sched.c 232.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

148 149
static inline int rt_policy(int policy)
{
150
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 152 153 154 155 156 157 158 159
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
160
/*
I
Ingo Molnar 已提交
161
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
162
 */
I
Ingo Molnar 已提交
163 164 165 166 167
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

168
struct rt_bandwidth {
I
Ingo Molnar 已提交
169 170 171 172 173
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
207 208
	spin_lock_init(&rt_b->rt_runtime_lock);

209 210 211
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
212
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 214
}

215 216 217
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
218 219 220 221 222 223
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

224
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 226 227 228 229 230 231 232 233 234 235 236
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 238
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
239 240 241 242 243 244 245 246 247 248 249
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

250 251 252 253 254 255
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

256
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257

258 259
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
260 261
struct cfs_rq;

P
Peter Zijlstra 已提交
262 263
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
264
/* task group related information */
265
struct task_group {
266
#ifdef CONFIG_CGROUP_SCHED
267 268
	struct cgroup_subsys_state css;
#endif
269

270 271 272 273
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

274
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
275 276 277 278 279
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
280 281 282 283 284 285
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

286
	struct rt_bandwidth rt_bandwidth;
287
#endif
288

289
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
290
	struct list_head list;
P
Peter Zijlstra 已提交
291 292 293 294

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
295 296
};

D
Dhaval Giani 已提交
297
#ifdef CONFIG_USER_SCHED
298

299 300 301 302 303 304
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

305 306 307 308 309 310 311
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

312
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
313 314 315 316
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
317
#endif /* CONFIG_FAIR_GROUP_SCHED */
318 319 320 321

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
323
#else /* !CONFIG_USER_SCHED */
324
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
325
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
326

327
/* task_group_lock serializes add/remove of task groups and also changes to
328 329
 * a task group's cpu shares.
 */
330
static DEFINE_SPINLOCK(task_group_lock);
331

332 333 334
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
335
#else /* !CONFIG_USER_SCHED */
336
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
337
#endif /* CONFIG_USER_SCHED */
338

339
/*
340 341 342 343
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
344 345 346
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
347
#define MIN_SHARES	2
348
#define MAX_SHARES	(1UL << 18)
349

350 351 352
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
353
/* Default task group.
I
Ingo Molnar 已提交
354
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
355
 */
356
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
357 358

/* return group to which a task belongs */
359
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
360
{
361
	struct task_group *tg;
362

363
#ifdef CONFIG_USER_SCHED
364
	tg = p->user->tg;
365
#elif defined(CONFIG_CGROUP_SCHED)
366 367
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
368
#else
I
Ingo Molnar 已提交
369
	tg = &init_task_group;
370
#endif
371
	return tg;
S
Srivatsa Vaddagiri 已提交
372 373 374
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
375
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
376
{
377
#ifdef CONFIG_FAIR_GROUP_SCHED
378 379
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
380
#endif
P
Peter Zijlstra 已提交
381

382
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
383 384
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
385
#endif
S
Srivatsa Vaddagiri 已提交
386 387 388 389
}

#else

P
Peter Zijlstra 已提交
390
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
391 392 393 394
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
395

396
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
397

I
Ingo Molnar 已提交
398 399 400 401 402 403
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
404
	u64 min_vruntime;
I
Ingo Molnar 已提交
405 406 407

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
408 409 410 411 412 413

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
414 415
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
416
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
417

P
Peter Zijlstra 已提交
418
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
419

420
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
421 422
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
423 424
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
425 426 427 428 429 430
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
431 432
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
433 434 435

#ifdef CONFIG_SMP
	/*
436
	 * the part of load.weight contributed by tasks
437
	 */
438
	unsigned long task_weight;
439

440 441 442 443 444 445 446
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
447

448 449 450 451
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
452 453 454 455 456

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
457
#endif
I
Ingo Molnar 已提交
458 459
#endif
};
L
Linus Torvalds 已提交
460

I
Ingo Molnar 已提交
461 462 463
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
464
	unsigned long rt_nr_running;
465
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
466 467 468 469
	struct {
		int curr; /* highest queued rt task prio */
		int next; /* next highest */
	} highest_prio;
P
Peter Zijlstra 已提交
470
#endif
P
Peter Zijlstra 已提交
471
#ifdef CONFIG_SMP
472
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
473
	int overloaded;
P
Peter Zijlstra 已提交
474
#endif
P
Peter Zijlstra 已提交
475
	int rt_throttled;
P
Peter Zijlstra 已提交
476
	u64 rt_time;
P
Peter Zijlstra 已提交
477
	u64 rt_runtime;
I
Ingo Molnar 已提交
478
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
479
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
480

481
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
482 483
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
484 485 486 487 488
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
489 490
};

G
Gregory Haskins 已提交
491 492 493 494
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
495 496
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
497 498 499 500 501 502
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
503 504
	cpumask_var_t span;
	cpumask_var_t online;
505

I
Ingo Molnar 已提交
506
	/*
507 508 509
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
510
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
511
	atomic_t rto_count;
512 513 514
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
515 516 517 518 519 520 521 522
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
523 524
};

525 526 527 528
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
529 530 531 532
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
533 534 535 536 537 538 539
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
540
struct rq {
541 542
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
543 544 545 546 547 548

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
549 550
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
551
	unsigned char idle_at_tick;
552
#ifdef CONFIG_NO_HZ
553
	unsigned long last_tick_seen;
554 555
	unsigned char in_nohz_recently;
#endif
556 557
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
558 559 560 561
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
562 563
	struct rt_rq rt;

I
Ingo Molnar 已提交
564
#ifdef CONFIG_FAIR_GROUP_SCHED
565 566
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
567 568
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
569
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577 578 579
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

580
	struct task_struct *curr, *idle;
581
	unsigned long next_balance;
L
Linus Torvalds 已提交
582
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
583

584
	u64 clock;
I
Ingo Molnar 已提交
585

L
Linus Torvalds 已提交
586 587 588
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
589
	struct root_domain *rd;
L
Linus Torvalds 已提交
590 591 592 593 594
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
595 596
	/* cpu of this runqueue: */
	int cpu;
597
	int online;
L
Linus Torvalds 已提交
598

599
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
600

601
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
602 603 604
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
605
#ifdef CONFIG_SCHED_HRTICK
606 607 608 609
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
610 611 612
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
613 614 615 616 617
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
618 619 620 621
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
622 623

	/* schedule() stats */
624 625 626
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
627 628

	/* try_to_wake_up() stats */
629 630
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
631 632

	/* BKL stats */
633
	unsigned int bkl_count;
L
Linus Torvalds 已提交
634 635 636
#endif
};

637
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
638

639
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
640
{
641
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
642 643
}

644 645 646 647 648 649 650 651 652
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
653 654
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
656 657 658 659
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
660 661
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
662 663 664 665 666 667

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

668 669 670 671 672
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
673 674 675 676 677 678 679 680 681
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
700 701 702
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
703 704 705 706

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
707
enum {
P
Peter Zijlstra 已提交
708
#include "sched_features.h"
I
Ingo Molnar 已提交
709 710
};

P
Peter Zijlstra 已提交
711 712 713 714 715
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
716
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
717 718 719 720 721 722 723 724 725
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

726
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
727 728 729 730 731 732
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
733
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
734 735 736 737
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
738 739 740
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
741
	}
L
Li Zefan 已提交
742
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
743

L
Li Zefan 已提交
744
	return 0;
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
789 790 791 792 793
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
794
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
795 796 797 798 799
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
814

815 816 817 818 819 820
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
821 822
/*
 * ratelimit for updating the group shares.
823
 * default: 0.25ms
P
Peter Zijlstra 已提交
824
 */
825
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
826

827 828 829 830 831 832 833
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886 887 888
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896 897 898 899
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951 952 953 954
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
955 956 957 958
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971 972 973 974
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
975 976 977 978
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

979 980 981 982 983 984 985 986
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995 996 997 998 999
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011 1012 1013

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058 1059 1060 1061 1062 1063
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072 1073 1074 1075
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092 1093 1094 1095

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1131

A
Andrew Morton 已提交
1132
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1133 1134
{
}
1135
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1136

1137
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1138
{
1139 1140
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1141

1142 1143 1144 1145
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1146

1147 1148
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1149
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1150
}
A
Andrew Morton 已提交
1151
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152 1153 1154 1155 1156 1157 1158 1159
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1160 1161 1162
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1163
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1164

I
Ingo Molnar 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1178
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1179 1180 1181 1182 1183
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1184
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1185 1186
		return;

1187
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1250
#endif /* CONFIG_NO_HZ */
1251

1252
#else /* !CONFIG_SMP */
1253
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1254 1255
{
	assert_spin_locked(&task_rq(p)->lock);
1256
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1257
}
1258
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1259

1260 1261 1262 1263 1264 1265 1266 1267
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1268 1269 1270
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1271
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1272

1273 1274 1275
/*
 * delta *= weight / lw
 */
1276
static unsigned long
1277 1278 1279 1280 1281
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1282 1283 1284 1285 1286 1287 1288
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1289 1290 1291 1292 1293

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1294
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1295
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1296 1297
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1298
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1299

1300
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1301 1302
}

1303
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1304 1305
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1306
	lw->inv_weight = 0;
1307 1308
}

1309
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1310 1311
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1312
	lw->inv_weight = 0;
1313 1314
}

1315 1316 1317 1318
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1319
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1320 1321 1322 1323
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1335 1336 1337
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1338 1339
 */
static const int prio_to_weight[40] = {
1340 1341 1342 1343 1344 1345 1346 1347
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1348 1349
};

1350 1351 1352 1353 1354 1355 1356
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1357
static const u32 prio_to_wmult[40] = {
1358 1359 1360 1361 1362 1363 1364 1365
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1366
};
1367

I
Ingo Molnar 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1393

1394 1395 1396 1397 1398 1399
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1410
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1411
typedef int (*tg_visitor)(struct task_group *, void *);
1412 1413 1414 1415 1416

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1417
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1418 1419
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1420
	int ret;
1421 1422 1423 1424

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1425 1426 1427
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1428 1429 1430 1431 1432 1433 1434
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1435 1436 1437
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1438 1439 1440 1441 1442

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1443
out_unlock:
1444
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1445 1446

	return ret;
1447 1448
}

P
Peter Zijlstra 已提交
1449 1450 1451
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1452
}
P
Peter Zijlstra 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1463
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1464

1465 1466
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1467 1468
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1469 1470 1471 1472 1473

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1474 1475 1476 1477 1478 1479 1480

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1481 1482
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1483
{
1484 1485 1486
	unsigned long shares;
	unsigned long rq_weight;

1487
	if (!tg->se[cpu])
1488 1489
		return;

1490
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1491

1492 1493 1494 1495 1496 1497
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1498
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1499
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1500

1501 1502 1503 1504
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1505

1506
		spin_lock_irqsave(&rq->lock, flags);
1507
		tg->cfs_rq[cpu]->shares = shares;
1508

1509 1510 1511
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1512
}
1513 1514

/*
1515 1516 1517
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1518
 */
P
Peter Zijlstra 已提交
1519
static int tg_shares_up(struct task_group *tg, void *data)
1520
{
1521
	unsigned long weight, rq_weight = 0;
1522
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1523
	struct sched_domain *sd = data;
1524
	int i;
1525

1526
	for_each_cpu(i, sched_domain_span(sd)) {
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1538
		shares += tg->cfs_rq[i]->shares;
1539 1540
	}

1541 1542 1543 1544 1545
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1546

1547
	for_each_cpu(i, sched_domain_span(sd))
1548
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1549 1550

	return 0;
1551 1552 1553
}

/*
1554 1555 1556
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1557
 */
P
Peter Zijlstra 已提交
1558
static int tg_load_down(struct task_group *tg, void *data)
1559
{
1560
	unsigned long load;
P
Peter Zijlstra 已提交
1561
	long cpu = (long)data;
1562

1563 1564 1565 1566 1567 1568 1569
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1570

1571
	tg->cfs_rq[cpu]->h_load = load;
1572

P
Peter Zijlstra 已提交
1573
	return 0;
1574 1575
}

1576
static void update_shares(struct sched_domain *sd)
1577
{
P
Peter Zijlstra 已提交
1578 1579 1580 1581 1582
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1583
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1584
	}
1585 1586
}

1587 1588 1589 1590 1591 1592 1593
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1594
static void update_h_load(long cpu)
1595
{
P
Peter Zijlstra 已提交
1596
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1597 1598 1599 1600
}

#else

1601
static inline void update_shares(struct sched_domain *sd)
1602 1603 1604
{
}

1605 1606 1607 1608
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1609 1610
#endif

1611 1612
#ifdef CONFIG_PREEMPT

1613
/*
1614 1615 1616 1617 1618 1619
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1620
 */
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1675 1676 1677 1678 1679 1680
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1681 1682
#endif

V
Vegard Nossum 已提交
1683
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1684 1685
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1686
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1687 1688 1689
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1690
#endif
1691

I
Ingo Molnar 已提交
1692 1693
#include "sched_stats.h"
#include "sched_idletask.c"
1694 1695
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1696 1697 1698 1699 1700
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1701 1702
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1703

1704
static void inc_nr_running(struct rq *rq)
1705 1706 1707 1708
{
	rq->nr_running++;
}

1709
static void dec_nr_running(struct rq *rq)
1710 1711 1712 1713
{
	rq->nr_running--;
}

1714 1715 1716
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1717 1718 1719 1720
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1721

I
Ingo Molnar 已提交
1722 1723 1724 1725 1726 1727 1728 1729
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1730

I
Ingo Molnar 已提交
1731 1732
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1733 1734
}

1735 1736 1737 1738 1739 1740
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1741
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1742
{
I
Ingo Molnar 已提交
1743
	sched_info_queued(p);
1744
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1745
	p->se.on_rq = 1;
1746 1747
}

1748
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1749
{
1750 1751 1752 1753 1754 1755
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1756
	sched_info_dequeued(p);
1757
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1758
	p->se.on_rq = 0;
1759 1760
}

1761
/*
I
Ingo Molnar 已提交
1762
 * __normal_prio - return the priority that is based on the static prio
1763 1764 1765
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1766
	return p->static_prio;
1767 1768
}

1769 1770 1771 1772 1773 1774 1775
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1776
static inline int normal_prio(struct task_struct *p)
1777 1778 1779
{
	int prio;

1780
	if (task_has_rt_policy(p))
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1794
static int effective_prio(struct task_struct *p)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1807
/*
I
Ingo Molnar 已提交
1808
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1809
 */
I
Ingo Molnar 已提交
1810
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1811
{
1812
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1813
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1814

1815
	enqueue_task(rq, p, wakeup);
1816
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1822
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1823
{
1824
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1825 1826
		rq->nr_uninterruptible++;

1827
	dequeue_task(rq, p, sleep);
1828
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833 1834
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1835
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1836 1837 1838 1839
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1840 1841
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1842
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1843
#ifdef CONFIG_SMP
1844 1845 1846 1847 1848 1849
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1850 1851
	task_thread_info(p)->cpu = cpu;
#endif
1852 1853
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1866
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1867

1868 1869 1870 1871 1872 1873
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1874 1875 1876
/*
 * Is this task likely cache-hot:
 */
1877
static int
1878 1879 1880 1881
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1882 1883 1884
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1885 1886 1887
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1888 1889
		return 1;

1890 1891 1892
	if (p->sched_class != &fair_sched_class)
		return 0;

1893 1894 1895 1896 1897
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1898 1899 1900 1901 1902 1903
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1904
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1905
{
I
Ingo Molnar 已提交
1906 1907
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1908 1909
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1910
	u64 clock_offset;
I
Ingo Molnar 已提交
1911 1912

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1913 1914 1915 1916

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1917 1918 1919 1920
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1921 1922 1923 1924 1925
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1926
#endif
1927 1928
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1929 1930

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1931 1932
}

1933
struct migration_req {
L
Linus Torvalds 已提交
1934 1935
	struct list_head list;

1936
	struct task_struct *task;
L
Linus Torvalds 已提交
1937 1938 1939
	int dest_cpu;

	struct completion done;
1940
};
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1946
static int
1947
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1948
{
1949
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1955
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962 1963
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1964

L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1971 1972 1973 1974 1975 1976 1977
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1984
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1985 1986
{
	unsigned long flags;
I
Ingo Molnar 已提交
1987
	int running, on_rq;
R
Roland McGrath 已提交
1988
	unsigned long ncsw;
1989
	struct rq *rq;
L
Linus Torvalds 已提交
1990

1991 1992 1993 1994 1995 1996 1997 1998
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1999

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2011 2012 2013
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2014
			cpu_relax();
R
Roland McGrath 已提交
2015
		}
2016

2017 2018 2019 2020 2021 2022
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2023
		trace_sched_wait_task(rq, p);
2024 2025
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2026
		ncsw = 0;
2027
		if (!match_state || p->state == match_state)
2028
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2029
		task_rq_unlock(rq, &flags);
2030

R
Roland McGrath 已提交
2031 2032 2033 2034 2035 2036
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2061

2062 2063 2064 2065 2066 2067 2068
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2069 2070

	return ncsw;
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2086
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2098 2099
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2100 2101 2102 2103
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2104
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2105
{
2106
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2107
	unsigned long total = weighted_cpuload(cpu);
2108

2109
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2110
		return total;
2111

I
Ingo Molnar 已提交
2112
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2113 2114 2115
}

/*
2116 2117
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2118
 */
A
Alexey Dobriyan 已提交
2119
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2120
{
2121
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2122
	unsigned long total = weighted_cpuload(cpu);
2123

2124
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2125
		return total;
2126

I
Ingo Molnar 已提交
2127
	return max(rq->cpu_load[type-1], total);
2128 2129
}

N
Nick Piggin 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2147
		/* Skip over this group if it has no CPUs allowed */
2148 2149
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2150
			continue;
2151

2152 2153
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2154 2155 2156 2157

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2158
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2169 2170
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2171 2172 2173 2174 2175 2176 2177 2178

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2179
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2180 2181 2182 2183 2184 2185 2186

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2187
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2188
 */
I
Ingo Molnar 已提交
2189
static int
2190
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2191 2192 2193 2194 2195
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2196
	/* Traverse only the allowed CPUs */
2197
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2198
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2224

2225
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2226 2227 2228
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2229 2230
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2231 2232
		if (tmp->flags & flag)
			sd = tmp;
2233
	}
N
Nick Piggin 已提交
2234

2235 2236 2237
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2238 2239
	while (sd) {
		struct sched_group *group;
2240 2241 2242 2243 2244 2245
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2246 2247

		group = find_idlest_group(sd, t, cpu);
2248 2249 2250 2251
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2252

2253
		new_cpu = find_idlest_cpu(group, t, cpu);
2254 2255 2256 2257 2258
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2259

2260
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2261
		cpu = new_cpu;
2262
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2263 2264
		sd = NULL;
		for_each_domain(cpu, tmp) {
2265
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2292
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2293
{
2294
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2295 2296
	unsigned long flags;
	long old_state;
2297
	struct rq *rq;
L
Linus Torvalds 已提交
2298

2299 2300 2301
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2302 2303 2304 2305 2306 2307 2308 2309
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2310
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2311 2312 2313 2314 2315 2316 2317
				update_shares(sd);
				break;
			}
		}
	}
#endif

2318
	smp_wmb();
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2324
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2325 2326 2327
		goto out_running;

	cpu = task_cpu(p);
2328
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2335 2336 2337
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2338 2339 2340 2341 2342 2343
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2344
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2351 2352 2353 2354 2355 2356 2357
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2358
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2359 2360 2361 2362 2363
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2364
#endif /* CONFIG_SCHEDSTATS */
2365

L
Linus Torvalds 已提交
2366 2367
out_activate:
#endif /* CONFIG_SMP */
2368 2369 2370 2371 2372 2373 2374 2375 2376
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2377
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2378
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2379 2380 2381
	success = 1;

out_running:
2382
	trace_sched_wakeup(rq, p);
2383
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2384

L
Linus Torvalds 已提交
2385
	p->state = TASK_RUNNING;
2386 2387 2388 2389
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2390
out:
2391 2392
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2393 2394 2395 2396 2397
	task_rq_unlock(rq, &flags);

	return success;
}

2398
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2399
{
2400
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2401 2402 2403
}
EXPORT_SYMBOL(wake_up_process);

2404
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2405 2406 2407 2408 2409 2410 2411
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2412 2413 2414 2415 2416 2417 2418
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2419
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2420 2421
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2422 2423 2424

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2425 2426 2427 2428 2429 2430
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2431
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2432
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2433
#endif
N
Nick Piggin 已提交
2434

P
Peter Zijlstra 已提交
2435
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2436
	p->se.on_rq = 0;
2437
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2438

2439 2440 2441 2442
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2464
	set_task_cpu(p, cpu);
2465 2466 2467 2468 2469

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2470 2471
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2472

2473
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2474
	if (likely(sched_info_on()))
2475
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2476
#endif
2477
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2478 2479
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2480
#ifdef CONFIG_PREEMPT
2481
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2482
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2483
#endif
N
Nick Piggin 已提交
2484
	put_cpu();
L
Linus Torvalds 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2494
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2495 2496
{
	unsigned long flags;
I
Ingo Molnar 已提交
2497
	struct rq *rq;
L
Linus Torvalds 已提交
2498 2499

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2500
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2501
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2502 2503 2504

	p->prio = effective_prio(p);

2505
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2506
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2507 2508
	} else {
		/*
I
Ingo Molnar 已提交
2509 2510
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2511
		 */
2512
		p->sched_class->task_new(rq, p);
2513
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2514
	}
2515
	trace_sched_wakeup_new(rq, p);
2516
	check_preempt_curr(rq, p, 0);
2517 2518 2519 2520
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2521
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2522 2523
}

2524 2525 2526
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2527 2528
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2529 2530 2531 2532 2533 2534 2535 2536 2537
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2538
 * @notifier: notifier struct to unregister
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2568
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2580
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2581

2582 2583 2584
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2585
 * @prev: the current task that is being switched out
2586 2587 2588 2589 2590 2591 2592 2593 2594
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2595 2596 2597
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2598
{
2599
	fire_sched_out_preempt_notifiers(prev, next);
2600 2601 2602 2603
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2604 2605
/**
 * finish_task_switch - clean up after a task-switch
2606
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2607 2608
 * @prev: the thread we just switched away from.
 *
2609 2610 2611 2612
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2613 2614
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2615
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2616 2617 2618
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2619
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2620 2621 2622
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2623
	long prev_state;
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2629
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2630 2631
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2632
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2638
	prev_state = prev->state;
2639 2640
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2641 2642 2643 2644
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2645

2646
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2647 2648
	if (mm)
		mmdrop(mm);
2649
	if (unlikely(prev_state == TASK_DEAD)) {
2650 2651 2652
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2653
		 */
2654
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2655
		put_task_struct(prev);
2656
	}
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661 2662
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2663
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2664 2665
	__releases(rq->lock)
{
2666 2667
	struct rq *rq = this_rq();

2668 2669 2670 2671 2672
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2673
	if (current->set_child_tid)
2674
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2675 2676 2677 2678 2679 2680
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2681
static inline void
2682
context_switch(struct rq *rq, struct task_struct *prev,
2683
	       struct task_struct *next)
L
Linus Torvalds 已提交
2684
{
I
Ingo Molnar 已提交
2685
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2686

2687
	prepare_task_switch(rq, prev, next);
2688
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2689 2690
	mm = next->mm;
	oldmm = prev->active_mm;
2691 2692 2693 2694 2695 2696 2697
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2698
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703 2704
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2705
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2706 2707 2708
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2709 2710 2711 2712 2713 2714 2715
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2716
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2717
#endif
L
Linus Torvalds 已提交
2718 2719 2720 2721

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2722 2723 2724 2725 2726 2727 2728
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2752
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2767 2768
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2769

2770
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2780
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2781 2782 2783 2784 2785
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2801
/*
I
Ingo Molnar 已提交
2802 2803
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2804
 */
I
Ingo Molnar 已提交
2805
static void update_cpu_load(struct rq *this_rq)
2806
{
2807
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2820 2821 2822 2823 2824 2825 2826
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2827 2828
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2829 2830
}

I
Ingo Molnar 已提交
2831 2832
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2839
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2840 2841 2842
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2843
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2844 2845 2846 2847
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2848
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2849
			spin_lock(&rq1->lock);
2850
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2851 2852
		} else {
			spin_lock(&rq2->lock);
2853
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2854 2855
		}
	}
2856 2857
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2858 2859 2860 2861 2862 2863 2864 2865
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2866
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2880
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2881 2882
 * the cpu_allowed mask is restored.
 */
2883
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2884
{
2885
	struct migration_req req;
L
Linus Torvalds 已提交
2886
	unsigned long flags;
2887
	struct rq *rq;
L
Linus Torvalds 已提交
2888 2889

	rq = task_rq_lock(p, &flags);
2890
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2891
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2892 2893
		goto out;

2894
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2895 2896 2897 2898
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2899

L
Linus Torvalds 已提交
2900 2901 2902 2903 2904
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2905

L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911 2912
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2913 2914
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2915 2916 2917 2918
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2919
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2920
	put_cpu();
N
Nick Piggin 已提交
2921 2922
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2929 2930
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2931
{
2932
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2933
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2934
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2935 2936 2937 2938
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2939
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2940 2941 2942 2943 2944
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2945
static
2946
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2947
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2948
		     int *all_pinned)
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2956
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2957
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2958
		return 0;
2959
	}
2960 2961
	*all_pinned = 0;

2962 2963
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2964
		return 0;
2965
	}
L
Linus Torvalds 已提交
2966

2967 2968 2969 2970 2971 2972
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2973 2974
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2975
#ifdef CONFIG_SCHEDSTATS
2976
		if (task_hot(p, rq->clock, sd)) {
2977
			schedstat_inc(sd, lb_hot_gained[idle]);
2978 2979
			schedstat_inc(p, se.nr_forced_migrations);
		}
2980 2981 2982 2983
#endif
		return 1;
	}

2984 2985
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2986
		return 0;
2987
	}
L
Linus Torvalds 已提交
2988 2989 2990
	return 1;
}

2991 2992 2993 2994 2995
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2996
{
2997
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2998 2999
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3000

3001
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3002 3003
		goto out;

3004 3005
	pinned = 1;

L
Linus Torvalds 已提交
3006
	/*
I
Ingo Molnar 已提交
3007
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3008
	 */
I
Ingo Molnar 已提交
3009 3010
	p = iterator->start(iterator->arg);
next:
3011
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3012
		goto out;
3013 3014

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3015 3016 3017
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3018 3019
	}

I
Ingo Molnar 已提交
3020
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3021
	pulled++;
I
Ingo Molnar 已提交
3022
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3034
	/*
3035
	 * We only want to steal up to the prescribed amount of weighted load.
3036
	 */
3037
	if (rem_load_move > 0) {
3038 3039
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3040 3041
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3042 3043 3044
	}
out:
	/*
3045
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3046 3047 3048 3049
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3050 3051 3052

	if (all_pinned)
		*all_pinned = pinned;
3053 3054

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3055 3056
}

I
Ingo Molnar 已提交
3057
/*
P
Peter Williams 已提交
3058 3059 3060
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3061 3062 3063 3064
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3065
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3066 3067 3068
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3069
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3070
	unsigned long total_load_moved = 0;
3071
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3072 3073

	do {
P
Peter Williams 已提交
3074 3075
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3076
				max_load_move - total_load_moved,
3077
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3078
		class = class->next;
3079

3080 3081 3082 3083 3084 3085
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3086 3087
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3088
#endif
P
Peter Williams 已提交
3089
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3090

P
Peter Williams 已提交
3091 3092 3093
	return total_load_moved > 0;
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3130
	const struct sched_class *class;
P
Peter Williams 已提交
3131 3132

	for (class = sched_class_highest; class; class = class->next)
3133
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3134 3135 3136
			return 1;

	return 0;
I
Ingo Molnar 已提交
3137 3138
}

L
Linus Torvalds 已提交
3139 3140
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3141 3142
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3143 3144 3145
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3146
		   unsigned long *imbalance, enum cpu_idle_type idle,
3147
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3148 3149 3150
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3151
	unsigned long max_pull;
3152 3153
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3154
	int load_idx, group_imb = 0;
3155 3156 3157 3158 3159 3160
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3161 3162

	max_load = this_load = total_load = total_pwr = 0;
3163 3164
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3165

I
Ingo Molnar 已提交
3166
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3167
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3168
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3169 3170 3171
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3172 3173

	do {
3174
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3175 3176
		int local_group;
		int i;
3177
		int __group_imb = 0;
3178
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3179
		unsigned long sum_nr_running, sum_weighted_load;
3180 3181
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3182

3183 3184
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3185

3186
		if (local_group)
3187
			balance_cpu = cpumask_first(sched_group_cpus(group));
3188

L
Linus Torvalds 已提交
3189
		/* Tally up the load of all CPUs in the group */
3190
		sum_weighted_load = sum_nr_running = avg_load = 0;
3191 3192
		sum_avg_load_per_task = avg_load_per_task = 0;

3193 3194
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3195

3196 3197
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3198

3199
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3200 3201
				*sd_idle = 0;

L
Linus Torvalds 已提交
3202
			/* Bias balancing toward cpus of our domain */
3203 3204 3205 3206 3207 3208
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3209
				load = target_load(i, load_idx);
3210
			} else {
N
Nick Piggin 已提交
3211
				load = source_load(i, load_idx);
3212 3213 3214 3215 3216
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3217 3218

			avg_load += load;
3219
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3220
			sum_weighted_load += weighted_cpuload(i);
3221 3222

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3223 3224
		}

3225 3226 3227
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3228 3229
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3230
		 */
3231 3232
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3233 3234 3235 3236
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3237
		total_load += avg_load;
3238
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3239 3240

		/* Adjust by relative CPU power of the group */
3241 3242
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3243

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3258 3259
			__group_imb = 1;

3260
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3261

L
Linus Torvalds 已提交
3262 3263 3264
		if (local_group) {
			this_load = avg_load;
			this = group;
3265 3266 3267
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3268
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3269 3270
			max_load = avg_load;
			busiest = group;
3271 3272
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3273
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3274
		}
3275 3276 3277 3278 3279 3280

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3281 3282 3283
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3284 3285 3286 3287 3288 3289 3290 3291 3292

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3293
		/*
3294 3295
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3296 3297
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3298
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3299
			goto group_next;
3300

I
Ingo Molnar 已提交
3301
		/*
3302
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3303 3304 3305 3306 3307
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3308
		     cpumask_first(sched_group_cpus(group)) >
3309
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3310 3311
			group_min = group;
			min_nr_running = sum_nr_running;
3312 3313
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3314
		}
3315

I
Ingo Molnar 已提交
3316
		/*
3317
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3318 3319 3320 3321 3322 3323
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3324
			     cpumask_first(sched_group_cpus(group)) <
3325
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3326 3327 3328
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3329
		}
3330 3331
group_next:
#endif
L
Linus Torvalds 已提交
3332 3333 3334
		group = group->next;
	} while (group != sd->groups);

3335
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3336 3337 3338 3339 3340 3341 3342 3343
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3344
	busiest_load_per_task /= busiest_nr_running;
3345 3346 3347
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3348 3349 3350 3351 3352 3353 3354 3355
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3356
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3357 3358
	 * appear as very large values with unsigned longs.
	 */
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3371 3372

	/* Don't want to pull so many tasks that a group would go idle */
3373
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3374

L
Linus Torvalds 已提交
3375
	/* How much load to actually move to equalise the imbalance */
3376 3377
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3378 3379
			/ SCHED_LOAD_SCALE;

3380 3381 3382 3383 3384 3385
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3386
	if (*imbalance < busiest_load_per_task) {
3387
		unsigned long tmp, pwr_now, pwr_move;
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3398
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3399

3400
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3401
					busiest_load_per_task * imbn) {
3402
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3412 3413 3414 3415
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3416 3417 3418
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3419 3420
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3421
		if (max_load > tmp)
3422
			pwr_move += busiest->__cpu_power *
3423
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3424 3425

		/* Amount of load we'd add */
3426
		if (max_load * busiest->__cpu_power <
3427
				busiest_load_per_task * SCHED_LOAD_SCALE)
3428 3429
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3430
		else
3431 3432 3433 3434
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3435 3436 3437
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3438 3439
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444
	}

	return busiest;

out_balanced:
3445
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3446
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3447
		goto ret;
L
Linus Torvalds 已提交
3448

3449 3450
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3451 3452
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3453
				cpumask_first(sched_group_cpus(group_leader));
3454
		}
3455 3456 3457
		return group_min;
	}
#endif
3458
ret:
L
Linus Torvalds 已提交
3459 3460 3461 3462 3463 3464 3465
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3466
static struct rq *
I
Ingo Molnar 已提交
3467
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3468
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3469
{
3470
	struct rq *busiest = NULL, *rq;
3471
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3472 3473
	int i;

3474
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3475
		unsigned long wl;
3476

3477
		if (!cpumask_test_cpu(i, cpus))
3478 3479
			continue;

3480
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3481
		wl = weighted_cpuload(i);
3482

I
Ingo Molnar 已提交
3483
		if (rq->nr_running == 1 && wl > imbalance)
3484
			continue;
L
Linus Torvalds 已提交
3485

I
Ingo Molnar 已提交
3486 3487
		if (wl > max_load) {
			max_load = wl;
3488
			busiest = rq;
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493 3494
		}
	}

	return busiest;
}

3495 3496 3497 3498 3499 3500
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3501 3502 3503 3504
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3505
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3506
			struct sched_domain *sd, enum cpu_idle_type idle,
3507
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3508
{
P
Peter Williams 已提交
3509
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3510 3511
	struct sched_group *group;
	unsigned long imbalance;
3512
	struct rq *busiest;
3513
	unsigned long flags;
N
Nick Piggin 已提交
3514

3515
	cpumask_setall(cpus);
3516

3517 3518 3519
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3520
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3521
	 * portraying it as CPU_NOT_IDLE.
3522
	 */
I
Ingo Molnar 已提交
3523
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3524
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3525
		sd_idle = 1;
L
Linus Torvalds 已提交
3526

3527
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3528

3529
redo:
3530
	update_shares(sd);
3531
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3532
				   cpus, balance);
3533

3534
	if (*balance == 0)
3535 3536
		goto out_balanced;

L
Linus Torvalds 已提交
3537 3538 3539 3540 3541
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3542
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3548
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3549 3550 3551

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3552
	ld_moved = 0;
L
Linus Torvalds 已提交
3553 3554 3555 3556
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3557
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3558 3559
		 * correctly treated as an imbalance.
		 */
3560
		local_irq_save(flags);
N
Nick Piggin 已提交
3561
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3562
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3563
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3564
		double_rq_unlock(this_rq, busiest);
3565
		local_irq_restore(flags);
3566

3567 3568 3569
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3570
		if (ld_moved && this_cpu != smp_processor_id())
3571 3572
			resched_cpu(this_cpu);

3573
		/* All tasks on this runqueue were pinned by CPU affinity */
3574
		if (unlikely(all_pinned)) {
3575 3576
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3577
				goto redo;
3578
			goto out_balanced;
3579
		}
L
Linus Torvalds 已提交
3580
	}
3581

P
Peter Williams 已提交
3582
	if (!ld_moved) {
L
Linus Torvalds 已提交
3583 3584 3585 3586 3587
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3588
			spin_lock_irqsave(&busiest->lock, flags);
3589 3590 3591 3592

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3593 3594
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3595
				spin_unlock_irqrestore(&busiest->lock, flags);
3596 3597 3598 3599
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3600 3601 3602
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3603
				active_balance = 1;
L
Linus Torvalds 已提交
3604
			}
3605
			spin_unlock_irqrestore(&busiest->lock, flags);
3606
			if (active_balance)
L
Linus Torvalds 已提交
3607 3608 3609 3610 3611 3612
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3613
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3614
		}
3615
	} else
L
Linus Torvalds 已提交
3616 3617
		sd->nr_balance_failed = 0;

3618
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3619 3620
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3621 3622 3623 3624 3625 3626 3627 3628 3629
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3630 3631
	}

P
Peter Williams 已提交
3632
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3633
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3634 3635 3636
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3637 3638 3639 3640

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3641
	sd->nr_balance_failed = 0;
3642 3643

out_one_pinned:
L
Linus Torvalds 已提交
3644
	/* tune up the balancing interval */
3645 3646
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3647 3648
		sd->balance_interval *= 2;

3649
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3650
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3651 3652 3653 3654
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3655 3656
	if (ld_moved)
		update_shares(sd);
3657
	return ld_moved;
L
Linus Torvalds 已提交
3658 3659 3660 3661 3662 3663
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3664
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3665 3666
 * this_rq is locked.
 */
3667
static int
3668
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3669
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3670 3671
{
	struct sched_group *group;
3672
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3673
	unsigned long imbalance;
P
Peter Williams 已提交
3674
	int ld_moved = 0;
N
Nick Piggin 已提交
3675
	int sd_idle = 0;
3676
	int all_pinned = 0;
3677

3678
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3679

3680 3681 3682 3683
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3684
	 * portraying it as CPU_NOT_IDLE.
3685 3686 3687
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3688
		sd_idle = 1;
L
Linus Torvalds 已提交
3689

3690
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3691
redo:
3692
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3693
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3694
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3695
	if (!group) {
I
Ingo Molnar 已提交
3696
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3697
		goto out_balanced;
L
Linus Torvalds 已提交
3698 3699
	}

3700
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3701
	if (!busiest) {
I
Ingo Molnar 已提交
3702
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3703
		goto out_balanced;
L
Linus Torvalds 已提交
3704 3705
	}

N
Nick Piggin 已提交
3706 3707
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3708
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3709

P
Peter Williams 已提交
3710
	ld_moved = 0;
3711 3712 3713
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3714 3715
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3716
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3717 3718
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3719
		double_unlock_balance(this_rq, busiest);
3720

3721
		if (unlikely(all_pinned)) {
3722 3723
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3724 3725
				goto redo;
		}
3726 3727
	}

P
Peter Williams 已提交
3728
	if (!ld_moved) {
3729
		int active_balance = 0;
3730

I
Ingo Molnar 已提交
3731
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3732 3733
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3734
			return -1;
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
		if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
		if (active_balance)
			wake_up_process(busiest->migration_thread);

N
Nick Piggin 已提交
3787
	} else
3788
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3789

3790
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3791
	return ld_moved;
3792 3793

out_balanced:
I
Ingo Molnar 已提交
3794
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3795
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3796
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3797
		return -1;
3798
	sd->nr_balance_failed = 0;
3799

3800
	return 0;
L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3807
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3808 3809
{
	struct sched_domain *sd;
3810
	int pulled_task = 0;
I
Ingo Molnar 已提交
3811
	unsigned long next_balance = jiffies + HZ;
3812 3813 3814 3815
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3816 3817

	for_each_domain(this_cpu, sd) {
3818 3819 3820 3821 3822 3823
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3824
			/* If we've pulled tasks over stop searching: */
3825
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3826
							   sd, tmpmask);
3827 3828 3829 3830 3831 3832

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3833
	}
I
Ingo Molnar 已提交
3834
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3835 3836 3837 3838 3839
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3840
	}
3841
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3852
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3853
{
3854
	int target_cpu = busiest_rq->push_cpu;
3855 3856
	struct sched_domain *sd;
	struct rq *target_rq;
3857

3858
	/* Is there any task to move? */
3859 3860 3861 3862
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3863 3864

	/*
3865
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3866
	 * we need to fix it. Originally reported by
3867
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3868
	 */
3869
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3870

3871 3872
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3873 3874
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3875 3876

	/* Search for an sd spanning us and the target CPU. */
3877
	for_each_domain(target_cpu, sd) {
3878
		if ((sd->flags & SD_LOAD_BALANCE) &&
3879
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3880
				break;
3881
	}
3882

3883
	if (likely(sd)) {
3884
		schedstat_inc(sd, alb_count);
3885

P
Peter Williams 已提交
3886 3887
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3888 3889 3890 3891
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3892
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3893 3894
}

3895 3896 3897
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3898
	cpumask_var_t cpu_mask;
3899 3900 3901 3902
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3903
/*
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3914
 *
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
3928
		cpumask_set_cpu(cpu, nohz.cpu_mask);
3929 3930 3931 3932 3933
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3934
		if (!cpu_active(cpu) &&
3935 3936 3937 3938 3939 3940 3941
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
3942
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
3955
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3956 3957
			return 0;

3958
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3971 3972 3973 3974 3975
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3976
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3977
{
3978 3979
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3980 3981
	unsigned long interval;
	struct sched_domain *sd;
3982
	/* Earliest time when we have to do rebalance again */
3983
	unsigned long next_balance = jiffies + 60*HZ;
3984
	int update_next_balance = 0;
3985
	int need_serialize;
3986 3987 3988 3989 3990
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3991

3992
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3993 3994 3995 3996
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3997
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3998 3999 4000 4001 4002 4003
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4004 4005 4006
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4007
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4008

4009
		if (need_serialize) {
4010 4011 4012 4013
			if (!spin_trylock(&balancing))
				goto out;
		}

4014
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4015
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4016 4017
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4018 4019 4020
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4021
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4022
			}
4023
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4024
		}
4025
		if (need_serialize)
4026 4027
			spin_unlock(&balancing);
out:
4028
		if (time_after(next_balance, sd->last_balance + interval)) {
4029
			next_balance = sd->last_balance + interval;
4030 4031
			update_next_balance = 1;
		}
4032 4033 4034 4035 4036 4037 4038 4039

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4040
	}
4041 4042 4043 4044 4045 4046 4047 4048

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4049 4050

	free_cpumask_var(tmp);
4051 4052 4053 4054 4055 4056 4057 4058 4059
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4060 4061 4062 4063
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4064

I
Ingo Molnar 已提交
4065
	rebalance_domains(this_cpu, idle);
4066 4067 4068 4069 4070 4071 4072

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4073 4074
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4075 4076 4077
		struct rq *rq;
		int balance_cpu;

4078 4079 4080 4081
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4082 4083 4084 4085 4086 4087 4088 4089
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4090
			rebalance_domains(balance_cpu, CPU_IDLE);
4091 4092

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4093 4094
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4107
static inline void trigger_load_balance(struct rq *rq, int cpu)
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4119
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4132
			int ilb = cpumask_first(nohz.cpu_mask);
4133

4134
			if (ilb < nr_cpu_ids)
4135 4136 4137 4138 4139 4140 4141 4142 4143
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4144
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4145 4146 4147 4148 4149 4150 4151 4152 4153
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4154
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4155 4156 4157 4158
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4159
}
I
Ingo Molnar 已提交
4160 4161 4162

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4163 4164 4165
/*
 * on UP we do not need to balance between CPUs:
 */
4166
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4167 4168
{
}
I
Ingo Molnar 已提交
4169

L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4177 4178
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4179
 */
4180
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4181 4182
{
	unsigned long flags;
4183
	struct rq *rq;
4184
	u64 ns = 0;
4185

4186
	rq = task_rq_lock(p, &flags);
4187

4188
	if (task_current(rq, p)) {
4189 4190
		u64 delta_exec;

I
Ingo Molnar 已提交
4191 4192
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4193
		if ((s64)delta_exec > 0)
4194
			ns = delta_exec;
4195
	}
4196

4197
	task_rq_unlock(rq, &flags);
4198

L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4213
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4214 4215 4216 4217 4218 4219 4220

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4221 4222
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4223 4224
}

4225 4226 4227 4228 4229
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4230
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4231 4232 4233 4234 4235 4236 4237
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4238
	account_group_user_time(p, cputime);
4239 4240 4241 4242 4243 4244
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4265
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4266 4267
	cputime64_t tmp;

4268 4269 4270 4271
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4272

L
Linus Torvalds 已提交
4273
	p->stime = cputime_add(p->stime, cputime);
4274
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4282
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4283
		cpustat->system = cputime64_add(cpustat->system, tmp);
4284
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4312
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4320
	} else
L
Linus Torvalds 已提交
4321 4322 4323
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4394
	struct task_struct *curr = rq->curr;
4395 4396

	sched_clock_tick();
I
Ingo Molnar 已提交
4397 4398

	spin_lock(&rq->lock);
4399
	update_rq_clock(rq);
4400
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4401
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4402
	spin_unlock(&rq->lock);
4403

4404
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4405 4406
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4407
#endif
L
Linus Torvalds 已提交
4408 4409
}

4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4422

4423
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4424
{
4425
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4426 4427 4428
	/*
	 * Underflow?
	 */
4429 4430
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4431
#endif
L
Linus Torvalds 已提交
4432
	preempt_count() += val;
4433
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4434 4435 4436
	/*
	 * Spinlock count overflowing soon?
	 */
4437 4438
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4439 4440 4441
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4442 4443 4444
}
EXPORT_SYMBOL(add_preempt_count);

4445
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4446
{
4447
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4448 4449 4450
	/*
	 * Underflow?
	 */
N
Nick Piggin 已提交
4451
       if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4452
		return;
L
Linus Torvalds 已提交
4453 4454 4455
	/*
	 * Is the spinlock portion underflowing?
	 */
4456 4457 4458
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4459
#endif
4460

4461 4462
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4470
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4471
 */
I
Ingo Molnar 已提交
4472
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4473
{
4474 4475 4476 4477 4478
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4479
	debug_show_held_locks(prev);
4480
	print_modules();
I
Ingo Molnar 已提交
4481 4482
	if (irqs_disabled())
		print_irqtrace_events(prev);
4483 4484 4485 4486 4487

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4488
}
L
Linus Torvalds 已提交
4489

I
Ingo Molnar 已提交
4490 4491 4492 4493 4494
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4495
	/*
I
Ingo Molnar 已提交
4496
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4497 4498 4499
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4500
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4501 4502
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4503 4504
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4505
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4506 4507
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4508 4509
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4510 4511
	}
#endif
I
Ingo Molnar 已提交
4512 4513 4514 4515 4516 4517
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4518
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4519
{
4520
	const struct sched_class *class;
I
Ingo Molnar 已提交
4521
	struct task_struct *p;
L
Linus Torvalds 已提交
4522 4523

	/*
I
Ingo Molnar 已提交
4524 4525
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4526
	 */
I
Ingo Molnar 已提交
4527
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4528
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4529 4530
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4531 4532
	}

I
Ingo Molnar 已提交
4533 4534
	class = sched_class_highest;
	for ( ; ; ) {
4535
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4545

I
Ingo Molnar 已提交
4546 4547 4548 4549 4550 4551
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4552
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4553
	struct rq *rq;
4554
	int cpu;
I
Ingo Molnar 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4568

4569
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4570
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4571

4572
	spin_lock_irq(&rq->lock);
4573
	update_rq_clock(rq);
4574
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4575 4576

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4577
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4578
			prev->state = TASK_RUNNING;
4579
		else
4580
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4581
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4582 4583
	}

4584 4585 4586 4587
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4588

I
Ingo Molnar 已提交
4589
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4590 4591
		idle_balance(cpu, rq);

4592
	prev->sched_class->put_prev_task(rq, prev);
4593
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4594 4595

	if (likely(prev != next)) {
4596 4597
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4598 4599 4600 4601
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4602
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4603 4604 4605 4606 4607 4608
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4609 4610 4611
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4612
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4613
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4614

L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4623
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4624
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4630

L
Linus Torvalds 已提交
4631 4632
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4633
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4634
	 */
N
Nick Piggin 已提交
4635
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4636 4637
		return;

4638 4639 4640 4641
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4642

4643 4644 4645 4646 4647 4648
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4649 4650 4651 4652
}
EXPORT_SYMBOL(preempt_schedule);

/*
4653
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4654 4655 4656 4657 4658 4659 4660
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4661

4662
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4663 4664
	BUG_ON(ti->preempt_count || !irqs_disabled());

4665 4666 4667 4668 4669 4670
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4671

4672 4673 4674 4675 4676 4677
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4678 4679 4680 4681
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4682 4683
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4684
{
4685
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4686 4687 4688 4689
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4690 4691
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4692 4693 4694
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4695
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4696 4697 4698 4699 4700
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4701
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4702

4703
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4704 4705
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4706
		if (curr->func(curr, mode, sync, key) &&
4707
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4717
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4718
 */
4719
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4720
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4733
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4734 4735 4736 4737 4738
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4739
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4751
void
I
Ingo Molnar 已提交
4752
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4769 4770 4771 4772 4773 4774 4775 4776 4777
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4778
void complete(struct completion *x)
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4784
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4785 4786 4787 4788
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4789 4790 4791 4792 4793 4794
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4795
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4801
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4802 4803 4804 4805
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4806 4807
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4808 4809 4810 4811 4812 4813 4814
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4815
			if (signal_pending_state(state, current)) {
4816 4817
				timeout = -ERESTARTSYS;
				break;
4818 4819
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4820 4821 4822
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4823
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4824
		__remove_wait_queue(&x->wait, &wait);
4825 4826
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4827 4828
	}
	x->done--;
4829
	return timeout ?: 1;
L
Linus Torvalds 已提交
4830 4831
}

4832 4833
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4834 4835 4836 4837
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4838
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4839
	spin_unlock_irq(&x->wait.lock);
4840 4841
	return timeout;
}
L
Linus Torvalds 已提交
4842

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4853
void __sched wait_for_completion(struct completion *x)
4854 4855
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4856
}
4857
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4858

4859 4860 4861 4862 4863 4864 4865 4866 4867
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4868
unsigned long __sched
4869
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4870
{
4871
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4872
}
4873
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4874

4875 4876 4877 4878 4879 4880 4881
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4882
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4883
{
4884 4885 4886 4887
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4888
}
4889
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4890

4891 4892 4893 4894 4895 4896 4897 4898
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4899
unsigned long __sched
4900 4901
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4902
{
4903
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4904
}
4905
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4906

4907 4908 4909 4910 4911 4912 4913
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4914 4915 4916 4917 4918 4919 4920 4921 4922
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4969 4970
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4971
{
I
Ingo Molnar 已提交
4972 4973 4974 4975
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4976

4977
	__set_current_state(state);
L
Linus Torvalds 已提交
4978

4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4993 4994 4995
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4996
long __sched
I
Ingo Molnar 已提交
4997
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4998
{
4999
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5000 5001 5002
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5003
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5004
{
5005
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5006 5007 5008
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5009
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5010
{
5011
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5012 5013 5014
}
EXPORT_SYMBOL(sleep_on_timeout);

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5027
void rt_mutex_setprio(struct task_struct *p, int prio)
5028 5029
{
	unsigned long flags;
5030
	int oldprio, on_rq, running;
5031
	struct rq *rq;
5032
	const struct sched_class *prev_class = p->sched_class;
5033 5034 5035 5036

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5037
	update_rq_clock(rq);
5038

5039
	oldprio = p->prio;
I
Ingo Molnar 已提交
5040
	on_rq = p->se.on_rq;
5041
	running = task_current(rq, p);
5042
	if (on_rq)
5043
		dequeue_task(rq, p, 0);
5044 5045
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5046 5047 5048 5049 5050 5051

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5052 5053
	p->prio = prio;

5054 5055
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5056
	if (on_rq) {
5057
		enqueue_task(rq, p, 0);
5058 5059

		check_class_changed(rq, p, prev_class, oldprio, running);
5060 5061 5062 5063 5064 5065
	}
	task_rq_unlock(rq, &flags);
}

#endif

5066
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5067
{
I
Ingo Molnar 已提交
5068
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5069
	unsigned long flags;
5070
	struct rq *rq;
L
Linus Torvalds 已提交
5071 5072 5073 5074 5075 5076 5077 5078

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5079
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5080 5081 5082 5083
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5084
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5085
	 */
5086
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5087 5088 5089
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5090
	on_rq = p->se.on_rq;
5091
	if (on_rq)
5092
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5093 5094

	p->static_prio = NICE_TO_PRIO(nice);
5095
	set_load_weight(p);
5096 5097 5098
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5099

I
Ingo Molnar 已提交
5100
	if (on_rq) {
5101
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5102
		/*
5103 5104
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5105
		 */
5106
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5107 5108 5109 5110 5111 5112 5113
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5114 5115 5116 5117 5118
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5119
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5120
{
5121 5122
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5123

M
Matt Mackall 已提交
5124 5125 5126 5127
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5139
	long nice, retval;
L
Linus Torvalds 已提交
5140 5141 5142 5143 5144 5145

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5146 5147
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5157 5158 5159
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5178
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183 5184 5185 5186
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5187
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5188 5189 5190
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5191
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5206
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211 5212 5213 5214
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5215
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5216
{
5217
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5218 5219 5220
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5221 5222
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5223
{
I
Ingo Molnar 已提交
5224
	BUG_ON(p->se.on_rq);
5225

L
Linus Torvalds 已提交
5226
	p->policy = policy;
I
Ingo Molnar 已提交
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5239
	p->rt_priority = prio;
5240 5241 5242
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5243
	set_load_weight(p);
L
Linus Torvalds 已提交
5244 5245
}

5246 5247
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5248
{
5249
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5250
	unsigned long flags;
5251
	const struct sched_class *prev_class = p->sched_class;
5252
	struct rq *rq;
L
Linus Torvalds 已提交
5253

5254 5255
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5261 5262
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5263
		return -EINVAL;
L
Linus Torvalds 已提交
5264 5265
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5266 5267
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5268 5269
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5270
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5271
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5272
		return -EINVAL;
5273
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5274 5275
		return -EINVAL;

5276 5277 5278
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5279
	if (user && !capable(CAP_SYS_NICE)) {
5280
		if (rt_policy(policy)) {
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5297 5298 5299 5300 5301 5302
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5303

5304 5305 5306 5307 5308
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5309

5310
	if (user) {
5311
#ifdef CONFIG_RT_GROUP_SCHED
5312 5313 5314 5315
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5316 5317
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5318
			return -EPERM;
5319 5320
#endif

5321 5322 5323 5324 5325
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5326 5327 5328 5329 5330
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5331 5332 5333 5334
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5335
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5336 5337 5338
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5339 5340
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5341 5342
		goto recheck;
	}
I
Ingo Molnar 已提交
5343
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5344
	on_rq = p->se.on_rq;
5345
	running = task_current(rq, p);
5346
	if (on_rq)
5347
		deactivate_task(rq, p, 0);
5348 5349
	if (running)
		p->sched_class->put_prev_task(rq, p);
5350

L
Linus Torvalds 已提交
5351
	oldprio = p->prio;
I
Ingo Molnar 已提交
5352
	__setscheduler(rq, p, policy, param->sched_priority);
5353

5354 5355
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5356 5357
	if (on_rq) {
		activate_task(rq, p, 0);
5358 5359

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5360
	}
5361 5362 5363
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5364 5365
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5366 5367
	return 0;
}
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5382 5383
EXPORT_SYMBOL_GPL(sched_setscheduler);

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5401 5402
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5403 5404 5405
{
	struct sched_param lparam;
	struct task_struct *p;
5406
	int retval;
L
Linus Torvalds 已提交
5407 5408 5409 5410 5411

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5412 5413 5414

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5415
	p = find_process_by_pid(pid);
5416 5417 5418
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5419

L
Linus Torvalds 已提交
5420 5421 5422 5423 5424 5425 5426 5427 5428
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5429 5430
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5431
{
5432 5433 5434 5435
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5455
	struct task_struct *p;
5456
	int retval;
L
Linus Torvalds 已提交
5457 5458

	if (pid < 0)
5459
		return -EINVAL;
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5481
	struct task_struct *p;
5482
	int retval;
L
Linus Torvalds 已提交
5483 5484

	if (!param || pid < 0)
5485
		return -EINVAL;
L
Linus Torvalds 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5512
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5513
{
5514
	cpumask_var_t cpus_allowed, new_mask;
5515 5516
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5517

5518
	get_online_cpus();
L
Linus Torvalds 已提交
5519 5520 5521 5522 5523
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5524
		put_online_cpus();
L
Linus Torvalds 已提交
5525 5526 5527 5528 5529
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5530
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5531 5532 5533 5534 5535
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5536 5537 5538 5539 5540 5541 5542 5543
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548
	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5549 5550 5551 5552
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5553 5554
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5555
 again:
5556
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5557

P
Paul Menage 已提交
5558
	if (!retval) {
5559 5560
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5561 5562 5563 5564 5565
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5566
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5567 5568 5569
			goto again;
		}
	}
L
Linus Torvalds 已提交
5570
out_unlock:
5571 5572 5573 5574
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5575
	put_task_struct(p);
5576
	put_online_cpus();
L
Linus Torvalds 已提交
5577 5578 5579 5580
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5581
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5582
{
5583 5584 5585 5586 5587
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
5600
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5601 5602
	int retval;

5603 5604
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5605

5606 5607 5608 5609 5610
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5611 5612
}

5613
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5614
{
5615
	struct task_struct *p;
L
Linus Torvalds 已提交
5616 5617
	int retval;

5618
	get_online_cpus();
L
Linus Torvalds 已提交
5619 5620 5621 5622 5623 5624 5625
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5626 5627 5628 5629
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5630
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5631 5632 5633

out_unlock:
	read_unlock(&tasklist_lock);
5634
	put_online_cpus();
L
Linus Torvalds 已提交
5635

5636
	return retval;
L
Linus Torvalds 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
5649
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5650

5651
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5652 5653
		return -EINVAL;

5654 5655
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5656

5657 5658 5659 5660 5661 5662 5663 5664
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5665

5666
	return ret;
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5672 5673
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5674 5675 5676
 */
asmlinkage long sys_sched_yield(void)
{
5677
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5678

5679
	schedstat_inc(rq, yld_count);
5680
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5687
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692 5693 5694 5695
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5696
static void __cond_resched(void)
L
Linus Torvalds 已提交
5697
{
5698 5699 5700
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5701 5702 5703 5704 5705
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5706 5707 5708 5709 5710 5711 5712
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5713
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5714
{
5715 5716
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5717 5718 5719 5720 5721
		__cond_resched();
		return 1;
	}
	return 0;
}
5722
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5723 5724 5725 5726 5727

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5728
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5729 5730 5731
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5732
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5733
{
N
Nick Piggin 已提交
5734
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5735 5736
	int ret = 0;

N
Nick Piggin 已提交
5737
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5738
		spin_unlock(lock);
N
Nick Piggin 已提交
5739 5740 5741 5742
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5743
		ret = 1;
L
Linus Torvalds 已提交
5744 5745
		spin_lock(lock);
	}
J
Jan Kara 已提交
5746
	return ret;
L
Linus Torvalds 已提交
5747 5748 5749 5750 5751 5752 5753
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5754
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5755
		local_bh_enable();
L
Linus Torvalds 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5767
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5778
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5779 5780 5781 5782 5783 5784 5785
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5786
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5787

5788
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5789 5790 5791
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5792
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5793 5794 5795 5796 5797
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5798
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5799 5800
	long ret;

5801
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5802 5803 5804
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5805
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5826
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5827
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5851
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5852
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5869
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5870
	unsigned int time_slice;
5871
	int retval;
L
Linus Torvalds 已提交
5872 5873 5874
	struct timespec t;

	if (pid < 0)
5875
		return -EINVAL;
L
Linus Torvalds 已提交
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5887 5888 5889 5890 5891 5892
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5893
		time_slice = DEF_TIMESLICE;
5894
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5895 5896 5897 5898 5899
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5900 5901
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5902 5903
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5904
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5905
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5906 5907
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5908

L
Linus Torvalds 已提交
5909 5910 5911 5912 5913
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5914
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5915

5916
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5917 5918
{
	unsigned long free = 0;
5919
	unsigned state;
L
Linus Torvalds 已提交
5920 5921

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5922
	printk(KERN_INFO "%-13.13s %c", p->comm,
5923
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5924
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5925
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5926
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5927
	else
I
Ingo Molnar 已提交
5928
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5929 5930
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5931
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5932
	else
I
Ingo Molnar 已提交
5933
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5934 5935 5936
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5937
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5938 5939
		while (!*n)
			n++;
5940
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5941 5942
	}
#endif
5943
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5944
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5945

5946
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5947 5948
}

I
Ingo Molnar 已提交
5949
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5950
{
5951
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5952

5953 5954 5955
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5956
#else
5957 5958
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5959 5960 5961 5962 5963 5964 5965 5966
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5967
		if (!state_filter || (p->state & state_filter))
5968
			sched_show_task(p);
L
Linus Torvalds 已提交
5969 5970
	} while_each_thread(g, p);

5971 5972
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5973 5974 5975
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5976
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5977 5978 5979 5980 5981
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5982 5983
}

I
Ingo Molnar 已提交
5984 5985
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5986
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5987 5988
}

5989 5990 5991 5992 5993 5994 5995 5996
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5997
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5998
{
5999
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6000 6001
	unsigned long flags;

6002 6003
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6004 6005 6006
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6007
	idle->prio = idle->normal_prio = MAX_PRIO;
6008
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6009
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6010 6011

	rq->curr = rq->idle = idle;
6012 6013 6014
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6015 6016 6017
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6018 6019 6020
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6021
	task_thread_info(idle)->preempt_count = 0;
6022
#endif
I
Ingo Molnar 已提交
6023 6024 6025 6026
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6027
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6028 6029 6030 6031 6032 6033 6034
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6035
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6036
 */
6037
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6038

I
Ingo Molnar 已提交
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6062 6063

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6064 6065
}

L
Linus Torvalds 已提交
6066 6067 6068 6069
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6070
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6089
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6090 6091
 * call is not atomic; no spinlocks may be held.
 */
6092
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6093
{
6094
	struct migration_req req;
L
Linus Torvalds 已提交
6095
	unsigned long flags;
6096
	struct rq *rq;
6097
	int ret = 0;
L
Linus Torvalds 已提交
6098 6099

	rq = task_rq_lock(p, &flags);
6100
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6101 6102 6103 6104
		ret = -EINVAL;
		goto out;
	}

6105
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6106
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6107 6108 6109 6110
		ret = -EINVAL;
		goto out;
	}

6111
	if (p->sched_class->set_cpus_allowed)
6112
		p->sched_class->set_cpus_allowed(p, new_mask);
6113
	else {
6114 6115
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6116 6117
	}

L
Linus Torvalds 已提交
6118
	/* Can the task run on the task's current CPU? If so, we're done */
6119
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6120 6121
		goto out;

R
Rusty Russell 已提交
6122
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6132

L
Linus Torvalds 已提交
6133 6134
	return ret;
}
6135
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6136 6137

/*
I
Ingo Molnar 已提交
6138
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6139 6140 6141 6142 6143 6144
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6145 6146
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6147
 */
6148
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6149
{
6150
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6151
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6152

6153
	if (unlikely(!cpu_active(dest_cpu)))
6154
		return ret;
L
Linus Torvalds 已提交
6155 6156 6157 6158 6159 6160 6161

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6162
		goto done;
L
Linus Torvalds 已提交
6163
	/* Affinity changed (again). */
6164
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6165
		goto fail;
L
Linus Torvalds 已提交
6166

I
Ingo Molnar 已提交
6167
	on_rq = p->se.on_rq;
6168
	if (on_rq)
6169
		deactivate_task(rq_src, p, 0);
6170

L
Linus Torvalds 已提交
6171
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6172 6173
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6174
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6175
	}
L
Linus Torvalds 已提交
6176
done:
6177
	ret = 1;
L
Linus Torvalds 已提交
6178
fail:
L
Linus Torvalds 已提交
6179
	double_rq_unlock(rq_src, rq_dest);
6180
	return ret;
L
Linus Torvalds 已提交
6181 6182 6183 6184 6185 6186 6187
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6188
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6189 6190
{
	int cpu = (long)data;
6191
	struct rq *rq;
L
Linus Torvalds 已提交
6192 6193 6194 6195 6196 6197

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6198
		struct migration_req *req;
L
Linus Torvalds 已提交
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6221
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6222 6223
		list_del_init(head->next);

N
Nick Piggin 已提交
6224 6225 6226
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6256
/*
6257
 * Figure out where task on dead CPU should go, use force if necessary.
6258
 */
6259
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6260
{
6261
	int dest_cpu;
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
	/* FIXME: Use cpumask_of_node here. */
	cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
	const struct cpumask *nodemask = &_nodemask;

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6281

6282 6283 6284 6285 6286 6287 6288 6289 6290
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6291
		}
6292 6293 6294 6295 6296 6297
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6307
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6308
{
R
Rusty Russell 已提交
6309
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6323
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6324

6325
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6326

6327 6328
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6329 6330
			continue;

6331 6332 6333
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6334

6335
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6336 6337
}

I
Ingo Molnar 已提交
6338 6339
/*
 * Schedules idle task to be the next runnable task on current CPU.
6340 6341
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6342 6343 6344
 */
void sched_idle_next(void)
{
6345
	int this_cpu = smp_processor_id();
6346
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6347 6348 6349 6350
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6351
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6352

6353 6354 6355
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6356 6357 6358
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6359
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6360

6361 6362
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6363 6364 6365 6366

	spin_unlock_irqrestore(&rq->lock, flags);
}

6367 6368
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6382
/* called under rq->lock with disabled interrupts */
6383
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6384
{
6385
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6386 6387

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6388
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6389 6390

	/* Cannot have done final schedule yet: would have vanished. */
6391
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6392

6393
	get_task_struct(p);
L
Linus Torvalds 已提交
6394 6395 6396

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6397
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6398 6399
	 * fine.
	 */
6400
	spin_unlock_irq(&rq->lock);
6401
	move_task_off_dead_cpu(dead_cpu, p);
6402
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6403

6404
	put_task_struct(p);
L
Linus Torvalds 已提交
6405 6406 6407 6408 6409
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6410
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6411
	struct task_struct *next;
6412

I
Ingo Molnar 已提交
6413 6414 6415
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6416
		update_rq_clock(rq);
6417
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6418 6419
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6420
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6421
		migrate_dead(dead_cpu, next);
6422

L
Linus Torvalds 已提交
6423 6424 6425 6426
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6427 6428 6429
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6430 6431
	{
		.procname	= "sched_domain",
6432
		.mode		= 0555,
6433
	},
I
Ingo Molnar 已提交
6434
	{0, },
6435 6436 6437
};

static struct ctl_table sd_ctl_root[] = {
6438
	{
6439
		.ctl_name	= CTL_KERN,
6440
		.procname	= "kernel",
6441
		.mode		= 0555,
6442 6443
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6444
	{0, },
6445 6446 6447 6448 6449
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6450
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6451 6452 6453 6454

	return entry;
}

6455 6456
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6457
	struct ctl_table *entry;
6458

6459 6460 6461
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6462
	 * will always be set. In the lowest directory the names are
6463 6464 6465
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6466 6467
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6468 6469 6470
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6471 6472 6473 6474 6475

	kfree(*tablep);
	*tablep = NULL;
}

6476
static void
6477
set_table_entry(struct ctl_table *entry,
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6491
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6492

6493 6494 6495
	if (table == NULL)
		return NULL;

6496
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6497
		sizeof(long), 0644, proc_doulongvec_minmax);
6498
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6499
		sizeof(long), 0644, proc_doulongvec_minmax);
6500
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6501
		sizeof(int), 0644, proc_dointvec_minmax);
6502
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6503
		sizeof(int), 0644, proc_dointvec_minmax);
6504
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6505
		sizeof(int), 0644, proc_dointvec_minmax);
6506
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6507
		sizeof(int), 0644, proc_dointvec_minmax);
6508
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6509
		sizeof(int), 0644, proc_dointvec_minmax);
6510
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6511
		sizeof(int), 0644, proc_dointvec_minmax);
6512
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6513
		sizeof(int), 0644, proc_dointvec_minmax);
6514
	set_table_entry(&table[9], "cache_nice_tries",
6515 6516
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6517
	set_table_entry(&table[10], "flags", &sd->flags,
6518
		sizeof(int), 0644, proc_dointvec_minmax);
6519 6520 6521
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6522 6523 6524 6525

	return table;
}

6526
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6527 6528 6529 6530 6531 6532 6533 6534 6535
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6536 6537
	if (table == NULL)
		return NULL;
6538 6539 6540 6541 6542

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6543
		entry->mode = 0555;
6544 6545 6546 6547 6548 6549 6550 6551
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6552
static void register_sched_domain_sysctl(void)
6553 6554 6555 6556 6557
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6558 6559 6560
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6561 6562 6563
	if (entry == NULL)
		return;

6564
	for_each_online_cpu(i) {
6565 6566
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6567
		entry->mode = 0555;
6568
		entry->child = sd_alloc_ctl_cpu_table(i);
6569
		entry++;
6570
	}
6571 6572

	WARN_ON(sd_sysctl_header);
6573 6574
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6575

6576
/* may be called multiple times per register */
6577 6578
static void unregister_sched_domain_sysctl(void)
{
6579 6580
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6581
	sd_sysctl_header = NULL;
6582 6583
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6584
}
6585
#else
6586 6587 6588 6589
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6590 6591 6592 6593
{
}
#endif

6594 6595 6596 6597 6598
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6599
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6619
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6620 6621 6622 6623
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6624 6625 6626 6627
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6628 6629
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6630 6631
{
	struct task_struct *p;
6632
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6633
	unsigned long flags;
6634
	struct rq *rq;
L
Linus Torvalds 已提交
6635 6636

	switch (action) {
6637

L
Linus Torvalds 已提交
6638
	case CPU_UP_PREPARE:
6639
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6640
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6641 6642 6643 6644 6645
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6646
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6647 6648 6649
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6650

L
Linus Torvalds 已提交
6651
	case CPU_ONLINE:
6652
	case CPU_ONLINE_FROZEN:
6653
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6654
		wake_up_process(cpu_rq(cpu)->migration_thread);
6655 6656 6657 6658 6659

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6660
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6661 6662

			set_rq_online(rq);
6663 6664
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6665
		break;
6666

L
Linus Torvalds 已提交
6667 6668
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6669
	case CPU_UP_CANCELED_FROZEN:
6670 6671
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6672
		/* Unbind it from offline cpu so it can run. Fall thru. */
6673
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6674
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6675 6676 6677
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6678

L
Linus Torvalds 已提交
6679
	case CPU_DEAD:
6680
	case CPU_DEAD_FROZEN:
6681
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6682 6683 6684 6685 6686
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6687
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6688
		update_rq_clock(rq);
6689
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6690
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6691 6692
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6693
		migrate_dead_tasks(cpu);
6694
		spin_unlock_irq(&rq->lock);
6695
		cpuset_unlock();
L
Linus Torvalds 已提交
6696 6697 6698
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6699 6700 6701 6702 6703
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6704 6705
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6706 6707
			struct migration_req *req;

L
Linus Torvalds 已提交
6708
			req = list_entry(rq->migration_queue.next,
6709
					 struct migration_req, list);
L
Linus Torvalds 已提交
6710
			list_del_init(&req->list);
B
Brian King 已提交
6711
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6712
			complete(&req->done);
B
Brian King 已提交
6713
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6714 6715 6716
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6717

6718 6719
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6720 6721 6722 6723
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6724
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6725
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6726 6727 6728
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6729 6730 6731 6732 6733 6734 6735 6736
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6737
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6738 6739 6740 6741
	.notifier_call = migration_call,
	.priority = 10
};

6742
static int __init migration_init(void)
L
Linus Torvalds 已提交
6743 6744
{
	void *cpu = (void *)(long)smp_processor_id();
6745
	int err;
6746 6747

	/* Start one for the boot CPU: */
6748 6749
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6750 6751
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6752 6753

	return err;
L
Linus Torvalds 已提交
6754
}
6755
early_initcall(migration_init);
L
Linus Torvalds 已提交
6756 6757 6758
#endif

#ifdef CONFIG_SMP
6759

6760
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6761

6762
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6763
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6764
{
I
Ingo Molnar 已提交
6765
	struct sched_group *group = sd->groups;
6766
	char str[256];
L
Linus Torvalds 已提交
6767

R
Rusty Russell 已提交
6768
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6769
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6770 6771 6772 6773 6774 6775 6776 6777 6778

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6779 6780
	}

6781
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6782

6783
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6784 6785 6786
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6787
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6788 6789 6790
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6791

I
Ingo Molnar 已提交
6792
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6793
	do {
I
Ingo Molnar 已提交
6794 6795 6796
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6797 6798 6799
			break;
		}

I
Ingo Molnar 已提交
6800 6801 6802 6803 6804 6805
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6806

6807
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6808 6809 6810 6811
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6812

6813
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6814 6815 6816 6817
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6818

6819
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6820

R
Rusty Russell 已提交
6821
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6822
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6823

I
Ingo Molnar 已提交
6824 6825 6826
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6827

6828
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6829
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6830

6831 6832
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6833 6834 6835 6836
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6837

I
Ingo Molnar 已提交
6838 6839
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6840
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6841
	int level = 0;
L
Linus Torvalds 已提交
6842

I
Ingo Molnar 已提交
6843 6844 6845 6846
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6847

I
Ingo Molnar 已提交
6848 6849
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6850
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6851 6852 6853 6854
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6855
	for (;;) {
6856
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6857
			break;
L
Linus Torvalds 已提交
6858 6859
		level++;
		sd = sd->parent;
6860
		if (!sd)
I
Ingo Molnar 已提交
6861 6862
			break;
	}
6863
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6864
}
6865
#else /* !CONFIG_SCHED_DEBUG */
6866
# define sched_domain_debug(sd, cpu) do { } while (0)
6867
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6868

6869
static int sd_degenerate(struct sched_domain *sd)
6870
{
6871
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6872 6873 6874 6875 6876 6877
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6878 6879 6880
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6894 6895
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6896 6897 6898 6899 6900 6901
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6902
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6914 6915 6916
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6917 6918
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6919 6920 6921 6922 6923 6924 6925
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6926 6927
static void free_rootdomain(struct root_domain *rd)
{
6928 6929
	cpupri_cleanup(&rd->cpupri);

6930 6931 6932 6933 6934 6935
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6936 6937 6938 6939 6940 6941 6942 6943 6944
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6945
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6946
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6947

6948
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6949

G
Gregory Haskins 已提交
6950
		if (atomic_dec_and_test(&old_rd->refcount))
6951
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6952 6953 6954 6955 6956
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6957 6958
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6959
		set_rq_online(rq);
G
Gregory Haskins 已提交
6960 6961 6962 6963

	spin_unlock_irqrestore(&rq->lock, flags);
}

6964
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6965 6966 6967
{
	memset(rd, 0, sizeof(*rd));

6968 6969 6970 6971
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6972
		cpupri_init(&rd->cpupri, true);
6973 6974 6975 6976 6977 6978 6979 6980 6981
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
		goto free_rd;
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
6982

6983 6984
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
6985
	return 0;
6986

6987 6988
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6989 6990 6991 6992 6993 6994 6995
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
free_rd:
	kfree(rd);
	return -ENOMEM;
G
Gregory Haskins 已提交
6996 6997 6998 6999
}

static void init_defrootdomain(void)
{
7000 7001
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7002 7003 7004
	atomic_set(&def_root_domain.refcount, 1);
}

7005
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7006 7007 7008 7009 7010 7011 7012
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7013 7014 7015 7016
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7017 7018 7019 7020

	return rd;
}

L
Linus Torvalds 已提交
7021
/*
I
Ingo Molnar 已提交
7022
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7023 7024
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7025 7026
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7027
{
7028
	struct rq *rq = cpu_rq(cpu);
7029 7030 7031
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7032
	for (tmp = sd; tmp; ) {
7033 7034 7035
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7036

7037
		if (sd_parent_degenerate(tmp, parent)) {
7038
			tmp->parent = parent->parent;
7039 7040
			if (parent->parent)
				parent->parent->child = tmp;
7041 7042
		} else
			tmp = tmp->parent;
7043 7044
	}

7045
	if (sd && sd_degenerate(sd)) {
7046
		sd = sd->parent;
7047 7048 7049
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7050 7051 7052

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7053
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7054
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7055 7056 7057
}

/* cpus with isolated domains */
7058
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7059 7060 7061 7062

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7063
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7064 7065 7066
	return 1;
}

I
Ingo Molnar 已提交
7067
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7068 7069

/*
7070 7071
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7072 7073
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7074 7075 7076 7077 7078
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7079
static void
7080 7081 7082
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7083
					struct sched_group **sg,
7084 7085
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7086 7087 7088 7089
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7090
	cpumask_clear(covered);
7091

7092
	for_each_cpu(i, span) {
7093
		struct sched_group *sg;
7094
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7095 7096
		int j;

7097
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7098 7099
			continue;

7100
		cpumask_clear(sched_group_cpus(sg));
7101
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7102

7103
		for_each_cpu(j, span) {
7104
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7105 7106
				continue;

7107
			cpumask_set_cpu(j, covered);
7108
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7119
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7120

7121
#ifdef CONFIG_NUMA
7122

7123 7124 7125 7126 7127
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7128
 * Find the next node to include in a given scheduling domain. Simply
7129 7130 7131 7132
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7133
static int find_next_best_node(int node, nodemask_t *used_nodes)
7134 7135 7136 7137 7138
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7139
	for (i = 0; i < nr_node_ids; i++) {
7140
		/* Start at @node */
7141
		n = (node + i) % nr_node_ids;
7142 7143 7144 7145 7146

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7147
		if (node_isset(n, *used_nodes))
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7159
	node_set(best_node, *used_nodes);
7160 7161 7162 7163 7164 7165
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7166
 * @span: resulting cpumask
7167
 *
I
Ingo Molnar 已提交
7168
 * Given a node, construct a good cpumask for its sched_domain to span. It
7169 7170 7171
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7172
static void sched_domain_node_span(int node, struct cpumask *span)
7173
{
7174
	nodemask_t used_nodes;
7175
	/* FIXME: use cpumask_of_node() */
7176
	node_to_cpumask_ptr(nodemask, node);
7177
	int i;
7178

7179
	cpus_clear(*span);
7180
	nodes_clear(used_nodes);
7181

7182
	cpus_or(*span, *span, *nodemask);
7183
	node_set(node, used_nodes);
7184 7185

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7186
		int next_node = find_next_best_node(node, &used_nodes);
7187

7188
		node_to_cpumask_ptr_next(nodemask, next_node);
7189
		cpus_or(*span, *span, *nodemask);
7190 7191
	}
}
7192
#endif /* CONFIG_NUMA */
7193

7194
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7195

7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7211
/*
7212
 * SMT sched-domains:
7213
 */
L
Linus Torvalds 已提交
7214
#ifdef CONFIG_SCHED_SMT
7215 7216
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7217

I
Ingo Molnar 已提交
7218
static int
7219 7220
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7221
{
7222
	if (sg)
7223
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7224 7225
	return cpu;
}
7226
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7227

7228 7229 7230
/*
 * multi-core sched-domains:
 */
7231
#ifdef CONFIG_SCHED_MC
7232 7233
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7234
#endif /* CONFIG_SCHED_MC */
7235 7236

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7237
static int
7238 7239
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7240
{
7241
	int group;
7242

7243 7244
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7245
	if (sg)
7246
		*sg = &per_cpu(sched_group_core, group).sg;
7247
	return group;
7248 7249
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7250
static int
7251 7252
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7253
{
7254
	if (sg)
7255
		*sg = &per_cpu(sched_group_core, cpu).sg;
7256 7257 7258 7259
	return cpu;
}
#endif

7260 7261
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7262

I
Ingo Molnar 已提交
7263
static int
7264 7265
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7266
{
7267
	int group;
7268
#ifdef CONFIG_SCHED_MC
7269
	/* FIXME: Use cpu_coregroup_mask. */
7270 7271
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
7272
	group = cpumask_first(mask);
7273
#elif defined(CONFIG_SCHED_SMT)
7274 7275
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7276
#else
7277
	group = cpu;
L
Linus Torvalds 已提交
7278
#endif
7279
	if (sg)
7280
		*sg = &per_cpu(sched_group_phys, group).sg;
7281
	return group;
L
Linus Torvalds 已提交
7282 7283 7284 7285
}

#ifdef CONFIG_NUMA
/*
7286 7287 7288
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7289
 */
7290
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7291
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7292

7293
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7294
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7295

7296 7297 7298
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7299
{
7300
	int group;
7301
	/* FIXME: use cpumask_of_node */
7302
	node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7303

7304 7305
	cpumask_and(nodemask, pnodemask, cpu_map);
	group = cpumask_first(nodemask);
7306 7307

	if (sg)
7308
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7309
	return group;
L
Linus Torvalds 已提交
7310
}
7311

7312 7313 7314 7315 7316 7317 7318
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7319
	do {
7320
		for_each_cpu(j, sched_group_cpus(sg)) {
7321
			struct sched_domain *sd;
7322

7323
			sd = &per_cpu(phys_domains, j).sd;
7324
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7325 7326 7327 7328 7329 7330
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7331

7332 7333 7334 7335
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7336
}
7337
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7338

7339
#ifdef CONFIG_NUMA
7340
/* Free memory allocated for various sched_group structures */
7341 7342
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7343
{
7344
	int cpu, i;
7345

7346
	for_each_cpu(cpu, cpu_map) {
7347 7348 7349 7350 7351 7352
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7353
		for (i = 0; i < nr_node_ids; i++) {
7354
			struct sched_group *oldsg, *sg = sched_group_nodes[i];
7355
			/* FIXME: Use cpumask_of_node */
7356
			node_to_cpumask_ptr(pnodemask, i);
7357

7358
			cpus_and(*nodemask, *pnodemask, *cpu_map);
7359
			if (cpumask_empty(nodemask))
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7376
#else /* !CONFIG_NUMA */
7377 7378
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7379 7380
{
}
7381
#endif /* CONFIG_NUMA */
7382

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7404
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7405 7406 7407 7408
		return;

	child = sd->child;

7409 7410
	sd->groups->__cpu_power = 0;

7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7421
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7422 7423 7424 7425 7426 7427 7428 7429
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7430
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7431 7432 7433 7434
		group = group->next;
	} while (group != child->groups);
}

7435 7436 7437 7438 7439
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7440 7441 7442 7443 7444 7445
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7446
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7447

7448 7449 7450 7451 7452
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7453
	sd->level = SD_LV_##type;				\
7454
	SD_INIT_NAME(sd, type);					\
7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7469 7470 7471 7472
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7473 7474 7475 7476 7477 7478
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7504
/*
7505 7506
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7507
 */
7508
static int __build_sched_domains(const struct cpumask *cpu_map,
7509
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7510
{
7511
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7512
	struct root_domain *rd;
7513 7514
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7515
#ifdef CONFIG_NUMA
7516
	cpumask_var_t domainspan, covered, notcovered;
7517
	struct sched_group **sched_group_nodes = NULL;
7518
	int sd_allnodes = 0;
7519

7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7540 7541 7542
	/*
	 * Allocate the per-node list of sched groups
	 */
7543
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7544
				    GFP_KERNEL);
7545 7546
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7547
		goto free_tmpmask;
7548 7549
	}
#endif
L
Linus Torvalds 已提交
7550

7551
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7552 7553
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7554
		goto free_sched_groups;
G
Gregory Haskins 已提交
7555 7556
	}

7557
#ifdef CONFIG_NUMA
7558
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7559 7560
#endif

L
Linus Torvalds 已提交
7561
	/*
7562
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7563
	 */
7564
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7565 7566
		struct sched_domain *sd = NULL, *p;

7567
		/* FIXME: use cpumask_of_node */
7568 7569
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7570 7571

#ifdef CONFIG_NUMA
7572 7573
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7574
			sd = &per_cpu(allnodes_domains, i);
7575
			SD_INIT(sd, ALLNODES);
7576
			set_domain_attribute(sd, attr);
7577
			cpumask_copy(sched_domain_span(sd), cpu_map);
7578
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7579
			p = sd;
7580
			sd_allnodes = 1;
7581 7582 7583
		} else
			p = NULL;

L
Linus Torvalds 已提交
7584
		sd = &per_cpu(node_domains, i);
7585
		SD_INIT(sd, NODE);
7586
		set_domain_attribute(sd, attr);
7587
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7588
		sd->parent = p;
7589 7590
		if (p)
			p->child = sd;
7591 7592
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7593 7594 7595
#endif

		p = sd;
7596
		sd = &per_cpu(phys_domains, i).sd;
7597
		SD_INIT(sd, CPU);
7598
		set_domain_attribute(sd, attr);
7599
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7600
		sd->parent = p;
7601 7602
		if (p)
			p->child = sd;
7603
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7604

7605 7606
#ifdef CONFIG_SCHED_MC
		p = sd;
7607
		sd = &per_cpu(core_domains, i).sd;
7608
		SD_INIT(sd, MC);
7609
		set_domain_attribute(sd, attr);
7610 7611 7612
		*sched_domain_span(sd) = cpu_coregroup_map(i);
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
7613
		sd->parent = p;
7614
		p->child = sd;
7615
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7616 7617
#endif

L
Linus Torvalds 已提交
7618 7619
#ifdef CONFIG_SCHED_SMT
		p = sd;
7620
		sd = &per_cpu(cpu_domains, i).sd;
7621
		SD_INIT(sd, SIBLING);
7622
		set_domain_attribute(sd, attr);
7623 7624
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7625
		sd->parent = p;
7626
		p->child = sd;
7627
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7628 7629 7630 7631 7632
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7633
	for_each_cpu(i, cpu_map) {
7634 7635 7636
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7637 7638
			continue;

I
Ingo Molnar 已提交
7639
		init_sched_build_groups(this_sibling_map, cpu_map,
7640 7641
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7642 7643 7644
	}
#endif

7645 7646
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7647
	for_each_cpu(i, cpu_map) {
7648
		/* FIXME: Use cpu_coregroup_mask */
7649 7650
		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
7651
		if (i != cpumask_first(this_core_map))
7652
			continue;
7653

I
Ingo Molnar 已提交
7654
		init_sched_build_groups(this_core_map, cpu_map,
7655 7656
					&cpu_to_core_group,
					send_covered, tmpmask);
7657 7658 7659
	}
#endif

L
Linus Torvalds 已提交
7660
	/* Set up physical groups */
7661
	for (i = 0; i < nr_node_ids; i++) {
7662
		/* FIXME: Use cpumask_of_node */
7663 7664
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
7665
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7666 7667
			continue;

7668 7669 7670
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7671 7672 7673 7674
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7675 7676 7677 7678 7679
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7680

7681
	for (i = 0; i < nr_node_ids; i++) {
7682 7683 7684 7685
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7686
		/* FIXME: Use cpumask_of_node */
7687
		*nodemask = node_to_cpumask(i);
7688
		cpumask_clear(covered);
7689 7690

		cpus_and(*nodemask, *nodemask, *cpu_map);
7691
		if (cpumask_empty(nodemask)) {
7692
			sched_group_nodes[i] = NULL;
7693
			continue;
7694
		}
7695

7696
		sched_domain_node_span(i, domainspan);
7697
		cpumask_and(domainspan, domainspan, cpu_map);
7698

7699 7700
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7701 7702 7703 7704 7705
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7706
		sched_group_nodes[i] = sg;
7707
		for_each_cpu(j, nodemask) {
7708
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7709

7710 7711 7712
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7713
		sg->__cpu_power = 0;
7714
		cpumask_copy(sched_group_cpus(sg), nodemask);
7715
		sg->next = sg;
7716
		cpumask_or(covered, covered, nodemask);
7717 7718
		prev = sg;

7719 7720
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7721
			/* FIXME: Use cpumask_of_node */
7722
			node_to_cpumask_ptr(pnodemask, n);
7723

7724 7725 7726 7727
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7728 7729
				break;

7730 7731
			cpumask_and(tmpmask, tmpmask, pnodemask);
			if (cpumask_empty(tmpmask))
7732 7733
				continue;

7734 7735
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7736
					  GFP_KERNEL, i);
7737 7738 7739
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7740
				goto error;
7741
			}
7742
			sg->__cpu_power = 0;
7743
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7744
			sg->next = prev->next;
7745
			cpumask_or(covered, covered, tmpmask);
7746 7747 7748 7749
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7750 7751 7752
#endif

	/* Calculate CPU power for physical packages and nodes */
7753
#ifdef CONFIG_SCHED_SMT
7754
	for_each_cpu(i, cpu_map) {
7755
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7756

7757
		init_sched_groups_power(i, sd);
7758
	}
L
Linus Torvalds 已提交
7759
#endif
7760
#ifdef CONFIG_SCHED_MC
7761
	for_each_cpu(i, cpu_map) {
7762
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7763

7764
		init_sched_groups_power(i, sd);
7765 7766
	}
#endif
7767

7768
	for_each_cpu(i, cpu_map) {
7769
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7770

7771
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7772 7773
	}

7774
#ifdef CONFIG_NUMA
7775
	for (i = 0; i < nr_node_ids; i++)
7776
		init_numa_sched_groups_power(sched_group_nodes[i]);
7777

7778 7779
	if (sd_allnodes) {
		struct sched_group *sg;
7780

7781
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7782
								tmpmask);
7783 7784
		init_numa_sched_groups_power(sg);
	}
7785 7786
#endif

L
Linus Torvalds 已提交
7787
	/* Attach the domains */
7788
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7789 7790
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7791
		sd = &per_cpu(cpu_domains, i).sd;
7792
#elif defined(CONFIG_SCHED_MC)
7793
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7794
#else
7795
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7796
#endif
G
Gregory Haskins 已提交
7797
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7798
	}
7799

7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7828

7829
#ifdef CONFIG_NUMA
7830
error:
7831
	free_sched_groups(cpu_map, tmpmask);
7832
	free_rootdomain(rd);
7833
	goto free_tmpmask;
7834
#endif
L
Linus Torvalds 已提交
7835
}
P
Paul Jackson 已提交
7836

7837
static int build_sched_domains(const struct cpumask *cpu_map)
7838 7839 7840 7841
{
	return __build_sched_domains(cpu_map, NULL);
}

7842
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7843
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7844 7845
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7846 7847 7848

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7849 7850
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7851
 */
7852
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7853

7854 7855 7856 7857 7858 7859
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7860
{
7861
	return 0;
7862 7863
}

7864
/*
I
Ingo Molnar 已提交
7865
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7866 7867
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7868
 */
7869
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7870
{
7871 7872
	int err;

7873
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7874
	ndoms_cur = 1;
7875
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7876
	if (!doms_cur)
7877
		doms_cur = fallback_doms;
7878
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7879
	dattr_cur = NULL;
7880
	err = build_sched_domains(doms_cur);
7881
	register_sched_domain_sysctl();
7882 7883

	return err;
7884 7885
}

7886 7887
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7888
{
7889
	free_sched_groups(cpu_map, tmpmask);
7890
}
L
Linus Torvalds 已提交
7891

7892 7893 7894 7895
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7896
static void detach_destroy_domains(const struct cpumask *cpu_map)
7897
{
7898 7899
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7900 7901
	int i;

7902
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7903
		cpu_attach_domain(NULL, &def_root_domain, i);
7904
	synchronize_sched();
7905
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7906 7907
}

7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7924 7925
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7926
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7927 7928 7929
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7930
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7931 7932 7933
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7934 7935 7936
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7937 7938
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7939 7940 7941 7942
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7943
 *
7944
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7945 7946
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7947
 *
P
Paul Jackson 已提交
7948 7949
 * Call with hotplug lock held
 */
7950 7951
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7952
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7953
{
7954
	int i, j, n;
7955
	int new_topology;
P
Paul Jackson 已提交
7956

7957
	mutex_lock(&sched_domains_mutex);
7958

7959 7960 7961
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7962 7963 7964
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7965
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7966 7967 7968

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7969
		for (j = 0; j < n && !new_topology; j++) {
7970
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
7971
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7972 7973 7974 7975 7976 7977 7978 7979
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7980 7981
	if (doms_new == NULL) {
		ndoms_cur = 0;
7982
		doms_new = fallback_doms;
7983
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7984
		WARN_ON_ONCE(dattr_new);
7985 7986
	}

P
Paul Jackson 已提交
7987 7988
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7989
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7990
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
7991
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7992 7993 7994
				goto match2;
		}
		/* no match - add a new doms_new */
7995 7996
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7997 7998 7999 8000 8001
match2:
		;
	}

	/* Remember the new sched domains */
8002
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8003
		kfree(doms_cur);
8004
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8005
	doms_cur = doms_new;
8006
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8007
	ndoms_cur = ndoms_new;
8008 8009

	register_sched_domain_sysctl();
8010

8011
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8012 8013
}

8014
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8015
int arch_reinit_sched_domains(void)
8016
{
8017
	get_online_cpus();
8018 8019 8020 8021

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8022
	rebuild_sched_domains();
8023
	put_online_cpus();
8024

8025
	return 0;
8026 8027 8028 8029 8030
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;
8031
	unsigned int level = 0;
8032

8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8044 8045 8046
		return -EINVAL;

	if (smt)
8047
		sched_smt_power_savings = level;
8048
	else
8049
		sched_mc_power_savings = level;
8050 8051 8052 8053 8054 8055 8056

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
8057 8058
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8059 8060 8061
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8062
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8063
					    const char *buf, size_t count)
8064 8065 8066
{
	return sched_power_savings_store(buf, count, 0);
}
8067 8068 8069
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8070 8071 8072
#endif

#ifdef CONFIG_SCHED_SMT
8073 8074
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8075 8076 8077
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8078
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8079
					     const char *buf, size_t count)
8080 8081 8082
{
	return sched_power_savings_store(buf, count, 1);
}
8083 8084
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8104
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8105

8106
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8107
/*
8108 8109
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8110 8111 8112
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8113 8114 8115 8116 8117 8118
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8119
		partition_sched_domains(1, NULL, NULL);
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8130
{
P
Peter Zijlstra 已提交
8131 8132
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8133 8134
	switch (action) {
	case CPU_DOWN_PREPARE:
8135
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8136
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8137 8138 8139
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8140
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8141
	case CPU_ONLINE:
8142
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8143
		enable_runtime(cpu_rq(cpu));
8144 8145
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8146 8147 8148 8149 8150 8151 8152
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8153 8154 8155
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8156

8157 8158 8159 8160 8161
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8162
	get_online_cpus();
8163
	mutex_lock(&sched_domains_mutex);
8164 8165 8166 8167
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8168
	mutex_unlock(&sched_domains_mutex);
8169
	put_online_cpus();
8170 8171

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8172 8173
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8174 8175 8176 8177 8178
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8179
	init_hrtick();
8180 8181

	/* Move init over to a non-isolated CPU */
8182
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8183
		BUG();
I
Ingo Molnar 已提交
8184
	sched_init_granularity();
8185
	free_cpumask_var(non_isolated_cpus);
8186 8187

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8188
	init_sched_rt_class();
L
Linus Torvalds 已提交
8189 8190 8191 8192
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8193
	sched_init_granularity();
L
Linus Torvalds 已提交
8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8204
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8205 8206
{
	cfs_rq->tasks_timeline = RB_ROOT;
8207
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8208 8209 8210
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8211
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8212 8213
}

P
Peter Zijlstra 已提交
8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8227
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8228 8229
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8230
#endif
P
Peter Zijlstra 已提交
8231 8232 8233 8234 8235 8236 8237
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8238 8239
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8240

8241
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8242
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8243 8244
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8245 8246
}

P
Peter Zijlstra 已提交
8247
#ifdef CONFIG_FAIR_GROUP_SCHED
8248 8249 8250
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8251
{
8252
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8253 8254 8255 8256 8257 8258 8259
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8260 8261 8262 8263
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8264 8265 8266 8267 8268
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8269 8270
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8271
	se->load.inv_weight = 0;
8272
	se->parent = parent;
P
Peter Zijlstra 已提交
8273
}
8274
#endif
P
Peter Zijlstra 已提交
8275

8276
#ifdef CONFIG_RT_GROUP_SCHED
8277 8278 8279
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8280
{
8281 8282
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8283 8284 8285 8286
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8287
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8288 8289 8290 8291
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8292 8293 8294
	if (!rt_se)
		return;

8295 8296 8297 8298 8299
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8300
	rt_se->my_q = rt_rq;
8301
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8302 8303 8304 8305
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8306 8307
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8308
	int i, j;
8309 8310 8311 8312 8313 8314 8315
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8316 8317 8318
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8319 8320 8321 8322 8323 8324
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8325
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8326 8327 8328 8329 8330 8331 8332

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8333 8334 8335 8336 8337 8338 8339

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8340 8341
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8342 8343 8344 8345 8346
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8347 8348 8349 8350 8351 8352 8353 8354
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8355 8356
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8357
	}
I
Ingo Molnar 已提交
8358

G
Gregory Haskins 已提交
8359 8360 8361 8362
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8363 8364 8365 8366 8367 8368
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8369 8370 8371
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8372 8373
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8374

8375
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8376
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8377 8378 8379 8380 8381 8382
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8383 8384
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8385

8386
	for_each_possible_cpu(i) {
8387
		struct rq *rq;
L
Linus Torvalds 已提交
8388 8389 8390

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8391
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8392
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8393
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8394
#ifdef CONFIG_FAIR_GROUP_SCHED
8395
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8396
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8417
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8418
#elif defined CONFIG_USER_SCHED
8419 8420
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8432
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8433
				&per_cpu(init_cfs_rq, i),
8434 8435
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8436

8437
#endif
D
Dhaval Giani 已提交
8438 8439 8440
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8441
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8442
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8443
#ifdef CONFIG_CGROUP_SCHED
8444
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8445
#elif defined CONFIG_USER_SCHED
8446
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8447
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8448
				&per_cpu(init_rt_rq, i),
8449 8450
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8451
#endif
I
Ingo Molnar 已提交
8452
#endif
L
Linus Torvalds 已提交
8453

I
Ingo Molnar 已提交
8454 8455
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8456
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8457
		rq->sd = NULL;
G
Gregory Haskins 已提交
8458
		rq->rd = NULL;
L
Linus Torvalds 已提交
8459
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8460
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8461
		rq->push_cpu = 0;
8462
		rq->cpu = i;
8463
		rq->online = 0;
L
Linus Torvalds 已提交
8464 8465
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8466
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8467
#endif
P
Peter Zijlstra 已提交
8468
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8469 8470 8471
		atomic_set(&rq->nr_iowait, 0);
	}

8472
	set_load_weight(&init_task);
8473

8474 8475 8476 8477
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8478
#ifdef CONFIG_SMP
8479
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8480 8481
#endif

8482 8483 8484 8485
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8499 8500 8501 8502
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8503

8504 8505
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8506
#ifdef CONFIG_SMP
8507 8508 8509
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8510
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8511
#endif /* SMP */
8512

8513
	scheduler_running = 1;
L
Linus Torvalds 已提交
8514 8515 8516 8517 8518
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8519
#ifdef in_atomic
L
Linus Torvalds 已提交
8520 8521
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8541 8542 8543 8544 8545 8546
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8547 8548 8549
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8550

8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8562 8563
void normalize_rt_tasks(void)
{
8564
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8565
	unsigned long flags;
8566
	struct rq *rq;
L
Linus Torvalds 已提交
8567

8568
	read_lock_irqsave(&tasklist_lock, flags);
8569
	do_each_thread(g, p) {
8570 8571 8572 8573 8574 8575
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8576 8577
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8578 8579 8580
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8581
#endif
I
Ingo Molnar 已提交
8582 8583 8584 8585 8586 8587 8588 8589

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8590
			continue;
I
Ingo Molnar 已提交
8591
		}
L
Linus Torvalds 已提交
8592

8593
		spin_lock(&p->pi_lock);
8594
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8595

8596
		normalize_task(rq, p);
8597

8598
		__task_rq_unlock(rq);
8599
		spin_unlock(&p->pi_lock);
8600 8601
	} while_each_thread(g, p);

8602
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8603 8604 8605
}

#endif /* CONFIG_MAGIC_SYSRQ */
8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8624
struct task_struct *curr_task(int cpu)
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8635 8636
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8637 8638 8639 8640 8641 8642 8643
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8644
void set_curr_task(int cpu, struct task_struct *p)
8645 8646 8647 8648 8649
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8650

8651 8652
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8667 8668
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8669 8670
{
	struct cfs_rq *cfs_rq;
8671
	struct sched_entity *se;
8672
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8673 8674
	int i;

8675
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8676 8677
	if (!tg->cfs_rq)
		goto err;
8678
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8679 8680
	if (!tg->se)
		goto err;
8681 8682

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8683 8684

	for_each_possible_cpu(i) {
8685
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8686

8687 8688
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8689 8690 8691
		if (!cfs_rq)
			goto err;

8692 8693
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8694 8695 8696
		if (!se)
			goto err;

8697
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8716
#else /* !CONFG_FAIR_GROUP_SCHED */
8717 8718 8719 8720
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8721 8722
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8734
#endif /* CONFIG_FAIR_GROUP_SCHED */
8735 8736

#ifdef CONFIG_RT_GROUP_SCHED
8737 8738 8739 8740
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8741 8742
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8754 8755
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8756 8757
{
	struct rt_rq *rt_rq;
8758
	struct sched_rt_entity *rt_se;
8759 8760 8761
	struct rq *rq;
	int i;

8762
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8763 8764
	if (!tg->rt_rq)
		goto err;
8765
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8766 8767 8768
	if (!tg->rt_se)
		goto err;

8769 8770
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8771 8772 8773 8774

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8775 8776
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8777 8778
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8779

8780 8781
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8782 8783
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8784

8785
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8786 8787
	}

8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8804
#else /* !CONFIG_RT_GROUP_SCHED */
8805 8806 8807 8808
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8809 8810
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8822
#endif /* CONFIG_RT_GROUP_SCHED */
8823

8824
#ifdef CONFIG_GROUP_SCHED
8825 8826 8827 8828 8829 8830 8831 8832
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8833
struct task_group *sched_create_group(struct task_group *parent)
8834 8835 8836 8837 8838 8839 8840 8841 8842
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8843
	if (!alloc_fair_sched_group(tg, parent))
8844 8845
		goto err;

8846
	if (!alloc_rt_sched_group(tg, parent))
8847 8848
		goto err;

8849
	spin_lock_irqsave(&task_group_lock, flags);
8850
	for_each_possible_cpu(i) {
8851 8852
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8853
	}
P
Peter Zijlstra 已提交
8854
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8855 8856 8857 8858 8859

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8860
	list_add_rcu(&tg->siblings, &parent->children);
8861
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8862

8863
	return tg;
S
Srivatsa Vaddagiri 已提交
8864 8865

err:
P
Peter Zijlstra 已提交
8866
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8867 8868 8869
	return ERR_PTR(-ENOMEM);
}

8870
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8871
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8872 8873
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8874
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8875 8876
}

8877
/* Destroy runqueue etc associated with a task group */
8878
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8879
{
8880
	unsigned long flags;
8881
	int i;
S
Srivatsa Vaddagiri 已提交
8882

8883
	spin_lock_irqsave(&task_group_lock, flags);
8884
	for_each_possible_cpu(i) {
8885 8886
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8887
	}
P
Peter Zijlstra 已提交
8888
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8889
	list_del_rcu(&tg->siblings);
8890
	spin_unlock_irqrestore(&task_group_lock, flags);
8891 8892

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8893
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8894 8895
}

8896
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8897 8898 8899
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8900 8901
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8902 8903 8904 8905 8906 8907 8908 8909 8910
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8911
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8912 8913
	on_rq = tsk->se.on_rq;

8914
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8915
		dequeue_task(rq, tsk, 0);
8916 8917
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8918

P
Peter Zijlstra 已提交
8919
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8920

P
Peter Zijlstra 已提交
8921 8922 8923 8924 8925
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8926 8927 8928
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8929
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8930 8931 8932

	task_rq_unlock(rq, &flags);
}
8933
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8934

8935
#ifdef CONFIG_FAIR_GROUP_SCHED
8936
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8937 8938 8939 8940 8941
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8942
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8943 8944 8945
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8946
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8947

8948
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8949
		enqueue_entity(cfs_rq, se, 0);
8950
}
8951

8952 8953 8954 8955 8956 8957 8958 8959 8960
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8961 8962
}

8963 8964
static DEFINE_MUTEX(shares_mutex);

8965
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8966 8967
{
	int i;
8968
	unsigned long flags;
8969

8970 8971 8972 8973 8974 8975
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8976 8977
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8978 8979
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8980

8981
	mutex_lock(&shares_mutex);
8982
	if (tg->shares == shares)
8983
		goto done;
S
Srivatsa Vaddagiri 已提交
8984

8985
	spin_lock_irqsave(&task_group_lock, flags);
8986 8987
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8988
	list_del_rcu(&tg->siblings);
8989
	spin_unlock_irqrestore(&task_group_lock, flags);
8990 8991 8992 8993 8994 8995 8996 8997

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8998
	tg->shares = shares;
8999 9000 9001 9002 9003
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9004
		set_se_shares(tg->se[i], shares);
9005
	}
S
Srivatsa Vaddagiri 已提交
9006

9007 9008 9009 9010
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9011
	spin_lock_irqsave(&task_group_lock, flags);
9012 9013
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9014
	list_add_rcu(&tg->siblings, &tg->parent->children);
9015
	spin_unlock_irqrestore(&task_group_lock, flags);
9016
done:
9017
	mutex_unlock(&shares_mutex);
9018
	return 0;
S
Srivatsa Vaddagiri 已提交
9019 9020
}

9021 9022 9023 9024
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9025
#endif
9026

9027
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9028
/*
P
Peter Zijlstra 已提交
9029
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9030
 */
P
Peter Zijlstra 已提交
9031 9032 9033 9034 9035
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9036
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9037

P
Peter Zijlstra 已提交
9038
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9039 9040
}

P
Peter Zijlstra 已提交
9041 9042
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9043
{
P
Peter Zijlstra 已提交
9044
	struct task_struct *g, *p;
9045

P
Peter Zijlstra 已提交
9046 9047 9048 9049
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9050

P
Peter Zijlstra 已提交
9051 9052
	return 0;
}
9053

P
Peter Zijlstra 已提交
9054 9055 9056 9057 9058
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9059

P
Peter Zijlstra 已提交
9060 9061 9062 9063 9064 9065
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9066

P
Peter Zijlstra 已提交
9067 9068
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9069

P
Peter Zijlstra 已提交
9070 9071 9072
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9073 9074
	}

9075 9076 9077 9078 9079
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9080

9081 9082 9083
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9084 9085
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9086

P
Peter Zijlstra 已提交
9087
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9088

9089 9090 9091 9092 9093
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9094

9095 9096 9097
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9098 9099 9100
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9101

P
Peter Zijlstra 已提交
9102 9103 9104 9105
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9106

P
Peter Zijlstra 已提交
9107
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9108
	}
P
Peter Zijlstra 已提交
9109

P
Peter Zijlstra 已提交
9110 9111 9112 9113
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9114 9115
}

P
Peter Zijlstra 已提交
9116
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9117
{
P
Peter Zijlstra 已提交
9118 9119 9120 9121 9122 9123 9124
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9125 9126
}

9127 9128
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9129
{
P
Peter Zijlstra 已提交
9130
	int i, err = 0;
P
Peter Zijlstra 已提交
9131 9132

	mutex_lock(&rt_constraints_mutex);
9133
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9134 9135
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9136
		goto unlock;
P
Peter Zijlstra 已提交
9137 9138

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9139 9140
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9141 9142 9143 9144 9145 9146 9147 9148 9149

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9150
 unlock:
9151
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9152 9153 9154
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9155 9156
}

9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9169 9170 9171 9172
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9173
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9174 9175
		return -1;

9176
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9177 9178 9179
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9180 9181 9182 9183 9184 9185 9186 9187

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9188 9189 9190
	if (rt_period == 0)
		return -EINVAL;

9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9205
	u64 runtime, period;
9206 9207
	int ret = 0;

9208 9209 9210
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9211 9212 9213 9214 9215 9216 9217 9218
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9219

9220
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9221
	read_lock(&tasklist_lock);
9222
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9223
	read_unlock(&tasklist_lock);
9224 9225 9226 9227
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9228
#else /* !CONFIG_RT_GROUP_SCHED */
9229 9230
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9231 9232 9233
	unsigned long flags;
	int i;

9234 9235 9236
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9237 9238 9239 9240 9241 9242 9243 9244 9245 9246
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9247 9248
	return 0;
}
9249
#endif /* CONFIG_RT_GROUP_SCHED */
9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9280

9281
#ifdef CONFIG_CGROUP_SCHED
9282 9283

/* return corresponding task_group object of a cgroup */
9284
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9285
{
9286 9287
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9288 9289 9290
}

static struct cgroup_subsys_state *
9291
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9292
{
9293
	struct task_group *tg, *parent;
9294

9295
	if (!cgrp->parent) {
9296 9297 9298 9299
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9300 9301
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9302 9303 9304 9305 9306 9307
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9308 9309
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9310
{
9311
	struct task_group *tg = cgroup_tg(cgrp);
9312 9313 9314 9315

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9316 9317 9318
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9319
{
9320 9321
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9322
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9323 9324
		return -EINVAL;
#else
9325 9326 9327
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9328
#endif
9329 9330 9331 9332 9333

	return 0;
}

static void
9334
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9335 9336 9337 9338 9339
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9340
#ifdef CONFIG_FAIR_GROUP_SCHED
9341
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9342
				u64 shareval)
9343
{
9344
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9345 9346
}

9347
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9348
{
9349
	struct task_group *tg = cgroup_tg(cgrp);
9350 9351 9352

	return (u64) tg->shares;
}
9353
#endif /* CONFIG_FAIR_GROUP_SCHED */
9354

9355
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9356
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9357
				s64 val)
P
Peter Zijlstra 已提交
9358
{
9359
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9360 9361
}

9362
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9363
{
9364
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9365
}
9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9377
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9378

9379
static struct cftype cpu_files[] = {
9380
#ifdef CONFIG_FAIR_GROUP_SCHED
9381 9382
	{
		.name = "shares",
9383 9384
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9385
	},
9386 9387
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9388
	{
P
Peter Zijlstra 已提交
9389
		.name = "rt_runtime_us",
9390 9391
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9392
	},
9393 9394
	{
		.name = "rt_period_us",
9395 9396
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9397
	},
9398
#endif
9399 9400 9401 9402
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9403
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9404 9405 9406
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9407 9408 9409 9410 9411 9412 9413
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9414 9415 9416
	.early_init	= 1,
};

9417
#endif	/* CONFIG_CGROUP_SCHED */
9418 9419 9420 9421 9422 9423 9424 9425 9426 9427

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9428
/* track cpu usage of a group of tasks and its child groups */
9429 9430 9431 9432
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9433
	struct cpuacct *parent;
9434 9435 9436 9437 9438
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9439
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9440
{
9441
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9454
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9467 9468 9469
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9470 9471 9472 9473
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9474
static void
9475
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9476
{
9477
	struct cpuacct *ca = cgroup_ca(cgrp);
9478 9479 9480 9481 9482 9483

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9484
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9485
{
9486
	struct cpuacct *ca = cgroup_ca(cgrp);
9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9528 9529 9530
static struct cftype files[] = {
	{
		.name = "usage",
9531 9532
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9533 9534 9535
	},
};

9536
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9537
{
9538
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9539 9540 9541 9542 9543 9544 9545 9546 9547 9548
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9549
	int cpu;
9550 9551 9552 9553

	if (!cpuacct_subsys.active)
		return;

9554
	cpu = task_cpu(tsk);
9555 9556
	ca = task_ca(tsk);

9557 9558
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */