sched.c 224.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
389
	u64 pair_start;
I
Ingo Molnar 已提交
390 391 392

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
393 394 395 396 397 398

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
399 400
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
401
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
402 403 404

	unsigned long nr_spread_over;

405
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
406 407
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
408 409
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
410 411 412 413 414 415
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
416 417
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
418 419 420

#ifdef CONFIG_SMP
	/*
421
	 * the part of load.weight contributed by tasks
422
	 */
423
	unsigned long task_weight;
424

425 426 427 428 429 430 431
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
432

433 434 435 436
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
437 438 439 440 441

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
442
#endif
I
Ingo Molnar 已提交
443 444
#endif
};
L
Linus Torvalds 已提交
445

I
Ingo Molnar 已提交
446 447 448
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
449
	unsigned long rt_nr_running;
450
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
451 452
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
453
#ifdef CONFIG_SMP
454
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
455
	int overloaded;
P
Peter Zijlstra 已提交
456
#endif
P
Peter Zijlstra 已提交
457
	int rt_throttled;
P
Peter Zijlstra 已提交
458
	u64 rt_time;
P
Peter Zijlstra 已提交
459
	u64 rt_runtime;
I
Ingo Molnar 已提交
460
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
461
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
462

463
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
464 465
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
466 467 468 469 470
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
471 472
};

G
Gregory Haskins 已提交
473 474 475 476
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
477 478
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
479 480 481 482 483 484 485 486
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
487

I
Ingo Molnar 已提交
488
	/*
489 490 491 492
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
493
	atomic_t rto_count;
494 495 496
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
497 498
};

499 500 501 502
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
503 504 505 506
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
507 508 509 510 511 512 513
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
514
struct rq {
515 516
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
517 518 519 520 521 522

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
523 524
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
525
	unsigned char idle_at_tick;
526
#ifdef CONFIG_NO_HZ
527
	unsigned long last_tick_seen;
528 529
	unsigned char in_nohz_recently;
#endif
530 531
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
532 533 534 535
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
536 537
	struct rt_rq rt;

I
Ingo Molnar 已提交
538
#ifdef CONFIG_FAIR_GROUP_SCHED
539 540
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
541 542
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
543
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
544 545 546 547 548 549 550 551 552 553
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

554
	struct task_struct *curr, *idle;
555
	unsigned long next_balance;
L
Linus Torvalds 已提交
556
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
557

558
	u64 clock;
I
Ingo Molnar 已提交
559

L
Linus Torvalds 已提交
560 561 562
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
563
	struct root_domain *rd;
L
Linus Torvalds 已提交
564 565 566 567 568
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
569 570
	/* cpu of this runqueue: */
	int cpu;
571
	int online;
L
Linus Torvalds 已提交
572

573
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
574

575
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
576 577 578
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
579
#ifdef CONFIG_SCHED_HRTICK
580 581 582 583
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
584 585 586
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
587 588 589 590 591
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
592 593 594 595
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
596 597

	/* schedule() stats */
598 599 600
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
601 602

	/* try_to_wake_up() stats */
603 604
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
605 606

	/* BKL stats */
607
	unsigned int bkl_count;
L
Linus Torvalds 已提交
608 609 610
#endif
};

611
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
612

613
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
614
{
615
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
616 617
}

618 619 620 621 622 623 624 625 626
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
627 628
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
629
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
630 631 632 633
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
634 635
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
636 637 638 639 640 641

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

642 643 644 645 646
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
647 648 649 650 651 652 653 654 655
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
674 675 676
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
677 678 679 680

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
681
enum {
P
Peter Zijlstra 已提交
682
#include "sched_features.h"
I
Ingo Molnar 已提交
683 684
};

P
Peter Zijlstra 已提交
685 686 687 688 689
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
690
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
691 692 693 694 695 696 697 698 699
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

700
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
701 702 703 704 705 706
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

707
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
735
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
765
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
808

809 810 811 812 813 814
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
815 816
/*
 * ratelimit for updating the group shares.
817
 * default: 0.25ms
P
Peter Zijlstra 已提交
818
 */
819
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
828
/*
P
Peter Zijlstra 已提交
829
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
830 831
 * default: 1s
 */
P
Peter Zijlstra 已提交
832
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
833

834 835
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
836 837 838 839 840
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
841

842 843 844 845 846 847 848
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
849
	if (sysctl_sched_rt_runtime < 0)
850 851 852 853
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
854

L
Linus Torvalds 已提交
855
#ifndef prepare_arch_switch
856 857 858 859 860 861
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

862 863 864 865 866
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

867
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
868
static inline int task_running(struct rq *rq, struct task_struct *p)
869
{
870
	return task_current(rq, p);
871 872
}

873
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
874 875 876
{
}

877
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878
{
879 880 881 882
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
883 884 885 886 887 888 889
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

890 891 892 893
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
894
static inline int task_running(struct rq *rq, struct task_struct *p)
895 896 897 898
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
899
	return task_current(rq, p);
900 901 902
#endif
}

903
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

920
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
921 922 923 924 925 926 927 928 929 930 931 932
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
933
#endif
934 935
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
936

937 938 939 940
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
941
static inline struct rq *__task_rq_lock(struct task_struct *p)
942 943
	__acquires(rq->lock)
{
944 945 946 947 948
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
949 950 951 952
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
953 954
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
955
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
956 957
 * explicitly disabling preemption.
 */
958
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
959 960
	__acquires(rq->lock)
{
961
	struct rq *rq;
L
Linus Torvalds 已提交
962

963 964 965 966 967 968
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
969 970 971 972
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
973
static void __task_rq_unlock(struct rq *rq)
974 975 976 977 978
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

979
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
980 981 982 983 984 985
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
986
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
987
 */
A
Alexey Dobriyan 已提交
988
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
989 990
	__acquires(rq->lock)
{
991
	struct rq *rq;
L
Linus Torvalds 已提交
992 993 994 995 996 997 998 999

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1021
	if (!cpu_active(cpu_of(rq)))
1022
		return 0;
P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1043
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1044 1045 1046 1047 1048 1049
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1050
#ifdef CONFIG_SMP
1051 1052 1053 1054
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1055
{
1056
	struct rq *rq = arg;
1057

1058 1059 1060 1061
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1062 1063
}

1064 1065 1066 1067 1068 1069
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1070
{
1071 1072
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073

1074
	hrtimer_set_expires(timer, time);
1075 1076 1077 1078 1079 1080 1081

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1096
		hrtick_clear(cpu_rq(cpu));
1097 1098 1099 1100 1101 1102
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1103
static __init void init_hrtick(void)
1104 1105 1106
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1117

A
Andrew Morton 已提交
1118
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1119 1120
{
}
1121
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1122

1123
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1124
{
1125 1126
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1127

1128 1129 1130 1131
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1132

1133 1134
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1135
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1136
}
A
Andrew Morton 已提交
1137
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1138 1139 1140 1141 1142 1143 1144 1145
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1146 1147 1148
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1149
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1150

I
Ingo Molnar 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1164
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1165 1166 1167 1168 1169
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1170
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1171 1172
		return;

1173
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1236
#endif /* CONFIG_NO_HZ */
1237

1238
#else /* !CONFIG_SMP */
1239
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1240 1241
{
	assert_spin_locked(&task_rq(p)->lock);
1242
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1243
}
1244
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1245

1246 1247 1248 1249 1250 1251 1252 1253
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1254 1255 1256
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1257
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1258

1259 1260 1261
/*
 * delta *= weight / lw
 */
1262
static unsigned long
1263 1264 1265 1266 1267
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1268 1269 1270 1271 1272 1273 1274
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1275 1276 1277 1278 1279

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1280
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1281
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1282 1283
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1284
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1285

1286
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1287 1288
}

1289
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1290 1291
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1292
	lw->inv_weight = 0;
1293 1294
}

1295
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1296 1297
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1298
	lw->inv_weight = 0;
1299 1300
}

1301 1302 1303 1304
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1305
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1306 1307 1308 1309
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1321 1322 1323
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1324 1325
 */
static const int prio_to_weight[40] = {
1326 1327 1328 1329 1330 1331 1332 1333
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1334 1335
};

1336 1337 1338 1339 1340 1341 1342
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1343
static const u32 prio_to_wmult[40] = {
1344 1345 1346 1347 1348 1349 1350 1351
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1352
};
1353

I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1379

1380 1381 1382 1383 1384 1385
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1396
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1397
typedef int (*tg_visitor)(struct task_group *, void *);
1398 1399 1400 1401 1402

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1403
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1404 1405
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1406
	int ret;
1407 1408 1409 1410

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1411 1412 1413
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1414 1415 1416 1417 1418 1419 1420
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1421 1422 1423
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1424 1425 1426 1427 1428

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1429
out_unlock:
1430
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1431 1432

	return ret;
1433 1434
}

P
Peter Zijlstra 已提交
1435 1436 1437
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1438
}
P
Peter Zijlstra 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1457 1458 1459 1460 1461 1462 1463

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1464 1465
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1466
{
1467 1468 1469 1470
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1471
	if (!tg->se[cpu])
1472 1473
		return;

1474
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1486 1487 1488
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1489 1490 1491 1492 1493 1494
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1495
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1496
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1497

1498 1499 1500 1501
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1502

1503 1504 1505 1506 1507 1508
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1509

1510 1511 1512
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1513
}
1514 1515

/*
1516 1517 1518
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1519
 */
P
Peter Zijlstra 已提交
1520
static int tg_shares_up(struct task_group *tg, void *data)
1521
{
1522 1523
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1524
	struct sched_domain *sd = data;
1525
	int i;
1526

1527 1528 1529
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1530 1531
	}

1532 1533 1534 1535 1536
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1537

P
Peter Zijlstra 已提交
1538 1539 1540
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1541 1542
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1543 1544

	return 0;
1545 1546 1547
}

/*
1548 1549 1550
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1551
 */
P
Peter Zijlstra 已提交
1552
static int tg_load_down(struct task_group *tg, void *data)
1553
{
1554
	unsigned long load;
P
Peter Zijlstra 已提交
1555
	long cpu = (long)data;
1556

1557 1558 1559 1560 1561 1562 1563
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1564

1565
	tg->cfs_rq[cpu]->h_load = load;
1566

P
Peter Zijlstra 已提交
1567
	return 0;
1568 1569
}

1570
static void update_shares(struct sched_domain *sd)
1571
{
P
Peter Zijlstra 已提交
1572 1573 1574 1575 1576
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1577
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1578
	}
1579 1580
}

1581 1582 1583 1584 1585 1586 1587
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1588
static void update_h_load(long cpu)
1589
{
P
Peter Zijlstra 已提交
1590
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1591 1592 1593 1594
}

#else

1595
static inline void update_shares(struct sched_domain *sd)
1596 1597 1598
{
}

1599 1600 1601 1602
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1603 1604 1605 1606
#endif

#endif

V
Vegard Nossum 已提交
1607
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1608 1609
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1610
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1611 1612 1613
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1614
#endif
1615

I
Ingo Molnar 已提交
1616 1617
#include "sched_stats.h"
#include "sched_idletask.c"
1618 1619
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1620 1621 1622 1623 1624
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1625 1626
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1627

1628
static void inc_nr_running(struct rq *rq)
1629 1630 1631 1632
{
	rq->nr_running++;
}

1633
static void dec_nr_running(struct rq *rq)
1634 1635 1636 1637
{
	rq->nr_running--;
}

1638 1639 1640
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1641 1642 1643 1644
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1645

I
Ingo Molnar 已提交
1646 1647 1648 1649 1650 1651 1652 1653
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1654

I
Ingo Molnar 已提交
1655 1656
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1657 1658
}

1659 1660 1661 1662 1663 1664
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1665
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1666
{
I
Ingo Molnar 已提交
1667
	sched_info_queued(p);
1668
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1669
	p->se.on_rq = 1;
1670 1671
}

1672
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1673
{
1674 1675 1676 1677 1678 1679
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1680
	sched_info_dequeued(p);
1681
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1682
	p->se.on_rq = 0;
1683 1684
}

1685
/*
I
Ingo Molnar 已提交
1686
 * __normal_prio - return the priority that is based on the static prio
1687 1688 1689
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1690
	return p->static_prio;
1691 1692
}

1693 1694 1695 1696 1697 1698 1699
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1700
static inline int normal_prio(struct task_struct *p)
1701 1702 1703
{
	int prio;

1704
	if (task_has_rt_policy(p))
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1718
static int effective_prio(struct task_struct *p)
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1731
/*
I
Ingo Molnar 已提交
1732
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1733
 */
I
Ingo Molnar 已提交
1734
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1735
{
1736
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1737
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1738

1739
	enqueue_task(rq, p, wakeup);
1740
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1746
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1747
{
1748
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1749 1750
		rq->nr_uninterruptible++;

1751
	dequeue_task(rq, p, sleep);
1752
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1753 1754 1755 1756 1757 1758
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1759
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1760 1761 1762 1763
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1764 1765
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1766
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1767
#ifdef CONFIG_SMP
1768 1769 1770 1771 1772 1773
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1774 1775
	task_thread_info(p)->cpu = cpu;
#endif
1776 1777
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1790
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1791

1792 1793 1794 1795 1796 1797
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1798 1799 1800
/*
 * Is this task likely cache-hot:
 */
1801
static int
1802 1803 1804 1805
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1806 1807 1808
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1809
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1810 1811
		return 1;

1812 1813 1814
	if (p->sched_class != &fair_sched_class)
		return 0;

1815 1816 1817 1818 1819
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1820 1821 1822 1823 1824 1825
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1826
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1827
{
I
Ingo Molnar 已提交
1828 1829
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1830 1831
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1832
	u64 clock_offset;
I
Ingo Molnar 已提交
1833 1834

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1835 1836 1837 1838

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1839 1840 1841 1842
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1843 1844 1845 1846 1847
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1848
#endif
1849 1850
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1851 1852

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1853 1854
}

1855
struct migration_req {
L
Linus Torvalds 已提交
1856 1857
	struct list_head list;

1858
	struct task_struct *task;
L
Linus Torvalds 已提交
1859 1860 1861
	int dest_cpu;

	struct completion done;
1862
};
L
Linus Torvalds 已提交
1863 1864 1865 1866 1867

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1868
static int
1869
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1870
{
1871
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1877
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1878 1879 1880 1881 1882 1883 1884 1885
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1886

L
Linus Torvalds 已提交
1887 1888 1889 1890 1891 1892
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1893 1894 1895 1896 1897 1898 1899
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1906
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1907 1908
{
	unsigned long flags;
I
Ingo Molnar 已提交
1909
	int running, on_rq;
R
Roland McGrath 已提交
1910
	unsigned long ncsw;
1911
	struct rq *rq;
L
Linus Torvalds 已提交
1912

1913 1914 1915 1916 1917 1918 1919 1920
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1933 1934 1935
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1936
			cpu_relax();
R
Roland McGrath 已提交
1937
		}
1938

1939 1940 1941 1942 1943 1944
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1945
		trace_sched_wait_task(rq, p);
1946 1947
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1948
		ncsw = 0;
1949
		if (!match_state || p->state == match_state)
1950
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1951
		task_rq_unlock(rq, &flags);
1952

R
Roland McGrath 已提交
1953 1954 1955 1956 1957 1958
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1983

1984 1985 1986 1987 1988 1989 1990
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1991 1992

	return ncsw;
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2008
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2020 2021
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2022 2023 2024 2025
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2026
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2027
{
2028
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2029
	unsigned long total = weighted_cpuload(cpu);
2030

2031
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2032
		return total;
2033

I
Ingo Molnar 已提交
2034
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2035 2036 2037
}

/*
2038 2039
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2040
 */
A
Alexey Dobriyan 已提交
2041
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2042
{
2043
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2044
	unsigned long total = weighted_cpuload(cpu);
2045

2046
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2047
		return total;
2048

I
Ingo Molnar 已提交
2049
	return max(rq->cpu_load[type-1], total);
2050 2051
}

N
Nick Piggin 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2069 2070
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2071
			continue;
2072

N
Nick Piggin 已提交
2073 2074 2075 2076 2077
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2078
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2089 2090
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2091 2092 2093 2094 2095 2096 2097 2098

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2099
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2100 2101 2102 2103 2104 2105 2106

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2107
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2108
 */
I
Ingo Molnar 已提交
2109
static int
2110 2111
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2112 2113 2114 2115 2116
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2117
	/* Traverse only the allowed CPUs */
2118
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2119

2120
	for_each_cpu_mask_nr(i, *tmp) {
2121
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2147

2148
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2149 2150 2151
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2152 2153
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2154 2155
		if (tmp->flags & flag)
			sd = tmp;
2156
	}
N
Nick Piggin 已提交
2157

2158 2159 2160
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2161
	while (sd) {
2162
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2163
		struct sched_group *group;
2164 2165 2166 2167 2168 2169
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2170 2171 2172

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2173 2174 2175 2176
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2177

2178
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2179 2180 2181 2182 2183
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2184

2185
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2217
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2218
{
2219
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2220 2221
	unsigned long flags;
	long old_state;
2222
	struct rq *rq;
L
Linus Torvalds 已提交
2223

2224 2225 2226
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2243
	smp_wmb();
L
Linus Torvalds 已提交
2244 2245 2246 2247 2248
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2249
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2250 2251 2252
		goto out_running;

	cpu = task_cpu(p);
2253
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2254 2255 2256 2257 2258 2259
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2260 2261 2262
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267 2268
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2269
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2289
#endif /* CONFIG_SCHEDSTATS */
2290

L
Linus Torvalds 已提交
2291 2292
out_activate:
#endif /* CONFIG_SMP */
2293 2294 2295 2296 2297 2298 2299 2300 2301
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2302
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2303
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2304 2305 2306
	success = 1;

out_running:
2307
	trace_sched_wakeup(rq, p);
2308
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2309

L
Linus Torvalds 已提交
2310
	p->state = TASK_RUNNING;
2311 2312 2313 2314
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2315
out:
2316 2317
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2318 2319 2320 2321 2322
	task_rq_unlock(rq, &flags);

	return success;
}

2323
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2324
{
2325
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2326 2327 2328
}
EXPORT_SYMBOL(wake_up_process);

2329
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2330 2331 2332 2333 2334 2335 2336
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2337 2338 2339 2340 2341 2342 2343
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2344
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2345 2346
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2347 2348 2349

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2350 2351 2352 2353 2354 2355
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2356
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2357
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2358
#endif
N
Nick Piggin 已提交
2359

P
Peter Zijlstra 已提交
2360
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2361
	p->se.on_rq = 0;
2362
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2363

2364 2365 2366 2367
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2389
	set_task_cpu(p, cpu);
2390 2391 2392 2393 2394

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2395 2396
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2397

2398
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2399
	if (likely(sched_info_on()))
2400
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2401
#endif
2402
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2403 2404
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2405
#ifdef CONFIG_PREEMPT
2406
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2407
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2408
#endif
N
Nick Piggin 已提交
2409
	put_cpu();
L
Linus Torvalds 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2419
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2420 2421
{
	unsigned long flags;
I
Ingo Molnar 已提交
2422
	struct rq *rq;
L
Linus Torvalds 已提交
2423 2424

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2425
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2426
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2427 2428 2429

	p->prio = effective_prio(p);

2430
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2431
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2432 2433
	} else {
		/*
I
Ingo Molnar 已提交
2434 2435
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2436
		 */
2437
		p->sched_class->task_new(rq, p);
2438
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2439
	}
2440
	trace_sched_wakeup_new(rq, p);
2441
	check_preempt_curr(rq, p, 0);
2442 2443 2444 2445
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2446
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2447 2448
}

2449 2450 2451
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2452 2453
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2454 2455 2456 2457 2458 2459 2460 2461 2462
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2463
 * @notifier: notifier struct to unregister
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2493
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2505
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2506

2507 2508 2509
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2510
 * @prev: the current task that is being switched out
2511 2512 2513 2514 2515 2516 2517 2518 2519
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2520 2521 2522
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2523
{
2524
	fire_sched_out_preempt_notifiers(prev, next);
2525 2526 2527 2528
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2529 2530
/**
 * finish_task_switch - clean up after a task-switch
2531
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2532 2533
 * @prev: the thread we just switched away from.
 *
2534 2535 2536 2537
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2538 2539
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2540
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2541 2542 2543
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2544
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2545 2546 2547
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2548
	long prev_state;
L
Linus Torvalds 已提交
2549 2550 2551 2552 2553

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2554
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2555 2556
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2557
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2563
	prev_state = prev->state;
2564 2565
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2566 2567 2568 2569
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2570

2571
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2572 2573
	if (mm)
		mmdrop(mm);
2574
	if (unlikely(prev_state == TASK_DEAD)) {
2575 2576 2577
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2578
		 */
2579
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2580
		put_task_struct(prev);
2581
	}
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586 2587
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2588
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2589 2590
	__releases(rq->lock)
{
2591 2592
	struct rq *rq = this_rq();

2593 2594 2595 2596 2597
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2598
	if (current->set_child_tid)
2599
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2600 2601 2602 2603 2604 2605
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2606
static inline void
2607
context_switch(struct rq *rq, struct task_struct *prev,
2608
	       struct task_struct *next)
L
Linus Torvalds 已提交
2609
{
I
Ingo Molnar 已提交
2610
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2611

2612
	prepare_task_switch(rq, prev, next);
2613
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2614 2615
	mm = next->mm;
	oldmm = prev->active_mm;
2616 2617 2618 2619 2620 2621 2622
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2623
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628 2629
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2630
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2631 2632 2633
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2634 2635 2636 2637 2638 2639 2640
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2641
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2642
#endif
L
Linus Torvalds 已提交
2643 2644 2645 2646

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2647 2648 2649 2650 2651 2652 2653
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2677
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2692 2693
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2694

2695
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2705
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2726
/*
I
Ingo Molnar 已提交
2727 2728
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2729
 */
I
Ingo Molnar 已提交
2730
static void update_cpu_load(struct rq *this_rq)
2731
{
2732
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2745 2746 2747 2748 2749 2750 2751
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2752 2753
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2754 2755
}

I
Ingo Molnar 已提交
2756 2757
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2758 2759 2760 2761 2762 2763
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2764
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2765 2766 2767
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2768
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2769 2770 2771 2772
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2773
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2774
			spin_lock(&rq1->lock);
2775
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2776 2777
		} else {
			spin_lock(&rq2->lock);
2778
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2779 2780
		}
	}
2781 2782
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2783 2784 2785 2786 2787 2788 2789 2790
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2791
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2805
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2806 2807 2808 2809
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2810 2811
	int ret = 0;

2812 2813 2814 2815 2816
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2817
	if (unlikely(!spin_trylock(&busiest->lock))) {
2818
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2819 2820
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2821
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2822
			ret = 1;
L
Linus Torvalds 已提交
2823
		} else
2824
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2825
	}
S
Steven Rostedt 已提交
2826
	return ret;
L
Linus Torvalds 已提交
2827 2828
}

2829 2830 2831 2832 2833 2834 2835
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2836 2837 2838
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2839
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2840 2841
 * the cpu_allowed mask is restored.
 */
2842
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2843
{
2844
	struct migration_req req;
L
Linus Torvalds 已提交
2845
	unsigned long flags;
2846
	struct rq *rq;
L
Linus Torvalds 已提交
2847 2848 2849

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2850
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2851 2852
		goto out;

2853
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2854 2855 2856 2857
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2858

L
Linus Torvalds 已提交
2859 2860 2861 2862 2863
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2864

L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870 2871
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2872 2873
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2874 2875 2876 2877
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2878
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2879
	put_cpu();
N
Nick Piggin 已提交
2880 2881
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2888 2889
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2890
{
2891
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2892
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2893
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2894 2895 2896 2897
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2898
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2904
static
2905
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2906
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2907
		     int *all_pinned)
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2915 2916
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2917
		return 0;
2918
	}
2919 2920
	*all_pinned = 0;

2921 2922
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2923
		return 0;
2924
	}
L
Linus Torvalds 已提交
2925

2926 2927 2928 2929 2930 2931
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2932 2933
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2934
#ifdef CONFIG_SCHEDSTATS
2935
		if (task_hot(p, rq->clock, sd)) {
2936
			schedstat_inc(sd, lb_hot_gained[idle]);
2937 2938
			schedstat_inc(p, se.nr_forced_migrations);
		}
2939 2940 2941 2942
#endif
		return 1;
	}

2943 2944
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2945
		return 0;
2946
	}
L
Linus Torvalds 已提交
2947 2948 2949
	return 1;
}

2950 2951 2952 2953 2954
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2955
{
2956
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2957 2958
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2959

2960
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2961 2962
		goto out;

2963 2964
	pinned = 1;

L
Linus Torvalds 已提交
2965
	/*
I
Ingo Molnar 已提交
2966
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2967
	 */
I
Ingo Molnar 已提交
2968 2969
	p = iterator->start(iterator->arg);
next:
2970
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2971
		goto out;
2972 2973

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2974 2975 2976
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2977 2978
	}

I
Ingo Molnar 已提交
2979
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2980
	pulled++;
I
Ingo Molnar 已提交
2981
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2982

2983
	/*
2984
	 * We only want to steal up to the prescribed amount of weighted load.
2985
	 */
2986
	if (rem_load_move > 0) {
2987 2988
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2989 2990
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2991 2992 2993
	}
out:
	/*
2994
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2995 2996 2997 2998
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2999 3000 3001

	if (all_pinned)
		*all_pinned = pinned;
3002 3003

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3004 3005
}

I
Ingo Molnar 已提交
3006
/*
P
Peter Williams 已提交
3007 3008 3009
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3010 3011 3012 3013
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3014
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3015 3016 3017
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3018
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3019
	unsigned long total_load_moved = 0;
3020
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3021 3022

	do {
P
Peter Williams 已提交
3023 3024
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3025
				max_load_move - total_load_moved,
3026
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3027
		class = class->next;
3028 3029 3030 3031

