sched.c 230.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

148 149
static inline int rt_policy(int policy)
{
150
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 152 153 154 155 156 157 158 159
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
160
/*
I
Ingo Molnar 已提交
161
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
162
 */
I
Ingo Molnar 已提交
163 164 165 166 167
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

168
struct rt_bandwidth {
I
Ingo Molnar 已提交
169 170 171 172 173
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
207 208
	spin_lock_init(&rt_b->rt_runtime_lock);

209 210 211
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
212
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 214
}

215 216 217
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
218 219 220 221 222 223
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

224
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 226 227 228 229 230 231 232 233 234 235 236
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 238
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
239 240 241 242 243 244 245 246 247 248 249
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

250 251 252 253 254 255
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

256
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257

258 259
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
260 261
struct cfs_rq;

P
Peter Zijlstra 已提交
262 263
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
264
/* task group related information */
265
struct task_group {
266
#ifdef CONFIG_CGROUP_SCHED
267 268
	struct cgroup_subsys_state css;
#endif
269

270 271 272 273
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

274
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
275 276 277 278 279
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
280 281 282 283 284 285
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

286
	struct rt_bandwidth rt_bandwidth;
287
#endif
288

289
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
290
	struct list_head list;
P
Peter Zijlstra 已提交
291 292 293 294

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
295 296
};

D
Dhaval Giani 已提交
297
#ifdef CONFIG_USER_SCHED
298

299 300 301 302 303 304
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

305 306 307 308 309 310 311
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

312
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
313 314 315 316
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
317
#endif /* CONFIG_FAIR_GROUP_SCHED */
318 319 320 321

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
323
#else /* !CONFIG_USER_SCHED */
324
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
325
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
326

327
/* task_group_lock serializes add/remove of task groups and also changes to
328 329
 * a task group's cpu shares.
 */
330
static DEFINE_SPINLOCK(task_group_lock);
331

332 333 334
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
335
#else /* !CONFIG_USER_SCHED */
336
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
337
#endif /* CONFIG_USER_SCHED */
338

339
/*
340 341 342 343
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
344 345 346
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
347
#define MIN_SHARES	2
348
#define MAX_SHARES	(1UL << 18)
349

350 351 352
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
353
/* Default task group.
I
Ingo Molnar 已提交
354
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
355
 */
356
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
357 358

/* return group to which a task belongs */
359
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
360
{
361
	struct task_group *tg;
362

363
#ifdef CONFIG_USER_SCHED
364
	tg = p->user->tg;
365
#elif defined(CONFIG_CGROUP_SCHED)
366 367
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
368
#else
I
Ingo Molnar 已提交
369
	tg = &init_task_group;
370
#endif
371
	return tg;
S
Srivatsa Vaddagiri 已提交
372 373 374
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
375
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
376
{
377
#ifdef CONFIG_FAIR_GROUP_SCHED
378 379
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
380
#endif
P
Peter Zijlstra 已提交
381

382
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
383 384
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
385
#endif
S
Srivatsa Vaddagiri 已提交
386 387 388 389
}

#else

P
Peter Zijlstra 已提交
390
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
391 392 393 394
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
395

396
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
397

I
Ingo Molnar 已提交
398 399 400 401 402 403
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
404
	u64 min_vruntime;
I
Ingo Molnar 已提交
405 406 407

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
408 409 410 411 412 413

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
414 415
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
416
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
417

P
Peter Zijlstra 已提交
418
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
419

420
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
421 422
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
423 424
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
425 426 427 428 429 430
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
431 432
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
433 434 435

#ifdef CONFIG_SMP
	/*
436
	 * the part of load.weight contributed by tasks
437
	 */
438
	unsigned long task_weight;
439

440 441 442 443 444 445 446
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
447

448 449 450 451
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
452 453 454 455 456

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
457
#endif
I
Ingo Molnar 已提交
458 459
#endif
};
L
Linus Torvalds 已提交
460

I
Ingo Molnar 已提交
461 462 463
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
464
	unsigned long rt_nr_running;
465
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
466 467
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
468
#ifdef CONFIG_SMP
469
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
470
	int overloaded;
P
Peter Zijlstra 已提交
471
#endif
P
Peter Zijlstra 已提交
472
	int rt_throttled;
P
Peter Zijlstra 已提交
473
	u64 rt_time;
P
Peter Zijlstra 已提交
474
	u64 rt_runtime;
I
Ingo Molnar 已提交
475
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
476
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
477

478
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
479 480
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
481 482 483 484 485
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
486 487
};

G
Gregory Haskins 已提交
488 489 490 491
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
492 493
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
494 495 496 497 498 499
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
500 501
	cpumask_var_t span;
	cpumask_var_t online;
502

I
Ingo Molnar 已提交
503
	/*
504 505 506
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
507
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
508
	atomic_t rto_count;
509 510 511
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
512 513 514 515 516 517 518 519
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
520 521
};

522 523 524 525
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
526 527 528 529
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
530 531 532 533 534 535 536
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
537
struct rq {
538 539
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
540 541 542 543 544 545

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
546 547
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
548
	unsigned char idle_at_tick;
549
#ifdef CONFIG_NO_HZ
550
	unsigned long last_tick_seen;
551 552
	unsigned char in_nohz_recently;
#endif
553 554
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
555 556 557 558
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
559 560
	struct rt_rq rt;

I
Ingo Molnar 已提交
561
#ifdef CONFIG_FAIR_GROUP_SCHED
562 563
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
564 565
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
566
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
567 568 569 570 571 572 573 574 575 576
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

577
	struct task_struct *curr, *idle;
578
	unsigned long next_balance;
L
Linus Torvalds 已提交
579
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
580

581
	u64 clock;
I
Ingo Molnar 已提交
582

L
Linus Torvalds 已提交
583 584 585
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
586
	struct root_domain *rd;
L
Linus Torvalds 已提交
587 588 589 590 591
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
592 593
	/* cpu of this runqueue: */
	int cpu;
594
	int online;
L
Linus Torvalds 已提交
595

596
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
597

598
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
599 600 601
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
602
#ifdef CONFIG_SCHED_HRTICK
603 604 605 606
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
607 608 609
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
610 611 612 613 614
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
615 616 617 618
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
619 620

	/* schedule() stats */
621 622 623
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
624 625

	/* try_to_wake_up() stats */
626 627
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
628 629

	/* BKL stats */
630
	unsigned int bkl_count;
L
Linus Torvalds 已提交
631 632 633
#endif
};

634
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
635

636
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
637
{
638
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
639 640
}

641 642 643 644 645 646 647 648 649
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
650 651
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
653 654 655 656
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
657 658
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
659 660 661 662 663 664

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

665 666 667 668 669
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
670 671 672 673 674 675 676 677 678
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
697 698 699
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
700 701 702 703

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
704
enum {
P
Peter Zijlstra 已提交
705
#include "sched_features.h"
I
Ingo Molnar 已提交
706 707
};

P
Peter Zijlstra 已提交
708 709 710 711 712
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
713
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
714 715 716 717 718 719 720 721 722
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

723
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
724 725 726 727 728 729
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
730
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
731 732 733 734
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
735 736 737
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
738
	}
L
Li Zefan 已提交
739
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
740

L
Li Zefan 已提交
741
	return 0;
P
Peter Zijlstra 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
761
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
786 787 788 789 790
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
791
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
792 793 794 795 796
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
811

812 813 814 815 816 817
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
818 819
/*
 * ratelimit for updating the group shares.
820
 * default: 0.25ms
P
Peter Zijlstra 已提交
821
 */
822
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
823

824 825 826 827 828 829 830
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
831
/*
P
Peter Zijlstra 已提交
832
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
833 834
 * default: 1s
 */
P
Peter Zijlstra 已提交
835
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
836

837 838
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
839 840 841 842 843
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
844

845 846 847 848 849 850 851
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
852
	if (sysctl_sched_rt_runtime < 0)
853 854 855 856
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
857

L
Linus Torvalds 已提交
858
#ifndef prepare_arch_switch
859 860 861 862 863 864
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

865 866 867 868 869
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

870
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
871
static inline int task_running(struct rq *rq, struct task_struct *p)
872
{
873
	return task_current(rq, p);
874 875
}

876
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877 878 879
{
}

880
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881
{
882 883 884 885
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
886 887 888 889 890 891 892
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

893 894 895 896
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
897
static inline int task_running(struct rq *rq, struct task_struct *p)
898 899 900 901
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
902
	return task_current(rq, p);
903 904 905
#endif
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

923
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 925 926 927 928 929 930 931 932 933 934 935
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
936
#endif
937 938
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
939

940 941 942 943
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
944
static inline struct rq *__task_rq_lock(struct task_struct *p)
945 946
	__acquires(rq->lock)
{
947 948 949 950 951
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
952 953 954 955
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
956 957
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
958
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
959 960
 * explicitly disabling preemption.
 */
961
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
962 963
	__acquires(rq->lock)
{
964
	struct rq *rq;
L
Linus Torvalds 已提交
965

966 967 968 969 970 971
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
972 973 974 975
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

976 977 978 979 980 981 982 983
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
984
static void __task_rq_unlock(struct rq *rq)
985 986 987 988 989
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

990
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
991 992 993 994 995 996
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
997
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
998
 */
A
Alexey Dobriyan 已提交
999
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1000 1001
	__acquires(rq->lock)
{
1002
	struct rq *rq;
L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008 1009 1010

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1032
	if (!cpu_active(cpu_of(rq)))
1033
		return 0;
P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1054
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1061
#ifdef CONFIG_SMP
1062 1063 1064 1065
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1066
{
1067
	struct rq *rq = arg;
1068

1069 1070 1071 1072
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1073 1074
}

1075 1076 1077 1078 1079 1080
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1081
{
1082 1083
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1084

1085
	hrtimer_set_expires(timer, time);
1086 1087 1088 1089 1090 1091 1092

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1107
		hrtick_clear(cpu_rq(cpu));
1108 1109 1110 1111 1112 1113
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1114
static __init void init_hrtick(void)
1115 1116 1117
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1128

A
Andrew Morton 已提交
1129
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1130 1131
{
}
1132
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1133

1134
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1135
{
1136 1137
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1138

1139 1140 1141 1142
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1143

1144 1145
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1146
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1147
}
A
Andrew Morton 已提交
1148
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1149 1150 1151 1152 1153 1154 1155 1156
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1157 1158 1159
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1160
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1161

I
Ingo Molnar 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1175
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1176 1177 1178 1179 1180
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1181
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1182 1183
		return;

1184
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1247
#endif /* CONFIG_NO_HZ */
1248

1249
#else /* !CONFIG_SMP */
1250
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1251 1252
{
	assert_spin_locked(&task_rq(p)->lock);
1253
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1254
}
1255
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1256

1257 1258 1259 1260 1261 1262 1263 1264
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1265 1266 1267
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1268
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1269

1270 1271 1272
/*
 * delta *= weight / lw
 */
1273
static unsigned long
1274 1275 1276 1277 1278
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1279 1280 1281 1282 1283 1284 1285
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1286 1287 1288 1289 1290

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1291
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1292
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1293 1294
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1295
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1296

1297
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1298 1299
}

1300
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1301 1302
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1303
	lw->inv_weight = 0;
1304 1305
}

1306
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1307 1308
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1309
	lw->inv_weight = 0;
1310 1311
}

1312 1313 1314 1315
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1316
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1317 1318 1319 1320
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1332 1333 1334
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1335 1336
 */
static const int prio_to_weight[40] = {
1337 1338 1339 1340 1341 1342 1343 1344
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1345 1346
};

1347 1348 1349 1350 1351 1352 1353
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1354
static const u32 prio_to_wmult[40] = {
1355 1356 1357 1358 1359 1360 1361 1362
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1363
};
1364

I
Ingo Molnar 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1390

1391 1392 1393 1394 1395 1396
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1407
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1408
typedef int (*tg_visitor)(struct task_group *, void *);
1409 1410 1411 1412 1413

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1414
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1415 1416
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1417
	int ret;
1418 1419 1420 1421

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1422 1423 1424
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1425 1426 1427 1428 1429 1430 1431
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1432 1433 1434
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1435 1436 1437 1438 1439

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1440
out_unlock:
1441
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1442 1443

	return ret;
1444 1445
}

P
Peter Zijlstra 已提交
1446 1447 1448
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1449
}
P
Peter Zijlstra 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1460
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1461

1462 1463
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1464 1465
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1466 1467 1468 1469 1470

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1471 1472 1473 1474 1475 1476 1477

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1478 1479
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1480
{
1481 1482 1483
	unsigned long shares;
	unsigned long rq_weight;

1484
	if (!tg->se[cpu])
1485 1486
		return;

1487
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1488

1489 1490 1491 1492 1493 1494
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1495
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1496
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1497

1498 1499 1500 1501
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1502

1503
		spin_lock_irqsave(&rq->lock, flags);
1504
		tg->cfs_rq[cpu]->shares = shares;
1505

1506 1507 1508
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1509
}
1510 1511

/*
1512 1513 1514
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1515
 */
P
Peter Zijlstra 已提交
1516
static int tg_shares_up(struct task_group *tg, void *data)
1517
{
1518
	unsigned long weight, rq_weight = 0;
1519
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1520
	struct sched_domain *sd = data;
1521
	int i;
1522

1523
	for_each_cpu(i, sched_domain_span(sd)) {
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1535
		shares += tg->cfs_rq[i]->shares;
1536 1537
	}

1538 1539 1540 1541 1542
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1543

1544
	for_each_cpu(i, sched_domain_span(sd))
1545
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1546 1547

	return 0;
1548 1549 1550
}

/*
1551 1552 1553
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1554
 */
P
Peter Zijlstra 已提交
1555
static int tg_load_down(struct task_group *tg, void *data)
1556
{
1557
	unsigned long load;
P
Peter Zijlstra 已提交
1558
	long cpu = (long)data;
1559

1560 1561 1562 1563 1564 1565 1566
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1567

1568
	tg->cfs_rq[cpu]->h_load = load;
1569

P
Peter Zijlstra 已提交
1570
	return 0;
1571 1572
}

1573
static void update_shares(struct sched_domain *sd)
1574
{
P
Peter Zijlstra 已提交
1575 1576 1577 1578 1579
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1580
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1581
	}
1582 1583
}

1584 1585 1586 1587 1588 1589 1590
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1591
static void update_h_load(long cpu)
1592
{
P
Peter Zijlstra 已提交
1593
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1594 1595 1596 1597
}

#else

1598
static inline void update_shares(struct sched_domain *sd)
1599 1600 1601
{
}

1602 1603 1604 1605
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1606 1607
#endif

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1641 1642
#endif

V
Vegard Nossum 已提交
1643
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1644 1645
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1646
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1647 1648 1649
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1650
#endif
1651

I
Ingo Molnar 已提交
1652 1653
#include "sched_stats.h"
#include "sched_idletask.c"
1654 1655
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1656 1657 1658 1659 1660
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1661 1662
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1663

1664
static void inc_nr_running(struct rq *rq)
1665 1666 1667 1668
{
	rq->nr_running++;
}

1669
static void dec_nr_running(struct rq *rq)
1670 1671 1672 1673
{
	rq->nr_running--;
}

1674 1675 1676
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1677 1678 1679 1680
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1681

I
Ingo Molnar 已提交
1682 1683 1684 1685 1686 1687 1688 1689
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1690

I
Ingo Molnar 已提交
1691 1692
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1693 1694
}

1695 1696 1697 1698 1699 1700
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1701
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1702
{
I
Ingo Molnar 已提交
1703
	sched_info_queued(p);
1704
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1705
	p->se.on_rq = 1;
1706 1707
}

1708
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1709
{
1710 1711 1712 1713 1714 1715
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1716
	sched_info_dequeued(p);
1717
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1718
	p->se.on_rq = 0;
1719 1720
}

1721
/*
I
Ingo Molnar 已提交
1722
 * __normal_prio - return the priority that is based on the static prio
1723 1724 1725
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1726
	return p->static_prio;
1727 1728
}

1729 1730 1731 1732 1733 1734 1735
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1736
static inline int normal_prio(struct task_struct *p)
1737 1738 1739
{
	int prio;

1740
	if (task_has_rt_policy(p))
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1754
static int effective_prio(struct task_struct *p)
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1767
/*
I
Ingo Molnar 已提交
1768
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1769
 */
I
Ingo Molnar 已提交
1770
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1771
{
1772
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1773
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1774

1775
	enqueue_task(rq, p, wakeup);
1776
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1782
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1783
{
1784
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1785 1786
		rq->nr_uninterruptible++;

1787
	dequeue_task(rq, p, sleep);
1788
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793 1794
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1795
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1796 1797 1798 1799
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1800 1801
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1802
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1803
#ifdef CONFIG_SMP
1804 1805 1806 1807 1808 1809
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1810 1811
	task_thread_info(p)->cpu = cpu;
#endif
1812 1813
}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1826
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1827

1828 1829 1830 1831 1832 1833
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1834 1835 1836
/*
 * Is this task likely cache-hot:
 */
1837
static int
1838 1839 1840 1841
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1842 1843 1844
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1845 1846 1847
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1848 1849
		return 1;

1850 1851 1852
	if (p->sched_class != &fair_sched_class)
		return 0;

1853 1854 1855 1856 1857
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1858 1859 1860 1861 1862 1863
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1864
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1865
{
I
Ingo Molnar 已提交
1866 1867
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1868 1869
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1870
	u64 clock_offset;
I
Ingo Molnar 已提交
1871 1872

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1873 1874 1875 1876

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1877 1878 1879 1880
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1881 1882 1883 1884 1885
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1886
#endif
1887 1888
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1889 1890

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1891 1892
}

1893
struct migration_req {
L
Linus Torvalds 已提交
1894 1895
	struct list_head list;

1896
	struct task_struct *task;
L
Linus Torvalds 已提交
1897 1898 1899
	int dest_cpu;

	struct completion done;
1900
};
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1906
static int
1907
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1908
{
1909
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1915
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920 1921 1922 1923
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1924

L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1931 1932 1933 1934 1935 1936 1937
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1944
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1945 1946
{
	unsigned long flags;
I
Ingo Molnar 已提交
1947
	int running, on_rq;
R
Roland McGrath 已提交
1948
	unsigned long ncsw;
1949
	struct rq *rq;
L
Linus Torvalds 已提交
1950

1951 1952 1953 1954 1955 1956 1957 1958
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1971 1972 1973
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1974
			cpu_relax();
R
Roland McGrath 已提交
1975
		}
1976

1977 1978 1979 1980 1981 1982
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1983
		trace_sched_wait_task(rq, p);
1984 1985
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1986
		ncsw = 0;
1987
		if (!match_state || p->state == match_state)
1988
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1989
		task_rq_unlock(rq, &flags);
1990

R
Roland McGrath 已提交
1991 1992 1993 1994 1995 1996
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2021

2022 2023 2024 2025 2026 2027 2028
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2029 2030

	return ncsw;
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2046
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2058 2059
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2060 2061 2062 2063
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2064
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2065
{
2066
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2067
	unsigned long total = weighted_cpuload(cpu);
2068

2069
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2070
		return total;
2071

I
Ingo Molnar 已提交
2072
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2073 2074 2075
}

/*
2076 2077
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2078
 */
A
Alexey Dobriyan 已提交
2079
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2080
{
2081
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2082
	unsigned long total = weighted_cpuload(cpu);
2083

2084
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2085
		return total;
2086

I
Ingo Molnar 已提交
2087
	return max(rq->cpu_load[type-1], total);
2088 2089
}

N
Nick Piggin 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2107
		/* Skip over this group if it has no CPUs allowed */
2108 2109
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2110
			continue;
2111

2112 2113
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2114 2115 2116 2117

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2118
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2129 2130
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2131 2132 2133 2134 2135 2136 2137 2138

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2139
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2140 2141 2142 2143 2144 2145 2146

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2147
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2148
 */
I
Ingo Molnar 已提交
2149
static int
2150
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2151 2152 2153 2154 2155
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2156
	/* Traverse only the allowed CPUs */
2157
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2158
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2184

2185
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2186 2187 2188
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2189 2190
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2191 2192
		if (tmp->flags & flag)
			sd = tmp;
2193
	}
N
Nick Piggin 已提交
2194

2195 2196 2197
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2198 2199
	while (sd) {
		struct sched_group *group;
2200 2201 2202 2203 2204 2205
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2206 2207

		group = find_idlest_group(sd, t, cpu);
2208 2209 2210 2211
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2212

2213
		new_cpu = find_idlest_cpu(group, t, cpu);
2214 2215 2216 2217 2218
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2219

2220
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2221
		cpu = new_cpu;
2222
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2223 2224
		sd = NULL;
		for_each_domain(cpu, tmp) {
2225
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2252
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2253
{
2254
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2255 2256
	unsigned long flags;
	long old_state;
2257
	struct rq *rq;
L
Linus Torvalds 已提交
2258

2259 2260 2261
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2262 2263 2264 2265 2266 2267 2268 2269
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2270
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2271 2272 2273 2274 2275 2276 2277
				update_shares(sd);
				break;
			}
		}
	}
#endif

2278
	smp_wmb();
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2284
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2285 2286 2287
		goto out_running;

	cpu = task_cpu(p);
2288
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2289 2290 2291 2292 2293 2294
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2295 2296 2297
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2304
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2305 2306 2307 2308 2309 2310
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2311 2312 2313 2314 2315 2316 2317
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2318
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2319 2320 2321 2322 2323
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2324
#endif /* CONFIG_SCHEDSTATS */
2325

L
Linus Torvalds 已提交
2326 2327
out_activate:
#endif /* CONFIG_SMP */
2328 2329 2330 2331 2332 2333 2334 2335 2336
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2337
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2338
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2339 2340 2341
	success = 1;

out_running:
2342
	trace_sched_wakeup(rq, p);
2343
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2344

L
Linus Torvalds 已提交
2345
	p->state = TASK_RUNNING;
2346 2347 2348 2349
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2350
out:
2351 2352
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2353 2354 2355 2356 2357
	task_rq_unlock(rq, &flags);

	return success;
}

2358
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2359
{
2360
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2361 2362 2363
}
EXPORT_SYMBOL(wake_up_process);

2364
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2372 2373 2374 2375 2376 2377 2378
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2379
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2380 2381
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2382 2383 2384

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2385 2386 2387 2388 2389 2390
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2391
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2392
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2393
#endif
N
Nick Piggin 已提交
2394

P
Peter Zijlstra 已提交
2395
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2396
	p->se.on_rq = 0;
2397
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2398

2399 2400 2401 2402
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2403 2404 2405 2406 2407 2408 2409
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2424
	set_task_cpu(p, cpu);
2425 2426 2427 2428 2429

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2430 2431
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2432

2433
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2434
	if (likely(sched_info_on()))
2435
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2436
#endif
2437
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2438 2439
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2440
#ifdef CONFIG_PREEMPT
2441
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2442
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2443
#endif
N
Nick Piggin 已提交
2444
	put_cpu();
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2454
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2455 2456
{
	unsigned long flags;
I
Ingo Molnar 已提交
2457
	struct rq *rq;
L
Linus Torvalds 已提交
2458 2459

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2460
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2461
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2462 2463 2464

	p->prio = effective_prio(p);

2465
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2466
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2467 2468
	} else {
		/*
I
Ingo Molnar 已提交
2469 2470
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2471
		 */
2472
		p->sched_class->task_new(rq, p);
2473
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2474
	}
2475
	trace_sched_wakeup_new(rq, p);
2476
	check_preempt_curr(rq, p, 0);
2477 2478 2479 2480
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2481
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2482 2483
}

2484 2485 2486
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2487 2488
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2489 2490 2491 2492 2493 2494 2495 2496 2497
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2498
 * @notifier: notifier struct to unregister
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2528
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2540
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2541

2542 2543 2544
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2545
 * @prev: the current task that is being switched out
2546 2547 2548 2549 2550 2551 2552 2553 2554
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2555 2556 2557
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2558
{
2559
	fire_sched_out_preempt_notifiers(prev, next);
2560 2561 2562 2563
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2564 2565
/**
 * finish_task_switch - clean up after a task-switch
2566
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2567 2568
 * @prev: the thread we just switched away from.
 *
2569 2570 2571 2572
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2573 2574
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2575
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2576 2577 2578
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2579
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2580 2581 2582
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2583
	long prev_state;
L
Linus Torvalds 已提交
2584 2585 2586 2587 2588

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2589
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2590 2591
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2592
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2593 2594 2595 2596 2597
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2598
	prev_state = prev->state;
2599 2600
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2601 2602 2603 2604
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2605

2606
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2607 2608
	if (mm)
		mmdrop(mm);
2609
	if (unlikely(prev_state == TASK_DEAD)) {
2610 2611 2612
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2613
		 */
2614
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2615
		put_task_struct(prev);
2616
	}
L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2623
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2624 2625
	__releases(rq->lock)
{
2626 2627
	struct rq *rq = this_rq();

2628 2629 2630 2631 2632
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2633
	if (current->set_child_tid)
2634
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2641
static inline void
2642
context_switch(struct rq *rq, struct task_struct *prev,
2643
	       struct task_struct *next)
L
Linus Torvalds 已提交
2644
{
I
Ingo Molnar 已提交
2645
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2646

2647
	prepare_task_switch(rq, prev, next);
2648
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2649 2650
	mm = next->mm;
	oldmm = prev->active_mm;
2651 2652 2653 2654 2655 2656 2657
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2658
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2665
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2666 2667 2668
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2669 2670 2671 2672 2673 2674 2675
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2676
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2677
#endif
L
Linus Torvalds 已提交
2678 2679 2680 2681

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2682 2683 2684 2685 2686 2687 2688
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2712
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2727 2728
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2729

2730
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2740
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2761
/*
I
Ingo Molnar 已提交
2762 2763
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2764
 */
I
Ingo Molnar 已提交
2765
static void update_cpu_load(struct rq *this_rq)
2766
{
2767
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2780 2781 2782 2783 2784 2785 2786
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2787 2788
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2789 2790
}

I
Ingo Molnar 已提交
2791 2792
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2799
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2800 2801 2802
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2803
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2804 2805 2806 2807
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2808
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2809
			spin_lock(&rq1->lock);
2810
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2811 2812
		} else {
			spin_lock(&rq2->lock);
2813
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2814 2815
		}
	}
2816 2817
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823 2824 2825
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2826
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2840
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2841 2842
 * the cpu_allowed mask is restored.
 */
2843
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2844
{
2845
	struct migration_req req;
L
Linus Torvalds 已提交
2846
	unsigned long flags;
2847
	struct rq *rq;
L
Linus Torvalds 已提交
2848 2849

	rq = task_rq_lock(p, &flags);
2850
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2851
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2852 2853
		goto out;

2854
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2855 2856 2857 2858
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2859

L
Linus Torvalds 已提交
2860 2861 2862 2863 2864
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2865

L
Linus Torvalds 已提交
2866 2867 2868 2869 2870 2871 2872
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2873 2874
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2875 2876 2877 2878
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2879
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2880
	put_cpu();
N
Nick Piggin 已提交
2881 2882
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2889 2890
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2891
{
2892
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2893
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2894
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2895 2896 2897 2898
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2899
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2905
static
2906
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2907
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2908
		     int *all_pinned)
L
Linus Torvalds 已提交
2909 2910 2911 2912 2913 2914 2915
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2916
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2917
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2918
		return 0;
2919
	}
2920 2921
	*all_pinned = 0;

2922 2923
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2924
		return 0;
2925
	}
L
Linus Torvalds 已提交
2926

2927 2928 2929 2930 2931 2932
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2933 2934
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2935
#ifdef CONFIG_SCHEDSTATS
2936
		if (task_hot(p, rq->clock, sd)) {
2937
			schedstat_inc(sd, lb_hot_gained[idle]);
2938 2939
			schedstat_inc(p, se.nr_forced_migrations);
		}
2940 2941 2942 2943
#endif
		return 1;
	}

2944 2945
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2946
		return 0;
2947
	}
L
Linus Torvalds 已提交
2948 2949 2950
	return 1;
}

2951 2952 2953 2954 2955
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2956
{
2957
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2958 2959
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2960

2961
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2962 2963
		goto out;

2964 2965
	pinned = 1;

L
Linus Torvalds 已提交
2966
	/*
I
Ingo Molnar 已提交
2967
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2968
	 */
I
Ingo Molnar 已提交
2969 2970
	p = iterator->start(iterator->arg);
next:
2971
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2972
		goto out;
2973 2974

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2975 2976 2977
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2978 2979
	}

I
Ingo Molnar 已提交
2980
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2981
	pulled++;
I
Ingo Molnar 已提交
2982
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2983

2984
	/*
2985
	 * We only want to steal up to the prescribed amount of weighted load.
2986
	 */
2987
	if (rem_load_move > 0) {
2988 2989
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2990 2991
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2992 2993 2994
	}
out:
	/*
2995
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2996 2997 2998 2999
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3000 3001 3002

	if (all_pinned)
		*all_pinned = pinned;
3003 3004

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3005 3006
}

I
Ingo Molnar 已提交
3007
/*
P
Peter Williams 已提交
3008 3009 3010
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3011 3012 3013 3014
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3015
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3016 3017 3018
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3019
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3020
	unsigned long total_load_moved = 0;
3021
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3022 3023

	do {
P
Peter Williams 已提交
3024 3025
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3026
				max_load_move - total_load_moved,
3027
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3028
		class = class->next;
3029 3030 3031 3032

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3033
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3034

P
Peter Williams 已提交
3035 3036 3037
	return total_load_moved > 0;
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3074
	const struct sched_class *class;
P
Peter Williams 已提交
3075 3076

	for (class = sched_class_highest; class; class = class->next)
3077
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3078 3079 3080
			return 1;

	return 0;
I
Ingo Molnar 已提交
3081 3082
}

L
Linus Torvalds 已提交
3083 3084
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3085 3086
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3087 3088 3089
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3090
		   unsigned long *imbalance, enum cpu_idle_type idle,
3091
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3092 3093 3094
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095
	unsigned long max_pull;
3096 3097
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3098
	int load_idx, group_imb = 0;
3099 3100 3101 3102 3103 3104
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3105 3106

	max_load = this_load = total_load = total_pwr = 0;
3107 3108
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3109

I
Ingo Molnar 已提交
3110
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3111
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3112
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3113 3114 3115
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3116 3117

	do {
3118
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3119 3120
		int local_group;
		int i;
3121
		int __group_imb = 0;
3122
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123
		unsigned long sum_nr_running, sum_weighted_load;
3124 3125
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3126

3127 3128
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3129

3130
		if (local_group)
3131
			balance_cpu = cpumask_first(sched_group_cpus(group));
3132

L
Linus Torvalds 已提交
3133
		/* Tally up the load of all CPUs in the group */
3134
		sum_weighted_load = sum_nr_running = avg_load = 0;
3135 3136
		sum_avg_load_per_task = avg_load_per_task = 0;

3137 3138
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3139

3140 3141
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3142

3143
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3144 3145
				*sd_idle = 0;

L
Linus Torvalds 已提交
3146
			/* Bias balancing toward cpus of our domain */
3147 3148 3149 3150 3151 3152
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3153
				load = target_load(i, load_idx);
3154
			} else {
N
Nick Piggin 已提交
3155
				load = source_load(i, load_idx);
3156 3157 3158 3159 3160
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3161 3162

			avg_load += load;
3163
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3164
			sum_weighted_load += weighted_cpuload(i);
3165 3166

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3167 3168
		}

3169 3170 3171
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3172 3173
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3174
		 */
3175 3176
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3177 3178 3179 3180
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3181
		total_load += avg_load;
3182
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3183 3184

		/* Adjust by relative CPU power of the group */
3185 3186
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3187

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3202 3203
			__group_imb = 1;

3204
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3205

L
Linus Torvalds 已提交
3206 3207 3208
		if (local_group) {
			this_load = avg_load;
			this = group;
3209 3210 3211
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3212
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3213 3214
			max_load = avg_load;
			busiest = group;
3215 3216
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3217
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3218
		}
3219 3220 3221 3222 3223 3224

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3225 3226 3227
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3228 3229 3230 3231 3232 3233 3234 3235 3236

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3237
		/*
3238 3239
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3240 3241
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3242
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3243
			goto group_next;
3244

I
Ingo Molnar 已提交
3245
		/*
3246
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3247 3248 3249 3250 3251
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3252
		     cpumask_first(sched_group_cpus(group)) >
3253
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3254 3255
			group_min = group;
			min_nr_running = sum_nr_running;
3256 3257
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3258
		}
3259

I
Ingo Molnar 已提交
3260
		/*
3261
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3262 3263 3264 3265 3266 3267
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3268
			     cpumask_first(sched_group_cpus(group)) <
3269
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3270 3271 3272
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3273
		}
3274 3275
group_next:
#endif
L
Linus Torvalds 已提交
3276 3277 3278
		group = group->next;
	} while (group != sd->groups);

3279
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3280 3281 3282 3283 3284 3285 3286 3287
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3288
	busiest_load_per_task /= busiest_nr_running;
3289 3290 3291
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3300
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3301 3302
	 * appear as very large values with unsigned longs.
	 */
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3315 3316

	/* Don't want to pull so many tasks that a group would go idle */
3317
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3318

L
Linus Torvalds 已提交
3319
	/* How much load to actually move to equalise the imbalance */
3320 3321
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3322 3323
			/ SCHED_LOAD_SCALE;

3324 3325 3326 3327 3328 3329
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3330
	if (*imbalance < busiest_load_per_task) {
3331
		unsigned long tmp, pwr_now, pwr_move;
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3342
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3343

3344
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3345
					busiest_load_per_task * imbn) {
3346
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3356 3357 3358 3359
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3360 3361 3362
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3363 3364
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3365
		if (max_load > tmp)
3366
			pwr_move += busiest->__cpu_power *
3367
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3368 3369

		/* Amount of load we'd add */
3370
		if (max_load * busiest->__cpu_power <
3371
				busiest_load_per_task * SCHED_LOAD_SCALE)
3372 3373
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3374
		else
3375 3376 3377 3378
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3379 3380 3381
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3382 3383
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388
	}

	return busiest;

out_balanced:
3389
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3390
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3391
		goto ret;
L
Linus Torvalds 已提交
3392

3393 3394
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3395 3396 3397 3398
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
					first_cpu(group_leader->cpumask);
		}
3399 3400 3401
		return group_min;
	}
#endif
3402
ret:
L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3410
static struct rq *
I
Ingo Molnar 已提交
3411
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3413
{
3414
	struct rq *busiest = NULL, *rq;
3415
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3416 3417
	int i;

3418
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3419
		unsigned long wl;
3420

3421
		if (!cpumask_test_cpu(i, cpus))
3422 3423
			continue;

3424
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3425
		wl = weighted_cpuload(i);
3426

I
Ingo Molnar 已提交
3427
		if (rq->nr_running == 1 && wl > imbalance)
3428
			continue;
L
Linus Torvalds 已提交
3429

I
Ingo Molnar 已提交
3430 3431
		if (wl > max_load) {
			max_load = wl;
3432
			busiest = rq;
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438
		}
	}

	return busiest;
}

3439 3440 3441 3442 3443 3444
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3445 3446 3447 3448
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3449
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3450
			struct sched_domain *sd, enum cpu_idle_type idle,
3451
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3452
{
P
Peter Williams 已提交
3453
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3454 3455
	struct sched_group *group;
	unsigned long imbalance;
3456
	struct rq *busiest;
3457
	unsigned long flags;
N
Nick Piggin 已提交
3458

3459
	cpumask_setall(cpus);
3460

3461 3462 3463
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3464
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3465
	 * portraying it as CPU_NOT_IDLE.
3466
	 */
I
Ingo Molnar 已提交
3467
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3469
		sd_idle = 1;
L
Linus Torvalds 已提交
3470

3471
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3472

3473
redo:
3474
	update_shares(sd);
3475
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476
				   cpus, balance);
3477

3478
	if (*balance == 0)
3479 3480
		goto out_balanced;

L
Linus Torvalds 已提交
3481 3482 3483 3484 3485
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3486
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3492
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3493 3494 3495

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3496
	ld_moved = 0;
L
Linus Torvalds 已提交
3497 3498 3499 3500
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3501
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3502 3503
		 * correctly treated as an imbalance.
		 */
3504
		local_irq_save(flags);
N
Nick Piggin 已提交
3505
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3506
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3508
		double_rq_unlock(this_rq, busiest);
3509
		local_irq_restore(flags);
3510

3511 3512 3513
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3514
		if (ld_moved && this_cpu != smp_processor_id())
3515 3516
			resched_cpu(this_cpu);

3517
		/* All tasks on this runqueue were pinned by CPU affinity */
3518
		if (unlikely(all_pinned)) {
3519 3520
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3521
				goto redo;
3522
			goto out_balanced;
3523
		}
L
Linus Torvalds 已提交
3524
	}
3525

P
Peter Williams 已提交
3526
	if (!ld_moved) {
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3532
			spin_lock_irqsave(&busiest->lock, flags);
3533 3534 3535 3536

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3537 3538
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3539
				spin_unlock_irqrestore(&busiest->lock, flags);
3540 3541 3542 3543
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3544 3545 3546
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3547
				active_balance = 1;
L
Linus Torvalds 已提交
3548
			}
3549
			spin_unlock_irqrestore(&busiest->lock, flags);
3550
			if (active_balance)
L
Linus Torvalds 已提交
3551 3552 3553 3554 3555 3556
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3557
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3558
		}
3559
	} else
L
Linus Torvalds 已提交
3560 3561
		sd->nr_balance_failed = 0;

3562
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3563 3564
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3565 3566 3567 3568 3569 3570 3571 3572 3573
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3574 3575
	}

P
Peter Williams 已提交
3576
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3578 3579 3580
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3581 3582 3583 3584

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3585
	sd->nr_balance_failed = 0;
3586 3587

out_one_pinned:
L
Linus Torvalds 已提交
3588
	/* tune up the balancing interval */
3589 3590
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3591 3592
		sd->balance_interval *= 2;

3593
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3594
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3595 3596 3597 3598
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3599 3600
	if (ld_moved)
		update_shares(sd);
3601
	return ld_moved;
L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3608
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3609 3610
 * this_rq is locked.
 */
3611
static int
3612
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3613
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3614 3615
{
	struct sched_group *group;
3616
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3617
	unsigned long imbalance;
P
Peter Williams 已提交
3618
	int ld_moved = 0;
N
Nick Piggin 已提交
3619
	int sd_idle = 0;
3620
	int all_pinned = 0;
3621

3622
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3623

3624 3625 3626 3627
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3628
	 * portraying it as CPU_NOT_IDLE.
3629 3630 3631
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3632
		sd_idle = 1;
L
Linus Torvalds 已提交
3633

3634
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3635
redo:
3636
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3637
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3638
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3639
	if (!group) {
I
Ingo Molnar 已提交
3640
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3641
		goto out_balanced;
L
Linus Torvalds 已提交
3642 3643
	}

3644
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3645
	if (!busiest) {
I
Ingo Molnar 已提交
3646
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3647
		goto out_balanced;
L
Linus Torvalds 已提交
3648 3649
	}

N
Nick Piggin 已提交
3650 3651
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3652
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3653

P
Peter Williams 已提交
3654
	ld_moved = 0;
3655 3656 3657
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3658 3659
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3660
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3661 3662
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3663
		double_unlock_balance(this_rq, busiest);
3664

3665
		if (unlikely(all_pinned)) {
3666 3667
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3668 3669
				goto redo;
		}
3670 3671
	}

P
Peter Williams 已提交
3672
	if (!ld_moved) {
3673 3674
		int active_balance;

I
Ingo Molnar 已提交
3675
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3676 3677
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3678
			return -1;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
		if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
		if (active_balance)
			wake_up_process(busiest->migration_thread);

N
Nick Piggin 已提交
3731
	} else
3732
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3733

3734
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3735
	return ld_moved;
3736 3737

out_balanced:
I
Ingo Molnar 已提交
3738
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3739
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3740
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3741
		return -1;
3742
	sd->nr_balance_failed = 0;
3743

3744
	return 0;
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3751
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3752 3753
{
	struct sched_domain *sd;
3754
	int pulled_task = 0;
I
Ingo Molnar 已提交
3755
	unsigned long next_balance = jiffies + HZ;
3756 3757 3758 3759
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3760 3761

	for_each_domain(this_cpu, sd) {
3762 3763 3764 3765 3766 3767
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3768
			/* If we've pulled tasks over stop searching: */
3769
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3770
							   sd, tmpmask);
3771 3772 3773 3774 3775 3776

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3777
	}
I
Ingo Molnar 已提交
3778
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3779 3780 3781 3782 3783
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3784
	}
3785
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3796
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3797
{
3798
	int target_cpu = busiest_rq->push_cpu;
3799 3800
	struct sched_domain *sd;
	struct rq *target_rq;
3801

3802
	/* Is there any task to move? */
3803 3804 3805 3806
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3807 3808

	/*
3809
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3810
	 * we need to fix it. Originally reported by
3811
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3812
	 */
3813
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3814

3815 3816
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3817 3818
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3819 3820

	/* Search for an sd spanning us and the target CPU. */
3821
	for_each_domain(target_cpu, sd) {
3822
		if ((sd->flags & SD_LOAD_BALANCE) &&
3823
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3824
				break;
3825
	}
3826

3827
	if (likely(sd)) {
3828
		schedstat_inc(sd, alb_count);
3829

P
Peter Williams 已提交
3830 3831
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3832 3833 3834 3835
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3836
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3837 3838
}

3839 3840 3841
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3842
	cpumask_var_t cpu_mask;
3843 3844 3845 3846
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3847
/*
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3858
 *
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
3872
		cpumask_set_cpu(cpu, nohz.cpu_mask);
3873 3874 3875 3876 3877
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3878
		if (!cpu_active(cpu) &&
3879 3880 3881 3882 3883 3884 3885
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
3886
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
3899
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3900 3901
			return 0;

3902
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3915 3916 3917 3918 3919
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3920
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3921
{
3922 3923
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3924 3925
	unsigned long interval;
	struct sched_domain *sd;
3926
	/* Earliest time when we have to do rebalance again */
3927
	unsigned long next_balance = jiffies + 60*HZ;
3928
	int update_next_balance = 0;
3929
	int need_serialize;
3930 3931 3932 3933 3934
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3935

3936
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3937 3938 3939 3940
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3941
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3948 3949 3950
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3951
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3952

3953
		if (need_serialize) {
3954 3955 3956 3957
			if (!spin_trylock(&balancing))
				goto out;
		}

3958
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3959
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3960 3961
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3962 3963 3964
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3965
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3966
			}
3967
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3968
		}
3969
		if (need_serialize)
3970 3971
			spin_unlock(&balancing);
out:
3972
		if (time_after(next_balance, sd->last_balance + interval)) {
3973
			next_balance = sd->last_balance + interval;
3974 3975
			update_next_balance = 1;
		}
3976 3977 3978 3979 3980 3981 3982 3983

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3984
	}
3985 3986 3987 3988 3989 3990 3991 3992

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3993 3994

	free_cpumask_var(tmp);
3995 3996 3997 3998 3999 4000 4001 4002 4003
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4004 4005 4006 4007
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4008

I
Ingo Molnar 已提交
4009
	rebalance_domains(this_cpu, idle);
4010 4011 4012 4013 4014 4015 4016

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4017 4018
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4019 4020 4021
		struct rq *rq;
		int balance_cpu;

4022 4023 4024 4025
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4026 4027 4028 4029 4030 4031 4032 4033
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4034
			rebalance_domains(balance_cpu, CPU_IDLE);
4035 4036

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4037 4038
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4051
static inline void trigger_load_balance(struct rq *rq, int cpu)
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4063
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4076
			int ilb = cpumask_first(nohz.cpu_mask);
4077

4078
			if (ilb < nr_cpu_ids)
4079 4080 4081 4082 4083 4084 4085 4086 4087
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4088
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4089 4090 4091 4092 4093 4094 4095 4096 4097
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4098
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4099 4100 4101 4102
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4103
}
I
Ingo Molnar 已提交
4104 4105 4106

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4107 4108 4109
/*
 * on UP we do not need to balance between CPUs:
 */
4110
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4111 4112
{
}
I
Ingo Molnar 已提交
4113

L
Linus Torvalds 已提交
4114 4115 4116 4117 4118 4119 4120
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4121 4122
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4123
 */
4124
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4125 4126
{
	unsigned long flags;
4127
	struct rq *rq;
4128
	u64 ns = 0;
4129

4130
	rq = task_rq_lock(p, &flags);
4131

4132
	if (task_current(rq, p)) {
4133 4134
		u64 delta_exec;

I
Ingo Molnar 已提交
4135 4136
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4137
		if ((s64)delta_exec > 0)
4138
			ns = delta_exec;
4139
	}
4140

4141
	task_rq_unlock(rq, &flags);
4142

L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4157
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4158 4159 4160 4161 4162 4163 4164

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4165 4166
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4167 4168
}

4169 4170 4171 4172 4173
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4174
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4175 4176 4177 4178 4179 4180 4181
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4182
	account_group_user_time(p, cputime);
4183 4184 4185 4186 4187 4188
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4209
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4210 4211
	cputime64_t tmp;

4212 4213 4214 4215
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4216

L
Linus Torvalds 已提交
4217
	p->stime = cputime_add(p->stime, cputime);
4218
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4219 4220 4221 4222 4223 4224 4225

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4226
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4227
		cpustat->system = cputime64_add(cpustat->system, tmp);
4228
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234 4235
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4256
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4257 4258 4259 4260 4261 4262 4263

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4264
	} else
L
Linus Torvalds 已提交
4265 4266 4267
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4338
	struct task_struct *curr = rq->curr;
4339 4340

	sched_clock_tick();
I
Ingo Molnar 已提交
4341 4342

	spin_lock(&rq->lock);
4343
	update_rq_clock(rq);
4344
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4345
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4346
	spin_unlock(&rq->lock);
4347

4348
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4349 4350
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4351
#endif
L
Linus Torvalds 已提交
4352 4353
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4366

4367
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4368
{
4369
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4370 4371 4372
	/*
	 * Underflow?
	 */
4373 4374
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4375
#endif
L
Linus Torvalds 已提交
4376
	preempt_count() += val;
4377
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4378 4379 4380
	/*
	 * Spinlock count overflowing soon?
	 */
4381 4382
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4383 4384 4385
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4386 4387 4388
}
EXPORT_SYMBOL(add_preempt_count);

4389
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4390
{
4391
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4392 4393 4394
	/*
	 * Underflow?
	 */
N
Nick Piggin 已提交
4395
       if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4396
		return;
L
Linus Torvalds 已提交
4397 4398 4399
	/*
	 * Is the spinlock portion underflowing?
	 */
4400 4401 4402
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4403
#endif
4404

4405 4406
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4407 4408 4409 4410 4411 4412 4413
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4414
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4415
 */
I
Ingo Molnar 已提交
4416
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4417
{
4418 4419 4420 4421 4422
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4423
	debug_show_held_locks(prev);
4424
	print_modules();
I
Ingo Molnar 已提交
4425 4426
	if (irqs_disabled())
		print_irqtrace_events(prev);
4427 4428 4429 4430 4431

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4432
}
L
Linus Torvalds 已提交
4433

I
Ingo Molnar 已提交
4434 4435 4436 4437 4438
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4439
	/*
I
Ingo Molnar 已提交
4440
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4441 4442 4443
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4444
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4445 4446
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4447 4448
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4449
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4450 4451
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4452 4453
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4454 4455
	}
#endif
I
Ingo Molnar 已提交
4456 4457 4458 4459 4460 4461
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4462
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4463
{
4464
	const struct sched_class *class;
I
Ingo Molnar 已提交
4465
	struct task_struct *p;
L
Linus Torvalds 已提交
4466 4467

	/*
I
Ingo Molnar 已提交
4468 4469
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4470
	 */
I
Ingo Molnar 已提交
4471
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4472
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4473 4474
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4475 4476
	}

I
Ingo Molnar 已提交
4477 4478
	class = sched_class_highest;
	for ( ; ; ) {
4479
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4489

I
Ingo Molnar 已提交
4490 4491 4492 4493 4494 4495
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4496
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4497
	struct rq *rq;
4498
	int cpu;
I
Ingo Molnar 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4512

4513
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4514
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4515

4516
	spin_lock_irq(&rq->lock);
4517
	update_rq_clock(rq);
4518
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4519 4520

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4521
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4522
			prev->state = TASK_RUNNING;
4523
		else
4524
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4525
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4526 4527
	}

4528 4529 4530 4531
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4532

I
Ingo Molnar 已提交
4533
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4534 4535
		idle_balance(cpu, rq);

4536
	prev->sched_class->put_prev_task(rq, prev);
4537
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4538 4539

	if (likely(prev != next)) {
4540 4541
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4542 4543 4544 4545
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4546
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4547 4548 4549 4550 4551 4552
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4553 4554 4555
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4556
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4557
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4558

L
Linus Torvalds 已提交
4559 4560 4561 4562 4563 4564 4565 4566
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4567
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4568
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4574

L
Linus Torvalds 已提交
4575 4576
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4577
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4578
	 */
N
Nick Piggin 已提交
4579
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4580 4581
		return;

4582 4583 4584 4585
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4586

4587 4588 4589 4590 4591 4592
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4593 4594 4595 4596
}
EXPORT_SYMBOL(preempt_schedule);

/*
4597
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4605

4606
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4607 4608
	BUG_ON(ti->preempt_count || !irqs_disabled());

4609 4610 4611 4612 4613 4614
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4615

4616 4617 4618 4619 4620 4621
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4622 4623 4624 4625
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4626 4627
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4628
{
4629
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4630 4631 4632 4633
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4634 4635
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4636 4637 4638
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4639
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4640 4641 4642 4643 4644
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4645
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4646

4647
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4648 4649
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4650
		if (curr->func(curr, mode, sync, key) &&
4651
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4661
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4662
 */
4663
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4664
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4677
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4683
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4695
void
I
Ingo Molnar 已提交
4696
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4713 4714 4715 4716 4717 4718 4719 4720 4721
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4722
void complete(struct completion *x)
L
Linus Torvalds 已提交
4723 4724 4725 4726 4727
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4728
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4729 4730 4731 4732
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4733 4734 4735 4736 4737 4738
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4739
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4745
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4746 4747 4748 4749
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4750 4751
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4759
			if (signal_pending_state(state, current)) {
4760 4761
				timeout = -ERESTARTSYS;
				break;
4762 4763
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4764 4765 4766
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4767
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4768
		__remove_wait_queue(&x->wait, &wait);
4769 4770
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4771 4772
	}
	x->done--;
4773
	return timeout ?: 1;
L
Linus Torvalds 已提交
4774 4775
}

4776 4777
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4778 4779 4780 4781
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4782
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4783
	spin_unlock_irq(&x->wait.lock);
4784 4785
	return timeout;
}
L
Linus Torvalds 已提交
4786

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4797
void __sched wait_for_completion(struct completion *x)
4798 4799
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4800
}
4801
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4802

4803 4804 4805 4806 4807 4808 4809 4810 4811
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4812
unsigned long __sched
4813
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4814
{
4815
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4816
}
4817
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4818

4819 4820 4821 4822 4823 4824 4825
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4826
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4827
{
4828 4829 4830 4831
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4832
}
4833
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4834

4835 4836 4837 4838 4839 4840 4841 4842
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4843
unsigned long __sched
4844 4845
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4846
{
4847
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4848
}
4849
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4850

4851 4852 4853 4854 4855 4856 4857
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4913 4914
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4915
{
I
Ingo Molnar 已提交
4916 4917 4918 4919
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4920

4921
	__set_current_state(state);
L
Linus Torvalds 已提交
4922

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4937 4938 4939
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4940
long __sched
I
Ingo Molnar 已提交
4941
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4942
{
4943
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4944 4945 4946
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4947
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4948
{
4949
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4950 4951 4952
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4953
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4954
{
4955
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4956 4957 4958
}
EXPORT_SYMBOL(sleep_on_timeout);

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4971
void rt_mutex_setprio(struct task_struct *p, int prio)
4972 4973
{
	unsigned long flags;
4974
	int oldprio, on_rq, running;
4975
	struct rq *rq;
4976
	const struct sched_class *prev_class = p->sched_class;
4977 4978 4979 4980

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4981
	update_rq_clock(rq);
4982

4983
	oldprio = p->prio;
I
Ingo Molnar 已提交
4984
	on_rq = p->se.on_rq;
4985
	running = task_current(rq, p);
4986
	if (on_rq)
4987
		dequeue_task(rq, p, 0);
4988 4989
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4990 4991 4992 4993 4994 4995

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4996 4997
	p->prio = prio;

4998 4999
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5000
	if (on_rq) {
5001
		enqueue_task(rq, p, 0);
5002 5003

		check_class_changed(rq, p, prev_class, oldprio, running);
5004 5005 5006 5007 5008 5009
	}
	task_rq_unlock(rq, &flags);
}

#endif

5010
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5011
{
I
Ingo Molnar 已提交
5012
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5013
	unsigned long flags;
5014
	struct rq *rq;
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019 5020 5021 5022

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5023
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5024 5025 5026 5027
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5028
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5029
	 */
5030
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5031 5032 5033
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5034
	on_rq = p->se.on_rq;
5035
	if (on_rq)
5036
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5037 5038

	p->static_prio = NICE_TO_PRIO(nice);
5039
	set_load_weight(p);
5040 5041 5042
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5043

I
Ingo Molnar 已提交
5044
	if (on_rq) {
5045
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5046
		/*
5047 5048
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5049
		 */
5050
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5051 5052 5053 5054 5055 5056 5057
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5058 5059 5060 5061 5062
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5063
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5064
{
5065 5066
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5067

M
Matt Mackall 已提交
5068 5069 5070 5071
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5083
	long nice, retval;
L
Linus Torvalds 已提交
5084 5085 5086 5087 5088 5089

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5090 5091
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5101 5102 5103
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5122
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127 5128 5129 5130
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5131
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5132 5133 5134
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5135
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5150
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5151 5152 5153 5154 5155 5156 5157 5158
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5159
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5160
{
5161
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5162 5163 5164
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5165 5166
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5167
{
I
Ingo Molnar 已提交
5168
	BUG_ON(p->se.on_rq);
5169

L
Linus Torvalds 已提交
5170
	p->policy = policy;
I
Ingo Molnar 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5183
	p->rt_priority = prio;
5184 5185 5186
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5187
	set_load_weight(p);
L
Linus Torvalds 已提交
5188 5189
}

5190 5191
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5192
{
5193
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5194
	unsigned long flags;
5195
	const struct sched_class *prev_class = p->sched_class;
5196
	struct rq *rq;
L
Linus Torvalds 已提交
5197

5198 5199
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5200 5201 5202 5203 5204
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5205 5206
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5207
		return -EINVAL;
L
Linus Torvalds 已提交
5208 5209
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5210 5211
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5212 5213
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5214
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5215
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5216
		return -EINVAL;
5217
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5218 5219
		return -EINVAL;

5220 5221 5222
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5223
	if (user && !capable(CAP_SYS_NICE)) {
5224
		if (rt_policy(policy)) {
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5241 5242 5243 5244 5245 5246
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5247

5248 5249 5250 5251 5252
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5253

5254
	if (user) {
5255
#ifdef CONFIG_RT_GROUP_SCHED
5256 5257 5258 5259
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5260 5261
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5262
			return -EPERM;
5263 5264
#endif

5265 5266 5267 5268 5269
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5270 5271 5272 5273 5274
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5275 5276 5277 5278
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5279
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5280 5281 5282
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5283 5284
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5285 5286
		goto recheck;
	}
I
Ingo Molnar 已提交
5287
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5288
	on_rq = p->se.on_rq;
5289
	running = task_current(rq, p);
5290
	if (on_rq)
5291
		deactivate_task(rq, p, 0);
5292 5293
	if (running)
		p->sched_class->put_prev_task(rq, p);
5294

L
Linus Torvalds 已提交
5295
	oldprio = p->prio;
I
Ingo Molnar 已提交
5296
	__setscheduler(rq, p, policy, param->sched_priority);
5297

5298 5299
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5300 5301
	if (on_rq) {
		activate_task(rq, p, 0);
5302 5303

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5304
	}
5305 5306 5307
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5308 5309
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5310 5311
	return 0;
}
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5326 5327
EXPORT_SYMBOL_GPL(sched_setscheduler);

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5345 5346
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5347 5348 5349
{
	struct sched_param lparam;
	struct task_struct *p;
5350
	int retval;
L
Linus Torvalds 已提交
5351 5352 5353 5354 5355

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5356 5357 5358

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5359
	p = find_process_by_pid(pid);
5360 5361 5362
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5363

L
Linus Torvalds 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5373 5374
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5375
{
5376 5377 5378 5379
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5399
	struct task_struct *p;
5400
	int retval;
L
Linus Torvalds 已提交
5401 5402

	if (pid < 0)
5403
		return -EINVAL;
L
Linus Torvalds 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5425
	struct task_struct *p;
5426
	int retval;
L
Linus Torvalds 已提交
5427 5428

	if (!param || pid < 0)
5429
		return -EINVAL;
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5456
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5457
{
5458
	cpumask_var_t cpus_allowed, new_mask;
5459 5460
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5461

5462
	get_online_cpus();
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5468
		put_online_cpus();
L
Linus Torvalds 已提交
5469 5470 5471 5472 5473
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5474
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5480 5481 5482 5483 5484 5485 5486 5487
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5488 5489 5490 5491 5492
	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5493 5494 5495 5496
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5497 5498
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5499
 again:
5500
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5501

P
Paul Menage 已提交
5502
	if (!retval) {
5503 5504
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5505 5506 5507 5508 5509
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5510
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5511 5512 5513
			goto again;
		}
	}
L
Linus Torvalds 已提交
5514
out_unlock:
5515 5516 5517 5518
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5519
	put_task_struct(p);
5520
	put_online_cpus();
L
Linus Torvalds 已提交
5521 5522 5523 5524
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5525
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5526
{
5527 5528 5529 5530 5531
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
5544
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5545 5546
	int retval;

5547 5548
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5549

5550 5551 5552 5553 5554
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5555 5556
}

5557
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5558
{
5559
	struct task_struct *p;
L
Linus Torvalds 已提交
5560 5561
	int retval;

5562
	get_online_cpus();
L
Linus Torvalds 已提交
5563 5564 5565 5566 5567 5568 5569
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5570 5571 5572 5573
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5574
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5575 5576 5577

out_unlock:
	read_unlock(&tasklist_lock);
5578
	put_online_cpus();
L
Linus Torvalds 已提交
5579

5580
	return retval;
L
Linus Torvalds 已提交
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
5593
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5594

5595
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5596 5597
		return -EINVAL;

5598 5599
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5600

5601 5602 5603 5604 5605 5606 5607 5608
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5609

5610
	return ret;
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5616 5617
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5618 5619 5620
 */
asmlinkage long sys_sched_yield(void)
{
5621
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5622

5623
	schedstat_inc(rq, yld_count);
5624
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5625 5626 5627 5628 5629 5630

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5631
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5632 5633 5634 5635 5636 5637 5638 5639
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5640
static void __cond_resched(void)
L
Linus Torvalds 已提交
5641
{
5642 5643 5644
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5645 5646 5647 5648 5649
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5650 5651 5652 5653 5654 5655 5656
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5657
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5658
{
5659 5660
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5661 5662 5663 5664 5665
		__cond_resched();
		return 1;
	}
	return 0;
}
5666
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5672
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5673 5674 5675
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5676
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5677
{
N
Nick Piggin 已提交
5678
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5679 5680
	int ret = 0;

N
Nick Piggin 已提交
5681
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5682
		spin_unlock(lock);
N
Nick Piggin 已提交
5683 5684 5685 5686
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5687
		ret = 1;
L
Linus Torvalds 已提交
5688 5689
		spin_lock(lock);
	}
J
Jan Kara 已提交
5690
	return ret;
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5698
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5699
		local_bh_enable();
L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5711
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5722
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5723 5724 5725 5726 5727 5728 5729
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5730
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5731

5732
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5733 5734 5735
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5736
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5737 5738 5739 5740 5741
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5742
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5743 5744
	long ret;

5745
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5746 5747 5748
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5749
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5770
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5771
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5795
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5796
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5813
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5814
	unsigned int time_slice;
5815
	int retval;
L
Linus Torvalds 已提交
5816 5817 5818
	struct timespec t;

	if (pid < 0)
5819
		return -EINVAL;
L
Linus Torvalds 已提交
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5831 5832 5833 5834 5835 5836
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5837
		time_slice = DEF_TIMESLICE;
5838
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5839 5840 5841 5842 5843
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5844 5845
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5846 5847
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5848
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5849
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5850 5851
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5852

L
Linus Torvalds 已提交
5853 5854 5855 5856 5857
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5858
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5859

5860
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5861 5862
{
	unsigned long free = 0;
5863
	unsigned state;
L
Linus Torvalds 已提交
5864 5865

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5866
	printk(KERN_INFO "%-13.13s %c", p->comm,
5867
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5868
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5869
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5870
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5871
	else
I
Ingo Molnar 已提交
5872
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5873 5874
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5875
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5876
	else
I
Ingo Molnar 已提交
5877
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5878 5879 5880
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5881
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5882 5883
		while (!*n)
			n++;
5884
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5885 5886
	}
#endif
5887
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5888
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5889

5890
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5891 5892
}

I
Ingo Molnar 已提交
5893
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5894
{
5895
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5896

5897 5898 5899
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5900
#else
5901 5902
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5903 5904 5905 5906 5907 5908 5909 5910
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5911
		if (!state_filter || (p->state & state_filter))
5912
			sched_show_task(p);
L
Linus Torvalds 已提交
5913 5914
	} while_each_thread(g, p);

5915 5916
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5917 5918 5919
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5920
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5921 5922 5923 5924 5925
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5926 5927
}

I
Ingo Molnar 已提交
5928 5929
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5930
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5931 5932
}

5933 5934 5935 5936 5937 5938 5939 5940
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5941
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5942
{
5943
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5944 5945
	unsigned long flags;

5946 5947
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5948 5949 5950
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5951
	idle->prio = idle->normal_prio = MAX_PRIO;
5952
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5953
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5954 5955

	rq->curr = rq->idle = idle;
5956 5957 5958
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5959 5960 5961
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5962 5963 5964
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5965
	task_thread_info(idle)->preempt_count = 0;
5966
#endif
I
Ingo Molnar 已提交
5967 5968 5969 5970
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5971
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5972 5973 5974 5975 5976 5977 5978
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5979
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5980
 */
5981
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5982

I
Ingo Molnar 已提交
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6006 6007

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6008 6009
}

L
Linus Torvalds 已提交
6010 6011 6012 6013
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6014
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6033
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6034 6035
 * call is not atomic; no spinlocks may be held.
 */
6036
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6037
{
6038
	struct migration_req req;
L
Linus Torvalds 已提交
6039
	unsigned long flags;
6040
	struct rq *rq;
6041
	int ret = 0;
L
Linus Torvalds 已提交
6042 6043

	rq = task_rq_lock(p, &flags);
6044
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6045 6046 6047 6048
		ret = -EINVAL;
		goto out;
	}

6049
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6050
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6051 6052 6053 6054
		ret = -EINVAL;
		goto out;
	}

6055
	if (p->sched_class->set_cpus_allowed)
6056
		p->sched_class->set_cpus_allowed(p, new_mask);
6057
	else {
6058 6059
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6060 6061
	}

L
Linus Torvalds 已提交
6062
	/* Can the task run on the task's current CPU? If so, we're done */
6063
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6064 6065
		goto out;

R
Rusty Russell 已提交
6066
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6076

L
Linus Torvalds 已提交
6077 6078
	return ret;
}
6079
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6080 6081

/*
I
Ingo Molnar 已提交
6082
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6083 6084 6085 6086 6087 6088
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6089 6090
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6091
 */
6092
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6093
{
6094
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6095
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6096

6097
	if (unlikely(!cpu_active(dest_cpu)))
6098
		return ret;
L
Linus Torvalds 已提交
6099 6100 6101 6102 6103 6104 6105

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6106
		goto done;
L
Linus Torvalds 已提交
6107
	/* Affinity changed (again). */
6108
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6109
		goto fail;
L
Linus Torvalds 已提交
6110

I
Ingo Molnar 已提交
6111
	on_rq = p->se.on_rq;
6112
	if (on_rq)
6113
		deactivate_task(rq_src, p, 0);
6114

L
Linus Torvalds 已提交
6115
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6116 6117
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6118
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6119
	}
L
Linus Torvalds 已提交
6120
done:
6121
	ret = 1;
L
Linus Torvalds 已提交
6122
fail:
L
Linus Torvalds 已提交
6123
	double_rq_unlock(rq_src, rq_dest);
6124
	return ret;
L
Linus Torvalds 已提交
6125 6126 6127 6128 6129 6130 6131
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6132
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6133 6134
{
	int cpu = (long)data;
6135
	struct rq *rq;
L
Linus Torvalds 已提交
6136 6137 6138 6139 6140 6141

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6142
		struct migration_req *req;
L
Linus Torvalds 已提交
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6165
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6166 6167
		list_del_init(head->next);

N
Nick Piggin 已提交
6168 6169 6170
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6200
/*
6201
 * Figure out where task on dead CPU should go, use force if necessary.
6202
 */
6203
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6204
{
6205
	int dest_cpu;
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
	/* FIXME: Use cpumask_of_node here. */
	cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
	const struct cpumask *nodemask = &_nodemask;

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6225

6226 6227 6228 6229 6230 6231 6232 6233 6234
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6235
		}
6236 6237 6238 6239 6240 6241
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6242 6243 6244 6245 6246 6247 6248 6249 6250
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6251
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6252
{
R
Rusty Russell 已提交
6253
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6267
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6268

6269
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6270

6271 6272
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6273 6274
			continue;

6275 6276 6277
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6278

6279
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6280 6281
}

I
Ingo Molnar 已提交
6282 6283
/*
 * Schedules idle task to be the next runnable task on current CPU.
6284 6285
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6286 6287 6288
 */
void sched_idle_next(void)
{
6289
	int this_cpu = smp_processor_id();
6290
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6291 6292 6293 6294
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6295
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6296

6297 6298 6299
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6300 6301 6302
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6303
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6304

6305 6306
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6307 6308 6309 6310

	spin_unlock_irqrestore(&rq->lock, flags);
}

6311 6312
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6326
/* called under rq->lock with disabled interrupts */
6327
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6328
{
6329
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6330 6331

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6332
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6333 6334

	/* Cannot have done final schedule yet: would have vanished. */
6335
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6336

6337
	get_task_struct(p);
L
Linus Torvalds 已提交
6338 6339 6340

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6341
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6342 6343
	 * fine.
	 */
6344
	spin_unlock_irq(&rq->lock);
6345
	move_task_off_dead_cpu(dead_cpu, p);
6346
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6347

6348
	put_task_struct(p);
L
Linus Torvalds 已提交
6349 6350 6351 6352 6353
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6354
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6355
	struct task_struct *next;
6356

I
Ingo Molnar 已提交
6357 6358 6359
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6360
		update_rq_clock(rq);
6361
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6362 6363
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6364
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6365
		migrate_dead(dead_cpu, next);
6366

L
Linus Torvalds 已提交
6367 6368 6369 6370
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6371 6372 6373
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6374 6375
	{
		.procname	= "sched_domain",
6376
		.mode		= 0555,
6377
	},
I
Ingo Molnar 已提交
6378
	{0, },
6379 6380 6381
};

static struct ctl_table sd_ctl_root[] = {
6382
	{
6383
		.ctl_name	= CTL_KERN,
6384
		.procname	= "kernel",
6385
		.mode		= 0555,
6386 6387
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6388
	{0, },
6389 6390 6391 6392 6393
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6394
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6395 6396 6397 6398

	return entry;
}

6399 6400
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6401
	struct ctl_table *entry;
6402

6403 6404 6405
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6406
	 * will always be set. In the lowest directory the names are
6407 6408 6409
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6410 6411
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6412 6413 6414
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6415 6416 6417 6418 6419

	kfree(*tablep);
	*tablep = NULL;
}

6420
static void
6421
set_table_entry(struct ctl_table *entry,
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6435
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6436

6437 6438 6439
	if (table == NULL)
		return NULL;

6440
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6441
		sizeof(long), 0644, proc_doulongvec_minmax);
6442
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6443
		sizeof(long), 0644, proc_doulongvec_minmax);
6444
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6445
		sizeof(int), 0644, proc_dointvec_minmax);
6446
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6447
		sizeof(int), 0644, proc_dointvec_minmax);
6448
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6449
		sizeof(int), 0644, proc_dointvec_minmax);
6450
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6451
		sizeof(int), 0644, proc_dointvec_minmax);
6452
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6453
		sizeof(int), 0644, proc_dointvec_minmax);
6454
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6455
		sizeof(int), 0644, proc_dointvec_minmax);
6456
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6457
		sizeof(int), 0644, proc_dointvec_minmax);
6458
	set_table_entry(&table[9], "cache_nice_tries",
6459 6460
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6461
	set_table_entry(&table[10], "flags", &sd->flags,
6462
		sizeof(int), 0644, proc_dointvec_minmax);
6463 6464 6465
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6466 6467 6468 6469

	return table;
}

6470
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6471 6472 6473 6474 6475 6476 6477 6478 6479
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6480 6481
	if (table == NULL)
		return NULL;
6482 6483 6484 6485 6486

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6487
		entry->mode = 0555;
6488 6489 6490 6491 6492 6493 6494 6495
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6496
static void register_sched_domain_sysctl(void)
6497 6498 6499 6500 6501
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6502 6503 6504
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6505 6506 6507
	if (entry == NULL)
		return;

6508
	for_each_online_cpu(i) {
6509 6510
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6511
		entry->mode = 0555;
6512
		entry->child = sd_alloc_ctl_cpu_table(i);
6513
		entry++;
6514
	}
6515 6516

	WARN_ON(sd_sysctl_header);
6517 6518
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6519

6520
/* may be called multiple times per register */
6521 6522
static void unregister_sched_domain_sysctl(void)
{
6523 6524
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6525
	sd_sysctl_header = NULL;
6526 6527
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6528
}
6529
#else
6530 6531 6532 6533
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6534 6535 6536 6537
{
}
#endif

6538 6539 6540 6541 6542
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6543
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6563
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6564 6565 6566 6567
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6568 6569 6570 6571
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6572 6573
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6574 6575
{
	struct task_struct *p;
6576
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6577
	unsigned long flags;
6578
	struct rq *rq;
L
Linus Torvalds 已提交
6579 6580

	switch (action) {
6581

L
Linus Torvalds 已提交
6582
	case CPU_UP_PREPARE:
6583
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6584
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6585 6586 6587 6588 6589
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6590
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6591 6592 6593
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6594

L
Linus Torvalds 已提交
6595
	case CPU_ONLINE:
6596
	case CPU_ONLINE_FROZEN:
6597
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6598
		wake_up_process(cpu_rq(cpu)->migration_thread);
6599 6600 6601 6602 6603

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6604
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6605 6606

			set_rq_online(rq);
6607 6608
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6609
		break;
6610

L
Linus Torvalds 已提交
6611 6612
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6613
	case CPU_UP_CANCELED_FROZEN:
6614 6615
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6616
		/* Unbind it from offline cpu so it can run. Fall thru. */
6617
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6618
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6619 6620 6621
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6622

L
Linus Torvalds 已提交
6623
	case CPU_DEAD:
6624
	case CPU_DEAD_FROZEN:
6625
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6626 6627 6628 6629 6630
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6631
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6632
		update_rq_clock(rq);
6633
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6634
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6635 6636
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6637
		migrate_dead_tasks(cpu);
6638
		spin_unlock_irq(&rq->lock);
6639
		cpuset_unlock();
L
Linus Torvalds 已提交
6640 6641 6642
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6643 6644 6645 6646 6647
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6648 6649
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6650 6651
			struct migration_req *req;

L
Linus Torvalds 已提交
6652
			req = list_entry(rq->migration_queue.next,
6653
					 struct migration_req, list);
L
Linus Torvalds 已提交
6654
			list_del_init(&req->list);
B
Brian King 已提交
6655
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6656
			complete(&req->done);
B
Brian King 已提交
6657
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6658 6659 6660
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6661

6662 6663
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6664 6665 6666 6667
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6668
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6669
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6670 6671 6672
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6673 6674 6675 6676 6677 6678 6679 6680
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6681
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6682 6683 6684 6685
	.notifier_call = migration_call,
	.priority = 10
};

6686
static int __init migration_init(void)
L
Linus Torvalds 已提交
6687 6688
{
	void *cpu = (void *)(long)smp_processor_id();
6689
	int err;
6690 6691

	/* Start one for the boot CPU: */
6692 6693
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6694 6695
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6696 6697

	return err;
L
Linus Torvalds 已提交
6698
}
6699
early_initcall(migration_init);
L
Linus Torvalds 已提交
6700 6701 6702
#endif

#ifdef CONFIG_SMP
6703

6704
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6705

6706
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6707
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6708
{
I
Ingo Molnar 已提交
6709
	struct sched_group *group = sd->groups;
6710
	char str[256];
L
Linus Torvalds 已提交
6711

R
Rusty Russell 已提交
6712
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6713
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6714 6715 6716 6717 6718 6719 6720 6721 6722

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6723 6724
	}

6725
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6726

6727
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6728 6729 6730
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6731
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6732 6733 6734
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6735

I
Ingo Molnar 已提交
6736
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6737
	do {
I
Ingo Molnar 已提交
6738 6739 6740
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6741 6742 6743
			break;
		}

I
Ingo Molnar 已提交
6744 6745 6746 6747 6748 6749
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6750

6751
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6752 6753 6754 6755
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6756

6757
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6758 6759 6760 6761
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6762

6763
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6764

R
Rusty Russell 已提交
6765
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6766
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6767

I
Ingo Molnar 已提交
6768 6769 6770
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6771

6772
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6773
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6774

6775 6776
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6777 6778 6779 6780
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6781

I
Ingo Molnar 已提交
6782 6783
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6784
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6785
	int level = 0;
L
Linus Torvalds 已提交
6786

I
Ingo Molnar 已提交
6787 6788 6789 6790
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6791

I
Ingo Molnar 已提交
6792 6793
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6794
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6795 6796 6797 6798
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6799
	for (;;) {
6800
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6801
			break;
L
Linus Torvalds 已提交
6802 6803
		level++;
		sd = sd->parent;
6804
		if (!sd)
I
Ingo Molnar 已提交
6805 6806
			break;
	}
6807
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6808
}
6809
#else /* !CONFIG_SCHED_DEBUG */
6810
# define sched_domain_debug(sd, cpu) do { } while (0)
6811
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6812

6813
static int sd_degenerate(struct sched_domain *sd)
6814
{
6815
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6816 6817 6818 6819 6820 6821
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6822 6823 6824
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6838 6839
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6840 6841 6842 6843 6844 6845
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6846
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6858 6859 6860
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6861 6862
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6863 6864 6865 6866 6867 6868 6869
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6870 6871
static void free_rootdomain(struct root_domain *rd)
{
6872 6873
	cpupri_cleanup(&rd->cpupri);

6874 6875 6876 6877 6878 6879
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6880 6881 6882 6883 6884 6885 6886 6887 6888
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6889
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6890
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6891

6892
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6893

G
Gregory Haskins 已提交
6894
		if (atomic_dec_and_test(&old_rd->refcount))
6895
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6896 6897 6898 6899 6900
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6901 6902
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6903
		set_rq_online(rq);
G
Gregory Haskins 已提交
6904 6905 6906 6907

	spin_unlock_irqrestore(&rq->lock, flags);
}

6908
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6909 6910 6911
{
	memset(rd, 0, sizeof(*rd));

6912 6913 6914 6915
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6916
		cpupri_init(&rd->cpupri, true);
6917 6918 6919 6920 6921 6922 6923 6924 6925
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
		goto free_rd;
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
6926

6927 6928
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
6929
	return 0;
6930

6931 6932
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6933 6934 6935 6936 6937 6938 6939
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
free_rd:
	kfree(rd);
	return -ENOMEM;
G
Gregory Haskins 已提交
6940 6941 6942 6943
}

static void init_defrootdomain(void)
{
6944 6945
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6946 6947 6948
	atomic_set(&def_root_domain.refcount, 1);
}

6949
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6950 6951 6952 6953 6954 6955 6956
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6957 6958 6959 6960
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6961 6962 6963 6964

	return rd;
}

L
Linus Torvalds 已提交
6965
/*
I
Ingo Molnar 已提交
6966
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6967 6968
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6969 6970
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6971
{
6972
	struct rq *rq = cpu_rq(cpu);
6973 6974 6975
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6976
	for (tmp = sd; tmp; ) {
6977 6978 6979
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6980

6981
		if (sd_parent_degenerate(tmp, parent)) {
6982
			tmp->parent = parent->parent;
6983 6984
			if (parent->parent)
				parent->parent->child = tmp;
6985 6986
		} else
			tmp = tmp->parent;
6987 6988
	}

6989
	if (sd && sd_degenerate(sd)) {
6990
		sd = sd->parent;
6991 6992 6993
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6994 6995 6996

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6997
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6998
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6999 7000 7001
}

/* cpus with isolated domains */
7002
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7003 7004 7005 7006

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7007
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7008 7009 7010
	return 1;
}

I
Ingo Molnar 已提交
7011
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7012 7013

/*
7014 7015
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7016 7017
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7018 7019 7020 7021 7022
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7023
static void
7024 7025 7026
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7027
					struct sched_group **sg,
7028 7029
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7030 7031 7032 7033
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7034
	cpumask_clear(covered);
7035

7036
	for_each_cpu(i, span) {
7037
		struct sched_group *sg;
7038
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7039 7040
		int j;

7041
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7042 7043
			continue;

7044
		cpumask_clear(sched_group_cpus(sg));
7045
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7046

7047
		for_each_cpu(j, span) {
7048
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7049 7050
				continue;

7051
			cpumask_set_cpu(j, covered);
7052
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7063
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7064

7065
#ifdef CONFIG_NUMA
7066

7067 7068 7069 7070 7071
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7072
 * Find the next node to include in a given scheduling domain. Simply
7073 7074 7075 7076
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7077
static int find_next_best_node(int node, nodemask_t *used_nodes)
7078 7079 7080 7081 7082
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7083
	for (i = 0; i < nr_node_ids; i++) {
7084
		/* Start at @node */
7085
		n = (node + i) % nr_node_ids;
7086 7087 7088 7089 7090

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7091
		if (node_isset(n, *used_nodes))
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7103
	node_set(best_node, *used_nodes);
7104 7105 7106 7107 7108 7109
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7110
 * @span: resulting cpumask
7111
 *
I
Ingo Molnar 已提交
7112
 * Given a node, construct a good cpumask for its sched_domain to span. It
7113 7114 7115
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7116
static void sched_domain_node_span(int node, struct cpumask *span)
7117
{
7118
	nodemask_t used_nodes;
7119
	/* FIXME: use cpumask_of_node() */
7120
	node_to_cpumask_ptr(nodemask, node);
7121
	int i;
7122

7123
	cpus_clear(*span);
7124
	nodes_clear(used_nodes);
7125

7126
	cpus_or(*span, *span, *nodemask);
7127
	node_set(node, used_nodes);
7128 7129

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7130
		int next_node = find_next_best_node(node, &used_nodes);
7131

7132
		node_to_cpumask_ptr_next(nodemask, next_node);
7133
		cpus_or(*span, *span, *nodemask);
7134 7135
	}
}
7136
#endif /* CONFIG_NUMA */
7137

7138
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7139

7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7155
/*
7156
 * SMT sched-domains:
7157
 */
L
Linus Torvalds 已提交
7158
#ifdef CONFIG_SCHED_SMT
7159 7160
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7161

I
Ingo Molnar 已提交
7162
static int
7163 7164
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7165
{
7166
	if (sg)
7167
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7168 7169
	return cpu;
}
7170
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7171

7172 7173 7174
/*
 * multi-core sched-domains:
 */
7175
#ifdef CONFIG_SCHED_MC
7176 7177
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7178
#endif /* CONFIG_SCHED_MC */
7179 7180

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7181
static int
7182 7183
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7184
{
7185
	int group;
7186

7187 7188
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7189
	if (sg)
7190
		*sg = &per_cpu(sched_group_core, group).sg;
7191
	return group;
7192 7193
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7194
static int
7195 7196
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7197
{
7198
	if (sg)
7199
		*sg = &per_cpu(sched_group_core, cpu).sg;
7200 7201 7202 7203
	return cpu;
}
#endif

7204 7205
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7206

I
Ingo Molnar 已提交
7207
static int
7208 7209
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7210
{
7211
	int group;
7212
#ifdef CONFIG_SCHED_MC
7213
	/* FIXME: Use cpu_coregroup_mask. */
7214 7215
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
7216
	group = cpumask_first(mask);
7217
#elif defined(CONFIG_SCHED_SMT)
7218 7219
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7220
#else
7221
	group = cpu;
L
Linus Torvalds 已提交
7222
#endif
7223
	if (sg)
7224
		*sg = &per_cpu(sched_group_phys, group).sg;
7225
	return group;
L
Linus Torvalds 已提交
7226 7227 7228 7229
}

#ifdef CONFIG_NUMA
/*
7230 7231 7232
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7233
 */
7234
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7235
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7236

7237
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7238
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7239

7240 7241 7242
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7243
{
7244
	int group;
7245
	/* FIXME: use cpumask_of_node */
7246
	node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7247

7248 7249
	cpumask_and(nodemask, pnodemask, cpu_map);
	group = cpumask_first(nodemask);
7250 7251

	if (sg)
7252
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7253
	return group;
L
Linus Torvalds 已提交
7254
}
7255

7256 7257 7258 7259 7260 7261 7262
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7263
	do {
7264
		for_each_cpu(j, sched_group_cpus(sg)) {
7265
			struct sched_domain *sd;
7266

7267
			sd = &per_cpu(phys_domains, j).sd;
7268
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7269 7270 7271 7272 7273 7274
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7275

7276 7277 7278 7279
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7280
}
7281
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7282

7283
#ifdef CONFIG_NUMA
7284
/* Free memory allocated for various sched_group structures */
7285 7286
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7287
{
7288
	int cpu, i;
7289

7290
	for_each_cpu(cpu, cpu_map) {
7291 7292 7293 7294 7295 7296
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7297
		for (i = 0; i < nr_node_ids; i++) {
7298
			struct sched_group *oldsg, *sg = sched_group_nodes[i];
7299
			/* FIXME: Use cpumask_of_node */
7300
			node_to_cpumask_ptr(pnodemask, i);
7301

7302
			cpus_and(*nodemask, *pnodemask, *cpu_map);
7303
			if (cpumask_empty(nodemask))
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7320
#else /* !CONFIG_NUMA */
7321 7322
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7323 7324
{
}
7325
#endif /* CONFIG_NUMA */
7326

7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7348
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7349 7350 7351 7352
		return;

	child = sd->child;

7353 7354
	sd->groups->__cpu_power = 0;

7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7365
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7366 7367 7368 7369 7370 7371 7372 7373
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7374
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7375 7376 7377 7378
		group = group->next;
	} while (group != child->groups);
}

7379 7380 7381 7382 7383
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7384 7385 7386 7387 7388 7389
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7390
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7391

7392 7393 7394 7395 7396
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7397
	sd->level = SD_LV_##type;				\
7398
	SD_INIT_NAME(sd, type);					\
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7413 7414 7415 7416
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7417 7418 7419 7420 7421 7422
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7448
/*
7449 7450
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7451
 */
7452
static int __build_sched_domains(const struct cpumask *cpu_map,
7453
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7454
{
7455
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7456
	struct root_domain *rd;
7457 7458
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7459
#ifdef CONFIG_NUMA
7460
	cpumask_var_t domainspan, covered, notcovered;
7461
	struct sched_group **sched_group_nodes = NULL;
7462
	int sd_allnodes = 0;
7463

7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7484 7485 7486
	/*
	 * Allocate the per-node list of sched groups
	 */
7487
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7488
				    GFP_KERNEL);
7489 7490
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7491
		goto free_tmpmask;
7492 7493
	}
#endif
L
Linus Torvalds 已提交
7494

7495
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7496 7497
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7498
		goto free_sched_groups;
G
Gregory Haskins 已提交
7499 7500
	}

7501
#ifdef CONFIG_NUMA
7502
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7503 7504
#endif

L
Linus Torvalds 已提交
7505
	/*
7506
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7507
	 */
7508
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7509 7510
		struct sched_domain *sd = NULL, *p;

7511
		/* FIXME: use cpumask_of_node */
7512 7513
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7514 7515

#ifdef CONFIG_NUMA
7516 7517
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7518
			sd = &per_cpu(allnodes_domains, i);
7519
			SD_INIT(sd, ALLNODES);
7520
			set_domain_attribute(sd, attr);
7521
			cpumask_copy(sched_domain_span(sd), cpu_map);
7522
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7523
			p = sd;
7524
			sd_allnodes = 1;
7525 7526 7527
		} else
			p = NULL;

L
Linus Torvalds 已提交
7528
		sd = &per_cpu(node_domains, i);
7529
		SD_INIT(sd, NODE);
7530
		set_domain_attribute(sd, attr);
7531
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7532
		sd->parent = p;
7533 7534
		if (p)
			p->child = sd;
7535 7536
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7537 7538 7539
#endif

		p = sd;
7540
		sd = &per_cpu(phys_domains, i).sd;
7541
		SD_INIT(sd, CPU);
7542
		set_domain_attribute(sd, attr);
7543
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7544
		sd->parent = p;
7545 7546
		if (p)
			p->child = sd;
7547
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7548

7549 7550
#ifdef CONFIG_SCHED_MC
		p = sd;
7551
		sd = &per_cpu(core_domains, i).sd;
7552
		SD_INIT(sd, MC);
7553
		set_domain_attribute(sd, attr);
7554 7555 7556
		*sched_domain_span(sd) = cpu_coregroup_map(i);
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
7557
		sd->parent = p;
7558
		p->child = sd;
7559
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7560 7561
#endif

L
Linus Torvalds 已提交
7562 7563
#ifdef CONFIG_SCHED_SMT
		p = sd;
7564
		sd = &per_cpu(cpu_domains, i).sd;
7565
		SD_INIT(sd, SIBLING);
7566
		set_domain_attribute(sd, attr);
7567 7568
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7569
		sd->parent = p;
7570
		p->child = sd;
7571
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7572 7573 7574 7575 7576
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7577
	for_each_cpu(i, cpu_map) {
7578 7579 7580
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7581 7582
			continue;

I
Ingo Molnar 已提交
7583
		init_sched_build_groups(this_sibling_map, cpu_map,
7584 7585
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7586 7587 7588
	}
#endif

7589 7590
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7591
	for_each_cpu(i, cpu_map) {
7592
		/* FIXME: Use cpu_coregroup_mask */
7593 7594
		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
7595
		if (i != cpumask_first(this_core_map))
7596
			continue;
7597

I
Ingo Molnar 已提交
7598
		init_sched_build_groups(this_core_map, cpu_map,
7599 7600
					&cpu_to_core_group,
					send_covered, tmpmask);
7601 7602 7603
	}
#endif

L
Linus Torvalds 已提交
7604
	/* Set up physical groups */
7605
	for (i = 0; i < nr_node_ids; i++) {
7606
		/* FIXME: Use cpumask_of_node */
7607 7608
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
7609
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7610 7611
			continue;

7612 7613 7614
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7615 7616 7617 7618
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7619 7620 7621 7622 7623
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7624

7625
	for (i = 0; i < nr_node_ids; i++) {
7626 7627 7628 7629
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7630
		/* FIXME: Use cpumask_of_node */
7631
		*nodemask = node_to_cpumask(i);
7632
		cpumask_clear(covered);
7633 7634

		cpus_and(*nodemask, *nodemask, *cpu_map);
7635
		if (cpumask_empty(nodemask)) {
7636
			sched_group_nodes[i] = NULL;
7637
			continue;
7638
		}
7639

7640
		sched_domain_node_span(i, domainspan);
7641
		cpumask_and(domainspan, domainspan, cpu_map);
7642

7643 7644
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7645 7646 7647 7648 7649
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7650
		sched_group_nodes[i] = sg;
7651
		for_each_cpu(j, nodemask) {
7652
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7653

7654 7655 7656
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7657
		sg->__cpu_power = 0;
7658
		cpumask_copy(sched_group_cpus(sg), nodemask);
7659
		sg->next = sg;
7660
		cpumask_or(covered, covered, nodemask);
7661 7662
		prev = sg;

7663 7664
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7665
			/* FIXME: Use cpumask_of_node */
7666
			node_to_cpumask_ptr(pnodemask, n);
7667

7668 7669 7670 7671
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7672 7673
				break;

7674 7675
			cpumask_and(tmpmask, tmpmask, pnodemask);
			if (cpumask_empty(tmpmask))
7676 7677
				continue;

7678 7679
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7680
					  GFP_KERNEL, i);
7681 7682 7683
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7684
				goto error;
7685
			}
7686
			sg->__cpu_power = 0;
7687
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7688
			sg->next = prev->next;
7689
			cpumask_or(covered, covered, tmpmask);
7690 7691 7692 7693
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7694 7695 7696
#endif

	/* Calculate CPU power for physical packages and nodes */
7697
#ifdef CONFIG_SCHED_SMT
7698
	for_each_cpu(i, cpu_map) {
7699
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7700

7701
		init_sched_groups_power(i, sd);
7702
	}
L
Linus Torvalds 已提交
7703
#endif
7704
#ifdef CONFIG_SCHED_MC
7705
	for_each_cpu(i, cpu_map) {
7706
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7707

7708
		init_sched_groups_power(i, sd);
7709 7710
	}
#endif
7711

7712
	for_each_cpu(i, cpu_map) {
7713
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7714

7715
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7716 7717
	}

7718
#ifdef CONFIG_NUMA
7719
	for (i = 0; i < nr_node_ids; i++)
7720
		init_numa_sched_groups_power(sched_group_nodes[i]);
7721

7722 7723
	if (sd_allnodes) {
		struct sched_group *sg;
7724

7725
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7726
								tmpmask);
7727 7728
		init_numa_sched_groups_power(sg);
	}
7729 7730
#endif

L
Linus Torvalds 已提交
7731
	/* Attach the domains */
7732
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7733 7734
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7735
		sd = &per_cpu(cpu_domains, i).sd;
7736
#elif defined(CONFIG_SCHED_MC)
7737
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7738
#else
7739
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7740
#endif
G
Gregory Haskins 已提交
7741
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7742
	}
7743

7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7772

7773
#ifdef CONFIG_NUMA
7774
error:
7775
	free_sched_groups(cpu_map, tmpmask);
7776
	free_rootdomain(rd);
7777
	goto free_tmpmask;
7778
#endif
L
Linus Torvalds 已提交
7779
}
P
Paul Jackson 已提交
7780

7781
static int build_sched_domains(const struct cpumask *cpu_map)
7782 7783 7784 7785
{
	return __build_sched_domains(cpu_map, NULL);
}

7786
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7787
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7788 7789
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7790 7791 7792

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7793 7794
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7795
 */
7796
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7797

7798 7799 7800 7801 7802 7803
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7804
{
7805
	return 0;
7806 7807
}

7808
/*
I
Ingo Molnar 已提交
7809
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7810 7811
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7812
 */
7813
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7814
{
7815 7816
	int err;

7817
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7818
	ndoms_cur = 1;
7819
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7820
	if (!doms_cur)
7821
		doms_cur = fallback_doms;
7822
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7823
	dattr_cur = NULL;
7824
	err = build_sched_domains(doms_cur);
7825
	register_sched_domain_sysctl();
7826 7827

	return err;
7828 7829
}

7830 7831
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7832
{
7833
	free_sched_groups(cpu_map, tmpmask);
7834
}
L
Linus Torvalds 已提交
7835

7836 7837 7838 7839
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7840
static void detach_destroy_domains(const struct cpumask *cpu_map)
7841
{
7842 7843
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7844 7845
	int i;

7846
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7847
		cpu_attach_domain(NULL, &def_root_domain, i);
7848
	synchronize_sched();
7849
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7850 7851
}

7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7868 7869
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7870
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7871 7872 7873
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7874
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7875 7876 7877
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7878 7879 7880
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7881 7882
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7883 7884 7885 7886
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7887
 *
7888
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7889 7890
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7891
 *
P
Paul Jackson 已提交
7892 7893
 * Call with hotplug lock held
 */
7894 7895
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7896
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7897
{
7898
	int i, j, n;
7899
	int new_topology;
P
Paul Jackson 已提交
7900

7901
	mutex_lock(&sched_domains_mutex);
7902

7903 7904 7905
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7906 7907 7908
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7909
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7910 7911 7912

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7913
		for (j = 0; j < n && !new_topology; j++) {
7914
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
7915
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7916 7917 7918 7919 7920 7921 7922 7923
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7924 7925
	if (doms_new == NULL) {
		ndoms_cur = 0;
7926
		doms_new = fallback_doms;
7927
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7928
		WARN_ON_ONCE(dattr_new);
7929 7930
	}

P
Paul Jackson 已提交
7931 7932
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7933
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7934
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
7935
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7936 7937 7938
				goto match2;
		}
		/* no match - add a new doms_new */
7939 7940
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7941 7942 7943 7944 7945
match2:
		;
	}

	/* Remember the new sched domains */
7946
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
7947
		kfree(doms_cur);
7948
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7949
	doms_cur = doms_new;
7950
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7951
	ndoms_cur = ndoms_new;
7952 7953

	register_sched_domain_sysctl();
7954

7955
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7956 7957
}

7958
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7959
int arch_reinit_sched_domains(void)
7960
{
7961
	get_online_cpus();
7962 7963 7964 7965

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7966
	rebuild_sched_domains();
7967
	put_online_cpus();
7968

7969
	return 0;
7970 7971 7972 7973 7974
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;
7975
	unsigned int level = 0;
7976

7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7988 7989 7990
		return -EINVAL;

	if (smt)
7991
		sched_smt_power_savings = level;
7992
	else
7993
		sched_mc_power_savings = level;
7994 7995 7996 7997 7998 7999 8000

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
8001 8002
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8003 8004 8005
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8006
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8007
					    const char *buf, size_t count)
8008 8009 8010
{
	return sched_power_savings_store(buf, count, 0);
}
8011 8012 8013
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8014 8015 8016
#endif

#ifdef CONFIG_SCHED_SMT
8017 8018
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8019 8020 8021
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8022
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8023
					     const char *buf, size_t count)
8024 8025 8026
{
	return sched_power_savings_store(buf, count, 1);
}
8027 8028
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8048
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8049

8050
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8051
/*
8052 8053
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8054 8055 8056
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8057 8058 8059 8060 8061 8062
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8063
		partition_sched_domains(1, NULL, NULL);
8064 8065 8066 8067 8068 8069 8070 8071 8072 8073
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8074
{
P
Peter Zijlstra 已提交
8075 8076
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8077 8078
	switch (action) {
	case CPU_DOWN_PREPARE:
8079
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8080
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8081 8082 8083
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8084
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8085
	case CPU_ONLINE:
8086
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8087
		enable_runtime(cpu_rq(cpu));
8088 8089
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8090 8091 8092 8093 8094 8095 8096
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8097 8098 8099
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8100

8101 8102 8103 8104 8105
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8106
	get_online_cpus();
8107
	mutex_lock(&sched_domains_mutex);
8108 8109 8110 8111
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8112
	mutex_unlock(&sched_domains_mutex);
8113
	put_online_cpus();
8114 8115

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8116 8117
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8118 8119 8120 8121 8122
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8123
	init_hrtick();
8124 8125

	/* Move init over to a non-isolated CPU */
8126
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8127
		BUG();
I
Ingo Molnar 已提交
8128
	sched_init_granularity();
8129
	free_cpumask_var(non_isolated_cpus);
8130 8131

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8132
	init_sched_rt_class();
L
Linus Torvalds 已提交
8133 8134 8135 8136
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8137
	sched_init_granularity();
L
Linus Torvalds 已提交
8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8148
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8149 8150
{
	cfs_rq->tasks_timeline = RB_ROOT;
8151
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8152 8153 8154
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8155
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8156 8157
}

P
Peter Zijlstra 已提交
8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8171
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8172 8173
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8174 8175 8176 8177 8178 8179 8180
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8181 8182
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8183

8184
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8185
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8186 8187
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8188 8189
}

P
Peter Zijlstra 已提交
8190
#ifdef CONFIG_FAIR_GROUP_SCHED
8191 8192 8193
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8194
{
8195
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8196 8197 8198 8199 8200 8201 8202
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8203 8204 8205 8206
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8207 8208 8209 8210 8211
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8212 8213
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8214
	se->load.inv_weight = 0;
8215
	se->parent = parent;
P
Peter Zijlstra 已提交
8216
}
8217
#endif
P
Peter Zijlstra 已提交
8218

8219
#ifdef CONFIG_RT_GROUP_SCHED
8220 8221 8222
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8223
{
8224 8225
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8226 8227 8228 8229
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8230
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8231 8232 8233 8234
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8235 8236 8237
	if (!rt_se)
		return;

8238 8239 8240 8241 8242
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8243
	rt_se->my_q = rt_rq;
8244
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8245 8246 8247 8248
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8249 8250
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8251
	int i, j;
8252 8253 8254 8255 8256 8257 8258
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8259 8260 8261
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8262 8263 8264 8265 8266 8267
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8268
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8269 8270 8271 8272 8273 8274 8275

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8276 8277 8278 8279 8280 8281 8282

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8283 8284
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8285 8286 8287 8288 8289
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8290 8291 8292 8293 8294 8295 8296 8297
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8298 8299
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8300
	}
I
Ingo Molnar 已提交
8301

G
Gregory Haskins 已提交
8302 8303 8304 8305
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8306 8307 8308 8309 8310 8311
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8312 8313 8314
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8315 8316
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8317

8318
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8319
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8320 8321 8322 8323 8324 8325
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8326 8327
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8328

8329
	for_each_possible_cpu(i) {
8330
		struct rq *rq;
L
Linus Torvalds 已提交
8331 8332 8333

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8334
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8335
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8336
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8337
#ifdef CONFIG_FAIR_GROUP_SCHED
8338
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8339
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8360
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8361
#elif defined CONFIG_USER_SCHED
8362 8363
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8375
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8376
				&per_cpu(init_cfs_rq, i),
8377 8378
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8379

8380
#endif
D
Dhaval Giani 已提交
8381 8382 8383
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8384
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8385
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8386
#ifdef CONFIG_CGROUP_SCHED
8387
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8388
#elif defined CONFIG_USER_SCHED
8389
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8390
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8391
				&per_cpu(init_rt_rq, i),
8392 8393
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8394
#endif
I
Ingo Molnar 已提交
8395
#endif
L
Linus Torvalds 已提交
8396

I
Ingo Molnar 已提交
8397 8398
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8399
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8400
		rq->sd = NULL;
G
Gregory Haskins 已提交
8401
		rq->rd = NULL;
L
Linus Torvalds 已提交
8402
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8403
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8404
		rq->push_cpu = 0;
8405
		rq->cpu = i;
8406
		rq->online = 0;
L
Linus Torvalds 已提交
8407 8408
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8409
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8410
#endif
P
Peter Zijlstra 已提交
8411
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8412 8413 8414
		atomic_set(&rq->nr_iowait, 0);
	}

8415
	set_load_weight(&init_task);
8416

8417 8418 8419 8420
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8421
#ifdef CONFIG_SMP
8422
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8423 8424
#endif

8425 8426 8427 8428
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8442 8443 8444 8445
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8446

8447 8448
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8449
#ifdef CONFIG_SMP
8450 8451 8452
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8453
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8454
#endif /* SMP */
8455

8456
	scheduler_running = 1;
L
Linus Torvalds 已提交
8457 8458 8459 8460 8461
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8462
#ifdef in_atomic
L
Linus Torvalds 已提交
8463 8464
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8484 8485 8486 8487 8488 8489
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8490 8491 8492
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8493

8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8505 8506
void normalize_rt_tasks(void)
{
8507
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8508
	unsigned long flags;
8509
	struct rq *rq;
L
Linus Torvalds 已提交
8510

8511
	read_lock_irqsave(&tasklist_lock, flags);
8512
	do_each_thread(g, p) {
8513 8514 8515 8516 8517 8518
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8519 8520
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8521 8522 8523
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8524
#endif
I
Ingo Molnar 已提交
8525 8526 8527 8528 8529 8530 8531 8532

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8533
			continue;
I
Ingo Molnar 已提交
8534
		}
L
Linus Torvalds 已提交
8535

8536
		spin_lock(&p->pi_lock);
8537
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8538

8539
		normalize_task(rq, p);
8540

8541
		__task_rq_unlock(rq);
8542
		spin_unlock(&p->pi_lock);
8543 8544
	} while_each_thread(g, p);

8545
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8546 8547 8548
}

#endif /* CONFIG_MAGIC_SYSRQ */
8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8567
struct task_struct *curr_task(int cpu)
8568 8569 8570 8571 8572 8573 8574 8575 8576 8577
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8578 8579
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8580 8581 8582 8583 8584 8585 8586
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8587
void set_curr_task(int cpu, struct task_struct *p)
8588 8589 8590 8591 8592
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8593

8594 8595
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8610 8611
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8612 8613
{
	struct cfs_rq *cfs_rq;
8614
	struct sched_entity *se;
8615
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8616 8617
	int i;

8618
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8619 8620
	if (!tg->cfs_rq)
		goto err;
8621
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8622 8623
	if (!tg->se)
		goto err;
8624 8625

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8626 8627

	for_each_possible_cpu(i) {
8628
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8629

8630 8631
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8632 8633 8634
		if (!cfs_rq)
			goto err;

8635 8636
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8637 8638 8639
		if (!se)
			goto err;

8640
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8659
#else /* !CONFG_FAIR_GROUP_SCHED */
8660 8661 8662 8663
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8664 8665
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8677
#endif /* CONFIG_FAIR_GROUP_SCHED */
8678 8679

#ifdef CONFIG_RT_GROUP_SCHED
8680 8681 8682 8683
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8684 8685
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8697 8698
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8699 8700
{
	struct rt_rq *rt_rq;
8701
	struct sched_rt_entity *rt_se;
8702 8703 8704
	struct rq *rq;
	int i;

8705
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8706 8707
	if (!tg->rt_rq)
		goto err;
8708
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8709 8710 8711
	if (!tg->rt_se)
		goto err;

8712 8713
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8714 8715 8716 8717

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8718 8719
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8720 8721
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8722

8723 8724
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8725 8726
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8727

8728
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8729 8730
	}

8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8747
#else /* !CONFIG_RT_GROUP_SCHED */
8748 8749 8750 8751
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8752 8753
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8765
#endif /* CONFIG_RT_GROUP_SCHED */
8766

8767
#ifdef CONFIG_GROUP_SCHED
8768 8769 8770 8771 8772 8773 8774 8775
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8776
struct task_group *sched_create_group(struct task_group *parent)
8777 8778 8779 8780 8781 8782 8783 8784 8785
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8786
	if (!alloc_fair_sched_group(tg, parent))
8787 8788
		goto err;

8789
	if (!alloc_rt_sched_group(tg, parent))
8790 8791
		goto err;

8792
	spin_lock_irqsave(&task_group_lock, flags);
8793
	for_each_possible_cpu(i) {
8794 8795
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8796
	}
P
Peter Zijlstra 已提交
8797
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8798 8799 8800 8801 8802

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8803
	list_add_rcu(&tg->siblings, &parent->children);
8804
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8805

8806
	return tg;
S
Srivatsa Vaddagiri 已提交
8807 8808

err:
P
Peter Zijlstra 已提交
8809
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8810 8811 8812
	return ERR_PTR(-ENOMEM);
}

8813
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8814
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8815 8816
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8817
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8818 8819
}

8820
/* Destroy runqueue etc associated with a task group */
8821
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8822
{
8823
	unsigned long flags;
8824
	int i;
S
Srivatsa Vaddagiri 已提交
8825

8826
	spin_lock_irqsave(&task_group_lock, flags);
8827
	for_each_possible_cpu(i) {
8828 8829
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8830
	}
P
Peter Zijlstra 已提交
8831
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8832
	list_del_rcu(&tg->siblings);
8833
	spin_unlock_irqrestore(&task_group_lock, flags);
8834 8835

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8836
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8837 8838
}

8839
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8840 8841 8842
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8843 8844
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8845 8846 8847 8848 8849 8850 8851 8852 8853
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8854
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8855 8856
	on_rq = tsk->se.on_rq;

8857
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8858
		dequeue_task(rq, tsk, 0);
8859 8860
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8861

P
Peter Zijlstra 已提交
8862
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8863

P
Peter Zijlstra 已提交
8864 8865 8866 8867 8868
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8869 8870 8871
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8872
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8873 8874 8875

	task_rq_unlock(rq, &flags);
}
8876
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8877

8878
#ifdef CONFIG_FAIR_GROUP_SCHED
8879
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8880 8881 8882 8883 8884
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8885
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8886 8887 8888
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8889
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8890

8891
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8892
		enqueue_entity(cfs_rq, se, 0);
8893
}
8894

8895 8896 8897 8898 8899 8900 8901 8902 8903
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8904 8905
}

8906 8907
static DEFINE_MUTEX(shares_mutex);

8908
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8909 8910
{
	int i;
8911
	unsigned long flags;
8912

8913 8914 8915 8916 8917 8918
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8919 8920
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8921 8922
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8923

8924
	mutex_lock(&shares_mutex);
8925
	if (tg->shares == shares)
8926
		goto done;
S
Srivatsa Vaddagiri 已提交
8927

8928
	spin_lock_irqsave(&task_group_lock, flags);
8929 8930
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8931
	list_del_rcu(&tg->siblings);
8932
	spin_unlock_irqrestore(&task_group_lock, flags);
8933 8934 8935 8936 8937 8938 8939 8940

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8941
	tg->shares = shares;
8942 8943 8944 8945 8946
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8947
		set_se_shares(tg->se[i], shares);
8948
	}
S
Srivatsa Vaddagiri 已提交
8949

8950 8951 8952 8953
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8954
	spin_lock_irqsave(&task_group_lock, flags);
8955 8956
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8957
	list_add_rcu(&tg->siblings, &tg->parent->children);
8958
	spin_unlock_irqrestore(&task_group_lock, flags);
8959
done:
8960
	mutex_unlock(&shares_mutex);
8961
	return 0;
S
Srivatsa Vaddagiri 已提交
8962 8963
}

8964 8965 8966 8967
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8968
#endif
8969

8970
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8971
/*
P
Peter Zijlstra 已提交
8972
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8973
 */
P
Peter Zijlstra 已提交
8974 8975 8976 8977 8978
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8979
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8980

P
Peter Zijlstra 已提交
8981
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8982 8983
}

P
Peter Zijlstra 已提交
8984 8985
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8986
{
P
Peter Zijlstra 已提交
8987
	struct task_struct *g, *p;
8988

P
Peter Zijlstra 已提交
8989 8990 8991 8992
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8993

P
Peter Zijlstra 已提交
8994 8995
	return 0;
}
8996

P
Peter Zijlstra 已提交
8997 8998 8999 9000 9001
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9002

P
Peter Zijlstra 已提交
9003 9004 9005 9006 9007 9008
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9009

P
Peter Zijlstra 已提交
9010 9011
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9012

P
Peter Zijlstra 已提交
9013 9014 9015
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9016 9017
	}

9018 9019 9020 9021 9022
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9023

9024 9025 9026
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9027 9028
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9029

P
Peter Zijlstra 已提交
9030
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9031

9032 9033 9034 9035 9036
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9037

9038 9039 9040
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9041 9042 9043
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9044

P
Peter Zijlstra 已提交
9045 9046 9047 9048
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9049

P
Peter Zijlstra 已提交
9050
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9051
	}
P
Peter Zijlstra 已提交
9052

P
Peter Zijlstra 已提交
9053 9054 9055 9056
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9057 9058
}

P
Peter Zijlstra 已提交
9059
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9060
{
P
Peter Zijlstra 已提交
9061 9062 9063 9064 9065 9066 9067
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9068 9069
}

9070 9071
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9072
{
P
Peter Zijlstra 已提交
9073
	int i, err = 0;
P
Peter Zijlstra 已提交
9074 9075

	mutex_lock(&rt_constraints_mutex);
9076
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9077 9078
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9079
		goto unlock;
P
Peter Zijlstra 已提交
9080 9081

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9082 9083
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9084 9085 9086 9087 9088 9089 9090 9091 9092

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9093
 unlock:
9094
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9095 9096 9097
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9098 9099
}

9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9112 9113 9114 9115
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9116
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9117 9118
		return -1;

9119
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9120 9121 9122
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9123 9124 9125 9126 9127 9128 9129 9130

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9131 9132 9133
	if (rt_period == 0)
		return -EINVAL;

9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9148
	u64 runtime, period;
9149 9150
	int ret = 0;

9151 9152 9153
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9154 9155 9156 9157 9158 9159 9160 9161
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9162

9163
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9164
	read_lock(&tasklist_lock);
9165
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9166
	read_unlock(&tasklist_lock);
9167 9168 9169 9170
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9171
#else /* !CONFIG_RT_GROUP_SCHED */
9172 9173
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9174 9175 9176
	unsigned long flags;
	int i;

9177 9178 9179
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9180 9181 9182 9183 9184 9185 9186 9187 9188 9189
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9190 9191
	return 0;
}
9192
#endif /* CONFIG_RT_GROUP_SCHED */
9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9223

9224
#ifdef CONFIG_CGROUP_SCHED
9225 9226

/* return corresponding task_group object of a cgroup */
9227
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9228
{
9229 9230
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9231 9232 9233
}

static struct cgroup_subsys_state *
9234
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9235
{
9236
	struct task_group *tg, *parent;
9237

9238
	if (!cgrp->parent) {
9239 9240 9241 9242
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9243 9244
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9245 9246 9247 9248 9249 9250
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9251 9252
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9253
{
9254
	struct task_group *tg = cgroup_tg(cgrp);
9255 9256 9257 9258

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9259 9260 9261
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9262
{
9263 9264
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9265
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9266 9267
		return -EINVAL;
#else
9268 9269 9270
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9271
#endif
9272 9273 9274 9275 9276

	return 0;
}

static void
9277
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9278 9279 9280 9281 9282
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9283
#ifdef CONFIG_FAIR_GROUP_SCHED
9284
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9285
				u64 shareval)
9286
{
9287
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9288 9289
}

9290
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9291
{
9292
	struct task_group *tg = cgroup_tg(cgrp);
9293 9294 9295

	return (u64) tg->shares;
}
9296
#endif /* CONFIG_FAIR_GROUP_SCHED */
9297

9298
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9299
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9300
				s64 val)
P
Peter Zijlstra 已提交
9301
{
9302
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9303 9304
}

9305
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9306
{
9307
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9308
}
9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9320
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9321

9322
static struct cftype cpu_files[] = {
9323
#ifdef CONFIG_FAIR_GROUP_SCHED
9324 9325
	{
		.name = "shares",
9326 9327
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9328
	},
9329 9330
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9331
	{
P
Peter Zijlstra 已提交
9332
		.name = "rt_runtime_us",
9333 9334
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9335
	},
9336 9337
	{
		.name = "rt_period_us",
9338 9339
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9340
	},
9341
#endif
9342 9343 9344 9345
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9346
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9347 9348 9349
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9350 9351 9352 9353 9354 9355 9356
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9357 9358 9359
	.early_init	= 1,
};

9360
#endif	/* CONFIG_CGROUP_SCHED */
9361 9362 9363 9364 9365 9366 9367 9368 9369 9370

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9371
/* track cpu usage of a group of tasks and its child groups */
9372 9373 9374 9375
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9376
	struct cpuacct *parent;
9377 9378 9379 9380 9381
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9382
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9383
{
9384
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9397
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9410 9411 9412
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9413 9414 9415 9416
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9417
static void
9418
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9419
{
9420
	struct cpuacct *ca = cgroup_ca(cgrp);
9421 9422 9423 9424 9425 9426

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9427
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9428
{
9429
	struct cpuacct *ca = cgroup_ca(cgrp);
9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9471 9472 9473
static struct cftype files[] = {
	{
		.name = "usage",
9474 9475
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9476 9477 9478
	},
};

9479
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9480
{
9481
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9482 9483 9484 9485 9486 9487 9488 9489 9490 9491
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9492
	int cpu;
9493 9494 9495 9496

	if (!cpuacct_subsys.active)
		return;

9497
	cpu = task_cpu(tsk);
9498 9499
	ca = task_ca(tsk);

9500 9501
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */