sched.c 220.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295
#endif /* CONFIG_FAIR_GROUP_SCHED */
296 297 298 299

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 301
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
302
#define root_task_group init_task_group
303
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
313
#else /* !CONFIG_USER_SCHED */
314
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
315
#endif /* CONFIG_USER_SCHED */
316

317
/*
318 319 320 321
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
322 323 324
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
325
#define MIN_SHARES	2
326
#define MAX_SHARES	(1UL << 18)
327

328 329 330
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
331
/* Default task group.
I
Ingo Molnar 已提交
332
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
333
 */
334
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
335 336

/* return group to which a task belongs */
337
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
338
{
339
	struct task_group *tg;
340

341
#ifdef CONFIG_USER_SCHED
342
	tg = p->user->tg;
343
#elif defined(CONFIG_CGROUP_SCHED)
344 345
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
346
#else
I
Ingo Molnar 已提交
347
	tg = &init_task_group;
348
#endif
349
	return tg;
S
Srivatsa Vaddagiri 已提交
350 351 352
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
353
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
354
{
355
#ifdef CONFIG_FAIR_GROUP_SCHED
356 357
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
358
#endif
P
Peter Zijlstra 已提交
359

360
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
361 362
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
363
#endif
S
Srivatsa Vaddagiri 已提交
364 365 366 367
}

#else

P
Peter Zijlstra 已提交
368
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 370 371 372
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
373

374
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
375

I
Ingo Molnar 已提交
376 377 378 379 380 381
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
382
	u64 min_vruntime;
383
	u64 pair_start;
I
Ingo Molnar 已提交
384 385 386

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
387 388 389 390 391 392

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
393 394
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
395
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
396 397 398

	unsigned long nr_spread_over;

399
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
400 401
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
402 403
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
404 405 406 407 408 409
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
410 411
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
412 413 414

#ifdef CONFIG_SMP
	/*
415
	 * the part of load.weight contributed by tasks
416
	 */
417
	unsigned long task_weight;
418

419 420 421 422 423 424 425
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
426

427 428 429 430
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
431 432 433 434 435

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
436
#endif
I
Ingo Molnar 已提交
437 438
#endif
};
L
Linus Torvalds 已提交
439

I
Ingo Molnar 已提交
440 441 442
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
443
	unsigned long rt_nr_running;
444
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
447
#ifdef CONFIG_SMP
448
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
449
	int overloaded;
P
Peter Zijlstra 已提交
450
#endif
P
Peter Zijlstra 已提交
451
	int rt_throttled;
P
Peter Zijlstra 已提交
452
	u64 rt_time;
P
Peter Zijlstra 已提交
453
	u64 rt_runtime;
I
Ingo Molnar 已提交
454
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
455
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
456

457
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
458 459
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
460 461 462 463 464
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
465 466
};

G
Gregory Haskins 已提交
467 468 469 470
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
471 472
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
473 474 475 476 477 478 479 480
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
481

I
Ingo Molnar 已提交
482
	/*
483 484 485 486
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
487
	atomic_t rto_count;
488 489 490
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
491 492
};

493 494 495 496
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
497 498 499 500
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
508
struct rq {
509 510
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
517 518
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519
	unsigned char idle_at_tick;
520
#ifdef CONFIG_NO_HZ
521
	unsigned long last_tick_seen;
522 523
	unsigned char in_nohz_recently;
#endif
524 525
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
526 527 528 529
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
530 531
	struct rt_rq rt;

I
Ingo Molnar 已提交
532
#ifdef CONFIG_FAIR_GROUP_SCHED
533 534
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
535 536
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546 547
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

548
	struct task_struct *curr, *idle;
549
	unsigned long next_balance;
L
Linus Torvalds 已提交
550
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
551

552
	u64 clock;
I
Ingo Molnar 已提交
553

L
Linus Torvalds 已提交
554 555 556
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
557
	struct root_domain *rd;
L
Linus Torvalds 已提交
558 559 560 561 562
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
563 564
	/* cpu of this runqueue: */
	int cpu;
565
	int online;
L
Linus Torvalds 已提交
566

567
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
568

569
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
570 571 572
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
573
#ifdef CONFIG_SCHED_HRTICK
574 575 576 577
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
578 579 580
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
581 582 583 584 585
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
586 587 588 589
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
590 591

	/* schedule() stats */
592 593 594
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
595 596

	/* try_to_wake_up() stats */
597 598
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
599 600

	/* BKL stats */
601
	unsigned int bkl_count;
L
Linus Torvalds 已提交
602 603 604
#endif
};

605
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
606

I
Ingo Molnar 已提交
607 608 609 610 611
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

612 613 614 615 616 617 618 619 620
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
621 622
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
624 625 626 627
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
628 629
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
630 631 632 633 634 635

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

636 637 638 639 640
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
641 642 643 644 645 646 647 648 649
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
668 669 670
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
671 672 673 674

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
675
enum {
P
Peter Zijlstra 已提交
676
#include "sched_features.h"
I
Ingo Molnar 已提交
677 678
};

P
Peter Zijlstra 已提交
679 680 681 682 683
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
684
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
685 686 687 688 689 690 691 692 693
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

694
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
695 696 697 698 699 700
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

701
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
729
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
759
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
802

803 804 805 806 807 808
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
809 810
/*
 * ratelimit for updating the group shares.
811
 * default: 0.25ms
P
Peter Zijlstra 已提交
812
 */
813
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
814

P
Peter Zijlstra 已提交
815
/*
P
Peter Zijlstra 已提交
816
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
817 818
 * default: 1s
 */
P
Peter Zijlstra 已提交
819
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
820

821 822
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
823 824 825 826 827
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
828

829 830 831 832 833 834 835
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
836
	if (sysctl_sched_rt_runtime < 0)
837 838 839 840
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
841

L
Linus Torvalds 已提交
842
#ifndef prepare_arch_switch
843 844 845 846 847 848
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

849 850 851 852 853
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

854
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
855
static inline int task_running(struct rq *rq, struct task_struct *p)
856
{
857
	return task_current(rq, p);
858 859
}

860
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 862 863
{
}

864
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865
{
866 867 868 869
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
870 871 872 873 874 875 876
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

877 878 879 880
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
881
static inline int task_running(struct rq *rq, struct task_struct *p)
882 883 884 885
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
886
	return task_current(rq, p);
887 888 889
#endif
}

890
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

907
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 909 910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
920
#endif
921 922
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
923

924 925 926 927
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
928
static inline struct rq *__task_rq_lock(struct task_struct *p)
929 930
	__acquires(rq->lock)
{
931 932 933 934 935
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
936 937 938 939
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
940 941
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
942
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
943 944
 * explicitly disabling preemption.
 */
945
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
946 947
	__acquires(rq->lock)
{
948
	struct rq *rq;
L
Linus Torvalds 已提交
949

950 951 952 953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
956 957 958 959
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
960
static void __task_rq_unlock(struct rq *rq)
961 962 963 964 965
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

966
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
967 968 969 970 971 972
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
973
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
974
 */
A
Alexey Dobriyan 已提交
975
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
976 977
	__acquires(rq->lock)
{
978
	struct rq *rq;
L
Linus Torvalds 已提交
979 980 981 982 983 984 985 986

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1008
	if (!cpu_active(cpu_of(rq)))
1009
		return 0;
P
Peter Zijlstra 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1030
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035 1036
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1037
#ifdef CONFIG_SMP
1038 1039 1040 1041
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1042
{
1043
	struct rq *rq = arg;
1044

1045 1046 1047 1048
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1049 1050
}

1051 1052 1053 1054 1055 1056
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1057
{
1058 1059
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060

1061 1062 1063 1064 1065 1066 1067 1068
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1083
		hrtick_clear(cpu_rq(cpu));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1104

1105
static void init_hrtick(void)
P
Peter Zijlstra 已提交
1106 1107
{
}
1108
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1109

1110
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1111
{
1112 1113
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1114

1115 1116 1117 1118
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1119

1120 1121 1122
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1133 1134 1135
static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1136 1137
#endif

I
Ingo Molnar 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1151
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1152 1153 1154 1155 1156
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1157
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1158 1159
		return;

1160
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1223
#endif /* CONFIG_NO_HZ */
1224

1225
#else /* !CONFIG_SMP */
1226
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1227 1228
{
	assert_spin_locked(&task_rq(p)->lock);
1229
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1230
}
1231
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1232

1233 1234 1235 1236 1237 1238 1239 1240
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1241 1242 1243
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1244
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1245

1246 1247 1248
/*
 * delta *= weight / lw
 */
1249
static unsigned long
1250 1251 1252 1253 1254
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1255 1256 1257 1258 1259 1260 1261
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1262 1263 1264 1265 1266

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1267
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1268
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1269 1270
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1271
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1272

1273
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1274 1275
}

1276
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1277 1278
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1279
	lw->inv_weight = 0;
1280 1281
}

1282
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1283 1284
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1285
	lw->inv_weight = 0;
1286 1287
}

1288 1289 1290 1291
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1292
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 1294 1295 1296
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 1309 1310
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1311 1312
 */
static const int prio_to_weight[40] = {
1313 1314 1315 1316 1317 1318 1319 1320
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1321 1322
};

1323 1324 1325 1326 1327 1328 1329
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1330
static const u32 prio_to_wmult[40] = {
1331 1332 1333 1334 1335 1336 1337 1338
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1339
};
1340

I
Ingo Molnar 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1366

1367 1368 1369 1370 1371 1372
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1383 1384 1385 1386
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}
1397 1398

#ifdef CONFIG_FAIR_GROUP_SCHED
1399

1400
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401 1402 1403 1404 1405

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1406 1407
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408 1409 1410 1411 1412 1413
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1414
	(*down)(parent, cpu, sd);
1415 1416 1417 1418 1419 1420 1421
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1422
	(*up)(parent, cpu, sd);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1437
__update_group_shares_cpu(struct task_group *tg, int cpu,
1438
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1439
{
1440 1441 1442 1443
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1444
	if (!tg->se[cpu])
1445 1446
		return;

1447
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1459 1460 1461
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1462 1463 1464 1465 1466 1467
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1468
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1469 1470 1471 1472

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1473
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475 1476 1477 1478 1479 1480

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1481
	__set_se_shares(tg->se[cpu], shares);
1482
}
1483 1484

/*
1485 1486 1487
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1488 1489
 */
static void
1490
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491
{
1492 1493 1494
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1495

1496 1497 1498
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1499 1500
	}

1501 1502 1503 1504 1505
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1506

P
Peter Zijlstra 已提交
1507 1508 1509
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1510 1511 1512 1513 1514
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1515
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1516 1517 1518 1519 1520
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1521 1522 1523
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1524
 */
1525
static void
1526
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527
{
1528
	unsigned long load;
1529

1530 1531 1532 1533 1534 1535 1536
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1537

1538
	tg->cfs_rq[cpu]->h_load = load;
1539 1540
}

1541 1542
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543 1544 1545
{
}

1546
static void update_shares(struct sched_domain *sd)
1547
{
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552 1553 1554
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1555 1556
}

1557 1558 1559 1560 1561 1562 1563
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1564
static void update_h_load(int cpu)
1565
{
1566
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1567 1568 1569 1570
}

#else

1571
static inline void update_shares(struct sched_domain *sd)
1572 1573 1574
{
}

1575 1576 1577 1578
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1579 1580 1581 1582
#endif

#endif

V
Vegard Nossum 已提交
1583
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1584 1585
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1586
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1587 1588 1589
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1590
#endif
1591

I
Ingo Molnar 已提交
1592 1593
#include "sched_stats.h"
#include "sched_idletask.c"
1594 1595
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1596 1597 1598 1599 1600
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1601 1602
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1603

1604
static void inc_nr_running(struct rq *rq)
1605 1606 1607 1608
{
	rq->nr_running++;
}

1609
static void dec_nr_running(struct rq *rq)
1610 1611 1612 1613
{
	rq->nr_running--;
}

1614 1615 1616
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1617 1618 1619 1620
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1621

I
Ingo Molnar 已提交
1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1630

I
Ingo Molnar 已提交
1631 1632
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1633 1634
}

1635 1636 1637 1638 1639 1640
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1641
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1642
{
I
Ingo Molnar 已提交
1643
	sched_info_queued(p);
1644
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1645
	p->se.on_rq = 1;
1646 1647
}

1648
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1649
{
1650 1651 1652 1653 1654 1655
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1656
	sched_info_dequeued(p);
1657
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1658
	p->se.on_rq = 0;
1659 1660
}

1661
/*
I
Ingo Molnar 已提交
1662
 * __normal_prio - return the priority that is based on the static prio
1663 1664 1665
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1666
	return p->static_prio;
1667 1668
}

1669 1670 1671 1672 1673 1674 1675
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1676
static inline int normal_prio(struct task_struct *p)
1677 1678 1679
{
	int prio;

1680
	if (task_has_rt_policy(p))
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1694
static int effective_prio(struct task_struct *p)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1707
/*
I
Ingo Molnar 已提交
1708
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1709
 */
I
Ingo Molnar 已提交
1710
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1711
{
1712
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1713
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1714

1715
	enqueue_task(rq, p, wakeup);
1716
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1722
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1723
{
1724
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1725 1726
		rq->nr_uninterruptible++;

1727
	dequeue_task(rq, p, sleep);
1728
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1735
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1736 1737 1738 1739
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1740 1741
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1742
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1743
#ifdef CONFIG_SMP
1744 1745 1746 1747 1748 1749
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1750 1751
	task_thread_info(p)->cpu = cpu;
#endif
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1766
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1767

1768 1769 1770 1771 1772 1773
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1774 1775 1776
/*
 * Is this task likely cache-hot:
 */
1777
static int
1778 1779 1780 1781
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1782 1783 1784
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1785
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1786 1787
		return 1;

1788 1789 1790
	if (p->sched_class != &fair_sched_class)
		return 0;

1791 1792 1793 1794 1795
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1796 1797 1798 1799 1800 1801
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1802
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1803
{
I
Ingo Molnar 已提交
1804 1805
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806 1807
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1808
	u64 clock_offset;
I
Ingo Molnar 已提交
1809 1810

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1811 1812 1813 1814

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1815 1816 1817 1818
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1819 1820 1821 1822 1823
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1824
#endif
1825 1826
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1827 1828

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1829 1830
}

1831
struct migration_req {
L
Linus Torvalds 已提交
1832 1833
	struct list_head list;

1834
	struct task_struct *task;
L
Linus Torvalds 已提交
1835 1836 1837
	int dest_cpu;

	struct completion done;
1838
};
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1844
static int
1845
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1846
{
1847
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1853
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859 1860 1861
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1862

L
Linus Torvalds 已提交
1863 1864 1865 1866 1867 1868
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1869 1870 1871 1872 1873 1874 1875
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1882
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1883 1884
{
	unsigned long flags;
I
Ingo Molnar 已提交
1885
	int running, on_rq;
R
Roland McGrath 已提交
1886
	unsigned long ncsw;
1887
	struct rq *rq;
L
Linus Torvalds 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1909 1910 1911
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1912
			cpu_relax();
R
Roland McGrath 已提交
1913
		}
1914

1915 1916 1917 1918 1919 1920 1921 1922
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1923 1924 1925 1926 1927 1928
		ncsw = 0;
		if (!match_state || p->state == match_state) {
			ncsw = p->nivcsw + p->nvcsw;
			if (unlikely(!ncsw))
				ncsw = 1;
		}
1929
		task_rq_unlock(rq, &flags);
1930

R
Roland McGrath 已提交
1931 1932 1933 1934 1935 1936
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1961

1962 1963 1964 1965 1966 1967 1968
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1969 1970

	return ncsw;
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1986
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1998 1999
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2000 2001 2002 2003
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2004
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2005
{
2006
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2007
	unsigned long total = weighted_cpuload(cpu);
2008

2009
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2010
		return total;
2011

I
Ingo Molnar 已提交
2012
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2013 2014 2015
}

/*
2016 2017
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2018
 */
A
Alexey Dobriyan 已提交
2019
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2020
{
2021
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2022
	unsigned long total = weighted_cpuload(cpu);
2023

2024
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2025
		return total;
2026

I
Ingo Molnar 已提交
2027
	return max(rq->cpu_load[type-1], total);
2028 2029
}

N
Nick Piggin 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2047 2048
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2049
			continue;
2050

N
Nick Piggin 已提交
2051 2052 2053 2054 2055
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2056
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2067 2068
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2069 2070 2071 2072 2073 2074 2075 2076

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2077
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2078 2079 2080 2081 2082 2083 2084

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2085
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2086
 */
I
Ingo Molnar 已提交
2087
static int
2088 2089
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2090 2091 2092 2093 2094
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2095
	/* Traverse only the allowed CPUs */
2096
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2097

2098
	for_each_cpu_mask_nr(i, *tmp) {
2099
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2125

2126
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2127 2128 2129
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2130 2131
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2132 2133
		if (tmp->flags & flag)
			sd = tmp;
2134
	}
N
Nick Piggin 已提交
2135

2136 2137 2138
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2139
	while (sd) {
2140
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2141
		struct sched_group *group;
2142 2143 2144 2145 2146 2147
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2148 2149 2150

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2151 2152 2153 2154
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2155

2156
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2157 2158 2159 2160 2161
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2162

2163
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2195
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2196
{
2197
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2198 2199
	unsigned long flags;
	long old_state;
2200
	struct rq *rq;
L
Linus Torvalds 已提交
2201

2202 2203 2204
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2221
	smp_wmb();
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2227
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2228 2229 2230
		goto out_running;

	cpu = task_cpu(p);
2231
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2238 2239 2240
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2247
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2248 2249 2250 2251 2252 2253
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2267
#endif /* CONFIG_SCHEDSTATS */
2268

L
Linus Torvalds 已提交
2269 2270
out_activate:
#endif /* CONFIG_SMP */
2271 2272 2273 2274 2275 2276 2277 2278 2279
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2280
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2281
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2282 2283 2284
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2285 2286 2287
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2288 2289
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2290
	p->state = TASK_RUNNING;
2291 2292 2293 2294
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2295
out:
2296 2297
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2298 2299 2300 2301 2302
	task_rq_unlock(rq, &flags);

	return success;
}

2303
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2304
{
2305
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2306 2307 2308
}
EXPORT_SYMBOL(wake_up_process);

2309
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2310 2311 2312 2313 2314 2315 2316
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2317 2318 2319 2320 2321 2322 2323
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2324
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2325 2326
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2327 2328 2329

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2330 2331 2332 2333 2334 2335
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2336
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2337
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2338
#endif
N
Nick Piggin 已提交
2339

P
Peter Zijlstra 已提交
2340
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2341
	p->se.on_rq = 0;
2342
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2343

2344 2345 2346 2347
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2369
	set_task_cpu(p, cpu);
2370 2371 2372 2373 2374

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2375 2376
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2377

2378
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2379
	if (likely(sched_info_on()))
2380
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2381
#endif
2382
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2383 2384
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2385
#ifdef CONFIG_PREEMPT
2386
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2387
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2388
#endif
N
Nick Piggin 已提交
2389
	put_cpu();
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2399
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2400 2401
{
	unsigned long flags;
I
Ingo Molnar 已提交
2402
	struct rq *rq;
L
Linus Torvalds 已提交
2403 2404

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2405
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2406
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2407 2408 2409

	p->prio = effective_prio(p);

2410
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2411
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2412 2413
	} else {
		/*
I
Ingo Molnar 已提交
2414 2415
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2416
		 */
2417
		p->sched_class->task_new(rq, p);
2418
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2419
	}
M
Mathieu Desnoyers 已提交
2420 2421 2422
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2423
	check_preempt_curr(rq, p);
2424 2425 2426 2427
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2428
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2429 2430
}

2431 2432 2433
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2434 2435
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2436 2437 2438 2439 2440 2441 2442 2443 2444
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2445
 * @notifier: notifier struct to unregister
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2475
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2487
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2488

2489 2490 2491
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2492
 * @prev: the current task that is being switched out
2493 2494 2495 2496 2497 2498 2499 2500 2501
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2502 2503 2504
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2505
{
2506
	fire_sched_out_preempt_notifiers(prev, next);
2507 2508 2509 2510
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2511 2512
/**
 * finish_task_switch - clean up after a task-switch
2513
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2514 2515
 * @prev: the thread we just switched away from.
 *
2516 2517 2518 2519
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2520 2521
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2522
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2523 2524 2525
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2526
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2527 2528 2529
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2530
	long prev_state;
L
Linus Torvalds 已提交
2531 2532 2533 2534 2535

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2536
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2537 2538
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2539
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2545
	prev_state = prev->state;
2546 2547
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2548 2549 2550 2551
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2552

2553
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2554 2555
	if (mm)
		mmdrop(mm);
2556
	if (unlikely(prev_state == TASK_DEAD)) {
2557 2558 2559
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2560
		 */
2561
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2562
		put_task_struct(prev);
2563
	}
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2570
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2571 2572
	__releases(rq->lock)
{
2573 2574
	struct rq *rq = this_rq();

2575 2576 2577 2578 2579
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2580
	if (current->set_child_tid)
2581
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586 2587
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2588
static inline void
2589
context_switch(struct rq *rq, struct task_struct *prev,
2590
	       struct task_struct *next)
L
Linus Torvalds 已提交
2591
{
I
Ingo Molnar 已提交
2592
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2593

2594
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2595 2596 2597 2598 2599
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2600 2601
	mm = next->mm;
	oldmm = prev->active_mm;
2602 2603 2604 2605 2606 2607 2608
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2609
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2610 2611 2612 2613 2614 2615
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2616
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2617 2618 2619
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2620 2621 2622 2623 2624 2625 2626
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2627
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2628
#endif
L
Linus Torvalds 已提交
2629 2630 2631 2632

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2633 2634 2635 2636 2637 2638 2639
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2663
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2678 2679
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2680

2681
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2691
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2712
/*
I
Ingo Molnar 已提交
2713 2714
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2715
 */
I
Ingo Molnar 已提交
2716
static void update_cpu_load(struct rq *this_rq)
2717
{
2718
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2731 2732 2733 2734 2735 2736 2737
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2738 2739
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2740 2741
}

I
Ingo Molnar 已提交
2742 2743
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2744 2745 2746 2747 2748 2749
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2750
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2751 2752 2753
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2754
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2755 2756 2757 2758
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2759
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2760
			spin_lock(&rq1->lock);
2761
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2762 2763
		} else {
			spin_lock(&rq2->lock);
2764
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2765 2766
		}
	}
2767 2768
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774 2775 2776
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2777
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2791
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2792 2793 2794 2795
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2796 2797
	int ret = 0;

2798 2799 2800 2801 2802
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2803
	if (unlikely(!spin_trylock(&busiest->lock))) {
2804
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2805 2806
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2807
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2808
			ret = 1;
L
Linus Torvalds 已提交
2809
		} else
2810
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2811
	}
S
Steven Rostedt 已提交
2812
	return ret;
L
Linus Torvalds 已提交
2813 2814
}

2815 2816 2817 2818 2819 2820 2821
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2822 2823 2824
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2825
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2826 2827
 * the cpu_allowed mask is restored.
 */
2828
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2829
{
2830
	struct migration_req req;
L
Linus Torvalds 已提交
2831
	unsigned long flags;
2832
	struct rq *rq;
L
Linus Torvalds 已提交
2833 2834 2835

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2836
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841 2842
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2843

L
Linus Torvalds 已提交
2844 2845 2846 2847 2848
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2849

L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855 2856
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2857 2858
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2859 2860 2861 2862
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2863
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2864
	put_cpu();
N
Nick Piggin 已提交
2865 2866
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2873 2874
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2875
{
2876
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2877
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2878
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2879 2880 2881 2882
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2883
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2889
static
2890
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2891
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2892
		     int *all_pinned)
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898 2899
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2900 2901
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2902
		return 0;
2903
	}
2904 2905
	*all_pinned = 0;

2906 2907
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2908
		return 0;
2909
	}
L
Linus Torvalds 已提交
2910

2911 2912 2913 2914 2915 2916
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2917 2918
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2919
#ifdef CONFIG_SCHEDSTATS
2920
		if (task_hot(p, rq->clock, sd)) {
2921
			schedstat_inc(sd, lb_hot_gained[idle]);
2922 2923
			schedstat_inc(p, se.nr_forced_migrations);
		}
2924 2925 2926 2927
#endif
		return 1;
	}

2928 2929
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2930
		return 0;
2931
	}
L
Linus Torvalds 已提交
2932 2933 2934
	return 1;
}

2935 2936 2937 2938 2939
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2940
{
2941
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2942 2943
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2944

2945
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2946 2947
		goto out;

2948 2949
	pinned = 1;

L
Linus Torvalds 已提交
2950
	/*
I
Ingo Molnar 已提交
2951
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2952
	 */
I
Ingo Molnar 已提交
2953 2954
	p = iterator->start(iterator->arg);
next:
2955
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2956
		goto out;
2957 2958

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2959 2960 2961
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2962 2963
	}

I
Ingo Molnar 已提交
2964
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2965
	pulled++;
I
Ingo Molnar 已提交
2966
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2967

2968
	/*
2969
	 * We only want to steal up to the prescribed amount of weighted load.
2970
	 */
2971
	if (rem_load_move > 0) {
2972 2973
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2974 2975
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2976 2977 2978
	}
out:
	/*
2979
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2980 2981 2982 2983
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2984 2985 2986

	if (all_pinned)
		*all_pinned = pinned;
2987 2988

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2989 2990
}

I
Ingo Molnar 已提交
2991
/*
P
Peter Williams 已提交
2992 2993 2994
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2995 2996 2997 2998
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2999
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3000 3001 3002
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3003
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3004
	unsigned long total_load_moved = 0;
3005
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3006 3007

	do {
P
Peter Williams 已提交
3008 3009
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3010
				max_load_move - total_load_moved,
3011
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3012
		class = class->next;
3013 3014 3015 3016

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3017
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3018

P
Peter Williams 已提交
3019 3020 3021
	return total_load_moved > 0;
}

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3058
	const struct sched_class *class;
P
Peter Williams 已提交
3059 3060

	for (class = sched_class_highest; class; class = class->next)
3061
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3062 3063 3064
			return 1;

	return 0;
I
Ingo Molnar 已提交
3065 3066
}

L
Linus Torvalds 已提交
3067 3068
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3069 3070
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3071 3072 3073
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3074
		   unsigned long *imbalance, enum cpu_idle_type idle,
3075
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3076 3077 3078
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3079
	unsigned long max_pull;
3080 3081
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3082
	int load_idx, group_imb = 0;
3083 3084 3085 3086 3087 3088
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3089 3090

	max_load = this_load = total_load = total_pwr = 0;
3091 3092
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3093

I
Ingo Molnar 已提交
3094
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3095
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3096
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3097 3098 3099
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3100 3101

	do {
3102
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3103 3104
		int local_group;
		int i;
3105
		int __group_imb = 0;
3106
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3107
		unsigned long sum_nr_running, sum_weighted_load;
3108 3109
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3110 3111 3112

		local_group = cpu_isset(this_cpu, group->cpumask);

3113 3114 3115
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3116
		/* Tally up the load of all CPUs in the group */
3117
		sum_weighted_load = sum_nr_running = avg_load = 0;
3118 3119
		sum_avg_load_per_task = avg_load_per_task = 0;

3120 3121
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3122

3123
		for_each_cpu_mask_nr(i, group->cpumask) {
3124 3125 3126 3127 3128 3129
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3130

3131
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3132 3133
				*sd_idle = 0;

L
Linus Torvalds 已提交
3134
			/* Bias balancing toward cpus of our domain */
3135 3136 3137 3138 3139 3140
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3141
				load = target_load(i, load_idx);
3142
			} else {
N
Nick Piggin 已提交
3143
				load = source_load(i, load_idx);
3144 3145 3146 3147 3148
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3149 3150

			avg_load += load;
3151
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3152
			sum_weighted_load += weighted_cpuload(i);
3153 3154

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3155 3156
		}

3157 3158 3159
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3160 3161
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3162
		 */
3163 3164
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3165 3166 3167 3168
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3169
		total_load += avg_load;
3170
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3171 3172

		/* Adjust by relative CPU power of the group */
3173 3174
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3190 3191
			__group_imb = 1;

3192
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3193

L
Linus Torvalds 已提交
3194 3195 3196
		if (local_group) {
			this_load = avg_load;
			this = group;
3197 3198 3199
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3200
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3201 3202
			max_load = avg_load;
			busiest = group;
3203 3204
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3205
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3206
		}
3207 3208 3209 3210 3211 3212

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3213 3214 3215
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3216 3217 3218 3219 3220 3221 3222 3223 3224

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3225
		/*
3226 3227
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3228 3229
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3230
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3231
			goto group_next;
3232

I
Ingo Molnar 已提交
3233
		/*
3234
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3235 3236 3237 3238 3239
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3240 3241
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3242 3243
			group_min = group;
			min_nr_running = sum_nr_running;
3244 3245
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3246
		}
3247

I
Ingo Molnar 已提交
3248
		/*
3249
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3261
		}
3262 3263
group_next:
#endif
L
Linus Torvalds 已提交
3264 3265 3266
		group = group->next;
	} while (group != sd->groups);

3267
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3268 3269 3270 3271 3272 3273 3274 3275
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3276
	busiest_load_per_task /= busiest_nr_running;
3277 3278 3279
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3280 3281 3282 3283 3284 3285 3286 3287
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3288
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3289 3290
	 * appear as very large values with unsigned longs.
	 */
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3303 3304

	/* Don't want to pull so many tasks that a group would go idle */
3305
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3306

L
Linus Torvalds 已提交
3307
	/* How much load to actually move to equalise the imbalance */
3308 3309
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3310 3311
			/ SCHED_LOAD_SCALE;

3312 3313 3314 3315 3316 3317
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3318
	if (*imbalance < busiest_load_per_task) {
3319
		unsigned long tmp, pwr_now, pwr_move;
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3330
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3331

3332
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3333
					busiest_load_per_task * imbn) {
3334
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3344 3345 3346 3347
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3348 3349 3350
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3351 3352
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3353
		if (max_load > tmp)
3354
			pwr_move += busiest->__cpu_power *
3355
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3356 3357

		/* Amount of load we'd add */
3358
		if (max_load * busiest->__cpu_power <
3359
				busiest_load_per_task * SCHED_LOAD_SCALE)
3360 3361
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3362
		else
3363 3364 3365 3366
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3367 3368 3369
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3370 3371
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3372 3373 3374 3375 3376
	}

	return busiest;

out_balanced:
3377
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3378
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3379
		goto ret;
L
Linus Torvalds 已提交
3380

3381 3382 3383 3384 3385
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3386
ret:
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391 3392 3393
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3394
static struct rq *
I
Ingo Molnar 已提交
3395
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3396
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3397
{
3398
	struct rq *busiest = NULL, *rq;
3399
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3400 3401
	int i;

3402
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3403
		unsigned long wl;
3404 3405 3406 3407

		if (!cpu_isset(i, *cpus))
			continue;

3408
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3409
		wl = weighted_cpuload(i);
3410

I
Ingo Molnar 已提交
3411
		if (rq->nr_running == 1 && wl > imbalance)
3412
			continue;
L
Linus Torvalds 已提交
3413

I
Ingo Molnar 已提交
3414 3415
		if (wl > max_load) {
			max_load = wl;
3416
			busiest = rq;
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421 3422
		}
	}

	return busiest;
}

3423 3424 3425 3426 3427 3428
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3429 3430 3431 3432
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3433
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3434
			struct sched_domain *sd, enum cpu_idle_type idle,
3435
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3436
{
P
Peter Williams 已提交
3437
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3438 3439
	struct sched_group *group;
	unsigned long imbalance;
3440
	struct rq *busiest;
3441
	unsigned long flags;
N
Nick Piggin 已提交
3442

3443 3444
	cpus_setall(*cpus);

3445 3446 3447
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3448
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3449
	 * portraying it as CPU_NOT_IDLE.
3450
	 */
I
Ingo Molnar 已提交
3451
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3452
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3453
		sd_idle = 1;
L
Linus Torvalds 已提交
3454

3455
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3456

3457
redo:
3458
	update_shares(sd);
3459
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3460
				   cpus, balance);
3461

3462
	if (*balance == 0)
3463 3464
		goto out_balanced;

L
Linus Torvalds 已提交
3465 3466 3467 3468 3469
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3470
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3471 3472 3473 3474 3475
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3476
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3477 3478 3479

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3480
	ld_moved = 0;
L
Linus Torvalds 已提交
3481 3482 3483 3484
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3485
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3486 3487
		 * correctly treated as an imbalance.
		 */
3488
		local_irq_save(flags);
N
Nick Piggin 已提交
3489
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3490
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3491
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3492
		double_rq_unlock(this_rq, busiest);
3493
		local_irq_restore(flags);
3494

3495 3496 3497
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3498
		if (ld_moved && this_cpu != smp_processor_id())
3499 3500
			resched_cpu(this_cpu);

3501
		/* All tasks on this runqueue were pinned by CPU affinity */
3502
		if (unlikely(all_pinned)) {
3503 3504
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3505
				goto redo;
3506
			goto out_balanced;
3507
		}
L
Linus Torvalds 已提交
3508
	}
3509

P
Peter Williams 已提交
3510
	if (!ld_moved) {
L
Linus Torvalds 已提交
3511 3512 3513 3514 3515
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3516
			spin_lock_irqsave(&busiest->lock, flags);
3517 3518 3519 3520 3521

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3522
				spin_unlock_irqrestore(&busiest->lock, flags);
3523 3524 3525 3526
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3527 3528 3529
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3530
				active_balance = 1;
L
Linus Torvalds 已提交
3531
			}
3532
			spin_unlock_irqrestore(&busiest->lock, flags);
3533
			if (active_balance)
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3540
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3541
		}
3542
	} else
L
Linus Torvalds 已提交
3543 3544
		sd->nr_balance_failed = 0;

3545
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3546 3547
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3548 3549 3550 3551 3552 3553 3554 3555 3556
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3557 3558
	}

P
Peter Williams 已提交
3559
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3560
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3561 3562 3563
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3564 3565 3566 3567

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3568
	sd->nr_balance_failed = 0;
3569 3570

out_one_pinned:
L
Linus Torvalds 已提交
3571
	/* tune up the balancing interval */
3572 3573
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3574 3575
		sd->balance_interval *= 2;

3576
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3578 3579 3580 3581
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3582 3583
	if (ld_moved)
		update_shares(sd);
3584
	return ld_moved;
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3591
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3592 3593
 * this_rq is locked.
 */
3594
static int
3595 3596
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3597 3598
{
	struct sched_group *group;
3599
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3600
	unsigned long imbalance;
P
Peter Williams 已提交
3601
	int ld_moved = 0;
N
Nick Piggin 已提交
3602
	int sd_idle = 0;
3603
	int all_pinned = 0;
3604 3605

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3606

3607 3608 3609 3610
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3611
	 * portraying it as CPU_NOT_IDLE.
3612 3613 3614
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3615
		sd_idle = 1;
L
Linus Torvalds 已提交
3616

3617
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3618
redo:
3619
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3620
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3621
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3622
	if (!group) {
I
Ingo Molnar 已提交
3623
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3624
		goto out_balanced;
L
Linus Torvalds 已提交
3625 3626
	}

3627
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3628
	if (!busiest) {
I
Ingo Molnar 已提交
3629
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3630
		goto out_balanced;
L
Linus Torvalds 已提交
3631 3632
	}

N
Nick Piggin 已提交
3633 3634
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3635
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3636

P
Peter Williams 已提交
3637
	ld_moved = 0;
3638 3639 3640
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3641 3642
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3643
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3644 3645
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3646
		double_unlock_balance(this_rq, busiest);
3647

3648
		if (unlikely(all_pinned)) {
3649 3650
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3651 3652
				goto redo;
		}
3653 3654
	}

P
Peter Williams 已提交
3655
	if (!ld_moved) {
I
Ingo Molnar 已提交
3656
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3657 3658
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3659 3660
			return -1;
	} else
3661
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3662

3663
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3664
	return ld_moved;
3665 3666

out_balanced:
I
Ingo Molnar 已提交
3667
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3668
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3669
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3670
		return -1;
3671
	sd->nr_balance_failed = 0;
3672

3673
	return 0;
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3680
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3681 3682
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3683 3684
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3685
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3686 3687

	for_each_domain(this_cpu, sd) {
3688 3689 3690 3691 3692 3693
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3694
			/* If we've pulled tasks over stop searching: */
3695 3696
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3697 3698 3699 3700 3701 3702

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3703
	}
I
Ingo Molnar 已提交
3704
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3705 3706 3707 3708 3709
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3710
	}
L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3721
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3722
{
3723
	int target_cpu = busiest_rq->push_cpu;
3724 3725
	struct sched_domain *sd;
	struct rq *target_rq;
3726

3727
	/* Is there any task to move? */
3728 3729 3730 3731
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3732 3733

	/*
3734
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3735
	 * we need to fix it. Originally reported by
3736
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3737
	 */
3738
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3739

3740 3741
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3742 3743
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3744 3745

	/* Search for an sd spanning us and the target CPU. */
3746
	for_each_domain(target_cpu, sd) {
3747
		if ((sd->flags & SD_LOAD_BALANCE) &&
3748
		    cpu_isset(busiest_cpu, sd->span))
3749
				break;
3750
	}
3751

3752
	if (likely(sd)) {
3753
		schedstat_inc(sd, alb_count);
3754

P
Peter Williams 已提交
3755 3756
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3757 3758 3759 3760
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3761
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3762 3763
}

3764 3765 3766
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3767
	cpumask_t cpu_mask;
3768 3769 3770 3771 3772
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3773
/*
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3784
 *
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3804
		if (!cpu_active(cpu) &&
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3841 3842 3843 3844 3845
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3846
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3847
{
3848 3849
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3850 3851
	unsigned long interval;
	struct sched_domain *sd;
3852
	/* Earliest time when we have to do rebalance again */
3853
	unsigned long next_balance = jiffies + 60*HZ;
3854
	int update_next_balance = 0;
3855
	int need_serialize;
3856
	cpumask_t tmp;
L
Linus Torvalds 已提交
3857

3858
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3859 3860 3861 3862
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3863
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3870 3871 3872
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3873
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3874

3875
		if (need_serialize) {
3876 3877 3878 3879
			if (!spin_trylock(&balancing))
				goto out;
		}

3880
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3881
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3882 3883
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3884 3885 3886
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3887
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3888
			}
3889
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3890
		}
3891
		if (need_serialize)
3892 3893
			spin_unlock(&balancing);
out:
3894
		if (time_after(next_balance, sd->last_balance + interval)) {
3895
			next_balance = sd->last_balance + interval;
3896 3897
			update_next_balance = 1;
		}
3898 3899 3900 3901 3902 3903 3904 3905

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3906
	}
3907 3908 3909 3910 3911 3912 3913 3914

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3915 3916 3917 3918 3919 3920 3921 3922 3923
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3924 3925 3926 3927
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3928

I
Ingo Molnar 已提交
3929
	rebalance_domains(this_cpu, idle);
3930 3931 3932 3933 3934 3935 3936

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3937 3938
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3939 3940 3941 3942
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3943
		cpu_clear(this_cpu, cpus);
3944
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3945 3946 3947 3948 3949 3950 3951 3952
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3953
			rebalance_domains(balance_cpu, CPU_IDLE);
3954 3955

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3956 3957
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3970
static inline void trigger_load_balance(struct rq *rq, int cpu)
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3997
			if (ilb < nr_cpu_ids)
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4022
}
I
Ingo Molnar 已提交
4023 4024 4025

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4026 4027 4028
/*
 * on UP we do not need to balance between CPUs:
 */
4029
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4030 4031
{
}
I
Ingo Molnar 已提交
4032

L
Linus Torvalds 已提交
4033 4034 4035 4036 4037 4038 4039
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4040 4041
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4042
 */
4043
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4044 4045
{
	unsigned long flags;
4046 4047
	u64 ns, delta_exec;
	struct rq *rq;
4048

4049 4050
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4051
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4052 4053
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4054 4055 4056 4057
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4058

L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4080 4081
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4082 4083
}

4084 4085 4086 4087 4088
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4089
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4123
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4124 4125
	cputime64_t tmp;

4126 4127 4128 4129
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4130

L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4139
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4140
		cpustat->system = cputime64_add(cpustat->system, tmp);
4141
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147 4148
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4169
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4177
	} else
L
Linus Torvalds 已提交
4178 4179 4180
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4192
	struct task_struct *curr = rq->curr;
4193 4194

	sched_clock_tick();
I
Ingo Molnar 已提交
4195 4196

	spin_lock(&rq->lock);
4197
	update_rq_clock(rq);
4198
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4199
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4200
	spin_unlock(&rq->lock);
4201

4202
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4203 4204
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4205
#endif
L
Linus Torvalds 已提交
4206 4207
}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4220

4221
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4222
{
4223
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4224 4225 4226
	/*
	 * Underflow?
	 */
4227 4228
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4229
#endif
L
Linus Torvalds 已提交
4230
	preempt_count() += val;
4231
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4232 4233 4234
	/*
	 * Spinlock count overflowing soon?
	 */
4235 4236
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4237 4238 4239
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4240 4241 4242
}
EXPORT_SYMBOL(add_preempt_count);

4243
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4244
{
4245
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4246 4247 4248
	/*
	 * Underflow?
	 */
4249 4250
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4251 4252 4253
	/*
	 * Is the spinlock portion underflowing?
	 */
4254 4255 4256
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4257
#endif
4258

4259 4260
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4261 4262 4263 4264 4265 4266 4267
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4268
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4269
 */
I
Ingo Molnar 已提交
4270
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4271
{
4272 4273 4274 4275 4276
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4277
	debug_show_held_locks(prev);
4278
	print_modules();
I
Ingo Molnar 已提交
4279 4280
	if (irqs_disabled())
		print_irqtrace_events(prev);
4281 4282 4283 4284 4285

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4286
}
L
Linus Torvalds 已提交
4287

I
Ingo Molnar 已提交
4288 4289 4290 4291 4292
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4293
	/*
I
Ingo Molnar 已提交
4294
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4295 4296 4297
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4298
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4299 4300
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4301 4302
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4303
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4304 4305
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4306 4307
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4308 4309
	}
#endif
I
Ingo Molnar 已提交
4310 4311 4312 4313 4314 4315
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4316
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4317
{
4318
	const struct sched_class *class;
I
Ingo Molnar 已提交
4319
	struct task_struct *p;
L
Linus Torvalds 已提交
4320 4321

	/*
I
Ingo Molnar 已提交
4322 4323
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4324
	 */
I
Ingo Molnar 已提交
4325
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4326
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4327 4328
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4329 4330
	}

I
Ingo Molnar 已提交
4331 4332
	class = sched_class_highest;
	for ( ; ; ) {
4333
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4334 4335 4336 4337 4338 4339 4340 4341 4342
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4343

I
Ingo Molnar 已提交
4344 4345 4346 4347 4348 4349
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4350
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4351
	struct rq *rq;
4352
	int cpu;
I
Ingo Molnar 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4366

4367
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4368
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4369

4370 4371 4372 4373
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4374
	update_rq_clock(rq);
4375 4376
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4377 4378

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4379
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4380
			prev->state = TASK_RUNNING;
4381
		else
4382
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4383
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4384 4385
	}

4386 4387 4388 4389
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4390

I
Ingo Molnar 已提交
4391
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4392 4393
		idle_balance(cpu, rq);

4394
	prev->sched_class->put_prev_task(rq, prev);
4395
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4396 4397

	if (likely(prev != next)) {
4398 4399
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4400 4401 4402 4403
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4404
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4405 4406 4407 4408 4409 4410
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4411 4412 4413
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4414
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4415
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4416

L
Linus Torvalds 已提交
4417 4418 4419 4420 4421 4422 4423 4424
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4425
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4426
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4432

L
Linus Torvalds 已提交
4433 4434
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4435
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4436
	 */
N
Nick Piggin 已提交
4437
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4438 4439
		return;

4440 4441 4442 4443
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4444

4445 4446 4447 4448 4449 4450
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4451 4452 4453 4454
}
EXPORT_SYMBOL(preempt_schedule);

/*
4455
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4456 4457 4458 4459 4460 4461 4462
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4463

4464
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4465 4466
	BUG_ON(ti->preempt_count || !irqs_disabled());

4467 4468 4469 4470 4471 4472
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4473

4474 4475 4476 4477 4478 4479
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4480 4481 4482 4483
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4484 4485
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4486
{
4487
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4488 4489 4490 4491
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4492 4493
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4494 4495 4496
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4497
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4498 4499 4500 4501 4502
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4503
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4504

4505
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4506 4507
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4508
		if (curr->func(curr, mode, sync, key) &&
4509
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4519
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4520
 */
4521
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4522
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4535
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4541
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4553
void
I
Ingo Molnar 已提交
4554
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4571
void complete(struct completion *x)
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4577
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4578 4579 4580 4581
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4582
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4583 4584 4585 4586 4587
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4588
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4589 4590 4591 4592
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4593 4594
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600 4601
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4602 4603 4604 4605
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4606 4607
				timeout = -ERESTARTSYS;
				break;
4608 4609
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4610 4611 4612
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4613
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4614
		__remove_wait_queue(&x->wait, &wait);
4615 4616
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4617 4618
	}
	x->done--;
4619
	return timeout ?: 1;
L
Linus Torvalds 已提交
4620 4621
}

4622 4623
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4624 4625 4626 4627
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4628
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4629
	spin_unlock_irq(&x->wait.lock);
4630 4631
	return timeout;
}
L
Linus Torvalds 已提交
4632

4633
void __sched wait_for_completion(struct completion *x)
4634 4635
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4636
}
4637
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4638

4639
unsigned long __sched
4640
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4641
{
4642
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4643
}
4644
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4645

4646
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4647
{
4648 4649 4650 4651
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4652
}
4653
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4654

4655
unsigned long __sched
4656 4657
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4658
{
4659
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4660
}
4661
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4662

M
Matthew Wilcox 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4718 4719
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4720
{
I
Ingo Molnar 已提交
4721 4722 4723 4724
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4725

4726
	__set_current_state(state);
L
Linus Torvalds 已提交
4727

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4742 4743 4744
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4745
long __sched
I
Ingo Molnar 已提交
4746
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4747
{
4748
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4749 4750 4751
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4752
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4753
{
4754
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4755 4756 4757
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4758
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4759
{
4760
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4761 4762 4763
}
EXPORT_SYMBOL(sleep_on_timeout);

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4776
void rt_mutex_setprio(struct task_struct *p, int prio)
4777 4778
{
	unsigned long flags;
4779
	int oldprio, on_rq, running;
4780
	struct rq *rq;
4781
	const struct sched_class *prev_class = p->sched_class;
4782 4783 4784 4785

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4786
	update_rq_clock(rq);
4787

4788
	oldprio = p->prio;
I
Ingo Molnar 已提交
4789
	on_rq = p->se.on_rq;
4790
	running = task_current(rq, p);
4791
	if (on_rq)
4792
		dequeue_task(rq, p, 0);
4793 4794
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4795 4796 4797 4798 4799 4800

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4801 4802
	p->prio = prio;

4803 4804
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4805
	if (on_rq) {
4806
		enqueue_task(rq, p, 0);
4807 4808

		check_class_changed(rq, p, prev_class, oldprio, running);
4809 4810 4811 4812 4813 4814
	}
	task_rq_unlock(rq, &flags);
}

#endif

4815
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4816
{
I
Ingo Molnar 已提交
4817
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4818
	unsigned long flags;
4819
	struct rq *rq;
L
Linus Torvalds 已提交
4820 4821 4822 4823 4824 4825 4826 4827

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4828
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4829 4830 4831 4832
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4833
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4834
	 */
4835
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4836 4837 4838
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4839
	on_rq = p->se.on_rq;
4840
	if (on_rq)
4841
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4842 4843

	p->static_prio = NICE_TO_PRIO(nice);
4844
	set_load_weight(p);
4845 4846 4847
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4848

I
Ingo Molnar 已提交
4849
	if (on_rq) {
4850
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4851
		/*
4852 4853
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4854
		 */
4855
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4856 4857 4858 4859 4860 4861 4862
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4863 4864 4865 4866 4867
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4868
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4869
{
4870 4871
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4872

M
Matt Mackall 已提交
4873 4874 4875 4876
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4888
	long nice, retval;
L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4895 4896
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4906 4907 4908
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4927
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4928 4929 4930 4931 4932 4933 4934 4935
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4936
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4937 4938 4939
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4940
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4955
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4956 4957 4958 4959 4960 4961 4962 4963
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4964
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4965
{
4966
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4967 4968 4969
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4970 4971
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4972
{
I
Ingo Molnar 已提交
4973
	BUG_ON(p->se.on_rq);
4974

L
Linus Torvalds 已提交
4975
	p->policy = policy;
I
Ingo Molnar 已提交
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4988
	p->rt_priority = prio;
4989 4990 4991
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4992
	set_load_weight(p);
L
Linus Torvalds 已提交
4993 4994
}

4995 4996
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4997
{
4998
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4999
	unsigned long flags;
5000
	const struct sched_class *prev_class = p->sched_class;
5001
	struct rq *rq;
L
Linus Torvalds 已提交
5002

5003 5004
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5010 5011
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5012
		return -EINVAL;
L
Linus Torvalds 已提交
5013 5014
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5015 5016
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5017 5018
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5019
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5020
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5021
		return -EINVAL;
5022
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5023 5024
		return -EINVAL;

5025 5026 5027
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5028
	if (user && !capable(CAP_SYS_NICE)) {
5029
		if (rt_policy(policy)) {
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5046 5047 5048 5049 5050 5051
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5052

5053 5054 5055 5056 5057
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5058

5059
	if (user) {
5060
#ifdef CONFIG_RT_GROUP_SCHED
5061 5062 5063 5064 5065 5066
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
			return -EPERM;
5067 5068
#endif

5069 5070 5071 5072 5073
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5074 5075 5076 5077 5078
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5079 5080 5081 5082
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5083
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5084 5085 5086
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5087 5088
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5089 5090
		goto recheck;
	}
I
Ingo Molnar 已提交
5091
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5092
	on_rq = p->se.on_rq;
5093
	running = task_current(rq, p);
5094
	if (on_rq)
5095
		deactivate_task(rq, p, 0);
5096 5097
	if (running)
		p->sched_class->put_prev_task(rq, p);
5098

L
Linus Torvalds 已提交
5099
	oldprio = p->prio;
I
Ingo Molnar 已提交
5100
	__setscheduler(rq, p, policy, param->sched_priority);
5101

5102 5103
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5104 5105
	if (on_rq) {
		activate_task(rq, p, 0);
5106 5107

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5108
	}
5109 5110 5111
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5112 5113
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5114 5115
	return 0;
}
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5130 5131
EXPORT_SYMBOL_GPL(sched_setscheduler);

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5149 5150
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5151 5152 5153
{
	struct sched_param lparam;
	struct task_struct *p;
5154
	int retval;
L
Linus Torvalds 已提交
5155 5156 5157 5158 5159

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5160 5161 5162

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5163
	p = find_process_by_pid(pid);
5164 5165 5166
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5167

L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5177 5178
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5179
{
5180 5181 5182 5183
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5203
	struct task_struct *p;
5204
	int retval;
L
Linus Torvalds 已提交
5205 5206

	if (pid < 0)
5207
		return -EINVAL;
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5229
	struct task_struct *p;
5230
	int retval;
L
Linus Torvalds 已提交
5231 5232

	if (!param || pid < 0)
5233
		return -EINVAL;
L
Linus Torvalds 已提交
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5260
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5261 5262
{
	cpumask_t cpus_allowed;
5263
	cpumask_t new_mask = *in_mask;
5264 5265
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5266

5267
	get_online_cpus();
L
Linus Torvalds 已提交
5268 5269 5270 5271 5272
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5273
		put_online_cpus();
L
Linus Torvalds 已提交
5274 5275 5276 5277 5278
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5279
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5290 5291 5292 5293
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5294
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5295
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5296
 again:
5297
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5298

P
Paul Menage 已提交
5299
	if (!retval) {
5300
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5311 5312
out_unlock:
	put_task_struct(p);
5313
	put_online_cpus();
L
Linus Torvalds 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5344
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5345 5346 5347 5348
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5349
	struct task_struct *p;
L
Linus Torvalds 已提交
5350 5351
	int retval;

5352
	get_online_cpus();
L
Linus Torvalds 已提交
5353 5354 5355 5356 5357 5358 5359
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5360 5361 5362 5363
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5364
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5365 5366 5367

out_unlock:
	read_unlock(&tasklist_lock);
5368
	put_online_cpus();
L
Linus Torvalds 已提交
5369

5370
	return retval;
L
Linus Torvalds 已提交
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5401 5402
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5403 5404 5405
 */
asmlinkage long sys_sched_yield(void)
{
5406
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5407

5408
	schedstat_inc(rq, yld_count);
5409
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5410 5411 5412 5413 5414 5415

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5416
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421 5422 5423 5424
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5425
static void __cond_resched(void)
L
Linus Torvalds 已提交
5426
{
5427 5428 5429
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5430 5431 5432 5433 5434
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5435 5436 5437 5438 5439 5440 5441
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5442
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5443
{
5444 5445
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5446 5447 5448 5449 5450
		__cond_resched();
		return 1;
	}
	return 0;
}
5451
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5452 5453 5454 5455 5456

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5457
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5458 5459 5460
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5461
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5462
{
N
Nick Piggin 已提交
5463
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5464 5465
	int ret = 0;

N
Nick Piggin 已提交
5466
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5467
		spin_unlock(lock);
N
Nick Piggin 已提交
5468 5469 5470 5471
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5472
		ret = 1;
L
Linus Torvalds 已提交
5473 5474
		spin_lock(lock);
	}
J
Jan Kara 已提交
5475
	return ret;
L
Linus Torvalds 已提交
5476 5477 5478 5479 5480 5481 5482
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5483
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5484
		local_bh_enable();
L
Linus Torvalds 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5496
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5507
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5508 5509 5510 5511 5512 5513 5514
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5515
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5516

5517
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5518 5519 5520
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5521
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5522 5523 5524 5525 5526
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5527
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5528 5529
	long ret;

5530
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5531 5532 5533
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5534
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5555
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5556
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5580
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5581
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5598
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5599
	unsigned int time_slice;
5600
	int retval;
L
Linus Torvalds 已提交
5601 5602 5603
	struct timespec t;

	if (pid < 0)
5604
		return -EINVAL;
L
Linus Torvalds 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5616 5617 5618 5619 5620 5621
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5622
		time_slice = DEF_TIMESLICE;
5623
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5624 5625 5626 5627 5628
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5629 5630
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5631 5632
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5633
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5634
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5635 5636
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5637

L
Linus Torvalds 已提交
5638 5639 5640 5641 5642
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5643
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5644

5645
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5646 5647
{
	unsigned long free = 0;
5648
	unsigned state;
L
Linus Torvalds 已提交
5649 5650

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5651
	printk(KERN_INFO "%-13.13s %c", p->comm,
5652
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5653
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5654
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5655
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5656
	else
I
Ingo Molnar 已提交
5657
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5658 5659
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5660
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5661
	else
I
Ingo Molnar 已提交
5662
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5663 5664 5665
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5666
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5667 5668
		while (!*n)
			n++;
5669
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5670 5671
	}
#endif
5672
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5673
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5674

5675
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5676 5677
}

I
Ingo Molnar 已提交
5678
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5679
{
5680
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5681

5682 5683 5684
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5685
#else
5686 5687
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692 5693 5694 5695
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5696
		if (!state_filter || (p->state & state_filter))
5697
			sched_show_task(p);
L
Linus Torvalds 已提交
5698 5699
	} while_each_thread(g, p);

5700 5701
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5702 5703 5704
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5705
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5706 5707 5708 5709 5710
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5711 5712
}

I
Ingo Molnar 已提交
5713 5714
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5715
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5716 5717
}

5718 5719 5720 5721 5722 5723 5724 5725
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5726
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5727
{
5728
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5729 5730
	unsigned long flags;

I
Ingo Molnar 已提交
5731 5732 5733
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5734
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5735
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5736
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5737 5738 5739

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5740 5741 5742
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5743 5744 5745
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5746 5747 5748
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5749
	task_thread_info(idle)->preempt_count = 0;
5750
#endif
I
Ingo Molnar 已提交
5751 5752 5753 5754
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5789 5790

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5791 5792
}

L
Linus Torvalds 已提交
5793 5794 5795 5796
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5797
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5816
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5817 5818
 * call is not atomic; no spinlocks may be held.
 */
5819
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5820
{
5821
	struct migration_req req;
L
Linus Torvalds 已提交
5822
	unsigned long flags;
5823
	struct rq *rq;
5824
	int ret = 0;
L
Linus Torvalds 已提交
5825 5826

	rq = task_rq_lock(p, &flags);
5827
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5828 5829 5830 5831
		ret = -EINVAL;
		goto out;
	}

5832 5833 5834 5835 5836 5837
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5838
	if (p->sched_class->set_cpus_allowed)
5839
		p->sched_class->set_cpus_allowed(p, new_mask);
5840
	else {
5841 5842
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5843 5844
	}

L
Linus Torvalds 已提交
5845
	/* Can the task run on the task's current CPU? If so, we're done */
5846
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5847 5848
		goto out;

5849
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5850 5851 5852 5853 5854 5855 5856 5857 5858
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5859

L
Linus Torvalds 已提交
5860 5861
	return ret;
}
5862
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5863 5864

/*
I
Ingo Molnar 已提交
5865
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5866 5867 5868 5869 5870 5871
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5872 5873
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5874
 */
5875
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5876
{
5877
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5878
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5879

5880
	if (unlikely(!cpu_active(dest_cpu)))
5881
		return ret;
L
Linus Torvalds 已提交
5882 5883 5884 5885 5886 5887 5888

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5889
		goto done;
L
Linus Torvalds 已提交
5890 5891
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
5892
		goto fail;
L
Linus Torvalds 已提交
5893

I
Ingo Molnar 已提交
5894
	on_rq = p->se.on_rq;
5895
	if (on_rq)
5896
		deactivate_task(rq_src, p, 0);
5897

L
Linus Torvalds 已提交
5898
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5899 5900 5901
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5902
	}
L
Linus Torvalds 已提交
5903
done:
5904
	ret = 1;
L
Linus Torvalds 已提交
5905
fail:
L
Linus Torvalds 已提交
5906
	double_rq_unlock(rq_src, rq_dest);
5907
	return ret;
L
Linus Torvalds 已提交
5908 5909 5910 5911 5912 5913 5914
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5915
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5916 5917
{
	int cpu = (long)data;
5918
	struct rq *rq;
L
Linus Torvalds 已提交
5919 5920 5921 5922 5923 5924

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5925
		struct migration_req *req;
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5948
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5949 5950
		list_del_init(head->next);

N
Nick Piggin 已提交
5951 5952 5953
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5983
/*
5984
 * Figure out where task on dead CPU should go, use force if necessary.
5985 5986
 * NOTE: interrupts should be disabled by the caller
 */
5987
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5988
{
5989
	unsigned long flags;
L
Linus Torvalds 已提交
5990
	cpumask_t mask;
5991 5992
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5993

5994 5995 5996 5997 5998 5999 6000
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6001
		if (dest_cpu >= nr_cpu_ids)
6002 6003 6004
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6005
		if (dest_cpu >= nr_cpu_ids) {
6006 6007 6008
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6009 6010 6011 6012
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6013
			 * cpuset_cpus_allowed() will not block. It must be
6014 6015
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6016
			rq = task_rq_lock(p, &flags);
6017
			p->cpus_allowed = cpus_allowed;
6018 6019
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6020

6021 6022 6023 6024 6025
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6026
			if (p->mm && printk_ratelimit()) {
6027 6028
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6029 6030
					task_pid_nr(p), p->comm, dead_cpu);
			}
6031
		}
6032
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6042
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6043
{
6044
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6058
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6059

6060
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6061

6062 6063
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6064 6065
			continue;

6066 6067 6068
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6069

6070
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6071 6072
}

I
Ingo Molnar 已提交
6073 6074
/*
 * Schedules idle task to be the next runnable task on current CPU.
6075 6076
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6077 6078 6079
 */
void sched_idle_next(void)
{
6080
	int this_cpu = smp_processor_id();
6081
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6082 6083 6084 6085
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6086
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6087

6088 6089 6090
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6091 6092 6093
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6094
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6095

6096 6097
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6098 6099 6100 6101

	spin_unlock_irqrestore(&rq->lock, flags);
}

6102 6103
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6117
/* called under rq->lock with disabled interrupts */
6118
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6119
{
6120
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6121 6122

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6123
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6124 6125

	/* Cannot have done final schedule yet: would have vanished. */
6126
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6127

6128
	get_task_struct(p);
L
Linus Torvalds 已提交
6129 6130 6131

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6132
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6133 6134
	 * fine.
	 */
6135
	spin_unlock_irq(&rq->lock);
6136
	move_task_off_dead_cpu(dead_cpu, p);
6137
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6138

6139
	put_task_struct(p);
L
Linus Torvalds 已提交
6140 6141 6142 6143 6144
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6145
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6146
	struct task_struct *next;
6147

I
Ingo Molnar 已提交
6148 6149 6150
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6151
		update_rq_clock(rq);
6152
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6153 6154
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6155
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6156
		migrate_dead(dead_cpu, next);
6157

L
Linus Torvalds 已提交
6158 6159 6160 6161
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6162 6163 6164
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6165 6166
	{
		.procname	= "sched_domain",
6167
		.mode		= 0555,
6168
	},
I
Ingo Molnar 已提交
6169
	{0, },
6170 6171 6172
};

static struct ctl_table sd_ctl_root[] = {
6173
	{
6174
		.ctl_name	= CTL_KERN,
6175
		.procname	= "kernel",
6176
		.mode		= 0555,
6177 6178
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6179
	{0, },
6180 6181 6182 6183 6184
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6185
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6186 6187 6188 6189

	return entry;
}

6190 6191
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6192
	struct ctl_table *entry;
6193

6194 6195 6196
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6197
	 * will always be set. In the lowest directory the names are
6198 6199 6200
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6201 6202
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6203 6204 6205
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6206 6207 6208 6209 6210

	kfree(*tablep);
	*tablep = NULL;
}

6211
static void
6212
set_table_entry(struct ctl_table *entry,
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6226
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6227

6228 6229 6230
	if (table == NULL)
		return NULL;

6231
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6232
		sizeof(long), 0644, proc_doulongvec_minmax);
6233
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6234
		sizeof(long), 0644, proc_doulongvec_minmax);
6235
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6236
		sizeof(int), 0644, proc_dointvec_minmax);
6237
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6238
		sizeof(int), 0644, proc_dointvec_minmax);
6239
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6240
		sizeof(int), 0644, proc_dointvec_minmax);
6241
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6242
		sizeof(int), 0644, proc_dointvec_minmax);
6243
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6244
		sizeof(int), 0644, proc_dointvec_minmax);
6245
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6246
		sizeof(int), 0644, proc_dointvec_minmax);
6247
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6248
		sizeof(int), 0644, proc_dointvec_minmax);
6249
	set_table_entry(&table[9], "cache_nice_tries",
6250 6251
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6252
	set_table_entry(&table[10], "flags", &sd->flags,
6253
		sizeof(int), 0644, proc_dointvec_minmax);
6254
	/* &table[11] is terminator */
6255 6256 6257 6258

	return table;
}

6259
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6260 6261 6262 6263 6264 6265 6266 6267 6268
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6269 6270
	if (table == NULL)
		return NULL;
6271 6272 6273 6274 6275

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6276
		entry->mode = 0555;
6277 6278 6279 6280 6281 6282 6283 6284
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6285
static void register_sched_domain_sysctl(void)
6286 6287 6288 6289 6290
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6291 6292 6293
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6294 6295 6296
	if (entry == NULL)
		return;

6297
	for_each_online_cpu(i) {
6298 6299
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6300
		entry->mode = 0555;
6301
		entry->child = sd_alloc_ctl_cpu_table(i);
6302
		entry++;
6303
	}
6304 6305

	WARN_ON(sd_sysctl_header);
6306 6307
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6308

6309
/* may be called multiple times per register */
6310 6311
static void unregister_sched_domain_sysctl(void)
{
6312 6313
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6314
	sd_sysctl_header = NULL;
6315 6316
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6317
}
6318
#else
6319 6320 6321 6322
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6323 6324 6325 6326
{
}
#endif

6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6357 6358 6359 6360
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6361 6362
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6363 6364
{
	struct task_struct *p;
6365
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6366
	unsigned long flags;
6367
	struct rq *rq;
L
Linus Torvalds 已提交
6368 6369

	switch (action) {
6370

L
Linus Torvalds 已提交
6371
	case CPU_UP_PREPARE:
6372
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6373
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6374 6375 6376 6377 6378
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6379
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6380 6381 6382
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6383

L
Linus Torvalds 已提交
6384
	case CPU_ONLINE:
6385
	case CPU_ONLINE_FROZEN:
6386
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6387
		wake_up_process(cpu_rq(cpu)->migration_thread);
6388 6389 6390 6391 6392 6393

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6394 6395

			set_rq_online(rq);
6396 6397
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6398
		break;
6399

L
Linus Torvalds 已提交
6400 6401
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6402
	case CPU_UP_CANCELED_FROZEN:
6403 6404
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6405
		/* Unbind it from offline cpu so it can run. Fall thru. */
6406 6407
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6408 6409 6410
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6411

L
Linus Torvalds 已提交
6412
	case CPU_DEAD:
6413
	case CPU_DEAD_FROZEN:
6414
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6415 6416 6417 6418 6419
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6420
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6421
		update_rq_clock(rq);
6422
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6423
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6424 6425
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6426
		migrate_dead_tasks(cpu);
6427
		spin_unlock_irq(&rq->lock);
6428
		cpuset_unlock();
L
Linus Torvalds 已提交
6429 6430 6431
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6432 6433 6434 6435 6436
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6437 6438
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6439 6440
			struct migration_req *req;

L
Linus Torvalds 已提交
6441
			req = list_entry(rq->migration_queue.next,
6442
					 struct migration_req, list);
L
Linus Torvalds 已提交
6443 6444 6445 6446 6447
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6448

6449 6450
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6451 6452 6453 6454 6455
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6456
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6457 6458 6459
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464 6465 6466 6467
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6468
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6469 6470 6471 6472
	.notifier_call = migration_call,
	.priority = 10
};

6473
static int __init migration_init(void)
L
Linus Torvalds 已提交
6474 6475
{
	void *cpu = (void *)(long)smp_processor_id();
6476
	int err;
6477 6478

	/* Start one for the boot CPU: */
6479 6480
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6481 6482
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6483 6484

	return err;
L
Linus Torvalds 已提交
6485
}
6486
early_initcall(migration_init);
L
Linus Torvalds 已提交
6487 6488 6489
#endif

#ifdef CONFIG_SMP
6490

6491
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6492

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6515 6516
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6517
{
I
Ingo Molnar 已提交
6518
	struct sched_group *group = sd->groups;
6519
	char str[256];
L
Linus Torvalds 已提交
6520

6521
	cpulist_scnprintf(str, sizeof(str), sd->span);
6522
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6532 6533
	}

6534 6535
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6536 6537 6538 6539 6540 6541 6542 6543 6544

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6545

I
Ingo Molnar 已提交
6546
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6547
	do {
I
Ingo Molnar 已提交
6548 6549 6550
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6551 6552 6553
			break;
		}

I
Ingo Molnar 已提交
6554 6555 6556 6557 6558 6559
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6560

I
Ingo Molnar 已提交
6561 6562 6563 6564 6565
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6566

6567
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6568 6569 6570 6571
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6572

6573
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6574

6575
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6576
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6577

I
Ingo Molnar 已提交
6578 6579 6580
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6581

6582
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6583
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6584

6585
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6586 6587 6588 6589
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6590

I
Ingo Molnar 已提交
6591 6592
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6593
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6594
	int level = 0;
L
Linus Torvalds 已提交
6595

I
Ingo Molnar 已提交
6596 6597 6598 6599
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6600

I
Ingo Molnar 已提交
6601 6602
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6603 6604 6605 6606 6607 6608
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6609
	for (;;) {
6610
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6611
			break;
L
Linus Torvalds 已提交
6612 6613
		level++;
		sd = sd->parent;
6614
		if (!sd)
I
Ingo Molnar 已提交
6615 6616
			break;
	}
6617
	kfree(groupmask);
L
Linus Torvalds 已提交
6618
}
6619
#else /* !CONFIG_SCHED_DEBUG */
6620
# define sched_domain_debug(sd, cpu) do { } while (0)
6621
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6622

6623
static int sd_degenerate(struct sched_domain *sd)
6624 6625 6626 6627 6628 6629 6630 6631
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6632 6633 6634
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6648 6649
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6668 6669 6670
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6671 6672 6673 6674 6675 6676 6677
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6678 6679 6680 6681 6682 6683 6684 6685 6686
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6687 6688
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6689

6690 6691
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6692 6693 6694 6695 6696 6697 6698
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6699
	cpu_set(rq->cpu, rd->span);
6700
	if (cpu_isset(rq->cpu, cpu_online_map))
6701
		set_rq_online(rq);
G
Gregory Haskins 已提交
6702 6703 6704 6705

	spin_unlock_irqrestore(&rq->lock, flags);
}

6706
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6707 6708 6709
{
	memset(rd, 0, sizeof(*rd));

6710 6711
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6712 6713

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6714 6715 6716 6717
}

static void init_defrootdomain(void)
{
6718
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6719 6720 6721
	atomic_set(&def_root_domain.refcount, 1);
}

6722
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6723 6724 6725 6726 6727 6728 6729
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6730
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6731 6732 6733 6734

	return rd;
}

L
Linus Torvalds 已提交
6735
/*
I
Ingo Molnar 已提交
6736
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6737 6738
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6739 6740
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6741
{
6742
	struct rq *rq = cpu_rq(cpu);
6743 6744 6745 6746 6747 6748 6749
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6750
		if (sd_parent_degenerate(tmp, parent)) {
6751
			tmp->parent = parent->parent;
6752 6753 6754
			if (parent->parent)
				parent->parent->child = tmp;
		}
6755 6756
	}

6757
	if (sd && sd_degenerate(sd)) {
6758
		sd = sd->parent;
6759 6760 6761
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6762 6763 6764

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6765
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6766
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6767 6768 6769
}

/* cpus with isolated domains */
6770
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6771 6772 6773 6774

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6775 6776
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6786
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6787 6788

/*
6789 6790 6791 6792
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6793 6794 6795 6796 6797
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6798
static void
6799
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6800
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6801 6802 6803
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6804 6805 6806 6807
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6808 6809
	cpus_clear(*covered);

6810
	for_each_cpu_mask_nr(i, *span) {
6811
		struct sched_group *sg;
6812
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6813 6814
		int j;

6815
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6816 6817
			continue;

6818
		cpus_clear(sg->cpumask);
6819
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6820

6821
		for_each_cpu_mask_nr(j, *span) {
6822
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6823 6824
				continue;

6825
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6837
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6838

6839
#ifdef CONFIG_NUMA
6840

6841 6842 6843 6844 6845
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6846
 * Find the next node to include in a given scheduling domain. Simply
6847 6848 6849 6850
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6851
static int find_next_best_node(int node, nodemask_t *used_nodes)
6852 6853 6854 6855 6856
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6857
	for (i = 0; i < nr_node_ids; i++) {
6858
		/* Start at @node */
6859
		n = (node + i) % nr_node_ids;
6860 6861 6862 6863 6864

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6865
		if (node_isset(n, *used_nodes))
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6877
	node_set(best_node, *used_nodes);
6878 6879 6880 6881 6882 6883
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6884
 * @span: resulting cpumask
6885
 *
I
Ingo Molnar 已提交
6886
 * Given a node, construct a good cpumask for its sched_domain to span. It
6887 6888 6889
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6890
static void sched_domain_node_span(int node, cpumask_t *span)
6891
{
6892 6893
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6894
	int i;
6895

6896
	cpus_clear(*span);
6897
	nodes_clear(used_nodes);
6898

6899
	cpus_or(*span, *span, *nodemask);
6900
	node_set(node, used_nodes);
6901 6902

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6903
		int next_node = find_next_best_node(node, &used_nodes);
6904

6905
		node_to_cpumask_ptr_next(nodemask, next_node);
6906
		cpus_or(*span, *span, *nodemask);
6907 6908
	}
}
6909
#endif /* CONFIG_NUMA */
6910

6911
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6912

6913
/*
6914
 * SMT sched-domains:
6915
 */
L
Linus Torvalds 已提交
6916 6917
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6918
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6919

I
Ingo Molnar 已提交
6920
static int
6921 6922
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6923
{
6924 6925
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6926 6927
	return cpu;
}
6928
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6929

6930 6931 6932
/*
 * multi-core sched-domains:
 */
6933 6934
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6935
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6936
#endif /* CONFIG_SCHED_MC */
6937 6938

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6939
static int
6940 6941
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6942
{
6943
	int group;
6944 6945 6946 6947

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6948 6949 6950
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6951 6952
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6953
static int
6954 6955
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6956
{
6957 6958
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6959 6960 6961 6962
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6963
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6964
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6965

I
Ingo Molnar 已提交
6966
static int
6967 6968
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6969
{
6970
	int group;
6971
#ifdef CONFIG_SCHED_MC
6972 6973 6974
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6975
#elif defined(CONFIG_SCHED_SMT)
6976 6977 6978
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6979
#else
6980
	group = cpu;
L
Linus Torvalds 已提交
6981
#endif
6982 6983 6984
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6985 6986 6987 6988
}

#ifdef CONFIG_NUMA
/*
6989 6990 6991
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6992
 */
6993
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6994
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6995

6996
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6997
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6998

6999
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7000
				 struct sched_group **sg, cpumask_t *nodemask)
7001
{
7002 7003
	int group;

7004 7005 7006
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7007 7008 7009 7010

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7011
}
7012

7013 7014 7015 7016 7017 7018 7019
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7020
	do {
7021
		for_each_cpu_mask_nr(j, sg->cpumask) {
7022
			struct sched_domain *sd;
7023

7024 7025 7026 7027 7028 7029 7030 7031
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7032

7033 7034 7035 7036
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7037
}
7038
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7039

7040
#ifdef CONFIG_NUMA
7041
/* Free memory allocated for various sched_group structures */
7042
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7043
{
7044
	int cpu, i;
7045

7046
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7047 7048 7049 7050 7051 7052
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7053
		for (i = 0; i < nr_node_ids; i++) {
7054 7055
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7056 7057 7058
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7075
#else /* !CONFIG_NUMA */
7076
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7077 7078
{
}
7079
#endif /* CONFIG_NUMA */
7080

7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7107 7108
	sd->groups->__cpu_power = 0;

7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7119
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7120 7121 7122 7123 7124 7125 7126 7127
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7128
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7129 7130 7131 7132
		group = group->next;
	} while (group != child->groups);
}

7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7144
	sd->level = SD_LV_##type;				\
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7193 7194 7195 7196
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7197 7198 7199 7200 7201 7202
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7228
/*
7229 7230
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7231
 */
7232 7233
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7234 7235
{
	int i;
G
Gregory Haskins 已提交
7236
	struct root_domain *rd;
7237 7238
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7239 7240
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7241
	int sd_allnodes = 0;
7242 7243 7244 7245

	/*
	 * Allocate the per-node list of sched groups
	 */
7246
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7247
				    GFP_KERNEL);
7248 7249
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7250
		return -ENOMEM;
7251 7252
	}
#endif
L
Linus Torvalds 已提交
7253

7254
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7255 7256
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7257 7258 7259
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7260 7261 7262
		return -ENOMEM;
	}

7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7282
	/*
7283
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7284
	 */
7285
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7286
		struct sched_domain *sd = NULL, *p;
7287
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7288

7289 7290
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7291 7292

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7293
		if (cpus_weight(*cpu_map) >
7294
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7295
			sd = &per_cpu(allnodes_domains, i);
7296
			SD_INIT(sd, ALLNODES);
7297
			set_domain_attribute(sd, attr);
7298
			sd->span = *cpu_map;
7299
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7300
			p = sd;
7301
			sd_allnodes = 1;
7302 7303 7304
		} else
			p = NULL;

L
Linus Torvalds 已提交
7305
		sd = &per_cpu(node_domains, i);
7306
		SD_INIT(sd, NODE);
7307
		set_domain_attribute(sd, attr);
7308
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7309
		sd->parent = p;
7310 7311
		if (p)
			p->child = sd;
7312
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7313 7314 7315 7316
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7317
		SD_INIT(sd, CPU);
7318
		set_domain_attribute(sd, attr);
7319
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7320
		sd->parent = p;
7321 7322
		if (p)
			p->child = sd;
7323
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7324

7325 7326 7327
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7328
		SD_INIT(sd, MC);
7329
		set_domain_attribute(sd, attr);
7330 7331 7332
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7333
		p->child = sd;
7334
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7335 7336
#endif

L
Linus Torvalds 已提交
7337 7338 7339
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7340
		SD_INIT(sd, SIBLING);
7341
		set_domain_attribute(sd, attr);
7342
		sd->span = per_cpu(cpu_sibling_map, i);
7343
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7344
		sd->parent = p;
7345
		p->child = sd;
7346
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7347 7348 7349 7350 7351
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7352
	for_each_cpu_mask_nr(i, *cpu_map) {
7353 7354 7355 7356 7357 7358
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7359 7360
			continue;

I
Ingo Molnar 已提交
7361
		init_sched_build_groups(this_sibling_map, cpu_map,
7362 7363
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7364 7365 7366
	}
#endif

7367 7368
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7369
	for_each_cpu_mask_nr(i, *cpu_map) {
7370 7371 7372 7373 7374 7375
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7376
			continue;
7377

I
Ingo Molnar 已提交
7378
		init_sched_build_groups(this_core_map, cpu_map,
7379 7380
					&cpu_to_core_group,
					send_covered, tmpmask);
7381 7382 7383
	}
#endif

L
Linus Torvalds 已提交
7384
	/* Set up physical groups */
7385
	for (i = 0; i < nr_node_ids; i++) {
7386 7387
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7388

7389 7390 7391
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7392 7393
			continue;

7394 7395 7396
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7397 7398 7399 7400
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7401 7402 7403 7404 7405 7406 7407
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7408

7409
	for (i = 0; i < nr_node_ids; i++) {
7410 7411
		/* Set up node groups */
		struct sched_group *sg, *prev;
7412 7413 7414
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7415 7416
		int j;

7417 7418 7419 7420 7421
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7422
			sched_group_nodes[i] = NULL;
7423
			continue;
7424
		}
7425

7426
		sched_domain_node_span(i, domainspan);
7427
		cpus_and(*domainspan, *domainspan, *cpu_map);
7428

7429
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7430 7431 7432 7433 7434
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7435
		sched_group_nodes[i] = sg;
7436
		for_each_cpu_mask_nr(j, *nodemask) {
7437
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7438

7439 7440 7441
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7442
		sg->__cpu_power = 0;
7443
		sg->cpumask = *nodemask;
7444
		sg->next = sg;
7445
		cpus_or(*covered, *covered, *nodemask);
7446 7447
		prev = sg;

7448
		for (j = 0; j < nr_node_ids; j++) {
7449
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7450
			int n = (i + j) % nr_node_ids;
7451
			node_to_cpumask_ptr(pnodemask, n);
7452

7453 7454 7455 7456
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7457 7458
				break;

7459 7460
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7461 7462
				continue;

7463 7464
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7465 7466 7467
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7468
				goto error;
7469
			}
7470
			sg->__cpu_power = 0;
7471
			sg->cpumask = *tmpmask;
7472
			sg->next = prev->next;
7473
			cpus_or(*covered, *covered, *tmpmask);
7474 7475 7476 7477
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7478 7479 7480
#endif

	/* Calculate CPU power for physical packages and nodes */
7481
#ifdef CONFIG_SCHED_SMT
7482
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7483 7484
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7485
		init_sched_groups_power(i, sd);
7486
	}
L
Linus Torvalds 已提交
7487
#endif
7488
#ifdef CONFIG_SCHED_MC
7489
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7490 7491
		struct sched_domain *sd = &per_cpu(core_domains, i);

7492
		init_sched_groups_power(i, sd);
7493 7494
	}
#endif
7495

7496
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7497 7498
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7499
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7500 7501
	}

7502
#ifdef CONFIG_NUMA
7503
	for (i = 0; i < nr_node_ids; i++)
7504
		init_numa_sched_groups_power(sched_group_nodes[i]);
7505

7506 7507
	if (sd_allnodes) {
		struct sched_group *sg;
7508

7509 7510
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7511 7512
		init_numa_sched_groups_power(sg);
	}
7513 7514
#endif

L
Linus Torvalds 已提交
7515
	/* Attach the domains */
7516
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7517 7518 7519
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7520 7521
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7522 7523 7524
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7525
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7526
	}
7527

7528
	SCHED_CPUMASK_FREE((void *)allmasks);
7529 7530
	return 0;

7531
#ifdef CONFIG_NUMA
7532
error:
7533 7534
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7535
	return -ENOMEM;
7536
#endif
L
Linus Torvalds 已提交
7537
}
P
Paul Jackson 已提交
7538

7539 7540 7541 7542 7543
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7544 7545
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7546 7547
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7548 7549 7550 7551 7552 7553 7554 7555

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7556 7557 7558 7559
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7560
/*
I
Ingo Molnar 已提交
7561
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7562 7563
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7564
 */
7565
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7566
{
7567 7568
	int err;

7569
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7570 7571 7572 7573 7574
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7575
	dattr_cur = NULL;
7576
	err = build_sched_domains(doms_cur);
7577
	register_sched_domain_sysctl();
7578 7579

	return err;
7580 7581
}

7582 7583
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7584
{
7585
	free_sched_groups(cpu_map, tmpmask);
7586
}
L
Linus Torvalds 已提交
7587

7588 7589 7590 7591
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7592
static void detach_destroy_domains(const cpumask_t *cpu_map)
7593
{
7594
	cpumask_t tmpmask;
7595 7596
	int i;

7597 7598
	unregister_sched_domain_sysctl();

7599
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7600
		cpu_attach_domain(NULL, &def_root_domain, i);
7601
	synchronize_sched();
7602
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7603 7604
}

7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7621 7622
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7623
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7624 7625 7626 7627
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7628 7629 7630
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7631 7632 7633
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7634 7635
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7636 7637
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7638
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7639 7640 7641
 *
 * Call with hotplug lock held
 */
7642 7643
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7644 7645 7646
{
	int i, j;

7647
	mutex_lock(&sched_domains_mutex);
7648

7649 7650 7651
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7652 7653
	if (doms_new == NULL)
		ndoms_new = 0;
P
Paul Jackson 已提交
7654 7655 7656 7657

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7658 7659
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7660 7661 7662 7663 7664 7665 7666 7667
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7668 7669 7670 7671 7672 7673 7674 7675
	if (doms_new == NULL) {
		ndoms_cur = 0;
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7676 7677 7678
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7679 7680
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7681 7682 7683
				goto match2;
		}
		/* no match - add a new doms_new */
7684 7685
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7686 7687 7688 7689 7690 7691 7692
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7693
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7694
	doms_cur = doms_new;
7695
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7696
	ndoms_cur = ndoms_new;
7697 7698

	register_sched_domain_sysctl();
7699

7700
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7701 7702
}

7703
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7704
int arch_reinit_sched_domains(void)
7705
{
7706
	get_online_cpus();
7707
	rebuild_sched_domains();
7708
	put_online_cpus();
7709
	return 0;
7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7730 7731
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7732 7733 7734
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7735
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7736
					    const char *buf, size_t count)
7737 7738 7739
{
	return sched_power_savings_store(buf, count, 0);
}
7740 7741 7742
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7743 7744 7745
#endif

#ifdef CONFIG_SCHED_SMT
7746 7747
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7748 7749 7750
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7751
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7752
					     const char *buf, size_t count)
7753 7754 7755
{
	return sched_power_savings_store(buf, count, 1);
}
7756 7757
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7777
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7778

7779
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7780
/*
7781 7782
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7783 7784 7785
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		partition_sched_domains(0, NULL, NULL);
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7803
{
P
Peter Zijlstra 已提交
7804 7805
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7806 7807
	switch (action) {
	case CPU_DOWN_PREPARE:
7808
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7809
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7810 7811 7812
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7813
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7814
	case CPU_ONLINE:
7815
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7816
		enable_runtime(cpu_rq(cpu));
7817 7818
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7819 7820 7821 7822 7823 7824 7825
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7826 7827
	cpumask_t non_isolated_cpus;

7828 7829 7830 7831 7832
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7833
	get_online_cpus();
7834
	mutex_lock(&sched_domains_mutex);
7835
	arch_init_sched_domains(&cpu_online_map);
7836
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7837 7838
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7839
	mutex_unlock(&sched_domains_mutex);
7840
	put_online_cpus();
7841 7842

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7843 7844
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7845 7846 7847 7848 7849
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7850
	init_hrtick();
7851 7852

	/* Move init over to a non-isolated CPU */
7853
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7854
		BUG();
I
Ingo Molnar 已提交
7855
	sched_init_granularity();
L
Linus Torvalds 已提交
7856 7857 7858 7859
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7860
	sched_init_granularity();
L
Linus Torvalds 已提交
7861 7862 7863 7864 7865 7866 7867 7868 7869 7870
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7871
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7872 7873
{
	cfs_rq->tasks_timeline = RB_ROOT;
7874
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7875 7876 7877
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7878
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7879 7880
}

P
Peter Zijlstra 已提交
7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7894
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7895 7896
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7897 7898 7899 7900 7901 7902 7903
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7904 7905
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7906

7907
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7908
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7909 7910
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7911 7912
}

P
Peter Zijlstra 已提交
7913
#ifdef CONFIG_FAIR_GROUP_SCHED
7914 7915 7916
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7917
{
7918
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7919 7920 7921 7922 7923 7924 7925
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7926 7927 7928 7929
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7930 7931 7932 7933 7934
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7935 7936
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7937
	se->load.inv_weight = 0;
7938
	se->parent = parent;
P
Peter Zijlstra 已提交
7939
}
7940
#endif
P
Peter Zijlstra 已提交
7941

7942
#ifdef CONFIG_RT_GROUP_SCHED
7943 7944 7945
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7946
{
7947 7948
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7949 7950 7951 7952
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7953
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7954 7955 7956 7957
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7958 7959 7960
	if (!rt_se)
		return;

7961 7962 7963 7964 7965
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7966
	rt_se->my_q = rt_rq;
7967
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7968 7969 7970 7971
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7972 7973
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7974
	int i, j;
7975 7976 7977 7978 7979 7980 7981
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7982 7983 7984
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7985 7986 7987 7988 7989 7990
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7991
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7992 7993 7994 7995 7996 7997 7998

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7999 8000 8001 8002 8003 8004 8005

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8006 8007
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8008 8009 8010 8011 8012
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8013 8014 8015 8016 8017 8018 8019 8020
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8021 8022
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8023
	}
I
Ingo Molnar 已提交
8024

G
Gregory Haskins 已提交
8025 8026 8027 8028
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8029 8030 8031 8032 8033 8034
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8035 8036 8037
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8038 8039
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8040

8041
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8042
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8043 8044 8045 8046 8047 8048
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8049 8050
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8051

8052
	for_each_possible_cpu(i) {
8053
		struct rq *rq;
L
Linus Torvalds 已提交
8054 8055 8056

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8057
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8058
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8059
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8060
#ifdef CONFIG_FAIR_GROUP_SCHED
8061
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8062
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8083
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8084
#elif defined CONFIG_USER_SCHED
8085 8086
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8098
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8099
				&per_cpu(init_cfs_rq, i),
8100 8101
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8102

8103
#endif
D
Dhaval Giani 已提交
8104 8105 8106
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8107
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8108
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8109
#ifdef CONFIG_CGROUP_SCHED
8110
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8111
#elif defined CONFIG_USER_SCHED
8112
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8113
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8114
				&per_cpu(init_rt_rq, i),
8115 8116
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8117
#endif
I
Ingo Molnar 已提交
8118
#endif
L
Linus Torvalds 已提交
8119

I
Ingo Molnar 已提交
8120 8121
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8122
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8123
		rq->sd = NULL;
G
Gregory Haskins 已提交
8124
		rq->rd = NULL;
L
Linus Torvalds 已提交
8125
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8126
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8127
		rq->push_cpu = 0;
8128
		rq->cpu = i;
8129
		rq->online = 0;
L
Linus Torvalds 已提交
8130 8131
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8132
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8133
#endif
P
Peter Zijlstra 已提交
8134
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8135 8136 8137
		atomic_set(&rq->nr_iowait, 0);
	}

8138
	set_load_weight(&init_task);
8139

8140 8141 8142 8143
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8144
#ifdef CONFIG_SMP
8145
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8146 8147
#endif

8148 8149 8150 8151
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8165 8166 8167 8168
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8169 8170

	scheduler_running = 1;
L
Linus Torvalds 已提交
8171 8172 8173 8174 8175
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8176
#ifdef in_atomic
L
Linus Torvalds 已提交
8177 8178 8179 8180 8181 8182 8183
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8184
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8185 8186 8187
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8188
		debug_show_held_locks(current);
8189 8190
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8191 8192 8193 8194 8195 8196 8197 8198
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8199 8200 8201
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8202

8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8214 8215
void normalize_rt_tasks(void)
{
8216
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8217
	unsigned long flags;
8218
	struct rq *rq;
L
Linus Torvalds 已提交
8219

8220
	read_lock_irqsave(&tasklist_lock, flags);
8221
	do_each_thread(g, p) {
8222 8223 8224 8225 8226 8227
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8228 8229
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8230 8231 8232
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8233
#endif
I
Ingo Molnar 已提交
8234 8235 8236 8237 8238 8239 8240 8241

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8242
			continue;
I
Ingo Molnar 已提交
8243
		}
L
Linus Torvalds 已提交
8244

8245
		spin_lock(&p->pi_lock);
8246
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8247

8248
		normalize_task(rq, p);
8249

8250
		__task_rq_unlock(rq);
8251
		spin_unlock(&p->pi_lock);
8252 8253
	} while_each_thread(g, p);

8254
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8255 8256 8257
}

#endif /* CONFIG_MAGIC_SYSRQ */
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8276
struct task_struct *curr_task(int cpu)
8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8287 8288
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8289 8290 8291 8292 8293 8294 8295
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8296
void set_curr_task(int cpu, struct task_struct *p)
8297 8298 8299 8300 8301
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8302

8303 8304
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8319 8320
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8321 8322
{
	struct cfs_rq *cfs_rq;
8323
	struct sched_entity *se, *parent_se;
8324
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8325 8326
	int i;

8327
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8328 8329
	if (!tg->cfs_rq)
		goto err;
8330
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8331 8332
	if (!tg->se)
		goto err;
8333 8334

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8335 8336

	for_each_possible_cpu(i) {
8337
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8338

P
Peter Zijlstra 已提交
8339 8340
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8341 8342 8343
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8344 8345
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8346 8347 8348
		if (!se)
			goto err;

8349 8350
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8369
#else /* !CONFG_FAIR_GROUP_SCHED */
8370 8371 8372 8373
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8374 8375
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8387
#endif /* CONFIG_FAIR_GROUP_SCHED */
8388 8389

#ifdef CONFIG_RT_GROUP_SCHED
8390 8391 8392 8393
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8394 8395
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8407 8408
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8409 8410
{
	struct rt_rq *rt_rq;
8411
	struct sched_rt_entity *rt_se, *parent_se;
8412 8413 8414
	struct rq *rq;
	int i;

8415
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8416 8417
	if (!tg->rt_rq)
		goto err;
8418
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8419 8420 8421
	if (!tg->rt_se)
		goto err;

8422 8423
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8424 8425 8426 8427

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8428 8429 8430 8431
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8432

P
Peter Zijlstra 已提交
8433 8434 8435 8436
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8437

8438 8439
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8440 8441
	}

8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8458
#else /* !CONFIG_RT_GROUP_SCHED */
8459 8460 8461 8462
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8463 8464
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8476
#endif /* CONFIG_RT_GROUP_SCHED */
8477

8478
#ifdef CONFIG_GROUP_SCHED
8479 8480 8481 8482 8483 8484 8485 8486
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8487
struct task_group *sched_create_group(struct task_group *parent)
8488 8489 8490 8491 8492 8493 8494 8495 8496
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8497
	if (!alloc_fair_sched_group(tg, parent))
8498 8499
		goto err;

8500
	if (!alloc_rt_sched_group(tg, parent))
8501 8502
		goto err;

8503
	spin_lock_irqsave(&task_group_lock, flags);
8504
	for_each_possible_cpu(i) {
8505 8506
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8507
	}
P
Peter Zijlstra 已提交
8508
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8509 8510 8511 8512 8513

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8514
	list_add_rcu(&tg->siblings, &parent->children);
8515
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8516

8517
	return tg;
S
Srivatsa Vaddagiri 已提交
8518 8519

err:
P
Peter Zijlstra 已提交
8520
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8521 8522 8523
	return ERR_PTR(-ENOMEM);
}

8524
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8525
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8526 8527
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8528
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8529 8530
}

8531
/* Destroy runqueue etc associated with a task group */
8532
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8533
{
8534
	unsigned long flags;
8535
	int i;
S
Srivatsa Vaddagiri 已提交
8536

8537
	spin_lock_irqsave(&task_group_lock, flags);
8538
	for_each_possible_cpu(i) {
8539 8540
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8541
	}
P
Peter Zijlstra 已提交
8542
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8543
	list_del_rcu(&tg->siblings);
8544
	spin_unlock_irqrestore(&task_group_lock, flags);
8545 8546

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8547
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8548 8549
}

8550
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8551 8552 8553
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8554 8555
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8556 8557 8558 8559 8560 8561 8562 8563 8564
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8565
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8566 8567
	on_rq = tsk->se.on_rq;

8568
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8569
		dequeue_task(rq, tsk, 0);
8570 8571
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8572

P
Peter Zijlstra 已提交
8573
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8574

P
Peter Zijlstra 已提交
8575 8576 8577 8578 8579
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8580 8581 8582
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8583
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8584 8585 8586

	task_rq_unlock(rq, &flags);
}
8587
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8588

8589
#ifdef CONFIG_FAIR_GROUP_SCHED
8590
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8591 8592 8593 8594 8595
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8596
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8597 8598 8599
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8600
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8601

8602
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8603
		enqueue_entity(cfs_rq, se, 0);
8604
}
8605

8606 8607 8608 8609 8610 8611 8612 8613 8614
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8615 8616
}

8617 8618
static DEFINE_MUTEX(shares_mutex);

8619
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8620 8621
{
	int i;
8622
	unsigned long flags;
8623

8624 8625 8626 8627 8628 8629
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8630 8631
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8632 8633
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8634

8635
	mutex_lock(&shares_mutex);
8636
	if (tg->shares == shares)
8637
		goto done;
S
Srivatsa Vaddagiri 已提交
8638

8639
	spin_lock_irqsave(&task_group_lock, flags);
8640 8641
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8642
	list_del_rcu(&tg->siblings);
8643
	spin_unlock_irqrestore(&task_group_lock, flags);
8644 8645 8646 8647 8648 8649 8650 8651

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8652
	tg->shares = shares;
8653 8654 8655 8656 8657
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8658
		set_se_shares(tg->se[i], shares);
8659
	}
S
Srivatsa Vaddagiri 已提交
8660

8661 8662 8663 8664
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8665
	spin_lock_irqsave(&task_group_lock, flags);
8666 8667
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8668
	list_add_rcu(&tg->siblings, &tg->parent->children);
8669
	spin_unlock_irqrestore(&task_group_lock, flags);
8670
done:
8671
	mutex_unlock(&shares_mutex);
8672
	return 0;
S
Srivatsa Vaddagiri 已提交
8673 8674
}

8675 8676 8677 8678
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8679
#endif
8680

8681
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8682
/*
P
Peter Zijlstra 已提交
8683
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8684
 */
P
Peter Zijlstra 已提交
8685 8686 8687 8688 8689 8690 8691
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8692
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8693 8694
}

8695 8696 8697
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8698
	struct task_group *tgi, *parent = tg->parent;
8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8722
	return total + to_ratio(period, runtime) <=
8723 8724 8725 8726
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8727
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8728 8729 8730
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8731
	unsigned long global_ratio =
8732
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8733 8734

	rcu_read_lock();
P
Peter Zijlstra 已提交
8735 8736 8737
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8738

8739 8740
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8741 8742
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8743

P
Peter Zijlstra 已提交
8744
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8745
}
8746
#endif
P
Peter Zijlstra 已提交
8747

8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8759 8760
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8761
{
P
Peter Zijlstra 已提交
8762
	int i, err = 0;
P
Peter Zijlstra 已提交
8763 8764

	mutex_lock(&rt_constraints_mutex);
8765
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8766
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8767 8768 8769
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8770 8771 8772 8773
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8774 8775

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8776 8777
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8778 8779 8780 8781 8782 8783 8784 8785 8786

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8787
 unlock:
8788
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8789 8790 8791
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8792 8793
}

8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8806 8807 8808 8809
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8810
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8811 8812
		return -1;

8813
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8814 8815 8816
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8817 8818 8819 8820 8821 8822 8823 8824

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8825 8826 8827
	if (rt_period == 0)
		return -EINVAL;

8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8842 8843
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8844 8845
	int ret = 0;

8846 8847 8848
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8849
	mutex_lock(&rt_constraints_mutex);
8850
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8851 8852 8853 8854 8855
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8856
#else /* !CONFIG_RT_GROUP_SCHED */
8857 8858
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8872 8873
	return 0;
}
8874
#endif /* CONFIG_RT_GROUP_SCHED */
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8905

8906
#ifdef CONFIG_CGROUP_SCHED
8907 8908

/* return corresponding task_group object of a cgroup */
8909
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8910
{
8911 8912
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8913 8914 8915
}

static struct cgroup_subsys_state *
8916
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8917
{
8918
	struct task_group *tg, *parent;
8919

8920
	if (!cgrp->parent) {
8921
		/* This is early initialization for the top cgroup */
8922
		init_task_group.css.cgroup = cgrp;
8923 8924 8925
		return &init_task_group.css;
	}

8926 8927
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8928 8929 8930 8931
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8932
	tg->css.cgroup = cgrp;
8933 8934 8935 8936

	return &tg->css;
}

I
Ingo Molnar 已提交
8937 8938
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8939
{
8940
	struct task_group *tg = cgroup_tg(cgrp);
8941 8942 8943 8944

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8945 8946 8947
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8948
{
8949 8950
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8951
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8952 8953
		return -EINVAL;
#else
8954 8955 8956
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8957
#endif
8958 8959 8960 8961 8962

	return 0;
}

static void
8963
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8964 8965 8966 8967 8968
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8969
#ifdef CONFIG_FAIR_GROUP_SCHED
8970
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8971
				u64 shareval)
8972
{
8973
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8974 8975
}

8976
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8977
{
8978
	struct task_group *tg = cgroup_tg(cgrp);
8979 8980 8981

	return (u64) tg->shares;
}
8982
#endif /* CONFIG_FAIR_GROUP_SCHED */
8983

8984
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8985
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8986
				s64 val)
P
Peter Zijlstra 已提交
8987
{
8988
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8989 8990
}

8991
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8992
{
8993
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8994
}
8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9006
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9007

9008
static struct cftype cpu_files[] = {
9009
#ifdef CONFIG_FAIR_GROUP_SCHED
9010 9011
	{
		.name = "shares",
9012 9013
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9014
	},
9015 9016
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9017
	{
P
Peter Zijlstra 已提交
9018
		.name = "rt_runtime_us",
9019 9020
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9021
	},
9022 9023
	{
		.name = "rt_period_us",
9024 9025
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9026
	},
9027
#endif
9028 9029 9030 9031
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9032
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9033 9034 9035
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9036 9037 9038 9039 9040 9041 9042
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9043 9044 9045
	.early_init	= 1,
};

9046
#endif	/* CONFIG_CGROUP_SCHED */
9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9067
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9068
{
9069
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9082
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9099
static void
9100
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9101
{
9102
	struct cpuacct *ca = cgroup_ca(cgrp);
9103 9104 9105 9106 9107 9108

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9109
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9110
{
9111
	struct cpuacct *ca = cgroup_ca(cgrp);
9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9153 9154 9155
static struct cftype files[] = {
	{
		.name = "usage",
9156 9157
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9158 9159 9160
	},
};

9161
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9162
{
9163
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */