i915_gem_gtt.c 106.3 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176
	/* Early VLV doesn't have this */
177
	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 179 180 181
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

182
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 184 185 186 187 188 189
		if (has_full_48bit_ppgtt)
			return 3;

		if (has_full_ppgtt)
			return 2;
	}

190
	return 1;
191 192
}

193 194 195
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
196
{
197
	u32 pte_flags;
198 199 200 201 202 203 204 205
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
206

207
	/* Applicable to VLV, and gen8+ */
208
	pte_flags = 0;
209 210 211
	if (vma->obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

212
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 214

	return 0;
215 216 217 218
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
219
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220
}
221

222 223 224 225 226 227
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

228 229
	vma->page_sizes = vma->obj->mm.page_sizes;

230 231 232 233 234 235 236 237 238 239 240 241
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
242 243

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 245
}

246
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 248
				  enum i915_cache_level level,
				  u32 flags)
B
Ben Widawsky 已提交
249
{
250 251 252 253
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
254 255 256

	switch (level) {
	case I915_CACHE_NONE:
257
		pte |= PPAT_UNCACHED;
258 259
		break;
	case I915_CACHE_WT:
260
		pte |= PPAT_DISPLAY_ELLC;
261 262
		break;
	default:
263
		pte |= PPAT_CACHED;
264 265 266
		break;
	}

B
Ben Widawsky 已提交
267 268 269
	return pte;
}

270 271
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
272
{
273
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
274 275
	pde |= addr;
	if (level != I915_CACHE_NONE)
276
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
277
	else
278
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
279 280 281
	return pde;
}

282 283 284
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

285 286
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
287
				 u32 unused)
288
{
289
	gen6_pte_t pte = GEN6_PTE_VALID;
290
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
291 292

	switch (level) {
293 294 295 296 297 298 299 300
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
301
		MISSING_CASE(level);
302 303 304 305 306
	}

	return pte;
}

307 308
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
309
				 u32 unused)
310
{
311
	gen6_pte_t pte = GEN6_PTE_VALID;
312 313 314 315 316
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
317 318 319 320 321
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
322
		pte |= GEN6_PTE_UNCACHED;
323 324
		break;
	default:
325
		MISSING_CASE(level);
326 327
	}

328 329 330
	return pte;
}

331 332
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
333
				 u32 flags)
334
{
335
	gen6_pte_t pte = GEN6_PTE_VALID;
336 337
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

338 339
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
340 341 342 343 344 345 346

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

347 348
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
349
				 u32 unused)
350
{
351
	gen6_pte_t pte = GEN6_PTE_VALID;
352
	pte |= HSW_PTE_ADDR_ENCODE(addr);
353 354

	if (level != I915_CACHE_NONE)
355
		pte |= HSW_WB_LLC_AGE3;
356 357 358 359

	return pte;
}

360 361
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
362
				  u32 unused)
363
{
364
	gen6_pte_t pte = GEN6_PTE_VALID;
365 366
	pte |= HSW_PTE_ADDR_ENCODE(addr);

367 368 369 370
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
371
		pte |= HSW_WT_ELLC_LLC_AGE3;
372 373
		break;
	default:
374
		pte |= HSW_WB_ELLC_LLC_AGE3;
375 376
		break;
	}
377 378 379 380

	return pte;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

416
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
417
{
418 419
	struct pagevec stack;
	struct page *page;
420

421 422
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
423

424 425 426
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
427 428 429 430 431

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
432 433 434
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
435

436
	/*
437
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
438 439 440 441 442 443
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
444
	pagevec_init(&stack);
445 446
	do {
		struct page *page;
447

448 449 450 451
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

452 453
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
454

455 456
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
457

458 459
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
460

461 462 463
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
464
	}
465

466 467 468 469 470 471 472
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
473 474
}

475 476
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
477
{
478 479
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
480

481
	lockdep_assert_held(&vm->free_pages.lock);
482
	GEM_BUG_ON(!pagevec_count(pvec));
483

484
	if (vm->pt_kmap_wc) {
485 486
		/*
		 * When we use WC, first fill up the global stash and then
487 488
		 * only if full immediately free the overflow.
		 */
489
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
490

491 492 493 494 495 496 497 498
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
499

500 501 502 503 504 505 506 507 508 509
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
510
		set_pages_array_wb(pvec->pages, pvec->nr);
511 512

		spin_lock(&vm->free_pages.lock);
513 514 515
	}

	__pagevec_release(pvec);
516 517 518 519
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
520 521 522 523 524 525 526 527
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
528 529
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
530
		vm_free_pages_release(vm, false);
531 532 533 534 535 536
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
537 538 539 540 541 542 543 544
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
	i915_gem_shrinker_taints_mutex(&vm->mutex);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
565 566

	mutex_destroy(&vm->mutex);
567
}
568

569 570 571 572
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
573
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 575
	if (unlikely(!p->page))
		return -ENOMEM;
576

577 578 579
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
580
				      DMA_ATTR_SKIP_CPU_SYNC |
581
				      DMA_ATTR_NO_WARN);
582 583 584
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
585
	}
586 587

	return 0;
588 589
}

590
static int setup_page_dma(struct i915_address_space *vm,
591
			  struct i915_page_dma *p)
592
{
593
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 595
}

596
static void cleanup_page_dma(struct i915_address_space *vm,
597
			     struct i915_page_dma *p)
598
{
599 600
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
601 602
}

603
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604

605 606
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
607 608
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
609

610 611 612
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
613
{
614
	u64 * const vaddr = kmap_atomic(p->page);
615

616
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
617

618
	kunmap_atomic(vaddr);
619 620
}

621 622 623
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
624
{
625
	fill_page_dma(vm, p, (u64)v << 32 | v);
626 627
}

628
static int
629
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
630
{
631
	unsigned long size;
632

633 634 635 636 637 638 639 640 641 642 643 644
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
645
	size = I915_GTT_PAGE_SIZE_4K;
646 647
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
648 649
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
650
	}
651 652 653 654 655 656
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
657

658
		page = alloc_pages(gfp, order);
659
		if (unlikely(!page))
660
			goto skip;
661

662 663 664
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
665
					  DMA_ATTR_SKIP_CPU_SYNC |
666
					  DMA_ATTR_NO_WARN);
667 668
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
669

670 671
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
689 690
}

691
static void cleanup_scratch_page(struct i915_address_space *vm)
692
{
693 694
	struct i915_page_dma *p = &vm->scratch_page;

695 696 697
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
698 699
}

700
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
701
{
702
	struct i915_page_table *pt;
703

704
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
705
	if (unlikely(!pt))
706 707
		return ERR_PTR(-ENOMEM);

708 709 710 711
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
712

713
	pt->used_ptes = 0;
714 715 716
	return pt;
}

717
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
718
{
719
	cleanup_px(vm, pt);
720 721 722 723 724 725
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
726
	fill_px(vm, pt,
727
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
728 729
}

730
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
731 732
			       struct i915_page_table *pt)
{
733
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
734 735
}

736
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
737
{
738
	struct i915_page_directory *pd;
739

740
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
741
	if (unlikely(!pd))
742 743
		return ERR_PTR(-ENOMEM);

744 745 746 747
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
748

749
	pd->used_pdes = 0;
750 751 752
	return pd;
}

753
static void free_pd(struct i915_address_space *vm,
754
		    struct i915_page_directory *pd)
755
{
756 757
	cleanup_px(vm, pd);
	kfree(pd);
758 759 760 761 762
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
763 764
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
765
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
766 767
}

768
static int __pdp_init(struct i915_address_space *vm,
769 770
		      struct i915_page_directory_pointer *pdp)
{
771
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
772

773
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
774
					    I915_GFP_ALLOW_FAIL);
775
	if (unlikely(!pdp->page_directory))
776 777
		return -ENOMEM;

778
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
779

780 781 782 783 784 785 786 787 788
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

789 790 791 792 793
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

794 795
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
796 797 798 799
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

800
	GEM_BUG_ON(!use_4lvl(vm));
801 802 803 804 805

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

806
	ret = __pdp_init(vm, pdp);
807 808 809
	if (ret)
		goto fail_bitmap;

810
	ret = setup_px(vm, pdp);
811 812 813 814 815 816 817 818 819 820 821 822 823
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

824
static void free_pdp(struct i915_address_space *vm,
825 826 827
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
828 829 830 831 832 833

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
834 835
}

836 837 838 839 840 841 842
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

843
	fill_px(vm, pdp, scratch_pdpe);
844 845 846 847 848
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
849 850
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
851
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
852 853
}

854 855 856 857 858 859 860
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
861
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
862 863
}

864 865 866 867
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
868
				struct i915_page_table *pt,
869
				u64 start, u64 length)
870
{
871
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
872 873
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
874
	const gen8_pte_t scratch_pte =
875
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
876
	gen8_pte_t *vaddr;
877

878
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
879

880 881 882
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
883

884
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
885
	while (pte < pte_end)
886
		vaddr[pte++] = scratch_pte;
887
	kunmap_atomic(vaddr);
888 889

	return false;
890
}
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

906
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
907
				struct i915_page_directory *pd,
908
				u64 start, u64 length)
909 910
{
	struct i915_page_table *pt;
911
	u32 pde;
912 913

	gen8_for_each_pde(pt, pd, start, length, pde) {
914 915
		GEM_BUG_ON(pt == vm->scratch_pt);

916 917
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
918

919
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
920
		GEM_BUG_ON(!pd->used_pdes);
921
		pd->used_pdes--;
922 923

		free_pt(vm, pt);
924 925
	}

926 927
	return !pd->used_pdes;
}
928

929 930 931 932 933 934 935 936
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
937
	if (!use_4lvl(vm))
938 939 940 941 942
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
943
}
944

945 946 947 948
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
949
				 struct i915_page_directory_pointer *pdp,
950
				 u64 start, u64 length)
951 952
{
	struct i915_page_directory *pd;
953
	unsigned int pdpe;
954

955
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
956 957
		GEM_BUG_ON(pd == vm->scratch_pd);

958 959
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
960

961
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
962
		GEM_BUG_ON(!pdp->used_pdpes);
963
		pdp->used_pdpes--;
964

965 966
		free_pd(vm, pd);
	}
967

968
	return !pdp->used_pdpes;
969
}
970

971 972 973 974 975 976
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

977 978 979 980 981 982 983 984 985 986 987 988 989
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

990 991 992 993
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
994 995
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
996
{
997 998
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
999
	struct i915_page_directory_pointer *pdp;
1000
	unsigned int pml4e;
1001

1002
	GEM_BUG_ON(!use_4lvl(vm));
1003

1004
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1005 1006
		GEM_BUG_ON(pdp == vm->scratch_pdp);

1007 1008
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
1009

1010 1011 1012
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
1013 1014 1015
	}
}

1016
static inline struct sgt_dma {
1017 1018
	struct scatterlist *sg;
	dma_addr_t dma, max;
1019 1020 1021 1022 1023
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1042 1043
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1044
			      struct i915_page_directory_pointer *pdp,
1045
			      struct sgt_dma *iter,
1046
			      struct gen8_insert_pte *idx,
1047 1048
			      enum i915_cache_level cache_level,
			      u32 flags)
1049
{
1050
	struct i915_page_directory *pd;
1051
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1052 1053
	gen8_pte_t *vaddr;
	bool ret;
1054

1055
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1056 1057
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1058
	do {
1059 1060
		vaddr[idx->pte] = pte_encode | iter->dma;

1061 1062 1063 1064 1065 1066 1067
		iter->dma += PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1068

1069 1070
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1071
		}
1072

1073 1074 1075 1076 1077 1078
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1079
				/* Limited by sg length for 3lvl */
1080 1081
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1082
					ret = true;
1083
					break;
1084 1085
				}

1086
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1087
				pd = pdp->page_directory[idx->pdpe];
1088
			}
1089

1090
			kunmap_atomic(vaddr);
1091
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1092
		}
1093
	} while (1);
1094
	kunmap_atomic(vaddr);
1095

1096
	return ret;
1097 1098
}

1099
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1100
				   struct i915_vma *vma,
1101
				   enum i915_cache_level cache_level,
1102
				   u32 flags)
1103
{
1104
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1105
	struct sgt_dma iter = sgt_dma(vma);
1106
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1107

1108
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1109
				      cache_level, flags);
1110 1111

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1112
}
1113

1114 1115 1116
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1117 1118
					   enum i915_cache_level cache_level,
					   u32 flags)
1119
{
1120
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1121 1122 1123 1124 1125 1126 1127 1128
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1129
		bool maybe_64K = false;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1151 1152 1153 1154 1155 1156 1157
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1177 1178 1179 1180 1181 1182
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1183 1184 1185 1186 1187 1188
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1205
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1227
		}
1228 1229

		vma->page_sizes.gtt |= page_size;
1230 1231 1232
	} while (iter->sg);
}

1233
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1234
				   struct i915_vma *vma,
1235
				   enum i915_cache_level cache_level,
1236
				   u32 flags)
1237 1238
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1239
	struct sgt_dma iter = sgt_dma(vma);
1240
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1241

1242
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1243 1244
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1245 1246 1247 1248
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1249 1250
						     &iter, &idx, cache_level,
						     flags))
1251
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1252 1253

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1254
	}
1255 1256
}

1257
static void gen8_free_page_tables(struct i915_address_space *vm,
1258
				  struct i915_page_directory *pd)
1259 1260 1261
{
	int i;

1262
	if (!px_page(pd))
1263 1264
		return;

1265 1266 1267
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1268
	}
B
Ben Widawsky 已提交
1269 1270
}

1271 1272
static int gen8_init_scratch(struct i915_address_space *vm)
{
1273
	int ret;
1274

1275
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1276 1277
	if (ret)
		return ret;
1278

1279
	vm->scratch_pt = alloc_pt(vm);
1280
	if (IS_ERR(vm->scratch_pt)) {
1281 1282
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1283 1284
	}

1285
	vm->scratch_pd = alloc_pd(vm);
1286
	if (IS_ERR(vm->scratch_pd)) {
1287 1288
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1289 1290
	}

1291
	if (use_4lvl(vm)) {
1292
		vm->scratch_pdp = alloc_pdp(vm);
1293
		if (IS_ERR(vm->scratch_pdp)) {
1294 1295
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1296 1297 1298
		}
	}

1299 1300
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1301
	if (use_4lvl(vm))
1302
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1303 1304

	return 0;
1305 1306

free_pd:
1307
	free_pd(vm, vm->scratch_pd);
1308
free_pt:
1309
	free_pt(vm, vm->scratch_pt);
1310
free_scratch_page:
1311
	cleanup_scratch_page(vm);
1312 1313

	return ret;
1314 1315
}

1316 1317
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1318
	struct i915_address_space *vm = &ppgtt->vm;
1319
	struct drm_i915_private *dev_priv = vm->i915;
1320 1321 1322
	enum vgt_g2v_type msg;
	int i;

1323 1324
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1325

1326 1327
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1328 1329 1330 1331

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1332
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1333
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1334

1335 1336
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1348 1349
static void gen8_free_scratch(struct i915_address_space *vm)
{
1350
	if (use_4lvl(vm))
1351 1352 1353 1354
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1355 1356
}

1357
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1358
				    struct i915_page_directory_pointer *pdp)
1359
{
1360
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1361 1362
	int i;

1363
	for (i = 0; i < pdpes; i++) {
1364
		if (pdp->page_directory[i] == vm->scratch_pd)
1365 1366
			continue;

1367 1368
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1369
	}
1370

1371
	free_pdp(vm, pdp);
1372 1373 1374 1375 1376 1377
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1378
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1379
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1380 1381
			continue;

1382
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1383 1384
	}

1385
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1386 1387 1388 1389
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1390
	struct drm_i915_private *dev_priv = vm->i915;
1391
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1392

1393
	if (intel_vgpu_active(dev_priv))
1394 1395
		gen8_ppgtt_notify_vgt(ppgtt, false);

1396
	if (use_4lvl(vm))
1397
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1398
	else
1399
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1400

1401
	gen8_free_scratch(vm);
1402 1403
}

1404 1405 1406
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1407
{
1408
	struct i915_page_table *pt;
1409
	u64 from = start;
1410
	unsigned int pde;
1411

1412
	gen8_for_each_pde(pt, pd, start, length, pde) {
1413 1414
		int count = gen8_pte_count(start, length);

1415
		if (pt == vm->scratch_pt) {
1416 1417
			pd->used_pdes++;

1418
			pt = alloc_pt(vm);
1419 1420
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1421
				goto unwind;
1422
			}
1423

1424
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1425
				gen8_initialize_pt(vm, pt);
1426 1427

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1428
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1429
		}
1430

1431
		pt->used_ptes += count;
1432
	}
1433
	return 0;
1434

1435 1436
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1437
	return -ENOMEM;
1438 1439
}

1440 1441 1442
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1443
{
1444
	struct i915_page_directory *pd;
1445 1446
	u64 from = start;
	unsigned int pdpe;
1447 1448
	int ret;

1449
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1450
		if (pd == vm->scratch_pd) {
1451 1452
			pdp->used_pdpes++;

1453
			pd = alloc_pd(vm);
1454 1455
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1456
				goto unwind;
1457
			}
1458

1459
			gen8_initialize_pd(vm, pd);
1460
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1461
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1462 1463

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1464 1465 1466
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1467 1468
		if (unlikely(ret))
			goto unwind_pd;
1469
	}
1470

B
Ben Widawsky 已提交
1471
	return 0;
1472

1473 1474 1475 1476 1477 1478 1479
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1480 1481 1482
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1483 1484
}

1485 1486
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1487
{
1488 1489 1490
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1501

1502
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1503 1504 1505 1506
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1507

1508 1509 1510
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1511

1512
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1513 1514
		if (unlikely(ret))
			goto unwind_pdp;
1515 1516 1517 1518
	}

	return 0;

1519 1520 1521 1522 1523
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1524 1525 1526
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1527 1528
}

1529 1530
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1531
			  u64 start, u64 length,
1532 1533 1534
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1535
	struct i915_address_space *vm = &ppgtt->vm;
1536
	struct i915_page_directory *pd;
1537
	u32 pdpe;
1538

1539
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1540
		struct i915_page_table *pt;
1541 1542 1543
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1544

1545
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1546 1547 1548
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1549
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1550
			u32 pte;
1551 1552
			gen8_pte_t *pt_vaddr;

1553
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1554 1555
				continue;

1556
			pt_vaddr = kmap_atomic_px(pt);
1557
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1558 1559 1560
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1586
	struct i915_address_space *vm = &ppgtt->vm;
1587
	const gen8_pte_t scratch_pte =
1588
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1589
	u64 start = 0, length = ppgtt->vm.total;
1590

1591
	if (use_4lvl(vm)) {
1592
		u64 pml4e;
1593 1594 1595
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1596
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1597
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1598 1599 1600
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1601
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1602
		}
1603 1604
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1605 1606 1607
	}
}

1608
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1609
{
1610
	struct i915_address_space *vm = &ppgtt->vm;
1611 1612
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1613
	u64 start = 0, length = ppgtt->vm.total;
1614 1615
	u64 from = start;
	unsigned int pdpe;
1616

1617 1618 1619 1620
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1621

1622 1623 1624 1625
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1626

1627 1628
	pdp->used_pdpes++; /* never remove */
	return 0;
1629

1630 1631 1632 1633 1634 1635 1636 1637
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1638 1639
}

1640
/*
1641 1642 1643 1644
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1645
 *
1646
 */
1647
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1648
{
1649 1650 1651 1652 1653 1654 1655
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1656 1657
	kref_init(&ppgtt->ref);

1658 1659
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1660

1661
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1662 1663 1664
		1ULL << 48 :
		1ULL << 32;

1665 1666 1667 1668 1669 1670
	/*
	 * From bdw, there is support for read-only pages in the PPGTT.
	 *
	 * XXX GVT is not honouring the lack of RW in the PTE bits.
	 */
	ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1671

1672 1673
	i915_address_space_init(&ppgtt->vm, i915);

1674 1675 1676
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1677
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1678
		ppgtt->vm.pt_kmap_wc = true;
1679

1680 1681 1682
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1683

1684 1685 1686 1687
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1688

1689
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1690

1691 1692 1693
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1694
	} else {
1695 1696 1697
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1698

1699 1700 1701
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1702
				__pdp_fini(&ppgtt->pdp);
1703
				goto err_scratch;
1704
			}
1705
		}
1706

1707 1708 1709
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1710
	}
1711

1712
	if (intel_vgpu_active(i915))
1713 1714
		gen8_ppgtt_notify_vgt(ppgtt, true);

1715
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1716 1717
	ppgtt->debug_dump = gen8_dump_ppgtt;

1718
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1719 1720 1721 1722
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1723
	return ppgtt;
1724

1725
err_scratch:
1726
	gen8_free_scratch(&ppgtt->vm);
1727 1728 1729
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1730 1731
}

1732
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1733
{
1734
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1735
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1763
			int i;
1764

B
Ben Widawsky 已提交
1765
			for (i = 0; i < 4; i++)
1766 1767 1768
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1769 1770
				continue;

1771 1772 1773
			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
				   pde, pte,
				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
B
Ben Widawsky 已提交
1774
			for (i = 0; i < 4; i++) {
1775 1776
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1777
				else
1778
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1779 1780 1781
			}
			seq_puts(m, "\n");
		}
1782
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1783 1784 1785
	}
}

1786
/* Write pde (index) from the page directory @pd to the page table @pt */
1787
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1788 1789
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1790
{
1791
	/* Caller needs to make sure the write completes if necessary */
1792 1793
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1794
}
B
Ben Widawsky 已提交
1795

1796
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1797
{
1798
	struct intel_engine_cs *engine;
1799
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1800

1801
	for_each_engine(engine, dev_priv, id) {
1802 1803
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1804
		I915_WRITE(RING_MODE_GEN7(engine),
1805
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1806 1807
	}
}
B
Ben Widawsky 已提交
1808

1809
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1810
{
1811
	struct intel_engine_cs *engine;
1812
	u32 ecochk, ecobits;
1813
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1814

1815 1816
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1817

1818
	ecochk = I915_READ(GAM_ECOCHK);
1819
	if (IS_HASWELL(dev_priv)) {
1820 1821 1822 1823 1824 1825
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1826

1827
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1828
		/* GFX_MODE is per-ring on gen7+ */
1829
		I915_WRITE(RING_MODE_GEN7(engine),
1830
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1831
	}
1832
}
B
Ben Widawsky 已提交
1833

1834
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1835
{
1836
	u32 ecochk, gab_ctl, ecobits;
1837

1838 1839 1840
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1841

1842 1843 1844 1845 1846 1847 1848
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1849 1850
}

1851
/* PPGTT support for Sandybdrige/Gen6 and later */
1852
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1853
				   u64 start, u64 length)
1854
{
1855
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1856 1857 1858 1859
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
1860
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1861

1862
	while (num_entries) {
1863 1864 1865
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1866
		gen6_pte_t *vaddr;
1867

1868 1869 1870 1871 1872 1873 1874 1875
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1876

1877 1878
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1879 1880 1881 1882
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1883

1884 1885 1886 1887 1888
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1889

1890
		pte = 0;
1891
	}
1892 1893
}

1894
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1895
				      struct i915_vma *vma,
1896 1897
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1898
{
1899
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1900
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1901 1902
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1903
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1904
	struct sgt_dma iter = sgt_dma(vma);
1905 1906
	gen6_pte_t *vaddr;

1907 1908
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1909
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1910 1911
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1912

1913 1914 1915 1916 1917
		iter.dma += PAGE_SIZE;
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1918

1919 1920 1921
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1922

1923
		if (++act_pte == GEN6_PTES) {
1924 1925
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1926
			act_pte = 0;
D
Daniel Vetter 已提交
1927
		}
1928
	} while (1);
1929
	kunmap_atomic(vaddr);
1930 1931

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1932 1933
}

1934
static int gen6_alloc_va_range(struct i915_address_space *vm,
1935
			       u64 start, u64 length)
1936
{
1937
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1938
	struct i915_page_table *pt;
1939 1940 1941
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1942

1943
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1944 1945
		const unsigned int count = gen6_pte_count(start, length);

1946 1947 1948 1949
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1950

1951
			gen6_initialize_pt(ppgtt, pt);
1952
			ppgtt->base.pd.page_table[pde] = pt;
1953 1954 1955 1956 1957 1958

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1959 1960

			GEM_BUG_ON(pt->used_ptes);
1961
		}
1962 1963

		pt->used_ptes += count;
1964 1965
	}

1966
	if (flush) {
1967 1968
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1969 1970 1971
	}

	return 0;
1972 1973

unwind_out:
1974
	gen6_ppgtt_clear_range(vm, from, start - from);
1975
	return -ENOMEM;
1976 1977
}

1978
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1979
{
1980 1981 1982
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1983
	int ret;
1984

1985
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1986 1987
	if (ret)
		return ret;
1988

1989 1990 1991 1992
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1993
	vm->scratch_pt = alloc_pt(vm);
1994
	if (IS_ERR(vm->scratch_pt)) {
1995
		cleanup_scratch_page(vm);
1996 1997 1998
		return PTR_ERR(vm->scratch_pt);
	}

1999
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
2000 2001
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
2002 2003 2004 2005

	return 0;
}

2006
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
2007
{
2008 2009
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
2010 2011
}

2012
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2013
{
2014
	struct i915_page_table *pt;
2015
	u32 pde;
2016

2017
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2018 2019 2020 2021 2022 2023 2024
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2025

2026
	i915_vma_destroy(ppgtt->vma);
2027 2028 2029

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
2030 2031
}

2032
static int pd_vma_set_pages(struct i915_vma *vma)
2033
{
2034 2035 2036
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
2037

2038 2039 2040
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
	struct i915_page_table *pt;
	unsigned int pde;
2054

2055 2056
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2057

2058 2059
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2060

2061 2062
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2063

2064
	return 0;
2065
}
2066

2067
static void pd_vma_unbind(struct i915_vma *vma)
2068
{
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

2115 2116
	vma->active = RB_ROOT;

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2127

2128
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2129 2130 2131
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2132 2133 2134 2135 2136 2137 2138 2139 2140
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2141 2142 2143 2144 2145 2146 2147 2148
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2149 2150
}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2162
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2163
{
2164
	struct i915_ggtt * const ggtt = &i915->ggtt;
2165
	struct gen6_hw_ppgtt *ppgtt;
2166 2167 2168 2169 2170 2171
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2172 2173
	kref_init(&ppgtt->base.ref);

2174 2175
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2176

2177
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2178

2179 2180
	i915_address_space_init(&ppgtt->base.vm, i915);

2181
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2182 2183 2184 2185
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2186

2187
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2188 2189 2190
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2191

2192 2193
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2194
	err = gen6_ppgtt_init_scratch(ppgtt);
2195 2196 2197
	if (err)
		goto err_free;

2198 2199 2200
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2201
		goto err_scratch;
2202
	}
2203

2204
	return &ppgtt->base;
2205

2206 2207
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2208 2209 2210
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2211
}
2212

2213
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2214 2215 2216 2217 2218
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2219
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2220
	if (IS_BROADWELL(dev_priv))
2221
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2222
	else if (IS_CHERRYVIEW(dev_priv))
2223
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2224
	else if (IS_GEN9_LP(dev_priv))
2225
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2226 2227
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2245 2246
}

2247
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2248
{
2249
	gtt_write_workarounds(dev_priv);
2250

2251 2252 2253
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2255 2256
		return 0;

2257
	if (!USES_PPGTT(dev_priv))
2258 2259
		return 0;

2260
	if (IS_GEN6(dev_priv))
2261
		gen6_ppgtt_enable(dev_priv);
2262
	else if (IS_GEN7(dev_priv))
2263 2264 2265
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2266
	else
2267
		MISSING_CASE(INTEL_GEN(dev_priv));
2268

2269 2270
	return 0;
}
2271

2272 2273 2274 2275 2276 2277 2278 2279 2280
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2281
struct i915_hw_ppgtt *
2282
i915_ppgtt_create(struct drm_i915_private *i915,
2283
		  struct drm_i915_file_private *fpriv)
2284 2285 2286
{
	struct i915_hw_ppgtt *ppgtt;

2287 2288 2289
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2290

2291
	ppgtt->vm.file = fpriv;
2292

2293
	trace_i915_ppgtt_create(&ppgtt->vm);
2294

2295 2296 2297
	return ppgtt;
}

2298
void i915_ppgtt_close(struct i915_address_space *vm)
2299 2300 2301 2302 2303 2304
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2318
			i915_vma_destroy(vma);
2319 2320 2321
	}
}

2322
void i915_ppgtt_release(struct kref *kref)
2323 2324 2325 2326
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2327
	trace_i915_ppgtt_release(&ppgtt->vm);
2328

2329
	ppgtt_destroy_vma(&ppgtt->vm);
2330

2331 2332 2333
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2334

2335 2336
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2337 2338
	kfree(ppgtt);
}
2339

2340 2341 2342
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2343
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2344 2345 2346 2347
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2348
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2349 2350
}

2351
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2352
{
2353
	struct intel_engine_cs *engine;
2354
	enum intel_engine_id id;
2355
	u32 fault;
2356

2357
	for_each_engine(engine, dev_priv, id) {
2358 2359
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2360
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2361
					 "\tAddr: 0x%08lx\n"
2362 2363 2364
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2365 2366 2367 2368
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2369
			I915_WRITE(RING_FAULT_REG(engine),
2370
				   fault & ~RING_FAULT_VALID);
2371 2372
		}
	}
2373

2374 2375 2376 2377 2378 2379 2380 2381
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2382 2383 2384 2385 2386 2387 2388 2389
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2390
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2391 2392
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2393 2394 2395
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2396 2397 2398
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2418 2419
}

2420
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2421
{
2422
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2423 2424 2425 2426

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2427
	if (INTEL_GEN(dev_priv) < 6)
2428 2429
		return;

2430
	i915_check_and_clear_faults(dev_priv);
2431

2432
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2433

2434
	i915_ggtt_invalidate(dev_priv);
2435 2436
}

2437 2438
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2439
{
2440
	do {
2441 2442 2443 2444
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2455
				 obj->base.size >> PAGE_SHIFT, NULL,
2456 2457 2458
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2459

2460
	return -ENOSPC;
2461 2462
}

2463
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2464 2465 2466 2467
{
	writeq(pte, addr);
}

2468 2469
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2470
				  u64 offset,
2471 2472 2473
				  enum i915_cache_level level,
				  u32 unused)
{
2474
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2475
	gen8_pte_t __iomem *pte =
2476
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2477

2478
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2479

2480
	ggtt->invalidate(vm->i915);
2481 2482
}

B
Ben Widawsky 已提交
2483
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2484
				     struct i915_vma *vma,
2485
				     enum i915_cache_level level,
2486
				     u32 flags)
B
Ben Widawsky 已提交
2487
{
2488
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2489 2490
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2491
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2492
	dma_addr_t addr;
2493

2494 2495 2496
	/* The GTT does not support read-only mappings */
	GEM_BUG_ON(flags & PTE_READ_ONLY);

2497
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2498 2499
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2500
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2501

2502 2503 2504
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2505
	 */
2506
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2507 2508
}

2509 2510
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2511
				  u64 offset,
2512 2513 2514
				  enum i915_cache_level level,
				  u32 flags)
{
2515
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2516
	gen6_pte_t __iomem *pte =
2517
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2518

2519
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2520

2521
	ggtt->invalidate(vm->i915);
2522 2523
}

2524 2525 2526 2527 2528 2529
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2530
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2531
				     struct i915_vma *vma,
2532 2533
				     enum i915_cache_level level,
				     u32 flags)
2534
{
2535
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2536
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2537
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2538
	struct sgt_iter iter;
2539
	dma_addr_t addr;
2540
	for_each_sgt_dma(addr, iter, vma->pages)
2541
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2542

2543 2544 2545
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2546
	 */
2547
	ggtt->invalidate(vm->i915);
2548 2549
}

2550
static void nop_clear_range(struct i915_address_space *vm,
2551
			    u64 start, u64 length)
2552 2553 2554
{
}

B
Ben Widawsky 已提交
2555
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2556
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2557
{
2558
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2559 2560
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2561
	const gen8_pte_t scratch_pte =
2562
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2563
	gen8_pte_t __iomem *gtt_base =
2564 2565
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2621
	struct i915_vma *vma;
2622
	enum i915_cache_level level;
2623
	u32 flags;
2624 2625 2626 2627 2628 2629
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2630
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2631 2632 2633 2634 2635 2636
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2637
					     struct i915_vma *vma,
2638
					     enum i915_cache_level level,
2639
					     u32 flags)
2640
{
2641
	struct insert_entries arg = { vm, vma, level, flags };
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2671
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2672
				  u64 start, u64 length)
2673
{
2674
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2675 2676
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2677
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2678 2679
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2680 2681 2682 2683 2684 2685 2686
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2687
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2688
				     I915_CACHE_LLC, 0);
2689

2690 2691 2692 2693
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2694 2695
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2696
				  u64 offset,
2697 2698 2699 2700 2701 2702 2703 2704 2705
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2706
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2707
				     struct i915_vma *vma,
2708 2709
				     enum i915_cache_level cache_level,
				     u32 unused)
2710 2711 2712 2713
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2714 2715
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2716 2717
}

2718
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2719
				  u64 start, u64 length)
2720
{
2721
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2722 2723
}

2724 2725 2726
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2727
{
2728
	struct drm_i915_private *i915 = vma->vm->i915;
2729
	struct drm_i915_gem_object *obj = vma->obj;
2730
	u32 pte_flags;
2731

2732
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2733
	pte_flags = 0;
2734 2735 2736
	if (obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

2737
	intel_runtime_pm_get(i915);
2738
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2739
	intel_runtime_pm_put(i915);
2740

2741 2742
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2743 2744 2745 2746 2747
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2748
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2749 2750 2751 2752

	return 0;
}

2753 2754 2755 2756 2757 2758 2759 2760 2761
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2762 2763 2764
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2765
{
2766
	struct drm_i915_private *i915 = vma->vm->i915;
2767
	u32 pte_flags;
2768
	int ret;
2769

2770
	/* Currently applicable only to VLV */
2771 2772
	pte_flags = 0;
	if (vma->obj->gt_ro)
2773
		pte_flags |= PTE_READ_ONLY;
2774

2775 2776 2777
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2778
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2779 2780 2781
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2782
			if (ret)
2783
				return ret;
2784 2785
		}

2786 2787
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2788 2789
	}

2790
	if (flags & I915_VMA_GLOBAL_BIND) {
2791
		intel_runtime_pm_get(i915);
2792
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2793
		intel_runtime_pm_put(i915);
2794
	}
2795

2796
	return 0;
2797 2798
}

2799
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2800
{
2801
	struct drm_i915_private *i915 = vma->vm->i915;
2802

2803 2804
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2805
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2806 2807
		intel_runtime_pm_put(i915);
	}
2808

2809
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2810
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2811 2812 2813

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2814 2815
}

2816 2817
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2818
{
D
David Weinehall 已提交
2819 2820
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2821
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2822

2823
	if (unlikely(ggtt->do_idle_maps)) {
2824
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2825 2826 2827 2828 2829
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2830

2831
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2832
}
2833

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2844 2845
	vma->page_sizes = vma->obj->mm.page_sizes;

2846 2847 2848
	return 0;
}

C
Chris Wilson 已提交
2849
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2850
				  unsigned long color,
2851 2852
				  u64 *start,
				  u64 *end)
2853
{
2854
	if (node->allocated && node->color != color)
2855
		*start += I915_GTT_PAGE_SIZE;
2856

2857 2858 2859 2860 2861
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2862
	node = list_next_entry(node, node_list);
2863
	if (node->color != color)
2864
		*end -= I915_GTT_PAGE_SIZE;
2865
}
B
Ben Widawsky 已提交
2866

2867 2868 2869 2870 2871 2872
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2873
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2874 2875
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2876

2877
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2878 2879 2880 2881
		err = -ENODEV;
		goto err_ppgtt;
	}

2882 2883 2884 2885 2886 2887 2888 2889 2890
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2891 2892

	i915->mm.aliasing_ppgtt = ppgtt;
2893

2894 2895
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2896

2897 2898
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2899

2900 2901 2902
	return 0;

err_ppgtt:
2903
	i915_ppgtt_put(ppgtt);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2916
	i915_ppgtt_put(ppgtt);
2917

2918 2919
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2920 2921
}

2922
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2923
{
2924 2925 2926 2927 2928 2929 2930 2931 2932
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2933
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2934
	unsigned long hole_start, hole_end;
2935
	struct drm_mm_node *entry;
2936
	int ret;
2937

2938 2939 2940
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2941

2942
	/* Reserve a mappable slot for our lockless error capture */
2943
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2944 2945 2946
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2947 2948 2949
	if (ret)
		return ret;

2950
	/* Clear any non-preallocated blocks */
2951
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2952 2953
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2954 2955
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2956 2957 2958
	}

	/* And finally clear the reserved guard page */
2959
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2960

2961
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2962
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2963
		if (ret)
2964
			goto err;
2965 2966
	}

2967
	return 0;
2968 2969 2970 2971

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2972 2973
}

2974 2975
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2976
 * @dev_priv: i915 device
2977
 */
2978
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2979
{
2980
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2981
	struct i915_vma *vma, *vn;
2982
	struct pagevec *pvec;
2983

2984
	ggtt->vm.closed = true;
2985 2986

	mutex_lock(&dev_priv->drm.struct_mutex);
2987 2988
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2989 2990
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2991
		WARN_ON(i915_vma_unbind(vma));
2992

2993 2994 2995
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2996
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2997
		intel_vgt_deballoon(dev_priv);
2998
		i915_address_space_fini(&ggtt->vm);
2999 3000
	}

3001
	ggtt->vm.cleanup(&ggtt->vm);
3002

3003
	pvec = &dev_priv->mm.wc_stash.pvec;
3004 3005 3006 3007 3008
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

3009
	mutex_unlock(&dev_priv->drm.struct_mutex);
3010 3011

	arch_phys_wc_del(ggtt->mtrr);
3012
	io_mapping_fini(&ggtt->iomap);
3013 3014

	i915_gem_cleanup_stolen(&dev_priv->drm);
3015
}
3016

3017
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3018 3019 3020 3021 3022 3023
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

3024
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3025 3026 3027 3028 3029
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3030 3031 3032 3033 3034 3035 3036

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3037 3038 3039
	return bdw_gmch_ctl << 20;
}

3040
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3051
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3052
{
3053
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3054
	struct pci_dev *pdev = dev_priv->drm.pdev;
3055
	phys_addr_t phys_addr;
3056
	int ret;
B
Ben Widawsky 已提交
3057 3058

	/* For Modern GENs the PTEs and register space are split in the BAR */
3059
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3060

I
Imre Deak 已提交
3061
	/*
3062 3063 3064
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3065 3066 3067
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3068
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3069
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3070
	else
3071
		ggtt->gsm = ioremap_wc(phys_addr, size);
3072
	if (!ggtt->gsm) {
3073
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3074 3075 3076
		return -ENOMEM;
	}

3077
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3078
	if (ret) {
B
Ben Widawsky 已提交
3079 3080
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3081
		iounmap(ggtt->gsm);
3082
		return ret;
B
Ben Widawsky 已提交
3083 3084
	}

3085
	return 0;
B
Ben Widawsky 已提交
3086 3087
}

3088 3089
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3090
{
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3134
	struct intel_ppat_entry *entry = NULL;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3157
		if (!entry)
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3234
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3272 3273
}

B
Ben Widawsky 已提交
3274 3275 3276
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3277
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3278
{
3279 3280 3281 3282
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3283

3284
	if (!USES_PPGTT(ppat->i915)) {
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3298 3299 3300
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3301

3302 3303 3304 3305 3306 3307 3308 3309
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3310 3311
}

3312
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3313
{
3314 3315 3316 3317
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3318 3319 3320 3321 3322 3323 3324

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3336 3337
	 */

3338 3339 3340 3341 3342 3343 3344 3345
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3346 3347
}

3348 3349 3350 3351 3352
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3353
	cleanup_scratch_page(vm);
3354 3355
}

3356 3357
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3358 3359 3360 3361 3362
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3363
	if (INTEL_GEN(dev_priv) >= 10)
3364
		cnl_setup_private_ppat(ppat);
3365
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3366
		chv_setup_private_ppat(ppat);
3367
	else
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3379 3380
}

3381
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3382
{
3383
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3384
	struct pci_dev *pdev = dev_priv->drm.pdev;
3385
	unsigned int size;
B
Ben Widawsky 已提交
3386
	u16 snb_gmch_ctl;
3387
	int err;
B
Ben Widawsky 已提交
3388 3389

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3390 3391 3392 3393
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3394

3395 3396 3397 3398 3399
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3400

3401
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3402
	if (IS_CHERRYVIEW(dev_priv))
3403
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3404
	else
3405
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3406

3407 3408 3409 3410
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3411
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3412
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3413

3414
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3415

3416 3417
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3418 3419 3420 3421
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3422 3423
	}

3424 3425
	ggtt->invalidate = gen6_ggtt_invalidate;

3426 3427 3428 3429 3430
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3431 3432
	setup_private_pat(dev_priv);

3433
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3434 3435
}

3436
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3437
{
3438
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3439
	struct pci_dev *pdev = dev_priv->drm.pdev;
3440
	unsigned int size;
3441
	u16 snb_gmch_ctl;
3442
	int err;
3443

3444 3445 3446 3447
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3448

3449 3450
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3451
	 */
3452
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3453
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3454
		return -ENXIO;
3455 3456
	}

3457 3458 3459 3460 3461
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3462
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3463

3464
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3465
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3466

3467 3468 3469 3470
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3471

3472 3473
	ggtt->invalidate = gen6_ggtt_invalidate;

3474
	if (HAS_EDRAM(dev_priv))
3475
		ggtt->vm.pte_encode = iris_pte_encode;
3476
	else if (IS_HASWELL(dev_priv))
3477
		ggtt->vm.pte_encode = hsw_pte_encode;
3478
	else if (IS_VALLEYVIEW(dev_priv))
3479
		ggtt->vm.pte_encode = byt_pte_encode;
3480
	else if (INTEL_GEN(dev_priv) >= 7)
3481
		ggtt->vm.pte_encode = ivb_pte_encode;
3482
	else
3483
		ggtt->vm.pte_encode = snb_pte_encode;
3484

3485 3486 3487 3488 3489
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3490
	return ggtt_probe_common(ggtt, size);
3491 3492
}

3493
static void i915_gmch_remove(struct i915_address_space *vm)
3494
{
3495
	intel_gmch_remove();
3496
}
3497

3498
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3499
{
3500
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3501
	phys_addr_t gmadr_base;
3502 3503
	int ret;

3504
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3505 3506 3507 3508 3509
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3510
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3511

3512 3513 3514 3515
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3516
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3517 3518 3519 3520
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3521

3522 3523
	ggtt->invalidate = gmch_ggtt_invalidate;

3524 3525 3526 3527 3528
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3529
	if (unlikely(ggtt->do_idle_maps))
3530 3531
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3532 3533 3534
	return 0;
}

3535
/**
3536
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3537
 * @dev_priv: i915 device
3538
 */
3539
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3540
{
3541
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3542 3543
	int ret;

3544 3545
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3546

3547 3548 3549 3550 3551 3552
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3553
	if (ret)
3554 3555
		return ret;

3556 3557 3558 3559 3560
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3561
	if (USES_GUC(dev_priv)) {
3562 3563 3564
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3565 3566
	}

3567
	if ((ggtt->vm.total - 1) >> 32) {
3568
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3569
			  " of address space! Found %lldM!\n",
3570 3571 3572 3573
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3574 3575
	}

3576
	if (ggtt->mappable_end > ggtt->vm.total) {
3577
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3578
			  " aperture=%pa, total=%llx\n",
3579 3580
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3581 3582
	}

3583
	/* GMADR is the PCI mmio aperture into the global GTT. */
3584
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3585
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3586
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3587
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3588
	if (intel_vtd_active())
3589
		DRM_INFO("VT-d active for gfx access\n");
3590 3591

	return 0;
3592 3593 3594 3595
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3596
 * @dev_priv: i915 device
3597
 */
3598
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3599 3600 3601 3602
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3603 3604
	stash_init(&dev_priv->mm.wc_stash);

3605 3606 3607 3608
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3609
	 */
C
Chris Wilson 已提交
3610
	mutex_lock(&dev_priv->drm.struct_mutex);
3611
	i915_address_space_init(&ggtt->vm, dev_priv);
3612 3613 3614 3615

	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3616
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3617
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3618
	mutex_unlock(&dev_priv->drm.struct_mutex);
3619

3620 3621
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3622
				dev_priv->ggtt.mappable_end)) {
3623 3624 3625 3626
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3627
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3628

3629 3630 3631 3632
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3633
	ret = i915_gem_init_stolen(dev_priv);
3634 3635 3636 3637
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3638 3639

out_gtt_cleanup:
3640
	ggtt->vm.cleanup(&ggtt->vm);
3641
	return ret;
3642
}
3643

3644
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3645
{
3646
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3647 3648 3649 3650 3651
		return -EIO;

	return 0;
}

3652 3653
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3654 3655
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3656
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3657 3658

	i915_ggtt_invalidate(i915);
3659 3660 3661 3662
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3663 3664 3665 3666
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3667 3668

	i915_ggtt_invalidate(i915);
3669 3670
}

3671
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3672
{
3673
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3674
	struct i915_vma *vma, *vn;
3675

3676
	i915_check_and_clear_faults(dev_priv);
3677 3678

	/* First fill our portion of the GTT with scratch pages */
3679
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3680

3681
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3682 3683

	/* clflush objects bound into the GGTT and rebind them. */
3684 3685
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3686
		struct drm_i915_gem_object *obj = vma->obj;
3687

3688 3689
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3690

3691 3692
		if (!i915_vma_unbind(vma))
			continue;
3693

3694 3695 3696 3697 3698
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3699
	}
3700

3701
	ggtt->vm.closed = false;
3702
	i915_ggtt_invalidate(dev_priv);
3703

3704
	if (INTEL_GEN(dev_priv) >= 8) {
3705
		struct intel_ppat *ppat = &dev_priv->ppat;
3706

3707 3708
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3709 3710 3711 3712
		return;
	}
}

3713
static struct scatterlist *
3714
rotate_pages(const dma_addr_t *in, unsigned int offset,
3715
	     unsigned int width, unsigned int height,
3716
	     unsigned int stride,
3717
	     struct sg_table *st, struct scatterlist *sg)
3718 3719 3720 3721 3722
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3723
		src_idx = stride * (height - 1) + column;
3724 3725 3726 3727 3728 3729 3730
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3731
			sg_dma_address(sg) = in[offset + src_idx];
3732 3733
			sg_dma_len(sg) = PAGE_SIZE;
			sg = sg_next(sg);
3734
			src_idx -= stride;
3735 3736
		}
	}
3737 3738

	return sg;
3739 3740
}

3741 3742 3743
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3744
{
3745
	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3746
	unsigned int size = intel_rotation_info_size(rot_info);
3747 3748
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3749 3750 3751
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3752
	struct scatterlist *sg;
3753
	int ret = -ENOMEM;
3754 3755

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3756
	page_addr_list = kvmalloc_array(n_pages,
3757
					sizeof(dma_addr_t),
3758
					GFP_KERNEL);
3759 3760 3761 3762 3763 3764 3765 3766
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3767
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3768 3769 3770 3771 3772
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3773
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3774
		page_addr_list[i++] = dma_addr;
3775

3776
	GEM_BUG_ON(i != n_pages);
3777 3778 3779
	st->nents = 0;
	sg = st->sgl;

3780 3781 3782 3783
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3784 3785
	}

M
Michal Hocko 已提交
3786
	kvfree(page_addr_list);
3787 3788 3789 3790 3791 3792

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3793
	kvfree(page_addr_list);
3794

3795 3796
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3797

3798 3799
	return ERR_PTR(ret);
}
3800

3801
static noinline struct sg_table *
3802 3803 3804 3805
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3806
	struct scatterlist *sg, *iter;
3807
	unsigned int count = view->partial.size;
3808
	unsigned int offset;
3809 3810 3811 3812 3813 3814
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3815
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3816 3817 3818
	if (ret)
		goto err_sg_alloc;

3819
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3820 3821
	GEM_BUG_ON(!iter);

3822 3823
	sg = st->sgl;
	st->nents = 0;
3824 3825
	do {
		unsigned int len;
3826

3827 3828 3829 3830 3831 3832
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3833 3834

		st->nents++;
3835 3836 3837 3838 3839
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3840

3841 3842 3843 3844
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3845 3846 3847 3848 3849 3850 3851

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3852
static int
3853
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3854
{
3855
	int ret;
3856

3857 3858 3859 3860 3861 3862 3863
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3864
	switch (vma->ggtt_view.type) {
3865 3866 3867
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3868 3869
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3870 3871
		return 0;

3872
	case I915_GGTT_VIEW_ROTATED:
3873
		vma->pages =
3874 3875 3876 3877
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3878
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3879 3880
		break;
	}
3881

3882 3883
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3884 3885
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3886 3887
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3888
	}
3889
	return ret;
3890 3891
}

3892 3893
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3928
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3929
	GEM_BUG_ON(drm_mm_node_allocated(node));
3930 3931 3932 3933 3934 3935 3936 3937 3938

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3939 3940 3941
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3942 3943 3944 3945 3946 3947 3948
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3974 3975
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3976 3977 3978 3979 3980 3981 3982 3983 3984
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3985
 *         must be #I915_GTT_PAGE_SIZE aligned
3986 3987 3988
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3989 3990 3991 3992 3993 3994
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3995 3996
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4013
	enum drm_mm_insert_mode mode;
4014
	u64 offset;
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4025
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4026
	GEM_BUG_ON(drm_mm_node_allocated(node));
4027 4028 4029 4030 4031 4032 4033

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4034 4035 4036 4037 4038
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
		mode = DRM_MM_INSERT_HIGH;
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4050 4051 4052
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4053 4054 4055
	if (err != -ENOSPC)
		return err;

4056 4057 4058
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4088 4089 4090 4091 4092
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4093 4094 4095
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4096
}
4097 4098 4099

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4100
#include "selftests/i915_gem_gtt.c"
4101
#endif