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3032
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3033

P
Peter Williams 已提交
3034 3035 3036
	return total_load_moved > 0;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3073
	const struct sched_class *class;
P
Peter Williams 已提交
3074 3075

	for (class = sched_class_highest; class; class = class->next)
3076
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3077 3078 3079
			return 1;

	return 0;
I
Ingo Molnar 已提交
3080 3081
}

L
Linus Torvalds 已提交
3082 3083
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3084 3085
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3086 3087 3088
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3089
		   unsigned long *imbalance, enum cpu_idle_type idle,
3090
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3091 3092 3093
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3094
	unsigned long max_pull;
3095 3096
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3097
	int load_idx, group_imb = 0;
3098 3099 3100 3101 3102 3103
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3104 3105

	max_load = this_load = total_load = total_pwr = 0;
3106 3107
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3108

I
Ingo Molnar 已提交
3109
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3110
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3111
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3112 3113 3114
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3115 3116

	do {
3117
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3118 3119
		int local_group;
		int i;
3120
		int __group_imb = 0;
3121
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3122
		unsigned long sum_nr_running, sum_weighted_load;
3123 3124
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3125 3126 3127

		local_group = cpu_isset(this_cpu, group->cpumask);

3128 3129 3130
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3131
		/* Tally up the load of all CPUs in the group */
3132
		sum_weighted_load = sum_nr_running = avg_load = 0;
3133 3134
		sum_avg_load_per_task = avg_load_per_task = 0;

3135 3136
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3137

3138
		for_each_cpu_mask_nr(i, group->cpumask) {
3139 3140 3141 3142 3143 3144
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3145

3146
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3147 3148
				*sd_idle = 0;

L
Linus Torvalds 已提交
3149
			/* Bias balancing toward cpus of our domain */
3150 3151 3152 3153 3154 3155
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3156
				load = target_load(i, load_idx);
3157
			} else {
N
Nick Piggin 已提交
3158
				load = source_load(i, load_idx);
3159 3160 3161 3162 3163
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3164 3165

			avg_load += load;
3166
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3167
			sum_weighted_load += weighted_cpuload(i);
3168 3169

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3170 3171
		}

3172 3173 3174
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3175 3176
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3177
		 */
3178 3179
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3180 3181 3182 3183
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3184
		total_load += avg_load;
3185
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3186 3187

		/* Adjust by relative CPU power of the group */
3188 3189
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 3206
			__group_imb = 1;

3207
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208

L
Linus Torvalds 已提交
3209 3210 3211
		if (local_group) {
			this_load = avg_load;
			this = group;
3212 3213 3214
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3215
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3216 3217
			max_load = avg_load;
			busiest = group;
3218 3219
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3220
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3221
		}
3222 3223 3224 3225 3226 3227

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3228 3229 3230
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3231 3232 3233 3234 3235 3236 3237 3238 3239

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3240
		/*
3241 3242
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3243 3244
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3245
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3246
			goto group_next;
3247

I
Ingo Molnar 已提交
3248
		/*
3249
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3250 3251 3252 3253 3254
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3255 3256
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3257 3258
			group_min = group;
			min_nr_running = sum_nr_running;
3259 3260
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3261
		}
3262

I
Ingo Molnar 已提交
3263
		/*
3264
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3276
		}
3277 3278
group_next:
#endif
L
Linus Torvalds 已提交
3279 3280 3281
		group = group->next;
	} while (group != sd->groups);

3282
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289 3290
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3291
	busiest_load_per_task /= busiest_nr_running;
3292 3293 3294
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3303
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3304 3305
	 * appear as very large values with unsigned longs.
	 */
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3318 3319

	/* Don't want to pull so many tasks that a group would go idle */
3320
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321

L
Linus Torvalds 已提交
3322
	/* How much load to actually move to equalise the imbalance */
3323 3324
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3325 3326
			/ SCHED_LOAD_SCALE;

3327 3328 3329 3330 3331 3332
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3333
	if (*imbalance < busiest_load_per_task) {
3334
		unsigned long tmp, pwr_now, pwr_move;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3345
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3346

3347
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3348
					busiest_load_per_task * imbn) {
3349
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3359 3360 3361 3362
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3363 3364 3365
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3366 3367
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3368
		if (max_load > tmp)
3369
			pwr_move += busiest->__cpu_power *
3370
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3371 3372

		/* Amount of load we'd add */
3373
		if (max_load * busiest->__cpu_power <
3374
				busiest_load_per_task * SCHED_LOAD_SCALE)
3375 3376
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3377
		else
3378 3379 3380 3381
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3382 3383 3384
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3385 3386
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391
	}

	return busiest;

out_balanced:
3392
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3393
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394
		goto ret;
L
Linus Torvalds 已提交
3395

3396 3397 3398 3399 3400
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3401
ret:
L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407 3408
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3409
static struct rq *
I
Ingo Molnar 已提交
3410
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3411
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3412
{
3413
	struct rq *busiest = NULL, *rq;
3414
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3415 3416
	int i;

3417
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3418
		unsigned long wl;
3419 3420 3421 3422

		if (!cpu_isset(i, *cpus))
			continue;

3423
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3424
		wl = weighted_cpuload(i);
3425

I
Ingo Molnar 已提交
3426
		if (rq->nr_running == 1 && wl > imbalance)
3427
			continue;
L
Linus Torvalds 已提交
3428

I
Ingo Molnar 已提交
3429 3430
		if (wl > max_load) {
			max_load = wl;
3431
			busiest = rq;
L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437
		}
	}

	return busiest;
}

3438 3439 3440 3441 3442 3443
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3444 3445 3446 3447
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3448
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3449
			struct sched_domain *sd, enum cpu_idle_type idle,
3450
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3451
{
P
Peter Williams 已提交
3452
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3453 3454
	struct sched_group *group;
	unsigned long imbalance;
3455
	struct rq *busiest;
3456
	unsigned long flags;
N
Nick Piggin 已提交
3457

3458 3459
	cpus_setall(*cpus);

3460 3461 3462
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3463
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3464
	 * portraying it as CPU_NOT_IDLE.
3465
	 */
I
Ingo Molnar 已提交
3466
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3467
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3468
		sd_idle = 1;
L
Linus Torvalds 已提交
3469

3470
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3471

3472
redo:
3473
	update_shares(sd);
3474
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3475
				   cpus, balance);
3476

3477
	if (*balance == 0)
3478 3479
		goto out_balanced;

L
Linus Torvalds 已提交
3480 3481 3482 3483 3484
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3485
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3491
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3492 3493 3494

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3495
	ld_moved = 0;
L
Linus Torvalds 已提交
3496 3497 3498 3499
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3500
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3501 3502
		 * correctly treated as an imbalance.
		 */
3503
		local_irq_save(flags);
N
Nick Piggin 已提交
3504
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3505
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3506
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3507
		double_rq_unlock(this_rq, busiest);
3508
		local_irq_restore(flags);
3509

3510 3511 3512
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3513
		if (ld_moved && this_cpu != smp_processor_id())
3514 3515
			resched_cpu(this_cpu);

3516
		/* All tasks on this runqueue were pinned by CPU affinity */
3517
		if (unlikely(all_pinned)) {
3518 3519
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3520
				goto redo;
3521
			goto out_balanced;
3522
		}
L
Linus Torvalds 已提交
3523
	}
3524

P
Peter Williams 已提交
3525
	if (!ld_moved) {
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3531
			spin_lock_irqsave(&busiest->lock, flags);
3532 3533 3534 3535 3536

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3537
				spin_unlock_irqrestore(&busiest->lock, flags);
3538 3539 3540 3541
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3542 3543 3544
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3545
				active_balance = 1;
L
Linus Torvalds 已提交
3546
			}
3547
			spin_unlock_irqrestore(&busiest->lock, flags);
3548
			if (active_balance)
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3555
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3556
		}
3557
	} else
L
Linus Torvalds 已提交
3558 3559
		sd->nr_balance_failed = 0;

3560
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3561 3562
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3563 3564 3565 3566 3567 3568 3569 3570 3571
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3572 3573
	}

P
Peter Williams 已提交
3574
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3575
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3576 3577 3578
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3579 3580 3581 3582

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3583
	sd->nr_balance_failed = 0;
3584 3585

out_one_pinned:
L
Linus Torvalds 已提交
3586
	/* tune up the balancing interval */
3587 3588
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3589 3590
		sd->balance_interval *= 2;

3591
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3592
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3593 3594 3595 3596
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3597 3598
	if (ld_moved)
		update_shares(sd);
3599
	return ld_moved;
L
Linus Torvalds 已提交
3600 3601 3602 3603 3604 3605
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3606
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3607 3608
 * this_rq is locked.
 */
3609
static int
3610 3611
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3612 3613
{
	struct sched_group *group;
3614
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3615
	unsigned long imbalance;
P
Peter Williams 已提交
3616
	int ld_moved = 0;
N
Nick Piggin 已提交
3617
	int sd_idle = 0;
3618
	int all_pinned = 0;
3619 3620

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3621

3622 3623 3624 3625
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3626
	 * portraying it as CPU_NOT_IDLE.
3627 3628 3629
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3630
		sd_idle = 1;
L
Linus Torvalds 已提交
3631

3632
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3633
redo:
3634
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3635
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3636
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3637
	if (!group) {
I
Ingo Molnar 已提交
3638
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3639
		goto out_balanced;
L
Linus Torvalds 已提交
3640 3641
	}

3642
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3643
	if (!busiest) {
I
Ingo Molnar 已提交
3644
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3645
		goto out_balanced;
L
Linus Torvalds 已提交
3646 3647
	}

N
Nick Piggin 已提交
3648 3649
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3650
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3651

P
Peter Williams 已提交
3652
	ld_moved = 0;
3653 3654 3655
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3656 3657
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3658
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3659 3660
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3661
		double_unlock_balance(this_rq, busiest);
3662

3663
		if (unlikely(all_pinned)) {
3664 3665
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3666 3667
				goto redo;
		}
3668 3669
	}

P
Peter Williams 已提交
3670
	if (!ld_moved) {
I
Ingo Molnar 已提交
3671
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3672 3673
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3674 3675
			return -1;
	} else
3676
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3677

3678
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3679
	return ld_moved;
3680 3681

out_balanced:
I
Ingo Molnar 已提交
3682
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3683
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3684
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3685
		return -1;
3686
	sd->nr_balance_failed = 0;
3687

3688
	return 0;
L
Linus Torvalds 已提交
3689 3690 3691 3692 3693 3694
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3695
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3696 3697
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3698 3699
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3700
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3701 3702

	for_each_domain(this_cpu, sd) {
3703 3704 3705 3706 3707 3708
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3709
			/* If we've pulled tasks over stop searching: */
3710 3711
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3712 3713 3714 3715 3716 3717

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3718
	}
I
Ingo Molnar 已提交
3719
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3720 3721 3722 3723 3724
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3725
	}
L
Linus Torvalds 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3736
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3737
{
3738
	int target_cpu = busiest_rq->push_cpu;
3739 3740
	struct sched_domain *sd;
	struct rq *target_rq;
3741

3742
	/* Is there any task to move? */
3743 3744 3745 3746
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3747 3748

	/*
3749
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3750
	 * we need to fix it. Originally reported by
3751
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3752
	 */
3753
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3754

3755 3756
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3757 3758
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3759 3760

	/* Search for an sd spanning us and the target CPU. */
3761
	for_each_domain(target_cpu, sd) {
3762
		if ((sd->flags & SD_LOAD_BALANCE) &&
3763
		    cpu_isset(busiest_cpu, sd->span))
3764
				break;
3765
	}
3766

3767
	if (likely(sd)) {
3768
		schedstat_inc(sd, alb_count);
3769

P
Peter Williams 已提交
3770 3771
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3772 3773 3774 3775
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3776
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3777 3778
}

3779 3780 3781
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3782
	cpumask_t cpu_mask;
3783 3784 3785 3786 3787
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3788
/*
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3799
 *
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3819
		if (!cpu_active(cpu) &&
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3856 3857 3858 3859 3860
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3861
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3862
{
3863 3864
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3865 3866
	unsigned long interval;
	struct sched_domain *sd;
3867
	/* Earliest time when we have to do rebalance again */
3868
	unsigned long next_balance = jiffies + 60*HZ;
3869
	int update_next_balance = 0;
3870
	int need_serialize;
3871
	cpumask_t tmp;
L
Linus Torvalds 已提交
3872

3873
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3874 3875 3876 3877
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3878
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883 3884
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3885 3886 3887
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3888
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3889

3890
		if (need_serialize) {
3891 3892 3893 3894
			if (!spin_trylock(&balancing))
				goto out;
		}

3895
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3896
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3897 3898
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3899 3900 3901
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3902
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3903
			}
3904
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3905
		}
3906
		if (need_serialize)
3907 3908
			spin_unlock(&balancing);
out:
3909
		if (time_after(next_balance, sd->last_balance + interval)) {
3910
			next_balance = sd->last_balance + interval;
3911 3912
			update_next_balance = 1;
		}
3913 3914 3915 3916 3917 3918 3919 3920

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3921
	}
3922 3923 3924 3925 3926 3927 3928 3929

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3930 3931 3932 3933 3934 3935 3936 3937 3938
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3939 3940 3941 3942
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3943

I
Ingo Molnar 已提交
3944
	rebalance_domains(this_cpu, idle);
3945 3946 3947 3948 3949 3950 3951

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3952 3953
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3954 3955 3956 3957
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3958
		cpu_clear(this_cpu, cpus);
3959
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3960 3961 3962 3963 3964 3965 3966 3967
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3968
			rebalance_domains(balance_cpu, CPU_IDLE);
3969 3970

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3971 3972
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3985
static inline void trigger_load_balance(struct rq *rq, int cpu)
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4012
			if (ilb < nr_cpu_ids)
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4037
}
I
Ingo Molnar 已提交
4038 4039 4040

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4041 4042 4043
/*
 * on UP we do not need to balance between CPUs:
 */
4044
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4045 4046
{
}
I
Ingo Molnar 已提交
4047

L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4055 4056
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4057
 */
4058
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4059 4060
{
	unsigned long flags;
4061
	struct rq *rq;
4062
	u64 ns = 0;
4063

4064
	rq = task_rq_lock(p, &flags);
4065

4066
	if (task_current(rq, p)) {
4067 4068
		u64 delta_exec;

I
Ingo Molnar 已提交
4069 4070
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4071
		if ((s64)delta_exec > 0)
4072
			ns = delta_exec;
4073
	}
4074

4075
	task_rq_unlock(rq, &flags);
4076

L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4091
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4092 4093 4094 4095 4096 4097 4098

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4099 4100
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4101 4102
}

4103 4104 4105 4106 4107
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4108
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4109 4110 4111 4112 4113 4114 4115
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4116
	account_group_user_time(p, cputime);
4117 4118 4119 4120 4121 4122
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4143
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4144 4145
	cputime64_t tmp;

4146 4147 4148 4149
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4150

L
Linus Torvalds 已提交
4151
	p->stime = cputime_add(p->stime, cputime);
4152
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4153 4154 4155 4156 4157 4158 4159

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4160
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4161
		cpustat->system = cputime64_add(cpustat->system, tmp);
4162
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4163 4164 4165 4166 4167 4168 4169
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4190
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4191 4192 4193

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4194
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4195 4196 4197 4198
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4199
	} else
L
Linus Torvalds 已提交
4200 4201 4202
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4273
	struct task_struct *curr = rq->curr;
4274 4275

	sched_clock_tick();
I
Ingo Molnar 已提交
4276 4277

	spin_lock(&rq->lock);
4278
	update_rq_clock(rq);
4279
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4280
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4281
	spin_unlock(&rq->lock);
4282

4283
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4284 4285
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4286
#endif
L
Linus Torvalds 已提交
4287 4288
}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4301

4302
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4303
{
4304
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4305 4306 4307
	/*
	 * Underflow?
	 */
4308 4309
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4310
#endif
L
Linus Torvalds 已提交
4311
	preempt_count() += val;
4312
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4313 4314 4315
	/*
	 * Spinlock count overflowing soon?
	 */
4316 4317
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4318 4319 4320
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4321 4322 4323
}
EXPORT_SYMBOL(add_preempt_count);

4324
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4325
{
4326
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4327 4328 4329
	/*
	 * Underflow?
	 */
4330 4331
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4332 4333 4334
	/*
	 * Is the spinlock portion underflowing?
	 */
4335 4336 4337
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4338
#endif
4339

4340 4341
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4342 4343 4344 4345 4346 4347 4348
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4349
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4350
 */
I
Ingo Molnar 已提交
4351
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4352
{
4353 4354 4355 4356 4357
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4358
	debug_show_held_locks(prev);
4359
	print_modules();
I
Ingo Molnar 已提交
4360 4361
	if (irqs_disabled())
		print_irqtrace_events(prev);
4362 4363 4364 4365 4366

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4367
}
L
Linus Torvalds 已提交
4368

I
Ingo Molnar 已提交
4369 4370 4371 4372 4373
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4374
	/*
I
Ingo Molnar 已提交
4375
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4376 4377 4378
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4379
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4380 4381
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4382 4383
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4384
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4385 4386
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4387 4388
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4389 4390
	}
#endif
I
Ingo Molnar 已提交
4391 4392 4393 4394 4395 4396
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4397
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4398
{
4399
	const struct sched_class *class;
I
Ingo Molnar 已提交
4400
	struct task_struct *p;
L
Linus Torvalds 已提交
4401 4402

	/*
I
Ingo Molnar 已提交
4403 4404
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4405
	 */
I
Ingo Molnar 已提交
4406
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4407
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4408 4409
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4410 4411
	}

I
Ingo Molnar 已提交
4412 4413
	class = sched_class_highest;
	for ( ; ; ) {
4414
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4424

I
Ingo Molnar 已提交
4425 4426 4427 4428 4429 4430
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4431
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4432
	struct rq *rq;
4433
	int cpu;
I
Ingo Molnar 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4447

4448
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4449
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4450

4451
	spin_lock_irq(&rq->lock);
4452
	update_rq_clock(rq);
4453
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4454 4455

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4456
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4457
			prev->state = TASK_RUNNING;
4458
		else
4459
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4460
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4461 4462
	}

4463 4464 4465 4466
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4467

I
Ingo Molnar 已提交
4468
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4469 4470
		idle_balance(cpu, rq);

4471
	prev->sched_class->put_prev_task(rq, prev);
4472
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4473 4474

	if (likely(prev != next)) {
4475 4476
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4477 4478 4479 4480
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4481
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4482 4483 4484 4485 4486 4487
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4488 4489 4490
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4491
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4492
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4493

L
Linus Torvalds 已提交
4494 4495 4496 4497 4498 4499 4500 4501
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4502
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4503
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4504 4505 4506 4507 4508
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4509

L
Linus Torvalds 已提交
4510 4511
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4512
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4513
	 */
N
Nick Piggin 已提交
4514
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4515 4516
		return;

4517 4518 4519 4520
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4521

4522 4523 4524 4525 4526 4527
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4528 4529 4530 4531
}
EXPORT_SYMBOL(preempt_schedule);

/*
4532
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538 4539
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4540

4541
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4542 4543
	BUG_ON(ti->preempt_count || !irqs_disabled());

4544 4545 4546 4547 4548 4549
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4550

4551 4552 4553 4554 4555 4556
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4557 4558 4559 4560
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4561 4562
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4563
{
4564
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4565 4566 4567 4568
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4569 4570
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4571 4572 4573
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4574
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4580
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4581

4582
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4583 4584
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4585
		if (curr->func(curr, mode, sync, key) &&
4586
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4596
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4597
 */
4598
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4599
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4612
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4618
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4630
void
I
Ingo Molnar 已提交
4631
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4648 4649 4650 4651 4652 4653 4654 4655 4656
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4657
void complete(struct completion *x)
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4663
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4664 4665 4666 4667
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4668 4669 4670 4671 4672 4673
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4674
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4675 4676 4677 4678 4679
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4680
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4681 4682 4683 4684
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4685 4686
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4694
			if (signal_pending_state(state, current)) {
4695 4696
				timeout = -ERESTARTSYS;
				break;
4697 4698
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4699 4700 4701
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4702
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4703
		__remove_wait_queue(&x->wait, &wait);
4704 4705
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4706 4707
	}
	x->done--;
4708
	return timeout ?: 1;
L
Linus Torvalds 已提交
4709 4710
}

4711 4712
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4713 4714 4715 4716
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4717
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4718
	spin_unlock_irq(&x->wait.lock);
4719 4720
	return timeout;
}
L
Linus Torvalds 已提交
4721

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4732
void __sched wait_for_completion(struct completion *x)
4733 4734
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4735
}
4736
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4737

4738 4739 4740 4741 4742 4743 4744 4745 4746
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4747
unsigned long __sched
4748
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4749
{
4750
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4751
}
4752
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4753

4754 4755 4756 4757 4758 4759 4760
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4761
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4762
{
4763 4764 4765 4766
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4767
}
4768
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4769

4770 4771 4772 4773 4774 4775 4776 4777
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4778
unsigned long __sched
4779 4780
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4781
{
4782
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4783
}
4784
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4785

4786 4787 4788 4789 4790 4791 4792
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4848 4849
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4850
{
I
Ingo Molnar 已提交
4851 4852 4853 4854
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4855

4856
	__set_current_state(state);
L
Linus Torvalds 已提交
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4872 4873 4874
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4875
long __sched
I
Ingo Molnar 已提交
4876
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4877
{
4878
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4879 4880 4881
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4882
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4883
{
4884
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4885 4886 4887
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4888
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4889
{
4890
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4891 4892 4893
}
EXPORT_SYMBOL(sleep_on_timeout);

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4906
void rt_mutex_setprio(struct task_struct *p, int prio)
4907 4908
{
	unsigned long flags;
4909
	int oldprio, on_rq, running;
4910
	struct rq *rq;
4911
	const struct sched_class *prev_class = p->sched_class;
4912 4913 4914 4915

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4916
	update_rq_clock(rq);
4917

4918
	oldprio = p->prio;
I
Ingo Molnar 已提交
4919
	on_rq = p->se.on_rq;
4920
	running = task_current(rq, p);
4921
	if (on_rq)
4922
		dequeue_task(rq, p, 0);
4923 4924
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4925 4926 4927 4928 4929 4930

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4931 4932
	p->prio = prio;

4933 4934
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4935
	if (on_rq) {
4936
		enqueue_task(rq, p, 0);
4937 4938

		check_class_changed(rq, p, prev_class, oldprio, running);
4939 4940 4941 4942 4943 4944
	}
	task_rq_unlock(rq, &flags);
}

#endif

4945
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4946
{
I
Ingo Molnar 已提交
4947
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4948
	unsigned long flags;
4949
	struct rq *rq;
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955 4956 4957

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4958
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4959 4960 4961 4962
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4963
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4964
	 */
4965
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4966 4967 4968
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4969
	on_rq = p->se.on_rq;
4970
	if (on_rq)
4971
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4972 4973

	p->static_prio = NICE_TO_PRIO(nice);
4974
	set_load_weight(p);
4975 4976 4977
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4978

I
Ingo Molnar 已提交
4979
	if (on_rq) {
4980
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4981
		/*
4982 4983
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4984
		 */
4985
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4993 4994 4995 4996 4997
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4998
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4999
{
5000 5001
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5002

M
Matt Mackall 已提交
5003 5004 5005 5006
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5018
	long nice, retval;
L
Linus Torvalds 已提交
5019 5020 5021 5022 5023 5024

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5025 5026
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5027 5028 5029 5030 5031 5032 5033 5034 5035
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5036 5037 5038
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5057
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5066
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5067 5068 5069
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5070
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5085
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5086 5087 5088 5089 5090 5091 5092 5093
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5094
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5095
{
5096
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5097 5098 5099
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5100 5101
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5102
{
I
Ingo Molnar 已提交
5103
	BUG_ON(p->se.on_rq);
5104

L
Linus Torvalds 已提交
5105
	p->policy = policy;
I
Ingo Molnar 已提交
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5118
	p->rt_priority = prio;
5119 5120 5121
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5122
	set_load_weight(p);
L
Linus Torvalds 已提交
5123 5124
}

5125 5126
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5127
{
5128
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5129
	unsigned long flags;
5130
	const struct sched_class *prev_class = p->sched_class;
5131
	struct rq *rq;
L
Linus Torvalds 已提交
5132

5133 5134
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5135 5136 5137 5138 5139
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5140 5141
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5142
		return -EINVAL;
L
Linus Torvalds 已提交
5143 5144
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5145 5146
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5147 5148
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5149
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5150
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5151
		return -EINVAL;
5152
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5153 5154
		return -EINVAL;

5155 5156 5157
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5158
	if (user && !capable(CAP_SYS_NICE)) {
5159
		if (rt_policy(policy)) {
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5176 5177 5178 5179 5180 5181
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5182

5183 5184 5185 5186 5187
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5188

5189
	if (user) {
5190
#ifdef CONFIG_RT_GROUP_SCHED
5191 5192 5193 5194
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5195 5196
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5197
			return -EPERM;
5198 5199
#endif

5200 5201 5202 5203 5204
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5205 5206 5207 5208 5209
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5210 5211 5212 5213
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5214
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5215 5216 5217
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5218 5219
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5220 5221
		goto recheck;
	}
I
Ingo Molnar 已提交
5222
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5223
	on_rq = p->se.on_rq;
5224
	running = task_current(rq, p);
5225
	if (on_rq)
5226
		deactivate_task(rq, p, 0);
5227 5228
	if (running)
		p->sched_class->put_prev_task(rq, p);
5229

L
Linus Torvalds 已提交
5230
	oldprio = p->prio;
I
Ingo Molnar 已提交
5231
	__setscheduler(rq, p, policy, param->sched_priority);
5232

5233 5234
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5235 5236
	if (on_rq) {
		activate_task(rq, p, 0);
5237 5238

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5239
	}
5240 5241 5242
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5243 5244
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5245 5246
	return 0;
}
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5261 5262
EXPORT_SYMBOL_GPL(sched_setscheduler);

5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5280 5281
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5282 5283 5284
{
	struct sched_param lparam;
	struct task_struct *p;
5285
	int retval;
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5291 5292 5293

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5294
	p = find_process_by_pid(pid);
5295 5296 5297
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5298

L
Linus Torvalds 已提交
5299 5300 5301 5302 5303 5304 5305 5306 5307
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5308 5309
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5310
{
5311 5312 5313 5314
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5334
	struct task_struct *p;
5335
	int retval;
L
Linus Torvalds 已提交
5336 5337

	if (pid < 0)
5338
		return -EINVAL;
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5360
	struct task_struct *p;
5361
	int retval;
L
Linus Torvalds 已提交
5362 5363

	if (!param || pid < 0)
5364
		return -EINVAL;
L
Linus Torvalds 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5391
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5392 5393
{
	cpumask_t cpus_allowed;
5394
	cpumask_t new_mask = *in_mask;
5395 5396
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5397

5398
	get_online_cpus();
L
Linus Torvalds 已提交
5399 5400 5401 5402 5403
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5404
		put_online_cpus();
L
Linus Torvalds 已提交
5405 5406 5407 5408 5409
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5410
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5421 5422 5423 5424
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5425
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5426
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5427
 again:
5428
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5429

P
Paul Menage 已提交
5430
	if (!retval) {
5431
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5442 5443
out_unlock:
	put_task_struct(p);
5444
	put_online_cpus();
L
Linus Torvalds 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5475
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5476 5477 5478 5479
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5480
	struct task_struct *p;
L
Linus Torvalds 已提交
5481 5482
	int retval;

5483
	get_online_cpus();
L
Linus Torvalds 已提交
5484 5485 5486 5487 5488 5489 5490
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5491 5492 5493 5494
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5495
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5496 5497 5498

out_unlock:
	read_unlock(&tasklist_lock);
5499
	put_online_cpus();
L
Linus Torvalds 已提交
5500

5501
	return retval;
L
Linus Torvalds 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5532 5533
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5534 5535 5536
 */
asmlinkage long sys_sched_yield(void)
{
5537
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5538

5539
	schedstat_inc(rq, yld_count);
5540
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5541 5542 5543 5544 5545 5546

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5547
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5548 5549 5550 5551 5552 5553 5554 5555
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5556
static void __cond_resched(void)
L
Linus Torvalds 已提交
5557
{
5558 5559 5560
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5561 5562 5563 5564 5565
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5566 5567 5568 5569 5570 5571 5572
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5573
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5574
{
5575 5576
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581
		__cond_resched();
		return 1;
	}
	return 0;
}
5582
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5583 5584 5585 5586 5587

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5588
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5589 5590 5591
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5592
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5593
{
N
Nick Piggin 已提交
5594
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5595 5596
	int ret = 0;

N
Nick Piggin 已提交
5597
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5598
		spin_unlock(lock);
N
Nick Piggin 已提交
5599 5600 5601 5602
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5603
		ret = 1;
L
Linus Torvalds 已提交
5604 5605
		spin_lock(lock);
	}
J
Jan Kara 已提交
5606
	return ret;
L
Linus Torvalds 已提交
5607 5608 5609 5610 5611 5612 5613
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5614
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5615
		local_bh_enable();
L
Linus Torvalds 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5627
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5638
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5639 5640 5641 5642 5643 5644 5645
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5646
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5647

5648
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5649 5650 5651
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5652
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5658
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5659 5660
	long ret;

5661
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5662 5663 5664
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5665
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5686
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5687
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5711
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5712
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5729
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5730
	unsigned int time_slice;
5731
	int retval;
L
Linus Torvalds 已提交
5732 5733 5734
	struct timespec t;

	if (pid < 0)
5735
		return -EINVAL;
L
Linus Torvalds 已提交
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5747 5748 5749 5750 5751 5752
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5753
		time_slice = DEF_TIMESLICE;
5754
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5755 5756 5757 5758 5759
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5760 5761
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5762 5763
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5764
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5765
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5766 5767
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5768

L
Linus Torvalds 已提交
5769 5770 5771 5772 5773
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5774
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5775

5776
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5777 5778
{
	unsigned long free = 0;
5779
	unsigned state;
L
Linus Torvalds 已提交
5780 5781

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5782
	printk(KERN_INFO "%-13.13s %c", p->comm,
5783
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5784
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5785
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5786
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5787
	else
I
Ingo Molnar 已提交
5788
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5789 5790
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5791
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5792
	else
I
Ingo Molnar 已提交
5793
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5794 5795 5796
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5797
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5798 5799
		while (!*n)
			n++;
5800
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5801 5802
	}
#endif
5803
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5804
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5805

5806
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5807 5808
}

I
Ingo Molnar 已提交
5809
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5810
{
5811
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5812

5813 5814 5815
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5816
#else
5817 5818
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5819 5820 5821 5822 5823 5824 5825 5826
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5827
		if (!state_filter || (p->state & state_filter))
5828
			sched_show_task(p);
L
Linus Torvalds 已提交
5829 5830
	} while_each_thread(g, p);

5831 5832
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5833 5834 5835
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5836
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5837 5838 5839 5840 5841
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5842 5843
}

I
Ingo Molnar 已提交
5844 5845
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5846
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5847 5848
}

5849 5850 5851 5852 5853 5854 5855 5856
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5857
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5858
{
5859
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5860 5861
	unsigned long flags;

I
Ingo Molnar 已提交
5862 5863 5864
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5865
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5866
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5867
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5868 5869 5870

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5871 5872 5873
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5874 5875 5876
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5877 5878 5879
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5880
	task_thread_info(idle)->preempt_count = 0;
5881
#endif
I
Ingo Molnar 已提交
5882 5883 5884 5885
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5920 5921

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5922 5923
}

L
Linus Torvalds 已提交
5924 5925 5926 5927
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5928
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5947
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5948 5949
 * call is not atomic; no spinlocks may be held.
 */
5950
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5951
{
5952
	struct migration_req req;
L
Linus Torvalds 已提交
5953
	unsigned long flags;
5954
	struct rq *rq;
5955
	int ret = 0;
L
Linus Torvalds 已提交
5956 5957

	rq = task_rq_lock(p, &flags);
5958
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5959 5960 5961 5962
		ret = -EINVAL;
		goto out;
	}

5963 5964 5965 5966 5967 5968
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5969
	if (p->sched_class->set_cpus_allowed)
5970
		p->sched_class->set_cpus_allowed(p, new_mask);
5971
	else {
5972 5973
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5974 5975
	}

L
Linus Torvalds 已提交
5976
	/* Can the task run on the task's current CPU? If so, we're done */
5977
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5978 5979
		goto out;

5980
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5990

L
Linus Torvalds 已提交
5991 5992
	return ret;
}
5993
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5994 5995

/*
I
Ingo Molnar 已提交
5996
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6003 6004
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6005
 */
6006
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6007
{
6008
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6009
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6010

6011
	if (unlikely(!cpu_active(dest_cpu)))
6012
		return ret;
L
Linus Torvalds 已提交
6013 6014 6015 6016 6017 6018 6019

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6020
		goto done;
L
Linus Torvalds 已提交
6021 6022
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6023
		goto fail;
L
Linus Torvalds 已提交
6024

I
Ingo Molnar 已提交
6025
	on_rq = p->se.on_rq;
6026
	if (on_rq)
6027
		deactivate_task(rq_src, p, 0);
6028

L
Linus Torvalds 已提交
6029
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6030 6031
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6032
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6033
	}
L
Linus Torvalds 已提交
6034
done:
6035
	ret = 1;
L
Linus Torvalds 已提交
6036
fail:
L
Linus Torvalds 已提交
6037
	double_rq_unlock(rq_src, rq_dest);
6038
	return ret;
L
Linus Torvalds 已提交
6039 6040 6041 6042 6043 6044 6045
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6046
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6047 6048
{
	int cpu = (long)data;
6049
	struct rq *rq;
L
Linus Torvalds 已提交
6050 6051 6052 6053 6054 6055

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6056
		struct migration_req *req;
L
Linus Torvalds 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6079
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6080 6081
		list_del_init(head->next);

N
Nick Piggin 已提交
6082 6083 6084
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6114
/*
6115
 * Figure out where task on dead CPU should go, use force if necessary.
6116 6117
 * NOTE: interrupts should be disabled by the caller
 */
6118
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6119
{
6120
	unsigned long flags;
L
Linus Torvalds 已提交
6121
	cpumask_t mask;
6122 6123
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6124

6125 6126 6127 6128 6129 6130 6131
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6132
		if (dest_cpu >= nr_cpu_ids)
6133 6134 6135
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6136
		if (dest_cpu >= nr_cpu_ids) {
6137 6138 6139
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6140 6141 6142 6143
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6144
			 * cpuset_cpus_allowed() will not block. It must be
6145 6146
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6147
			rq = task_rq_lock(p, &flags);
6148
			p->cpus_allowed = cpus_allowed;
6149 6150
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6151

6152 6153 6154 6155 6156
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6157
			if (p->mm && printk_ratelimit()) {
6158 6159
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6160 6161
					task_pid_nr(p), p->comm, dead_cpu);
			}
6162
		}
6163
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6164 6165 6166 6167 6168 6169 6170 6171 6172
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6173
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6174
{
6175
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6189
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6190

6191
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6192

6193 6194
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6195 6196
			continue;

6197 6198 6199
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6200

6201
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6202 6203
}

I
Ingo Molnar 已提交
6204 6205
/*
 * Schedules idle task to be the next runnable task on current CPU.
6206 6207
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6208 6209 6210
 */
void sched_idle_next(void)
{
6211
	int this_cpu = smp_processor_id();
6212
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6213 6214 6215 6216
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6217
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6218

6219 6220 6221
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6222 6223 6224
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6225
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6226

6227 6228
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6229 6230 6231 6232

	spin_unlock_irqrestore(&rq->lock, flags);
}

6233 6234
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6248
/* called under rq->lock with disabled interrupts */
6249
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6250
{
6251
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6252 6253

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6254
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6255 6256

	/* Cannot have done final schedule yet: would have vanished. */
6257
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6258

6259
	get_task_struct(p);
L
Linus Torvalds 已提交
6260 6261 6262

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6263
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6264 6265
	 * fine.
	 */
6266
	spin_unlock_irq(&rq->lock);
6267
	move_task_off_dead_cpu(dead_cpu, p);
6268
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6269

6270
	put_task_struct(p);
L
Linus Torvalds 已提交
6271 6272 6273 6274 6275
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6276
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6277
	struct task_struct *next;
6278

I
Ingo Molnar 已提交
6279 6280 6281
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6282
		update_rq_clock(rq);
6283
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6284 6285
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6286
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6287
		migrate_dead(dead_cpu, next);
6288

L
Linus Torvalds 已提交
6289 6290 6291 6292
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6293 6294 6295
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6296 6297
	{
		.procname	= "sched_domain",
6298
		.mode		= 0555,
6299
	},
I
Ingo Molnar 已提交
6300
	{0, },
6301 6302 6303
};

static struct ctl_table sd_ctl_root[] = {
6304
	{
6305
		.ctl_name	= CTL_KERN,
6306
		.procname	= "kernel",
6307
		.mode		= 0555,
6308 6309
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6310
	{0, },
6311 6312 6313 6314 6315
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6316
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6317 6318 6319 6320

	return entry;
}

6321 6322
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6323
	struct ctl_table *entry;
6324

6325 6326 6327
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6328
	 * will always be set. In the lowest directory the names are
6329 6330 6331
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6332 6333
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6334 6335 6336
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6337 6338 6339 6340 6341

	kfree(*tablep);
	*tablep = NULL;
}

6342
static void
6343
set_table_entry(struct ctl_table *entry,
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6357
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6358

6359 6360 6361
	if (table == NULL)
		return NULL;

6362
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6363
		sizeof(long), 0644, proc_doulongvec_minmax);
6364
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6365
		sizeof(long), 0644, proc_doulongvec_minmax);
6366
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6367
		sizeof(int), 0644, proc_dointvec_minmax);
6368
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6369
		sizeof(int), 0644, proc_dointvec_minmax);
6370
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6371
		sizeof(int), 0644, proc_dointvec_minmax);
6372
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6373
		sizeof(int), 0644, proc_dointvec_minmax);
6374
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6375
		sizeof(int), 0644, proc_dointvec_minmax);
6376
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6377
		sizeof(int), 0644, proc_dointvec_minmax);
6378
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6379
		sizeof(int), 0644, proc_dointvec_minmax);
6380
	set_table_entry(&table[9], "cache_nice_tries",
6381 6382
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6383
	set_table_entry(&table[10], "flags", &sd->flags,
6384
		sizeof(int), 0644, proc_dointvec_minmax);
6385 6386 6387
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6388 6389 6390 6391

	return table;
}

6392
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6393 6394 6395 6396 6397 6398 6399 6400 6401
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6402 6403
	if (table == NULL)
		return NULL;
6404 6405 6406 6407 6408

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6409
		entry->mode = 0555;
6410 6411 6412 6413 6414 6415 6416 6417
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6418
static void register_sched_domain_sysctl(void)
6419 6420 6421 6422 6423
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6424 6425 6426
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6427 6428 6429
	if (entry == NULL)
		return;

6430
	for_each_online_cpu(i) {
6431 6432
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6433
		entry->mode = 0555;
6434
		entry->child = sd_alloc_ctl_cpu_table(i);
6435
		entry++;
6436
	}
6437 6438

	WARN_ON(sd_sysctl_header);
6439 6440
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6441

6442
/* may be called multiple times per register */
6443 6444
static void unregister_sched_domain_sysctl(void)
{
6445 6446
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6447
	sd_sysctl_header = NULL;
6448 6449
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6450
}
6451
#else
6452 6453 6454 6455
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6456 6457 6458 6459
{
}
#endif

6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6490 6491 6492 6493
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6494 6495
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6496 6497
{
	struct task_struct *p;
6498
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6499
	unsigned long flags;
6500
	struct rq *rq;
L
Linus Torvalds 已提交
6501 6502

	switch (action) {
6503

L
Linus Torvalds 已提交
6504
	case CPU_UP_PREPARE:
6505
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6506
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6507 6508 6509 6510 6511
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6512
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6513 6514 6515
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6516

L
Linus Torvalds 已提交
6517
	case CPU_ONLINE:
6518
	case CPU_ONLINE_FROZEN:
6519
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6520
		wake_up_process(cpu_rq(cpu)->migration_thread);
6521 6522 6523 6524 6525 6526

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6527 6528

			set_rq_online(rq);
6529 6530
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6531
		break;
6532

L
Linus Torvalds 已提交
6533 6534
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6535
	case CPU_UP_CANCELED_FROZEN:
6536 6537
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6538
		/* Unbind it from offline cpu so it can run. Fall thru. */
6539 6540
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6541 6542 6543
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6544

L
Linus Torvalds 已提交
6545
	case CPU_DEAD:
6546
	case CPU_DEAD_FROZEN:
6547
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6548 6549 6550 6551 6552
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6553
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6554
		update_rq_clock(rq);
6555
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6556
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6557 6558
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6559
		migrate_dead_tasks(cpu);
6560
		spin_unlock_irq(&rq->lock);
6561
		cpuset_unlock();
L
Linus Torvalds 已提交
6562 6563 6564
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6565 6566 6567 6568 6569
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6570 6571
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6572 6573
			struct migration_req *req;

L
Linus Torvalds 已提交
6574
			req = list_entry(rq->migration_queue.next,
6575
					 struct migration_req, list);
L
Linus Torvalds 已提交
6576 6577 6578 6579 6580
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6581

6582 6583
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6584 6585 6586 6587 6588
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6589
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6590 6591 6592
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6593 6594 6595 6596 6597 6598 6599 6600
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6601
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6602 6603 6604 6605
	.notifier_call = migration_call,
	.priority = 10
};

6606
static int __init migration_init(void)
L
Linus Torvalds 已提交
6607 6608
{
	void *cpu = (void *)(long)smp_processor_id();
6609
	int err;
6610 6611

	/* Start one for the boot CPU: */
6612 6613
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6614 6615
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6616 6617

	return err;
L
Linus Torvalds 已提交
6618
}
6619
early_initcall(migration_init);
L
Linus Torvalds 已提交
6620 6621 6622
#endif

#ifdef CONFIG_SMP
6623

6624
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6625

6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6648 6649
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6650
{
I
Ingo Molnar 已提交
6651
	struct sched_group *group = sd->groups;
6652
	char str[256];
L
Linus Torvalds 已提交
6653

6654
	cpulist_scnprintf(str, sizeof(str), sd->span);
6655
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6656 6657 6658 6659 6660 6661 6662 6663 6664

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6665 6666
	}

6667 6668
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6678

I
Ingo Molnar 已提交
6679
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6680
	do {
I
Ingo Molnar 已提交
6681 6682 6683
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6684 6685 6686
			break;
		}

I
Ingo Molnar 已提交
6687 6688 6689 6690 6691 6692
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6693

I
Ingo Molnar 已提交
6694 6695 6696 6697 6698
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6699

6700
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6701 6702 6703 6704
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6705

6706
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6707

6708
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6709
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6710

I
Ingo Molnar 已提交
6711 6712 6713
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6714

6715
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6716
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6717

6718
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6719 6720 6721 6722
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6723

I
Ingo Molnar 已提交
6724 6725
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6726
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6727
	int level = 0;
L
Linus Torvalds 已提交
6728

I
Ingo Molnar 已提交
6729 6730 6731 6732
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6733

I
Ingo Molnar 已提交
6734 6735
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6736 6737 6738 6739 6740 6741
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6742
	for (;;) {
6743
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6744
			break;
L
Linus Torvalds 已提交
6745 6746
		level++;
		sd = sd->parent;
6747
		if (!sd)
I
Ingo Molnar 已提交
6748 6749
			break;
	}
6750
	kfree(groupmask);
L
Linus Torvalds 已提交
6751
}
6752
#else /* !CONFIG_SCHED_DEBUG */
6753
# define sched_domain_debug(sd, cpu) do { } while (0)
6754
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6755

6756
static int sd_degenerate(struct sched_domain *sd)
6757 6758 6759 6760 6761 6762 6763 6764
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6765 6766 6767
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6781 6782
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6801 6802 6803
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6804 6805 6806 6807 6808 6809 6810
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6811 6812 6813 6814 6815 6816 6817 6818 6819
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6820 6821
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6822

6823 6824
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6825 6826 6827 6828 6829 6830 6831
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6832
	cpu_set(rq->cpu, rd->span);
6833
	if (cpu_isset(rq->cpu, cpu_online_map))
6834
		set_rq_online(rq);
G
Gregory Haskins 已提交
6835 6836 6837 6838

	spin_unlock_irqrestore(&rq->lock, flags);
}

6839
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6840 6841 6842
{
	memset(rd, 0, sizeof(*rd));

6843 6844
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6845 6846

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6847 6848 6849 6850
}

static void init_defrootdomain(void)
{
6851
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6852 6853 6854
	atomic_set(&def_root_domain.refcount, 1);
}

6855
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6856 6857 6858 6859 6860 6861 6862
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6863
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6864 6865 6866 6867

	return rd;
}

L
Linus Torvalds 已提交
6868
/*
I
Ingo Molnar 已提交
6869
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6870 6871
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6872 6873
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6874
{
6875
	struct rq *rq = cpu_rq(cpu);
6876 6877 6878 6879 6880 6881 6882
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6883
		if (sd_parent_degenerate(tmp, parent)) {
6884
			tmp->parent = parent->parent;
6885 6886 6887
			if (parent->parent)
				parent->parent->child = tmp;
		}
6888 6889
	}

6890
	if (sd && sd_degenerate(sd)) {
6891
		sd = sd->parent;
6892 6893 6894
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6895 6896 6897

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6898
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6899
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6900 6901 6902
}

/* cpus with isolated domains */
6903
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6904 6905 6906 6907

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6908 6909
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6910 6911 6912 6913 6914 6915 6916 6917 6918

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6919
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6920 6921

/*
6922 6923 6924 6925
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6926 6927 6928 6929 6930
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6931
static void
6932
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6933
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6934 6935 6936
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6937 6938 6939 6940
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6941 6942
	cpus_clear(*covered);

6943
	for_each_cpu_mask_nr(i, *span) {
6944
		struct sched_group *sg;
6945
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6946 6947
		int j;

6948
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6949 6950
			continue;

6951
		cpus_clear(sg->cpumask);
6952
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6953

6954
		for_each_cpu_mask_nr(j, *span) {
6955
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6956 6957
				continue;

6958
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6970
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6971

6972
#ifdef CONFIG_NUMA
6973

6974 6975 6976 6977 6978
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6979
 * Find the next node to include in a given scheduling domain. Simply
6980 6981 6982 6983
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6984
static int find_next_best_node(int node, nodemask_t *used_nodes)
6985 6986 6987 6988 6989
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6990
	for (i = 0; i < nr_node_ids; i++) {
6991
		/* Start at @node */
6992
		n = (node + i) % nr_node_ids;
6993 6994 6995 6996 6997

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6998
		if (node_isset(n, *used_nodes))
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7010
	node_set(best_node, *used_nodes);
7011 7012 7013 7014 7015 7016
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7017
 * @span: resulting cpumask
7018
 *
I
Ingo Molnar 已提交
7019
 * Given a node, construct a good cpumask for its sched_domain to span. It
7020 7021 7022
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7023
static void sched_domain_node_span(int node, cpumask_t *span)
7024
{
7025 7026
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7027
	int i;
7028

7029
	cpus_clear(*span);
7030
	nodes_clear(used_nodes);
7031

7032
	cpus_or(*span, *span, *nodemask);
7033
	node_set(node, used_nodes);
7034 7035

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7036
		int next_node = find_next_best_node(node, &used_nodes);
7037

7038
		node_to_cpumask_ptr_next(nodemask, next_node);
7039
		cpus_or(*span, *span, *nodemask);
7040 7041
	}
}
7042
#endif /* CONFIG_NUMA */
7043

7044
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7045

7046
/*
7047
 * SMT sched-domains:
7048
 */
L
Linus Torvalds 已提交
7049 7050
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7051
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7052

I
Ingo Molnar 已提交
7053
static int
7054 7055
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7056
{
7057 7058
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7059 7060
	return cpu;
}
7061
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7062

7063 7064 7065
/*
 * multi-core sched-domains:
 */
7066 7067
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7068
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7069
#endif /* CONFIG_SCHED_MC */
7070 7071

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7072
static int
7073 7074
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7075
{
7076
	int group;
7077 7078 7079 7080

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7081 7082 7083
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7084 7085
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7086
static int
7087 7088
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7089
{
7090 7091
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7092 7093 7094 7095
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7096
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7097
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7098

I
Ingo Molnar 已提交
7099
static int
7100 7101
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7102
{
7103
	int group;
7104
#ifdef CONFIG_SCHED_MC
7105 7106 7107
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7108
#elif defined(CONFIG_SCHED_SMT)
7109 7110 7111
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7112
#else
7113
	group = cpu;
L
Linus Torvalds 已提交
7114
#endif
7115 7116 7117
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7118 7119 7120 7121
}

#ifdef CONFIG_NUMA
/*
7122 7123 7124
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7125
 */
7126
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7127
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7128

7129
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7130
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7131

7132
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7133
				 struct sched_group **sg, cpumask_t *nodemask)
7134
{
7135 7136
	int group;

7137 7138 7139
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7140 7141 7142 7143

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7144
}
7145

7146 7147 7148 7149 7150 7151 7152
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7153
	do {
7154
		for_each_cpu_mask_nr(j, sg->cpumask) {
7155
			struct sched_domain *sd;
7156

7157 7158 7159 7160 7161 7162 7163 7164
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7165

7166 7167 7168 7169
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7170
}
7171
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7172

7173
#ifdef CONFIG_NUMA
7174
/* Free memory allocated for various sched_group structures */
7175
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7176
{
7177
	int cpu, i;
7178

7179
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7180 7181 7182 7183 7184 7185
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7186
		for (i = 0; i < nr_node_ids; i++) {
7187 7188
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7189 7190 7191
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7208
#else /* !CONFIG_NUMA */
7209
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7210 7211
{
}
7212
#endif /* CONFIG_NUMA */
7213

7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7240 7241
	sd->groups->__cpu_power = 0;

7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7252
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7253 7254 7255 7256 7257 7258 7259 7260
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7261
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7262 7263 7264 7265
		group = group->next;
	} while (group != child->groups);
}

7266 7267 7268 7269 7270
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7271 7272 7273 7274 7275 7276
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7277
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7278

7279 7280 7281 7282 7283
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7284
	sd->level = SD_LV_##type;				\
7285
	SD_INIT_NAME(sd, type);					\
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7334 7335 7336 7337
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7338 7339 7340 7341 7342 7343
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7369
/*
7370 7371
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7372
 */
7373 7374
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7375 7376
{
	int i;
G
Gregory Haskins 已提交
7377
	struct root_domain *rd;
7378 7379
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7380 7381
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7382
	int sd_allnodes = 0;
7383 7384 7385 7386

	/*
	 * Allocate the per-node list of sched groups
	 */
7387
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7388
				    GFP_KERNEL);
7389 7390
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7391
		return -ENOMEM;
7392 7393
	}
#endif
L
Linus Torvalds 已提交
7394

7395
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7396 7397
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7398 7399 7400
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7401 7402 7403
		return -ENOMEM;
	}

7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7423
	/*
7424
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7425
	 */
7426
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7427
		struct sched_domain *sd = NULL, *p;
7428
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7429

7430 7431
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7432 7433

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7434
		if (cpus_weight(*cpu_map) >
7435
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7436
			sd = &per_cpu(allnodes_domains, i);
7437
			SD_INIT(sd, ALLNODES);
7438
			set_domain_attribute(sd, attr);
7439
			sd->span = *cpu_map;
7440
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7441
			p = sd;
7442
			sd_allnodes = 1;
7443 7444 7445
		} else
			p = NULL;

L
Linus Torvalds 已提交
7446
		sd = &per_cpu(node_domains, i);
7447
		SD_INIT(sd, NODE);
7448
		set_domain_attribute(sd, attr);
7449
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7450
		sd->parent = p;
7451 7452
		if (p)
			p->child = sd;
7453
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7454 7455 7456 7457
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7458
		SD_INIT(sd, CPU);
7459
		set_domain_attribute(sd, attr);
7460
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7461
		sd->parent = p;
7462 7463
		if (p)
			p->child = sd;
7464
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7465

7466 7467 7468
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7469
		SD_INIT(sd, MC);
7470
		set_domain_attribute(sd, attr);
7471 7472 7473
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7474
		p->child = sd;
7475
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7476 7477
#endif

L
Linus Torvalds 已提交
7478 7479 7480
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7481
		SD_INIT(sd, SIBLING);
7482
		set_domain_attribute(sd, attr);
7483
		sd->span = per_cpu(cpu_sibling_map, i);
7484
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7485
		sd->parent = p;
7486
		p->child = sd;
7487
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7488 7489 7490 7491 7492
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7493
	for_each_cpu_mask_nr(i, *cpu_map) {
7494 7495 7496 7497 7498 7499
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7500 7501
			continue;

I
Ingo Molnar 已提交
7502
		init_sched_build_groups(this_sibling_map, cpu_map,
7503 7504
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7505 7506 7507
	}
#endif

7508 7509
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7510
	for_each_cpu_mask_nr(i, *cpu_map) {
7511 7512 7513 7514 7515 7516
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7517
			continue;
7518

I
Ingo Molnar 已提交
7519
		init_sched_build_groups(this_core_map, cpu_map,
7520 7521
					&cpu_to_core_group,
					send_covered, tmpmask);
7522 7523 7524
	}
#endif

L
Linus Torvalds 已提交
7525
	/* Set up physical groups */
7526
	for (i = 0; i < nr_node_ids; i++) {
7527 7528
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7529

7530 7531 7532
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7533 7534
			continue;

7535 7536 7537
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7538 7539 7540 7541
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7542 7543 7544 7545 7546 7547 7548
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7549

7550
	for (i = 0; i < nr_node_ids; i++) {
7551 7552
		/* Set up node groups */
		struct sched_group *sg, *prev;
7553 7554 7555
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7556 7557
		int j;

7558 7559 7560 7561 7562
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7563
			sched_group_nodes[i] = NULL;
7564
			continue;
7565
		}
7566

7567
		sched_domain_node_span(i, domainspan);
7568
		cpus_and(*domainspan, *domainspan, *cpu_map);
7569

7570
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7571 7572 7573 7574 7575
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7576
		sched_group_nodes[i] = sg;
7577
		for_each_cpu_mask_nr(j, *nodemask) {
7578
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7579

7580 7581 7582
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7583
		sg->__cpu_power = 0;
7584
		sg->cpumask = *nodemask;
7585
		sg->next = sg;
7586
		cpus_or(*covered, *covered, *nodemask);
7587 7588
		prev = sg;

7589
		for (j = 0; j < nr_node_ids; j++) {
7590
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7591
			int n = (i + j) % nr_node_ids;
7592
			node_to_cpumask_ptr(pnodemask, n);
7593

7594 7595 7596 7597
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7598 7599
				break;

7600 7601
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7602 7603
				continue;

7604 7605
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7606 7607 7608
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7609
				goto error;
7610
			}
7611
			sg->__cpu_power = 0;
7612
			sg->cpumask = *tmpmask;
7613
			sg->next = prev->next;
7614
			cpus_or(*covered, *covered, *tmpmask);
7615 7616 7617 7618
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7619 7620 7621
#endif

	/* Calculate CPU power for physical packages and nodes */
7622
#ifdef CONFIG_SCHED_SMT
7623
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7624 7625
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7626
		init_sched_groups_power(i, sd);
7627
	}
L
Linus Torvalds 已提交
7628
#endif
7629
#ifdef CONFIG_SCHED_MC
7630
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7631 7632
		struct sched_domain *sd = &per_cpu(core_domains, i);

7633
		init_sched_groups_power(i, sd);
7634 7635
	}
#endif
7636

7637
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7638 7639
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7640
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7641 7642
	}

7643
#ifdef CONFIG_NUMA
7644
	for (i = 0; i < nr_node_ids; i++)
7645
		init_numa_sched_groups_power(sched_group_nodes[i]);
7646

7647 7648
	if (sd_allnodes) {
		struct sched_group *sg;
7649

7650 7651
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7652 7653
		init_numa_sched_groups_power(sg);
	}
7654 7655
#endif

L
Linus Torvalds 已提交
7656
	/* Attach the domains */
7657
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7658 7659 7660
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7661 7662
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7663 7664 7665
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7666
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7667
	}
7668

7669
	SCHED_CPUMASK_FREE((void *)allmasks);
7670 7671
	return 0;

7672
#ifdef CONFIG_NUMA
7673
error:
7674 7675
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7676
	return -ENOMEM;
7677
#endif
L
Linus Torvalds 已提交
7678
}
P
Paul Jackson 已提交
7679

7680 7681 7682 7683 7684
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7685 7686
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7687 7688
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7689 7690 7691 7692 7693 7694 7695 7696

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7697 7698 7699 7700
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7701
/*
I
Ingo Molnar 已提交
7702
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7703 7704
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7705
 */
7706
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7707
{
7708 7709
	int err;

7710
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7711 7712 7713 7714 7715
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7716
	dattr_cur = NULL;
7717
	err = build_sched_domains(doms_cur);
7718
	register_sched_domain_sysctl();
7719 7720

	return err;
7721 7722
}

7723 7724
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7725
{
7726
	free_sched_groups(cpu_map, tmpmask);
7727
}
L
Linus Torvalds 已提交
7728

7729 7730 7731 7732
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7733
static void detach_destroy_domains(const cpumask_t *cpu_map)
7734
{
7735
	cpumask_t tmpmask;
7736 7737
	int i;

7738 7739
	unregister_sched_domain_sysctl();

7740
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7741
		cpu_attach_domain(NULL, &def_root_domain, i);
7742
	synchronize_sched();
7743
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7744 7745
}

7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7762 7763
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7764
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7765 7766 7767 7768
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7769 7770 7771
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7772 7773 7774
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7775 7776
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7777 7778
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7779
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7780
 *
7781 7782 7783 7784
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7785 7786
 * Call with hotplug lock held
 */
7787 7788
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7789
{
7790
	int i, j, n;
P
Paul Jackson 已提交
7791

7792
	mutex_lock(&sched_domains_mutex);
7793

7794 7795 7796
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7797
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7798 7799 7800

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7801
		for (j = 0; j < n; j++) {
7802 7803
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7804 7805 7806 7807 7808 7809 7810 7811
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7812 7813 7814 7815 7816 7817 7818
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7819 7820 7821
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7822 7823
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7824 7825 7826
				goto match2;
		}
		/* no match - add a new doms_new */
7827 7828
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7829 7830 7831 7832 7833 7834 7835
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7836
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7837
	doms_cur = doms_new;
7838
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7839
	ndoms_cur = ndoms_new;
7840 7841

	register_sched_domain_sysctl();
7842

7843
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7844 7845
}

7846
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7847
int arch_reinit_sched_domains(void)
7848
{
7849
	get_online_cpus();
7850 7851 7852 7853

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7854
	rebuild_sched_domains();
7855
	put_online_cpus();
7856

7857
	return 0;
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7878 7879
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7880 7881 7882
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7883
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7884
					    const char *buf, size_t count)
7885 7886 7887
{
	return sched_power_savings_store(buf, count, 0);
}
7888 7889 7890
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7891 7892 7893
#endif

#ifdef CONFIG_SCHED_SMT
7894 7895
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7896 7897 7898
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7899
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7900
					     const char *buf, size_t count)
7901 7902 7903
{
	return sched_power_savings_store(buf, count, 1);
}
7904 7905
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7925
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7926

7927
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7928
/*
7929 7930
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7931 7932 7933
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7934 7935 7936 7937 7938 7939
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7940
		partition_sched_domains(1, NULL, NULL);
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7951
{
P
Peter Zijlstra 已提交
7952 7953
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7954 7955
	switch (action) {
	case CPU_DOWN_PREPARE:
7956
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7957
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7958 7959 7960
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7961
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7962
	case CPU_ONLINE:
7963
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7964
		enable_runtime(cpu_rq(cpu));
7965 7966
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7967 7968 7969 7970 7971 7972 7973
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7974 7975
	cpumask_t non_isolated_cpus;

7976 7977 7978 7979 7980
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7981
	get_online_cpus();
7982
	mutex_lock(&sched_domains_mutex);
7983
	arch_init_sched_domains(&cpu_online_map);
7984
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7985 7986
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7987
	mutex_unlock(&sched_domains_mutex);
7988
	put_online_cpus();
7989 7990

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7991 7992
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7993 7994 7995 7996 7997
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7998
	init_hrtick();
7999 8000

	/* Move init over to a non-isolated CPU */
8001
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8002
		BUG();
I
Ingo Molnar 已提交
8003
	sched_init_granularity();
L
Linus Torvalds 已提交
8004 8005 8006 8007
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8008
	sched_init_granularity();
L
Linus Torvalds 已提交
8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8019
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8020 8021
{
	cfs_rq->tasks_timeline = RB_ROOT;
8022
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8023 8024 8025
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8026
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8027 8028
}

P
Peter Zijlstra 已提交
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8042
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8043 8044
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8045 8046 8047 8048 8049 8050 8051
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8052 8053
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8054

8055
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8056
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8057 8058
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8059 8060
}

P
Peter Zijlstra 已提交
8061
#ifdef CONFIG_FAIR_GROUP_SCHED
8062 8063 8064
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8065
{
8066
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8067 8068 8069 8070 8071 8072 8073
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8074 8075 8076 8077
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8078 8079 8080 8081 8082
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8083 8084
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8085
	se->load.inv_weight = 0;
8086
	se->parent = parent;
P
Peter Zijlstra 已提交
8087
}
8088
#endif
P
Peter Zijlstra 已提交
8089

8090
#ifdef CONFIG_RT_GROUP_SCHED
8091 8092 8093
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8094
{
8095 8096
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8097 8098 8099 8100
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8101
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8102 8103 8104 8105
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8106 8107 8108
	if (!rt_se)
		return;

8109 8110 8111 8112 8113
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8114
	rt_se->my_q = rt_rq;
8115
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8116 8117 8118 8119
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8120 8121
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8122
	int i, j;
8123 8124 8125 8126 8127 8128 8129
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8130 8131 8132
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8133 8134 8135 8136 8137 8138
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8139
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8140 8141 8142 8143 8144 8145 8146

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8147 8148 8149 8150 8151 8152 8153

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8154 8155
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8156 8157 8158 8159 8160
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8161 8162 8163 8164 8165 8166 8167 8168
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8169 8170
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8171
	}
I
Ingo Molnar 已提交
8172

G
Gregory Haskins 已提交
8173 8174 8175 8176
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8177 8178 8179 8180 8181 8182
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8183 8184 8185
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8186 8187
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8188

8189
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8190
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8191 8192 8193 8194 8195 8196
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8197 8198
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8199

8200
	for_each_possible_cpu(i) {
8201
		struct rq *rq;
L
Linus Torvalds 已提交
8202 8203 8204

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8205
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8206
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8207
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8208
#ifdef CONFIG_FAIR_GROUP_SCHED
8209
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8210
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8231
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8232
#elif defined CONFIG_USER_SCHED
8233 8234
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8246
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8247
				&per_cpu(init_cfs_rq, i),
8248 8249
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8250

8251
#endif
D
Dhaval Giani 已提交
8252 8253 8254
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8255
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8256
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8257
#ifdef CONFIG_CGROUP_SCHED
8258
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8259
#elif defined CONFIG_USER_SCHED
8260
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8261
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8262
				&per_cpu(init_rt_rq, i),
8263 8264
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8265
#endif
I
Ingo Molnar 已提交
8266
#endif
L
Linus Torvalds 已提交
8267

I
Ingo Molnar 已提交
8268 8269
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8270
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8271
		rq->sd = NULL;
G
Gregory Haskins 已提交
8272
		rq->rd = NULL;
L
Linus Torvalds 已提交
8273
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8274
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8275
		rq->push_cpu = 0;
8276
		rq->cpu = i;
8277
		rq->online = 0;
L
Linus Torvalds 已提交
8278 8279
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8280
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8281
#endif
P
Peter Zijlstra 已提交
8282
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8283 8284 8285
		atomic_set(&rq->nr_iowait, 0);
	}

8286
	set_load_weight(&init_task);
8287

8288 8289 8290 8291
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8292
#ifdef CONFIG_SMP
8293
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8294 8295
#endif

8296 8297 8298 8299
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8313 8314 8315 8316
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8317 8318

	scheduler_running = 1;
L
Linus Torvalds 已提交
8319 8320 8321 8322 8323
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8324
#ifdef in_atomic
L
Linus Torvalds 已提交
8325 8326
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8346 8347 8348 8349 8350 8351
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8352 8353 8354
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8355

8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8367 8368
void normalize_rt_tasks(void)
{
8369
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8370
	unsigned long flags;
8371
	struct rq *rq;
L
Linus Torvalds 已提交
8372

8373
	read_lock_irqsave(&tasklist_lock, flags);
8374
	do_each_thread(g, p) {
8375 8376 8377 8378 8379 8380
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8381 8382
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8383 8384 8385
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8386
#endif
I
Ingo Molnar 已提交
8387 8388 8389 8390 8391 8392 8393 8394

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8395
			continue;
I
Ingo Molnar 已提交
8396
		}
L
Linus Torvalds 已提交
8397

8398
		spin_lock(&p->pi_lock);
8399
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8400

8401
		normalize_task(rq, p);
8402

8403
		__task_rq_unlock(rq);
8404
		spin_unlock(&p->pi_lock);
8405 8406
	} while_each_thread(g, p);

8407
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8408 8409 8410
}

#endif /* CONFIG_MAGIC_SYSRQ */
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8429
struct task_struct *curr_task(int cpu)
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8440 8441
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8442 8443 8444 8445 8446 8447 8448
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8449
void set_curr_task(int cpu, struct task_struct *p)
8450 8451 8452 8453 8454
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8455

8456 8457
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8472 8473
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8474 8475
{
	struct cfs_rq *cfs_rq;
8476
	struct sched_entity *se, *parent_se;
8477
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8478 8479
	int i;

8480
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8481 8482
	if (!tg->cfs_rq)
		goto err;
8483
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8484 8485
	if (!tg->se)
		goto err;
8486 8487

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8488 8489

	for_each_possible_cpu(i) {
8490
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8491

P
Peter Zijlstra 已提交
8492 8493
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8494 8495 8496
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8497 8498
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8499 8500 8501
		if (!se)
			goto err;

8502 8503
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8522
#else /* !CONFG_FAIR_GROUP_SCHED */
8523 8524 8525 8526
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8527 8528
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8540
#endif /* CONFIG_FAIR_GROUP_SCHED */
8541 8542

#ifdef CONFIG_RT_GROUP_SCHED
8543 8544 8545 8546
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8547 8548
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8560 8561
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8562 8563
{
	struct rt_rq *rt_rq;
8564
	struct sched_rt_entity *rt_se, *parent_se;
8565 8566 8567
	struct rq *rq;
	int i;

8568
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8569 8570
	if (!tg->rt_rq)
		goto err;
8571
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8572 8573 8574
	if (!tg->rt_se)
		goto err;

8575 8576
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8577 8578 8579 8580

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8581 8582 8583 8584
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8585

P
Peter Zijlstra 已提交
8586 8587 8588 8589
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8590

8591 8592
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8593 8594
	}

8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8611
#else /* !CONFIG_RT_GROUP_SCHED */
8612 8613 8614 8615
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8616 8617
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8629
#endif /* CONFIG_RT_GROUP_SCHED */
8630

8631
#ifdef CONFIG_GROUP_SCHED
8632 8633 8634 8635 8636 8637 8638 8639
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8640
struct task_group *sched_create_group(struct task_group *parent)
8641 8642 8643 8644 8645 8646 8647 8648 8649
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8650
	if (!alloc_fair_sched_group(tg, parent))
8651 8652
		goto err;

8653
	if (!alloc_rt_sched_group(tg, parent))
8654 8655
		goto err;

8656
	spin_lock_irqsave(&task_group_lock, flags);
8657
	for_each_possible_cpu(i) {
8658 8659
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8660
	}
P
Peter Zijlstra 已提交
8661
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8662 8663 8664 8665 8666

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8667
	list_add_rcu(&tg->siblings, &parent->children);
8668
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8669

8670
	return tg;
S
Srivatsa Vaddagiri 已提交
8671 8672

err:
P
Peter Zijlstra 已提交
8673
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8674 8675 8676
	return ERR_PTR(-ENOMEM);
}

8677
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8678
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8679 8680
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8681
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8682 8683
}

8684
/* Destroy runqueue etc associated with a task group */
8685
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8686
{
8687
	unsigned long flags;
8688
	int i;
S
Srivatsa Vaddagiri 已提交
8689

8690
	spin_lock_irqsave(&task_group_lock, flags);
8691
	for_each_possible_cpu(i) {
8692 8693
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8694
	}
P
Peter Zijlstra 已提交
8695
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8696
	list_del_rcu(&tg->siblings);
8697
	spin_unlock_irqrestore(&task_group_lock, flags);
8698 8699

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8700
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8701 8702
}

8703
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8704 8705 8706
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8707 8708
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8709 8710 8711 8712 8713 8714 8715 8716 8717
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8718
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8719 8720
	on_rq = tsk->se.on_rq;

8721
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8722
		dequeue_task(rq, tsk, 0);
8723 8724
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8725

P
Peter Zijlstra 已提交
8726
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8727

P
Peter Zijlstra 已提交
8728 8729 8730 8731 8732
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8733 8734 8735
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8736
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8737 8738 8739

	task_rq_unlock(rq, &flags);
}
8740
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8741

8742
#ifdef CONFIG_FAIR_GROUP_SCHED
8743
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8744 8745 8746 8747 8748
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8749
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8750 8751 8752
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8753
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8754

8755
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8756
		enqueue_entity(cfs_rq, se, 0);
8757
}
8758

8759 8760 8761 8762 8763 8764 8765 8766 8767
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8768 8769
}

8770 8771
static DEFINE_MUTEX(shares_mutex);

8772
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8773 8774
{
	int i;
8775
	unsigned long flags;
8776

8777 8778 8779 8780 8781 8782
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8783 8784
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8785 8786
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8787

8788
	mutex_lock(&shares_mutex);
8789
	if (tg->shares == shares)
8790
		goto done;
S
Srivatsa Vaddagiri 已提交
8791

8792
	spin_lock_irqsave(&task_group_lock, flags);
8793 8794
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8795
	list_del_rcu(&tg->siblings);
8796
	spin_unlock_irqrestore(&task_group_lock, flags);
8797 8798 8799 8800 8801 8802 8803 8804

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8805
	tg->shares = shares;
8806 8807 8808 8809 8810
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8811
		set_se_shares(tg->se[i], shares);
8812
	}
S
Srivatsa Vaddagiri 已提交
8813

8814 8815 8816 8817
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8818
	spin_lock_irqsave(&task_group_lock, flags);
8819 8820
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8821
	list_add_rcu(&tg->siblings, &tg->parent->children);
8822
	spin_unlock_irqrestore(&task_group_lock, flags);
8823
done:
8824
	mutex_unlock(&shares_mutex);
8825
	return 0;
S
Srivatsa Vaddagiri 已提交
8826 8827
}

8828 8829 8830 8831
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8832
#endif
8833

8834
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8835
/*
P
Peter Zijlstra 已提交
8836
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8837
 */
P
Peter Zijlstra 已提交
8838 8839 8840 8841 8842
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8843
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8844

P
Peter Zijlstra 已提交
8845
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8846 8847
}

P
Peter Zijlstra 已提交
8848 8849
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8850
{
P
Peter Zijlstra 已提交
8851
	struct task_struct *g, *p;
8852

P
Peter Zijlstra 已提交
8853 8854 8855 8856
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8857

P
Peter Zijlstra 已提交
8858 8859
	return 0;
}
8860

P
Peter Zijlstra 已提交
8861 8862 8863 8864 8865
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8866

P
Peter Zijlstra 已提交
8867 8868 8869 8870 8871 8872
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8873

P
Peter Zijlstra 已提交
8874 8875
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8876

P
Peter Zijlstra 已提交
8877 8878 8879
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8880 8881
	}

8882 8883 8884 8885 8886
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8887

8888 8889 8890
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8891 8892
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8893

P
Peter Zijlstra 已提交
8894
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8895

8896 8897 8898 8899 8900
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8901

8902 8903 8904
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8905 8906 8907
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8908

P
Peter Zijlstra 已提交
8909 8910 8911 8912
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8913

P
Peter Zijlstra 已提交
8914
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8915
	}
P
Peter Zijlstra 已提交
8916

P
Peter Zijlstra 已提交
8917 8918 8919 8920
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8921 8922
}

P
Peter Zijlstra 已提交
8923
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8924
{
P
Peter Zijlstra 已提交
8925 8926 8927 8928 8929 8930 8931
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8932 8933
}

8934 8935
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8936
{
P
Peter Zijlstra 已提交
8937
	int i, err = 0;
P
Peter Zijlstra 已提交
8938 8939

	mutex_lock(&rt_constraints_mutex);
8940
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8941 8942
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8943
		goto unlock;
P
Peter Zijlstra 已提交
8944 8945

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8946 8947
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8948 8949 8950 8951 8952 8953 8954 8955 8956

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8957
 unlock:
8958
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8959 8960 8961
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8962 8963
}

8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8976 8977 8978 8979
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8980
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8981 8982
		return -1;

8983
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8984 8985 8986
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8987 8988 8989 8990 8991 8992 8993 8994

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8995 8996 8997
	if (rt_period == 0)
		return -EINVAL;

8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9012
	u64 runtime, period;
9013 9014
	int ret = 0;

9015 9016 9017
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9018 9019 9020 9021 9022 9023 9024 9025
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9026

9027
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9028
	read_lock(&tasklist_lock);
9029
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9030
	read_unlock(&tasklist_lock);
9031 9032 9033 9034
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9035
#else /* !CONFIG_RT_GROUP_SCHED */
9036 9037
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9038 9039 9040
	unsigned long flags;
	int i;

9041 9042 9043
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9044 9045 9046 9047 9048 9049 9050 9051 9052 9053
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9054 9055
	return 0;
}
9056
#endif /* CONFIG_RT_GROUP_SCHED */
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9087

9088
#ifdef CONFIG_CGROUP_SCHED
9089 9090

/* return corresponding task_group object of a cgroup */
9091
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9092
{
9093 9094
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9095 9096 9097
}

static struct cgroup_subsys_state *
9098
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9099
{
9100
	struct task_group *tg, *parent;
9101

9102
	if (!cgrp->parent) {
9103 9104 9105 9106
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9107 9108
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9109 9110 9111 9112 9113 9114
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9115 9116
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9117
{
9118
	struct task_group *tg = cgroup_tg(cgrp);
9119 9120 9121 9122

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9123 9124 9125
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9126
{
9127 9128
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9129
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9130 9131
		return -EINVAL;
#else
9132 9133 9134
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9135
#endif
9136 9137 9138 9139 9140

	return 0;
}

static void
9141
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9142 9143 9144 9145 9146
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9147
#ifdef CONFIG_FAIR_GROUP_SCHED
9148
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9149
				u64 shareval)
9150
{
9151
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9152 9153
}

9154
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9155
{
9156
	struct task_group *tg = cgroup_tg(cgrp);
9157 9158 9159

	return (u64) tg->shares;
}
9160
#endif /* CONFIG_FAIR_GROUP_SCHED */
9161

9162
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9163
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9164
				s64 val)
P
Peter Zijlstra 已提交
9165
{
9166
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9167 9168
}

9169
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9170
{
9171
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9172
}
9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9184
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9185

9186
static struct cftype cpu_files[] = {
9187
#ifdef CONFIG_FAIR_GROUP_SCHED
9188 9189
	{
		.name = "shares",
9190 9191
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9192
	},
9193 9194
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9195
	{
P
Peter Zijlstra 已提交
9196
		.name = "rt_runtime_us",
9197 9198
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9199
	},
9200 9201
	{
		.name = "rt_period_us",
9202 9203
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9204
	},
9205
#endif
9206 9207 9208 9209
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9210
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9211 9212 9213
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9214 9215 9216 9217 9218 9219 9220
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9221 9222 9223
	.early_init	= 1,
};

9224
#endif	/* CONFIG_CGROUP_SCHED */
9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9245
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9246
{
9247
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9260
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9277
static void
9278
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9279
{
9280
	struct cpuacct *ca = cgroup_ca(cgrp);
9281 9282 9283 9284 9285 9286

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9287
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9288
{
9289
	struct cpuacct *ca = cgroup_ca(cgrp);
9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9331 9332 9333
static struct cftype files[] = {
	{
		.name = "usage",
9334 9335
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9336 9337 9338
	},
};

9339
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9340
{
9341
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */