space *vm,
1935
			       u64 start, u64 length)
1936
{
1937
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1938
	struct i915_page_table *pt;
1939 1940 1941
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1942

1943
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1944 1945
		const unsigned int count = gen6_pte_count(start, length);

1946 1947 1948 1949
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1950

1951
			gen6_initialize_pt(ppgtt, pt);
1952
			ppgtt->base.pd.page_table[pde] = pt;
1953 1954 1955 1956 1957 1958

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1959 1960

			GEM_BUG_ON(pt->used_ptes);
1961
		}
1962 1963

		pt->used_ptes += count;
1964 1965
	}

1966
	if (flush) {
1967 1968
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1969 1970 1971
	}

	return 0;
1972 1973

unwind_out:
1974
	gen6_ppgtt_clear_range(vm, from, start - from);
1975
	return -ENOMEM;
1976 1977
}

1978
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1979
{
1980 1981 1982
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1983
	int ret;
1984

1985
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1986 1987
	if (ret)
		return ret;
1988

1989 1990 1991 1992
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1993
	vm->scratch_pt = alloc_pt(vm);
1994
	if (IS_ERR(vm->scratch_pt)) {
1995
		cleanup_scratch_page(vm);
1996 1997 1998
		return PTR_ERR(vm->scratch_pt);
	}

1999
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
2000 2001
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
2002 2003 2004 2005

	return 0;
}

2006
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
2007
{
2008 2009
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
2010 2011
}

2012
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2013
{
2014
	struct i915_page_table *pt;
2015
	u32 pde;
2016

2017
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2018 2019 2020
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}
2021

2022 2023 2024
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2025

2026
	i915_vma_destroy(ppgtt->vma);
2027

2028 2029
	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
2030 2031
}

2032
static int pd_vma_set_pages(struct i915_vma *vma)
2033
{
2034 2035 2036
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
2037

2038 2039 2040
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
2041

2042 2043
	vma->pages = NULL;
}
2044

2045 2046 2047 2048 2049 2050
static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
2051
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2052 2053
	struct i915_page_table *pt;
	unsigned int pde;
2054

2055 2056
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2057

2058 2059
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2060

2061 2062
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2063

2064
	return 0;
2065
}
2066

2067
static void pd_vma_unbind(struct i915_vma *vma)
2068
{
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2087 2088
}

2089 2090 2091 2092 2093 2094 2095 2096
static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2097
{
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

2115 2116
	vma->active = RB_ROOT;

2117 2118 2119 2120 2121 2122 2123 2124 2125
	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
2126
}
2127

2128
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2129
{
2130
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2131
	int err;
2132

2133 2134 2135 2136 2137 2138 2139 2140 2141
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2142 2143 2144 2145 2146
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2158 2159
}

2160
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2161
{
2162
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2163

2164 2165 2166
	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;
2167

2168 2169
	i915_vma_unpin(ppgtt->vma);
}
2170

2171
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2172
{
2173
	struct i915_ggtt * const ggtt = &i915->ggtt;
2174
	struct gen6_hw_ppgtt *ppgtt;
2175
	int err;
2176

2177 2178 2179
	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);
2180

2181 2182
	kref_init(&ppgtt->base.ref);

2183 2184
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2185

2186
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2187

2188 2189
	i915_address_space_init(&ppgtt->base.vm, i915);

2190
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2191 2192 2193 2194
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2195

2196
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2197 2198 2199
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2200

2201
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2202

2203
	err = gen6_ppgtt_init_scratch(ppgtt);
2204 2205
	if (err)
		goto err_free;
2206

2207 2208 2209
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2210
		goto err_scratch;
2211
	}
2212

2213
	return &ppgtt->base;
2214

2215 2216
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2217 2218 2219
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2220
}
2221

2222
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2223 2224 2225 2226 2227
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2228
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2229
	if (IS_BROADWELL(dev_priv))
2230
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2231
	else if (IS_CHERRYVIEW(dev_priv))
2232
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2233
	else if (IS_GEN9_LP(dev_priv))
2234
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2235 2236
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2254 2255
}

2256
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2257
{
2258
	gtt_write_workarounds(dev_priv);
2259

2260 2261 2262
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2263
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2264 2265
		return 0;

2266
	if (!USES_PPGTT(dev_priv))
2267 2268
		return 0;

2269
	if (IS_GEN6(dev_priv))
2270
		gen6_ppgtt_enable(dev_priv);
2271
	else if (IS_GEN7(dev_priv))
2272 2273 2274
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2275
	else
2276
		MISSING_CASE(INTEL_GEN(dev_priv));
2277

2278 2279
	return 0;
}
2280

2281 2282 2283 2284 2285 2286 2287 2288 2289
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2290
struct i915_hw_ppgtt *
2291
i915_ppgtt_create(struct drm_i915_private *i915,
2292
		  struct drm_i915_file_private *fpriv)
2293 2294 2295
{
	struct i915_hw_ppgtt *ppgtt;

2296 2297 2298
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2299

2300
	ppgtt->vm.file = fpriv;
2301

2302
	trace_i915_ppgtt_create(&ppgtt->vm);
2303

2304 2305 2306
	return ppgtt;
}

2307
void i915_ppgtt_close(struct i915_address_space *vm)
2308 2309 2310 2311 2312 2313
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2327
			i915_vma_destroy(vma);
2328 2329 2330
	}
}

2331
void i915_ppgtt_release(struct kref *kref)
2332 2333 2334 2335
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2336
	trace_i915_ppgtt_release(&ppgtt->vm);
2337

2338
	ppgtt_destroy_vma(&ppgtt->vm);
2339

2340 2341 2342
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2343

2344 2345
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2346 2347
	kfree(ppgtt);
}
2348

2349 2350 2351
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2352
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2353 2354 2355 2356
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2357
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2358 2359
}

2360
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2361
{
2362
	struct intel_engine_cs *engine;
2363
	enum intel_engine_id id;
2364
	u32 fault;
2365

2366
	for_each_engine(engine, dev_priv, id) {
2367 2368
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2369
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2370
					 "\tAddr: 0x%08lx\n"
2371 2372 2373
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2374 2375 2376 2377
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2378
			I915_WRITE(RING_FAULT_REG(engine),
2379
				   fault & ~RING_FAULT_VALID);
2380 2381
		}
	}
2382

2383 2384 2385 2386 2387 2388 2389 2390
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2391 2392 2393 2394 2395 2396 2397 2398
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2399
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2400 2401
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2402 2403 2404
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2405 2406 2407
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2427 2428
}

2429
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2430
{
2431
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2432 2433 2434 2435

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2436
	if (INTEL_GEN(dev_priv) < 6)
2437 2438
		return;

2439
	i915_check_and_clear_faults(dev_priv);
2440

2441
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2442

2443
	i915_ggtt_invalidate(dev_priv);
2444 2445
}

2446 2447
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2448
{
2449
	do {
2450 2451 2452 2453
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2464
				 obj->base.size >> PAGE_SHIFT, NULL,
2465 2466 2467
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2468

2469
	return -ENOSPC;
2470 2471
}

2472
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2473 2474 2475 2476
{
	writeq(pte, addr);
}

2477 2478
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2479
				  u64 offset,
2480 2481 2482
				  enum i915_cache_level level,
				  u32 unused)
{
2483
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2484
	gen8_pte_t __iomem *pte =
2485
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2486

2487
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2488

2489
	ggtt->invalidate(vm->i915);
2490 2491
}

B
Ben Widawsky 已提交
2492
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2493
				     struct i915_vma *vma,
2494
				     enum i915_cache_level level,
2495
				     u32 flags)
B
Ben Widawsky 已提交
2496
{
2497
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2498 2499
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2500
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2501
	dma_addr_t addr;
2502

2503 2504 2505 2506
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2507

2508
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2509 2510
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2511
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2512

2513 2514 2515
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2516
	 */
2517
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2518 2519
}

2520 2521
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2522
				  u64 offset,
2523 2524 2525
				  enum i915_cache_level level,
				  u32 flags)
{
2526
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2527
	gen6_pte_t __iomem *pte =
2528
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2529

2530
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2531

2532
	ggtt->invalidate(vm->i915);
2533 2534
}

2535 2536 2537 2538 2539 2540
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2541
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2542
				     struct i915_vma *vma,
2543 2544
				     enum i915_cache_level level,
				     u32 flags)
2545
{
2546
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2547
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2548
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2549
	struct sgt_iter iter;
2550
	dma_addr_t addr;
2551
	for_each_sgt_dma(addr, iter, vma->pages)
2552
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2553

2554 2555 2556
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2557
	 */
2558
	ggtt->invalidate(vm->i915);
2559 2560
}

2561
static void nop_clear_range(struct i915_address_space *vm,
2562
			    u64 start, u64 length)
2563 2564 2565
{
}

B
Ben Widawsky 已提交
2566
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2567
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2568
{
2569
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2570 2571
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2572
	const gen8_pte_t scratch_pte =
2573
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2574
	gen8_pte_t __iomem *gtt_base =
2575 2576
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2632
	struct i915_vma *vma;
2633
	enum i915_cache_level level;
2634
	u32 flags;
2635 2636 2637 2638 2639 2640
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2641
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2642 2643 2644 2645 2646 2647
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2648
					     struct i915_vma *vma,
2649
					     enum i915_cache_level level,
2650
					     u32 flags)
2651
{
2652
	struct insert_entries arg = { vm, vma, level, flags };
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2682
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2683
				  u64 start, u64 length)
2684
{
2685
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2686 2687
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2688
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2689 2690
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2691 2692 2693 2694 2695 2696 2697
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2698
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2699
				     I915_CACHE_LLC, 0);
2700

2701 2702 2703 2704
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2705 2706
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2707
				  u64 offset,
2708 2709 2710 2711 2712 2713 2714 2715 2716
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2717
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2718
				     struct i915_vma *vma,
2719 2720
				     enum i915_cache_level cache_level,
				     u32 unused)
2721 2722 2723 2724
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2725 2726
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2727 2728
}

2729
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2730
				  u64 start, u64 length)
2731
{
2732
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2733 2734
}

2735 2736 2737
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2738
{
2739
	struct drm_i915_private *i915 = vma->vm->i915;
2740
	struct drm_i915_gem_object *obj = vma->obj;
2741
	u32 pte_flags;
2742

2743
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2744
	pte_flags = 0;
2745
	if (i915_gem_object_is_readonly(obj))
2746 2747
		pte_flags |= PTE_READ_ONLY;

2748
	intel_runtime_pm_get(i915);
2749
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2750
	intel_runtime_pm_put(i915);
2751

2752 2753
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2754 2755 2756 2757 2758
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2759
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2760 2761 2762 2763

	return 0;
}

2764 2765 2766 2767 2768 2769 2770 2771 2772
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2773 2774 2775
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2776
{
2777
	struct drm_i915_private *i915 = vma->vm->i915;
2778
	u32 pte_flags;
2779
	int ret;
2780

2781
	/* Currently applicable only to VLV */
2782
	pte_flags = 0;
2783
	if (i915_gem_object_is_readonly(vma->obj))
2784
		pte_flags |= PTE_READ_ONLY;
2785

2786 2787 2788
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2789
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2790 2791 2792
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2793
			if (ret)
2794
				return ret;
2795 2796
		}

2797 2798
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2799 2800
	}

2801
	if (flags & I915_VMA_GLOBAL_BIND) {
2802
		intel_runtime_pm_get(i915);
2803
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2804
		intel_runtime_pm_put(i915);
2805
	}
2806

2807
	return 0;
2808 2809
}

2810
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2811
{
2812
	struct drm_i915_private *i915 = vma->vm->i915;
2813

2814 2815
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2816
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2817 2818
		intel_runtime_pm_put(i915);
	}
2819

2820
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2821
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2822 2823 2824

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2825 2826
}

2827 2828
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2829
{
D
David Weinehall 已提交
2830 2831
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2832
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2833

2834
	if (unlikely(ggtt->do_idle_maps)) {
2835
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2836 2837 2838 2839 2840
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2841

2842
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2843
}
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2855 2856
	vma->page_sizes = vma->obj->mm.page_sizes;

2857 2858 2859
	return 0;
}

C
Chris Wilson 已提交
2860
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2861
				  unsigned long color,
2862 2863
				  u64 *start,
				  u64 *end)
2864
{
2865
	if (node->allocated && node->color != color)
2866
		*start += I915_GTT_PAGE_SIZE;
2867

2868 2869 2870 2871 2872
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2873
	node = list_next_entry(node, node_list);
2874
	if (node->color != color)
2875
		*end -= I915_GTT_PAGE_SIZE;
2876
}
B
Ben Widawsky 已提交
2877

2878 2879 2880 2881 2882 2883
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2884
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2885 2886
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2887

2888
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2889 2890 2891 2892
		err = -ENODEV;
		goto err_ppgtt;
	}

2893 2894 2895 2896 2897 2898 2899 2900 2901
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2902 2903

	i915->mm.aliasing_ppgtt = ppgtt;
2904

2905 2906
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2907

2908 2909
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2910

2911 2912 2913
	return 0;

err_ppgtt:
2914
	i915_ppgtt_put(ppgtt);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2927
	i915_ppgtt_put(ppgtt);
2928

2929 2930
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2931 2932
}

2933
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2934
{
2935 2936 2937 2938 2939 2940 2941 2942 2943
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2944
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2945
	unsigned long hole_start, hole_end;
2946
	struct drm_mm_node *entry;
2947
	int ret;
2948

2949 2950 2951
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2952

2953
	/* Reserve a mappable slot for our lockless error capture */
2954
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2955 2956 2957
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2958 2959 2960
	if (ret)
		return ret;

2961
	/* Clear any non-preallocated blocks */
2962
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2963 2964
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2965 2966
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2967 2968 2969
	}

	/* And finally clear the reserved guard page */
2970
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2971

2972
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2973
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2974
		if (ret)
2975
			goto err;
2976 2977
	}

2978
	return 0;
2979 2980 2981 2982

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2983 2984
}

2985 2986
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2987
 * @dev_priv: i915 device
2988
 */
2989
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2990
{
2991
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2992
	struct i915_vma *vma, *vn;
2993
	struct pagevec *pvec;
2994

2995
	ggtt->vm.closed = true;
2996 2997

	mutex_lock(&dev_priv->drm.struct_mutex);
2998 2999
	i915_gem_fini_aliasing_ppgtt(dev_priv);

3000 3001
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
3002
		WARN_ON(i915_vma_unbind(vma));
3003

3004 3005 3006
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

3007
	if (drm_mm_initialized(&ggtt->vm.mm)) {
3008
		intel_vgt_deballoon(dev_priv);
3009
		i915_address_space_fini(&ggtt->vm);
3010 3011
	}

3012
	ggtt->vm.cleanup(&ggtt->vm);
3013

3014
	pvec = &dev_priv->mm.wc_stash.pvec;
3015 3016 3017 3018 3019
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

3020
	mutex_unlock(&dev_priv->drm.struct_mutex);
3021 3022

	arch_phys_wc_del(ggtt->mtrr);
3023
	io_mapping_fini(&ggtt->iomap);
3024 3025

	i915_gem_cleanup_stolen(&dev_priv->drm);
3026
}
3027

3028
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3029 3030 3031 3032 3033 3034
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

3035
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3036 3037 3038 3039 3040
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3041 3042

#ifdef CONFIG_X86_32
3043
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
3044 3045 3046 3047
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3048 3049 3050
	return bdw_gmch_ctl << 20;
}

3051
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3062
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3063
{
3064
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3065
	struct pci_dev *pdev = dev_priv->drm.pdev;
3066
	phys_addr_t phys_addr;
3067
	int ret;
B
Ben Widawsky 已提交
3068 3069

	/* For Modern GENs the PTEs and register space are split in the BAR */
3070
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3071

I
Imre Deak 已提交
3072
	/*
3073 3074 3075
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3076 3077 3078
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3079
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3080
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3081
	else
3082
		ggtt->gsm = ioremap_wc(phys_addr, size);
3083
	if (!ggtt->gsm) {
3084
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3085 3086 3087
		return -ENOMEM;
	}

3088
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3089
	if (ret) {
B
Ben Widawsky 已提交
3090 3091
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3092
		iounmap(ggtt->gsm);
3093
		return ret;
B
Ben Widawsky 已提交
3094 3095
	}

3096
	return 0;
B
Ben Widawsky 已提交
3097 3098
}

3099 3100
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3101
{
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3145
	struct intel_ppat_entry *entry = NULL;
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3168
		if (!entry)
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3245
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3283 3284
}

B
Ben Widawsky 已提交
3285 3286 3287
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3288
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3289
{
3290 3291 3292 3293
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3294

3295
	if (!USES_PPGTT(ppat->i915)) {
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3309 3310 3311
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3312

3313 3314 3315 3316 3317 3318 3319 3320
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3321 3322
}

3323
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3324
{
3325 3326 3327 3328
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3329 3330 3331 3332 3333 3334 3335

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3347 3348
	 */

3349 3350 3351 3352 3353 3354 3355 3356
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3357 3358
}

3359 3360 3361 3362 3363
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3364
	cleanup_scratch_page(vm);
3365 3366
}

3367 3368
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3369 3370 3371 3372 3373
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3374
	if (INTEL_GEN(dev_priv) >= 10)
3375
		cnl_setup_private_ppat(ppat);
3376
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3377
		chv_setup_private_ppat(ppat);
3378
	else
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3390 3391
}

3392
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3393
{
3394
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3395
	struct pci_dev *pdev = dev_priv->drm.pdev;
3396
	unsigned int size;
B
Ben Widawsky 已提交
3397
	u16 snb_gmch_ctl;
3398
	int err;
B
Ben Widawsky 已提交
3399 3400

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3401 3402 3403 3404
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3405

3406 3407 3408 3409 3410
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3411

3412
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3413
	if (IS_CHERRYVIEW(dev_priv))
3414
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3415
	else
3416
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3417

3418 3419 3420 3421
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3422
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3423
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3424

3425
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3426

3427 3428
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3429 3430 3431 3432
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3433 3434
	}

3435 3436
	ggtt->invalidate = gen6_ggtt_invalidate;

3437 3438 3439 3440 3441
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3442 3443
	setup_private_pat(dev_priv);

3444
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3445 3446
}

3447
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3448
{
3449
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3450
	struct pci_dev *pdev = dev_priv->drm.pdev;
3451
	unsigned int size;
3452
	u16 snb_gmch_ctl;
3453
	int err;
3454

3455 3456 3457 3458
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3459

3460 3461
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3462
	 */
3463
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3464
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3465
		return -ENXIO;
3466 3467
	}

3468 3469 3470 3471 3472
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3473
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3474

3475
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3476
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3477

3478 3479 3480 3481
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3482

3483 3484
	ggtt->invalidate = gen6_ggtt_invalidate;

3485
	if (HAS_EDRAM(dev_priv))
3486
		ggtt->vm.pte_encode = iris_pte_encode;
3487
	else if (IS_HASWELL(dev_priv))
3488
		ggtt->vm.pte_encode = hsw_pte_encode;
3489
	else if (IS_VALLEYVIEW(dev_priv))
3490
		ggtt->vm.pte_encode = byt_pte_encode;
3491
	else if (INTEL_GEN(dev_priv) >= 7)
3492
		ggtt->vm.pte_encode = ivb_pte_encode;
3493
	else
3494
		ggtt->vm.pte_encode = snb_pte_encode;
3495

3496 3497 3498 3499 3500
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3501
	return ggtt_probe_common(ggtt, size);
3502 3503
}

3504
static void i915_gmch_remove(struct i915_address_space *vm)
3505
{
3506
	intel_gmch_remove();
3507
}
3508

3509
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3510
{
3511
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3512
	phys_addr_t gmadr_base;
3513 3514
	int ret;

3515
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3516 3517 3518 3519 3520
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3521
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3522

3523 3524 3525 3526
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3527
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3528 3529 3530 3531
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3532

3533 3534
	ggtt->invalidate = gmch_ggtt_invalidate;

3535 3536 3537 3538 3539
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3540
	if (unlikely(ggtt->do_idle_maps))
3541 3542
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3543 3544 3545
	return 0;
}

3546
/**
3547
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3548
 * @dev_priv: i915 device
3549
 */
3550
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3551
{
3552
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3553 3554
	int ret;

3555 3556
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3557

3558 3559 3560 3561 3562 3563
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3564
	if (ret)
3565 3566
		return ret;

3567 3568 3569 3570 3571
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3572
	if (USES_GUC(dev_priv)) {
3573 3574 3575
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3576 3577
	}

3578
	if ((ggtt->vm.total - 1) >> 32) {
3579
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3580
			  " of address space! Found %lldM!\n",
3581 3582 3583 3584
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3585 3586
	}

3587
	if (ggtt->mappable_end > ggtt->vm.total) {
3588
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3589
			  " aperture=%pa, total=%llx\n",
3590 3591
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3592 3593
	}

3594
	/* GMADR is the PCI mmio aperture into the global GTT. */
3595
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3596
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3597
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3598
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3599
	if (intel_vtd_active())
3600
		DRM_INFO("VT-d active for gfx access\n");
3601 3602

	return 0;
3603 3604 3605 3606
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3607
 * @dev_priv: i915 device
3608
 */
3609
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3610 3611 3612 3613
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3614
	stash_init(&dev_priv->mm.wc_stash);
3615

3616 3617 3618 3619
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3620
	 */
C
Chris Wilson 已提交
3621
	mutex_lock(&dev_priv->drm.struct_mutex);
3622
	i915_address_space_init(&ggtt->vm, dev_priv);
3623 3624 3625 3626

	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3627
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3628
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3629
	mutex_unlock(&dev_priv->drm.struct_mutex);
3630

3631 3632
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3633
				dev_priv->ggtt.mappable_end)) {
3634 3635 3636 3637
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3638
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3639

3640 3641 3642 3643
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3644
	ret = i915_gem_init_stolen(dev_priv);
3645 3646 3647 3648
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3649 3650

out_gtt_cleanup:
3651
	ggtt->vm.cleanup(&ggtt->vm);
3652
	return ret;
3653
}
3654

3655
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3656
{
3657
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3658 3659 3660 3661 3662
		return -EIO;

	return 0;
}

3663 3664
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3665 3666
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3667
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3668 3669

	i915_ggtt_invalidate(i915);
3670 3671 3672 3673
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3674 3675 3676 3677
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3678 3679

	i915_ggtt_invalidate(i915);
3680 3681
}

3682
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3683
{
3684
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3685
	struct i915_vma *vma, *vn;
3686

3687
	i915_check_and_clear_faults(dev_priv);
3688 3689

	/* First fill our portion of the GTT with scratch pages */
3690
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3691

3692
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3693 3694

	/* clflush objects bound into the GGTT and rebind them. */
3695 3696
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3697
		struct drm_i915_gem_object *obj = vma->obj;
3698

3699 3700
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3701

3702 3703
		if (!i915_vma_unbind(vma))
			continue;
3704

3705 3706 3707 3708 3709
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3710
	}
3711

3712
	ggtt->vm.closed = false;
3713
	i915_ggtt_invalidate(dev_priv);
3714

3715
	if (INTEL_GEN(dev_priv) >= 8) {
3716
		struct intel_ppat *ppat = &dev_priv->ppat;
3717

3718 3719
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3720 3721 3722 3723
		return;
	}
}

3724
static struct scatterlist *
3725
rotate_pages(const dma_addr_t *in, unsigned int offset,
3726
	     unsigned int width, unsigned int height,
3727
	     unsigned int stride,
3728
	     struct sg_table *st, struct scatterlist *sg)
3729 3730 3731 3732 3733
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3734
		src_idx = stride * (height - 1) + column;
3735 3736 3737 3738 3739 3740
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3741
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3742
			sg_dma_address(sg) = in[offset + src_idx];
3743
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3744
			sg = sg_next(sg);
3745
			src_idx -= stride;
3746 3747
		}
	}
3748 3749

	return sg;
3750 3751
}

3752 3753 3754
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3755
{
3756
	const unsigned long n_pages = obj->base.size / I915_GTT_PAGE_SIZE;
3757
	unsigned int size = intel_rotation_info_size(rot_info);
3758 3759
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3760 3761 3762
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3763
	struct scatterlist *sg;
3764
	int ret = -ENOMEM;
3765 3766

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3767
	page_addr_list = kvmalloc_array(n_pages,
3768
					sizeof(dma_addr_t),
3769
					GFP_KERNEL);
3770 3771 3772 3773 3774 3775 3776 3777
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3778
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3779 3780 3781 3782 3783
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3784
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3785
		page_addr_list[i++] = dma_addr;
3786

3787
	GEM_BUG_ON(i != n_pages);
3788 3789 3790
	st->nents = 0;
	sg = st->sgl;

3791 3792 3793 3794
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3795 3796
	}

M
Michal Hocko 已提交
3797
	kvfree(page_addr_list);
3798 3799 3800 3801 3802 3803

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3804
	kvfree(page_addr_list);
3805

3806 3807
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3808

3809 3810
	return ERR_PTR(ret);
}
3811

3812
static noinline struct sg_table *
3813 3814 3815 3816
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3817
	struct scatterlist *sg, *iter;
3818
	unsigned int count = view->partial.size;
3819
	unsigned int offset;
3820 3821 3822 3823 3824 3825
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3826
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3827 3828 3829
	if (ret)
		goto err_sg_alloc;

3830
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3831 3832
	GEM_BUG_ON(!iter);

3833 3834
	sg = st->sgl;
	st->nents = 0;
3835 3836
	do {
		unsigned int len;
3837

3838 3839 3840 3841 3842 3843
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3844 3845

		st->nents++;
3846 3847 3848 3849 3850
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3851

3852 3853 3854 3855
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3856 3857 3858 3859 3860 3861 3862

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3863
static int
3864
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3865
{
3866
	int ret;
3867

3868 3869 3870 3871 3872 3873 3874
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3875
	switch (vma->ggtt_view.type) {
3876 3877 3878
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3879 3880
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3881 3882
		return 0;

3883
	case I915_GGTT_VIEW_ROTATED:
3884
		vma->pages =
3885 3886 3887 3888
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3889
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3890 3891
		break;
	}
3892

3893 3894
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3895 3896
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3897 3898
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3899
	}
3900
	return ret;
3901 3902
}

3903 3904
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3939
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3940
	GEM_BUG_ON(drm_mm_node_allocated(node));
3941 3942 3943 3944 3945 3946 3947 3948 3949

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3950 3951 3952
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3953 3954 3955 3956 3957 3958 3959
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3985 3986
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3987 3988 3989 3990 3991 3992 3993 3994 3995
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3996
 *         must be #I915_GTT_PAGE_SIZE aligned
3997 3998 3999
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
4000 4001 4002 4003 4004 4005
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
4006 4007
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4024
	enum drm_mm_insert_mode mode;
4025
	u64 offset;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4036
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4037
	GEM_BUG_ON(drm_mm_node_allocated(node));
4038 4039 4040 4041 4042 4043 4044

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4045 4046
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4047
		mode = DRM_MM_INSERT_HIGHEST;
4048 4049
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4061 4062 4063
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4064 4065 4066
	if (err != -ENOSPC)
		return err;

4067 4068 4069 4070 4071 4072 4073 4074 4075
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4076 4077 4078
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4108 4109 4110 4111 4112
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4113 4114 4115
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4116
}
4117 4118 4119

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4120
#include "selftests/i915_gem_gtt.c"
4121
#endif