timekeeping.c 46.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

50 51 52
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

53 54 55 56 57 58 59 60
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

61 62 63 64 65 66 67 68 69
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}

70
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
71 72
{
	tk->xtime_sec = ts->tv_sec;
73
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
74 75
}

76
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
77 78
{
	tk->xtime_sec += ts->tv_sec;
79
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
80
	tk_normalize_xtime(tk);
81
}
82

83
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
84
{
85
	struct timespec64 tmp;
86 87 88 89 90

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
91
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92
					-tk->wall_to_monotonic.tv_nsec);
93
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94
	tk->wall_to_monotonic = wtm;
95 96
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
97
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
98 99
}

100
static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
101 102
{
	/* Verify consistency before modifying */
103
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
104 105

	tk->total_sleep_time	= t;
106
	tk->offs_boot		= timespec64_to_ktime(t);
107 108
}

109
/**
110
 * tk_setup_internals - Set up internals to use clocksource clock.
111
 *
112
 * @tk:		The target timekeeper to setup.
113 114 115 116 117 118 119
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
120
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
121 122
{
	cycle_t interval;
123
	u64 tmp, ntpinterval;
124
	struct clocksource *old_clock;
125

126 127
	old_clock = tk->clock;
	tk->clock = clock;
128
	tk->cycle_last = clock->cycle_last = clock->read(clock);
129 130 131 132

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
133
	ntpinterval = tmp;
134 135
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
136 137 138 139
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
140
	tk->cycle_interval = interval;
141 142

	/* Go back from cycles -> shifted ns */
143 144 145
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
146
		((u64) interval * clock->mult) >> clock->shift;
147

148 149 150 151
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
152
			tk->xtime_nsec >>= -shift_change;
153
		else
154
			tk->xtime_nsec <<= shift_change;
155
	}
156
	tk->shift = clock->shift;
157

158 159
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
160 161 162 163 164 165

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
166
	tk->mult = clock->mult;
167
}
168

169
/* Timekeeper helper functions. */
170 171

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
172 173
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
174
#else
175
static inline u32 arch_gettimeoffset(void) { return 0; }
176 177
#endif

178
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
179 180 181
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
182
	s64 nsec;
183 184

	/* read clocksource: */
185
	clock = tk->clock;
186 187 188 189 190
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

191 192
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
193

194
	/* If arch requires, add in get_arch_timeoffset() */
195
	return nsec + arch_gettimeoffset();
196 197
}

198
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
199 200 201
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
202
	s64 nsec;
203 204

	/* read clocksource: */
205
	clock = tk->clock;
206 207 208 209 210
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

211 212 213
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

214
	/* If arch requires, add in get_arch_timeoffset() */
215
	return nsec + arch_gettimeoffset();
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
	struct timespec xt;

	xt = tk_xtime(tk);
	update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
}
#else
#define old_vsyscall_fixup(tk)
#endif

252 253
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

254
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
255
{
256
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
257 258 259 260 261 262 263
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
264
	struct timekeeper *tk = &tk_core.timekeeper;
265 266 267
	unsigned long flags;
	int ret;

268
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
269
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
270
	update_pvclock_gtod(tk, true);
271
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

286
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
287
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
288
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
289 290 291 292 293

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	s64 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec *= NSEC_PER_SEC;
	nsec += tk->wall_to_monotonic.tv_nsec;
	tk->base_mono = ns_to_ktime(nsec);
}

314
/* must hold timekeeper_lock */
315
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
316
{
317
	if (action & TK_CLEAR_NTP) {
318
		tk->ntp_error = 0;
319 320
		ntp_clear();
	}
321
	update_vsyscall(tk);
322
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
323

324 325
	tk_update_ktime_data(tk);

326
	if (action & TK_MIRROR)
327 328
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
329 330
}

331
/**
332
 * timekeeping_forward_now - update clock to the current time
333
 *
334 335 336
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
337
 */
338
static void timekeeping_forward_now(struct timekeeper *tk)
339 340
{
	cycle_t cycle_now, cycle_delta;
341
	struct clocksource *clock;
342
	s64 nsec;
343

344
	clock = tk->clock;
345
	cycle_now = clock->read(clock);
346
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
347
	tk->cycle_last = clock->cycle_last = cycle_now;
348

349
	tk->xtime_nsec += cycle_delta * tk->mult;
350

351
	/* If arch requires, add in get_arch_timeoffset() */
352
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
353

354
	tk_normalize_xtime(tk);
355

356
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
357
	timespec64_add_ns(&tk->raw_time, nsec);
358 359 360
}

/**
361
 * __getnstimeofday64 - Returns the time of day in a timespec64.
362 363
 * @ts:		pointer to the timespec to be set
 *
364 365
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
366
 */
367
int __getnstimeofday64(struct timespec64 *ts)
368
{
369
	struct timekeeper *tk = &tk_core.timekeeper;
370
	unsigned long seq;
371
	s64 nsecs = 0;
372 373

	do {
374
		seq = read_seqcount_begin(&tk_core.seq);
375

376
		ts->tv_sec = tk->xtime_sec;
377
		nsecs = timekeeping_get_ns(tk);
378

379
	} while (read_seqcount_retry(&tk_core.seq, seq));
380

381
	ts->tv_nsec = 0;
382
	timespec64_add_ns(ts, nsecs);
383 384 385 386 387 388 389 390 391

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
392
EXPORT_SYMBOL(__getnstimeofday64);
393 394

/**
395
 * getnstimeofday64 - Returns the time of day in a timespec64.
396 397 398 399
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
400
void getnstimeofday64(struct timespec64 *ts)
401
{
402
	WARN_ON(__getnstimeofday64(ts));
403
}
404
EXPORT_SYMBOL(getnstimeofday64);
405

406 407
ktime_t ktime_get(void)
{
408
	struct timekeeper *tk = &tk_core.timekeeper;
409
	unsigned int seq;
410 411
	ktime_t base;
	s64 nsecs;
412 413 414 415

	WARN_ON(timekeeping_suspended);

	do {
416
		seq = read_seqcount_begin(&tk_core.seq);
417 418
		base = tk->base_mono;
		nsecs = timekeeping_get_ns(tk);
419

420
	} while (read_seqcount_retry(&tk_core.seq, seq));
421

422
	return ktime_add_ns(base, nsecs);
423 424 425
}
EXPORT_SYMBOL_GPL(ktime_get);

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->base_mono, *offset);
		nsecs = timekeeping_get_ns(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

453
/**
454
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
455 456 457 458 459 460
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
461
void ktime_get_ts64(struct timespec64 *ts)
462
{
463
	struct timekeeper *tk = &tk_core.timekeeper;
464
	struct timespec64 tomono;
465
	s64 nsec;
466 467 468 469 470
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
471
		seq = read_seqcount_begin(&tk_core.seq);
472
		ts->tv_sec = tk->xtime_sec;
473
		nsec = timekeeping_get_ns(tk);
474
		tomono = tk->wall_to_monotonic;
475

476
	} while (read_seqcount_retry(&tk_core.seq, seq));
477

478 479 480
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
481
}
482
EXPORT_SYMBOL_GPL(ktime_get_ts64);
483

J
John Stultz 已提交
484 485 486 487 488 489 490 491 492

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
493
	struct timekeeper *tk = &tk_core.timekeeper;
494
	struct timespec64 ts64;
J
John Stultz 已提交
495 496 497 498 499 500
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
501
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
502

503
		ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
J
John Stultz 已提交
504 505
		nsecs = timekeeping_get_ns(tk);

506
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
507

508 509 510
	ts64.tv_nsec = 0;
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
J
John Stultz 已提交
511 512 513 514

}
EXPORT_SYMBOL(timekeeping_clocktai);

515 516 517 518 519 520 521 522 523 524 525 526 527
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
528
	struct timekeeper *tk = &tk_core.timekeeper;
529 530 531 532 533 534
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
535
		seq = read_seqcount_begin(&tk_core.seq);
536

537
		*ts_raw = timespec64_to_timespec(tk->raw_time);
538
		ts_real->tv_sec = tk->xtime_sec;
539
		ts_real->tv_nsec = 0;
540

541 542
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
543

544
	} while (read_seqcount_retry(&tk_core.seq, seq));
545 546 547 548 549 550 551 552

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

553 554 555 556
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
557
 * NOTE: Users should be converted to using getnstimeofday()
558 559 560
 */
void do_gettimeofday(struct timeval *tv)
{
561
	struct timespec64 now;
562

563
	getnstimeofday64(&now);
564 565 566 567
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
568

569 570 571 572 573 574
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
575
int do_settimeofday(const struct timespec *tv)
576
{
577
	struct timekeeper *tk = &tk_core.timekeeper;
578
	struct timespec64 ts_delta, xt, tmp;
579
	unsigned long flags;
580

581
	if (!timespec_valid_strict(tv))
582 583
		return -EINVAL;

584
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
585
	write_seqcount_begin(&tk_core.seq);
586

587
	timekeeping_forward_now(tk);
588

589
	xt = tk_xtime(tk);
590 591 592
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

593
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
594

595 596
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
597

598
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
599

600
	write_seqcount_end(&tk_core.seq);
601
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
602 603 604 605 606 607 608 609

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

610 611 612 613 614 615 616 617
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
618
	struct timekeeper *tk = &tk_core.timekeeper;
619
	unsigned long flags;
620
	struct timespec64 ts64, tmp;
621
	int ret = 0;
622 623 624 625

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

626 627
	ts64 = timespec_to_timespec64(*ts);

628
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
629
	write_seqcount_begin(&tk_core.seq);
630

631
	timekeeping_forward_now(tk);
632

633
	/* Make sure the proposed value is valid */
634 635
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
636 637 638
		ret = -EINVAL;
		goto error;
	}
639

640 641
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
642

643
error: /* even if we error out, we forwarded the time, so call update */
644
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
645

646
	write_seqcount_end(&tk_core.seq);
647
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
648 649 650 651

	/* signal hrtimers about time change */
	clock_was_set();

652
	return ret;
653 654 655
}
EXPORT_SYMBOL(timekeeping_inject_offset);

656 657 658 659 660 661 662

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
663
	struct timekeeper *tk = &tk_core.timekeeper;
664 665 666 667
	unsigned int seq;
	s32 ret;

	do {
668
		seq = read_seqcount_begin(&tk_core.seq);
669
		ret = tk->tai_offset;
670
	} while (read_seqcount_retry(&tk_core.seq, seq));
671 672 673 674 675 676 677 678

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
679
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
680 681
{
	tk->tai_offset = tai_offset;
682
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
683 684 685 686 687 688 689 690
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
691
	struct timekeeper *tk = &tk_core.timekeeper;
692 693
	unsigned long flags;

694
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
695
	write_seqcount_begin(&tk_core.seq);
696
	__timekeeping_set_tai_offset(tk, tai_offset);
697
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
698
	write_seqcount_end(&tk_core.seq);
699
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
700
	clock_was_set();
701 702
}

703 704 705 706 707
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
708
static int change_clocksource(void *data)
709
{
710
	struct timekeeper *tk = &tk_core.timekeeper;
711
	struct clocksource *new, *old;
712
	unsigned long flags;
713

714
	new = (struct clocksource *) data;
715

716
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
717
	write_seqcount_begin(&tk_core.seq);
718

719
	timekeeping_forward_now(tk);
720 721 722 723 724 725 726 727 728 729 730 731 732 733
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
734
	}
735
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
736

737
	write_seqcount_end(&tk_core.seq);
738
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
739

740 741
	return 0;
}
742

743 744 745 746 747 748 749
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
750
int timekeeping_notify(struct clocksource *clock)
751
{
752
	struct timekeeper *tk = &tk_core.timekeeper;
753 754

	if (tk->clock == clock)
755
		return 0;
756
	stop_machine(change_clocksource, clock, NULL);
757
	tick_clock_notify();
758
	return tk->clock == clock ? 0 : -1;
759
}
760

761 762 763 764 765 766 767 768
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
769
	struct timekeeper *tk = &tk_core.timekeeper;
770
	struct timespec64 ts64;
771 772 773 774
	unsigned long seq;
	s64 nsecs;

	do {
775
		seq = read_seqcount_begin(&tk_core.seq);
776
		nsecs = timekeeping_get_ns_raw(tk);
777
		ts64 = tk->raw_time;
778

779
	} while (read_seqcount_retry(&tk_core.seq, seq));
780

781 782
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
783 784 785
}
EXPORT_SYMBOL(getrawmonotonic);

786
/**
787
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
788
 */
789
int timekeeping_valid_for_hres(void)
790
{
791
	struct timekeeper *tk = &tk_core.timekeeper;
792 793 794 795
	unsigned long seq;
	int ret;

	do {
796
		seq = read_seqcount_begin(&tk_core.seq);
797

798
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
799

800
	} while (read_seqcount_retry(&tk_core.seq, seq));
801 802 803 804

	return ret;
}

805 806 807 808 809
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
810
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
811 812
	unsigned long seq;
	u64 ret;
813

J
John Stultz 已提交
814
	do {
815
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
816

817
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
818

819
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
820 821

	return ret;
822 823
}

824
/**
825
 * read_persistent_clock -  Return time from the persistent clock.
826 827
 *
 * Weak dummy function for arches that do not yet support it.
828 829
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
830 831 832
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
833
void __weak read_persistent_clock(struct timespec *ts)
834
{
835 836
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
837 838
}

839 840 841 842 843 844 845 846 847
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
848
void __weak read_boot_clock(struct timespec *ts)
849 850 851 852 853
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

854 855 856 857 858
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
859
	struct timekeeper *tk = &tk_core.timekeeper;
860
	struct clocksource *clock;
861
	unsigned long flags;
862 863
	struct timespec64 now, boot, tmp;
	struct timespec ts;
864

865 866 867
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
868 869 870 871
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
872 873
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
874

875 876 877
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
878 879 880 881 882
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
883

884
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
885
	write_seqcount_begin(&tk_core.seq);
886 887
	ntp_init();

888
	clock = clocksource_default_clock();
889 890
	if (clock->enable)
		clock->enable(clock);
891
	tk_setup_internals(tk, clock);
892

893 894 895
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
896
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
897
		boot = tk_xtime(tk);
898

899
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
900
	tk_set_wall_to_mono(tk, tmp);
901 902 903

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
904
	tk_set_sleep_time(tk, tmp);
905

906
	timekeeping_update(tk, TK_MIRROR);
907

908
	write_seqcount_end(&tk_core.seq);
909
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
910 911 912
}

/* time in seconds when suspend began */
913
static struct timespec64 timekeeping_suspend_time;
914

915 916 917 918 919 920 921
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
922
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
923
					   struct timespec64 *delta)
924
{
925
	if (!timespec64_valid_strict(delta)) {
926 927 928
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
929 930
		return;
	}
931
	tk_xtime_add(tk, delta);
932 933
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
934
	tk_debug_account_sleep_time(delta);
935 936 937 938 939 940 941 942 943 944 945 946 947 948
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
949
	struct timekeeper *tk = &tk_core.timekeeper;
950
	struct timespec64 tmp;
951
	unsigned long flags;
952

953 954 955 956 957
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
958 959
		return;

960
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
961
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
962

963
	timekeeping_forward_now(tk);
964

965 966
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
967

968
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
969

970
	write_seqcount_end(&tk_core.seq);
971
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
972 973 974 975 976

	/* signal hrtimers about time change */
	clock_was_set();
}

977 978 979 980 981 982 983
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
984
static void timekeeping_resume(void)
985
{
986
	struct timekeeper *tk = &tk_core.timekeeper;
987
	struct clocksource *clock = tk->clock;
988
	unsigned long flags;
989 990
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
991 992
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
993

994 995
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
996

997
	clockevents_resume();
998 999
	clocksource_resume();

1000
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1001
	write_seqcount_begin(&tk_core.seq);
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1038
		ts_delta = ns_to_timespec64(nsec);
1039
		suspendtime_found = true;
1040 1041
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1042
		suspendtime_found = true;
1043
	}
1044 1045 1046 1047 1048

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1049
	tk->cycle_last = clock->cycle_last = cycle_now;
1050
	tk->ntp_error = 0;
1051
	timekeeping_suspended = 0;
1052
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1053
	write_seqcount_end(&tk_core.seq);
1054
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1055 1056 1057 1058 1059 1060

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1061
	hrtimers_resume();
1062 1063
}

1064
static int timekeeping_suspend(void)
1065
{
1066
	struct timekeeper *tk = &tk_core.timekeeper;
1067
	unsigned long flags;
1068 1069 1070
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1071

1072 1073
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1074

1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1083
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1084
	write_seqcount_begin(&tk_core.seq);
1085
	timekeeping_forward_now(tk);
1086
	timekeeping_suspended = 1;
1087 1088 1089 1090 1091 1092 1093

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1094 1095
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1096 1097 1098 1099 1100 1101 1102 1103 1104
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1105
			timespec64_add(timekeeping_suspend_time, delta_delta);
1106
	}
1107 1108

	timekeeping_update(tk, TK_MIRROR);
1109
	write_seqcount_end(&tk_core.seq);
1110
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1111 1112

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1113
	clocksource_suspend();
1114
	clockevents_suspend();
1115 1116 1117 1118 1119

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1120
static struct syscore_ops timekeeping_syscore_ops = {
1121 1122 1123 1124
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1125
static int __init timekeeping_init_ops(void)
1126
{
1127 1128
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1129 1130
}

1131
device_initcall(timekeeping_init_ops);
1132 1133 1134 1135 1136

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1137 1138
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1151
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1152 1153
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1154
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1155 1156 1157 1158 1159 1160 1161 1162
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1163 1164
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1189
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1190
{
1191
	s64 error, interval = tk->cycle_interval;
1192 1193
	int adj;

1194
	/*
1195
	 * The point of this is to check if the error is greater than half
1196 1197 1198 1199 1200
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1201 1202
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1203
	 * larger than half an interval.
1204
	 *
1205
	 * Note: It does not "save" on aggravation when reading the code.
1206
	 */
1207
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1208
	if (error > interval) {
1209 1210
		/*
		 * We now divide error by 4(via shift), which checks if
1211
		 * the error is greater than twice the interval.
1212 1213 1214
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1215 1216 1217 1218
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1235

1236 1237
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1238
		printk_deferred_once(KERN_WARNING
1239
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1240 1241
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1242
	}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1292 1293 1294 1295
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1296

1297
out_adjust:
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1312 1313 1314 1315
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1316 1317
	}

1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1328
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1329 1330
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1331
	unsigned int clock_set = 0;
1332 1333 1334 1335 1336 1337 1338 1339 1340

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1341
		if (unlikely(leap)) {
1342
			struct timespec64 ts;
1343 1344

			tk->xtime_sec += leap;
1345

1346 1347 1348
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1349
				timespec64_sub(tk->wall_to_monotonic, ts));
1350

1351 1352
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1353
			clock_set = TK_CLOCK_WAS_SET;
1354
		}
1355
	}
1356
	return clock_set;
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1368
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1369 1370
						u32 shift,
						unsigned int *clock_set)
1371
{
T
Thomas Gleixner 已提交
1372
	cycle_t interval = tk->cycle_interval << shift;
1373
	u64 raw_nsecs;
1374

1375
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1376
	if (offset < interval)
1377 1378 1379
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1380
	offset -= interval;
1381
	tk->cycle_last += interval;
1382

1383
	tk->xtime_nsec += tk->xtime_interval << shift;
1384
	*clock_set |= accumulate_nsecs_to_secs(tk);
1385

1386
	/* Accumulate raw time */
1387
	raw_nsecs = (u64)tk->raw_interval << shift;
1388
	raw_nsecs += tk->raw_time.tv_nsec;
1389 1390 1391
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1392
		tk->raw_time.tv_sec += raw_secs;
1393
	}
1394
	tk->raw_time.tv_nsec = raw_nsecs;
1395 1396

	/* Accumulate error between NTP and clock interval */
1397 1398 1399
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1400 1401 1402 1403

	return offset;
}

1404 1405 1406 1407
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1408
void update_wall_time(void)
1409
{
1410
	struct clocksource *clock;
1411
	struct timekeeper *real_tk = &tk_core.timekeeper;
1412
	struct timekeeper *tk = &shadow_timekeeper;
1413
	cycle_t offset;
1414
	int shift = 0, maxshift;
1415
	unsigned int clock_set = 0;
J
John Stultz 已提交
1416 1417
	unsigned long flags;

1418
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1419 1420 1421

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1422
		goto out;
1423

1424
	clock = real_tk->clock;
J
John Stultz 已提交
1425 1426

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1427
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1428 1429
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1430 1431
#endif

1432
	/* Check if there's really nothing to do */
1433
	if (offset < real_tk->cycle_interval)
1434 1435
		goto out;

1436 1437 1438 1439
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1440
	 * that is smaller than the offset.  We then accumulate that
1441 1442
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1443
	 */
1444
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1445
	shift = max(0, shift);
1446
	/* Bound shift to one less than what overflows tick_length */
1447
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1448
	shift = min(shift, maxshift);
1449
	while (offset >= tk->cycle_interval) {
1450 1451
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1452
		if (offset < tk->cycle_interval<<shift)
1453
			shift--;
1454 1455 1456
	}

	/* correct the clock when NTP error is too big */
1457
	timekeeping_adjust(tk, offset);
1458

J
John Stultz 已提交
1459
	/*
1460 1461 1462 1463
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1464

J
John Stultz 已提交
1465 1466
	/*
	 * Finally, make sure that after the rounding
1467
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1468
	 */
1469
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1470

1471
	write_seqcount_begin(&tk_core.seq);
1472 1473
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1474 1475 1476 1477 1478 1479 1480
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1481
	 * memcpy under the tk_core.seq against one before we start
1482 1483 1484
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1485
	timekeeping_update(real_tk, clock_set);
1486
	write_seqcount_end(&tk_core.seq);
1487
out:
1488
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1489
	if (clock_set)
1490 1491
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1492
}
T
Tomas Janousek 已提交
1493 1494 1495 1496 1497

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1498
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1499 1500 1501 1502 1503 1504 1505 1506
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1507
	struct timekeeper *tk = &tk_core.timekeeper;
1508
	struct timespec boottime = {
1509 1510 1511 1512
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1513
	};
1514 1515

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1516
}
1517
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1530
	struct timekeeper *tk = &tk_core.timekeeper;
1531
	struct timespec64 tomono, sleep, ret;
1532
	s64 nsec;
1533 1534 1535 1536 1537
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1538
		seq = read_seqcount_begin(&tk_core.seq);
1539
		ret.tv_sec = tk->xtime_sec;
1540
		nsec = timekeeping_get_ns(tk);
1541 1542
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1543

1544
	} while (read_seqcount_retry(&tk_core.seq, seq));
1545

1546 1547 1548 1549
	ret.tv_sec += tomono.tv_sec + sleep.tv_sec;
	ret.tv_nsec = 0;
	timespec64_add_ns(&ret, nsec + tomono.tv_nsec + sleep.tv_nsec);
	*ts = timespec64_to_timespec(ret);
1550 1551 1552
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

T
Tomas Janousek 已提交
1553 1554 1555 1556 1557 1558
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1559
	struct timekeeper *tk = &tk_core.timekeeper;
1560
	struct timespec64 ts64;
1561

1562 1563 1564
	ts64 = timespec_to_timespec64(*ts);
	ts64 = timespec64_add(ts64, tk->total_sleep_time);
	*ts = timespec64_to_timespec(ts64);
T
Tomas Janousek 已提交
1565
}
1566
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1567

1568 1569
unsigned long get_seconds(void)
{
1570
	struct timekeeper *tk = &tk_core.timekeeper;
1571 1572

	return tk->xtime_sec;
1573 1574 1575
}
EXPORT_SYMBOL(get_seconds);

1576 1577
struct timespec __current_kernel_time(void)
{
1578
	struct timekeeper *tk = &tk_core.timekeeper;
1579

1580
	return timespec64_to_timespec(tk_xtime(tk));
1581
}
1582

1583 1584
struct timespec current_kernel_time(void)
{
1585
	struct timekeeper *tk = &tk_core.timekeeper;
1586
	struct timespec64 now;
1587 1588 1589
	unsigned long seq;

	do {
1590
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1591

1592
		now = tk_xtime(tk);
1593
	} while (read_seqcount_retry(&tk_core.seq, seq));
1594

1595
	return timespec64_to_timespec(now);
1596 1597
}
EXPORT_SYMBOL(current_kernel_time);
1598 1599 1600

struct timespec get_monotonic_coarse(void)
{
1601
	struct timekeeper *tk = &tk_core.timekeeper;
1602
	struct timespec64 now, mono;
1603 1604 1605
	unsigned long seq;

	do {
1606
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1607

1608 1609
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1610
	} while (read_seqcount_retry(&tk_core.seq, seq));
1611

1612
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1613
				now.tv_nsec + mono.tv_nsec);
1614 1615

	return timespec64_to_timespec(now);
1616
}
1617 1618

/*
1619
 * Must hold jiffies_lock
1620 1621 1622 1623 1624 1625
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1626 1627

/**
1628 1629 1630 1631 1632 1633
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1634
 */
1635 1636
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1637
{
1638
	struct timekeeper *tk = &tk_core.timekeeper;
1639
	struct timespec64 ts;
1640 1641
	ktime_t now;
	unsigned int seq;
1642 1643

	do {
1644
		seq = read_seqcount_begin(&tk_core.seq);
1645 1646 1647 1648 1649

		ts = tk_xtime(tk);
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1650
	} while (read_seqcount_retry(&tk_core.seq, seq));
1651 1652 1653 1654

	now = ktime_set(ts.tv_sec, ts.tv_nsec);
	now = ktime_sub(now, *offs_real);
	return now;
1655
}
T
Torben Hohn 已提交
1656

1657 1658
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1659
 * ktime_get_update_offsets_now - hrtimer helper
1660 1661
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1662
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1663 1664
 *
 * Returns current monotonic time and updates the offsets
1665
 * Called from hrtimer_interrupt() or retrigger_next_event()
1666
 */
1667
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1668
							ktime_t *offs_tai)
1669
{
1670
	struct timekeeper *tk = &tk_core.timekeeper;
1671
	unsigned int seq;
1672 1673
	ktime_t base;
	u64 nsecs;
1674 1675

	do {
1676
		seq = read_seqcount_begin(&tk_core.seq);
1677

1678
		base = tk->base_mono;
1679
		nsecs = timekeeping_get_ns(tk);
1680

1681 1682
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1683
		*offs_tai = tk->offs_tai;
1684
	} while (read_seqcount_retry(&tk_core.seq, seq));
1685

1686
	return ktime_add_ns(base, nsecs);
1687 1688 1689
}
#endif

1690 1691 1692 1693 1694
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1695
	struct timekeeper *tk = &tk_core.timekeeper;
1696
	unsigned long seq;
1697
	struct timespec64 wtom;
1698 1699

	do {
1700
		seq = read_seqcount_begin(&tk_core.seq);
1701
		wtom = tk->wall_to_monotonic;
1702
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1703

1704
	return timespec64_to_ktime(wtom);
1705
}
1706 1707
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1708 1709 1710 1711 1712
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1713
	struct timekeeper *tk = &tk_core.timekeeper;
1714
	unsigned long flags;
1715
	struct timespec64 ts;
1716
	s32 orig_tai, tai;
1717 1718 1719 1720 1721 1722 1723
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1735
	getnstimeofday64(&ts);
1736

1737
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1738
	write_seqcount_begin(&tk_core.seq);
1739

1740
	orig_tai = tai = tk->tai_offset;
1741
	ret = __do_adjtimex(txc, &ts, &tai);
1742

1743 1744
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1745
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1746
	}
1747
	write_seqcount_end(&tk_core.seq);
1748 1749
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1750 1751 1752
	if (tai != orig_tai)
		clock_was_set();

1753 1754
	ntp_notify_cmos_timer();

1755 1756
	return ret;
}
1757 1758 1759 1760 1761 1762 1763

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1764 1765 1766
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1767
	write_seqcount_begin(&tk_core.seq);
1768

1769
	__hardpps(phase_ts, raw_ts);
1770

1771
	write_seqcount_end(&tk_core.seq);
1772
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1773 1774 1775 1776
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1777 1778 1779 1780 1781 1782 1783 1784
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1785
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1786
	do_timer(ticks);
1787
	write_sequnlock(&jiffies_lock);
1788
	update_wall_time();
T
Torben Hohn 已提交
1789
}