sched.c 180.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
172 173
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
174
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
175 176 177 178 179 180 181
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

182 183
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
184 185

/* Default task group.
I
Ingo Molnar 已提交
186
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
187
 */
188
struct task_group init_task_group = {
I
Ingo Molnar 已提交
189 190 191
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
192

193
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
194
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
195
#else
I
Ingo Molnar 已提交
196
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
197 198
#endif

199
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
200 201

/* return group to which a task belongs */
202
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
203
{
204
	struct task_group *tg;
205

206 207
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
208 209 210
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
211
#else
I
Ingo Molnar 已提交
212
	tg = &init_task_group;
213
#endif
214
	return tg;
S
Srivatsa Vaddagiri 已提交
215 216 217
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
219
{
220 221
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
222 223 224 225
}

#else

226
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
227 228 229

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
230 231 232 233 234 235
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
236
	u64 min_vruntime;
I
Ingo Molnar 已提交
237 238 239 240 241 242 243 244

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
245 246 247

	unsigned long nr_spread_over;

248
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
249 250
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
251 252
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
253 254 255 256 257 258
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
259 260
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
261 262
#endif
};
L
Linus Torvalds 已提交
263

I
Ingo Molnar 已提交
264 265 266 267 268 269 270
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
271 272 273 274 275 276 277
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
278
struct rq {
279 280
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
281 282 283 284 285 286

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
287 288
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289
	unsigned char idle_at_tick;
290 291 292
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
293 294
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
295 296 297 298 299
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
300 301
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
302
#endif
I
Ingo Molnar 已提交
303
	struct rt_rq rt;
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

313
	struct task_struct *curr, *idle;
314
	unsigned long next_balance;
L
Linus Torvalds 已提交
315
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
316 317 318 319 320

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
321 322
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
323
	u64 tick_timestamp;
I
Ingo Molnar 已提交
324

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
333 334
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
335

336
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
345 346 347 348
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
349 350

	/* schedule() stats */
351 352 353
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
354 355

	/* try_to_wake_up() stats */
356 357
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
358 359

	/* BKL stats */
360
	unsigned int bkl_count;
L
Linus Torvalds 已提交
361
#endif
362
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
363 364
};

365
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
367

I
Ingo Molnar 已提交
368 369 370 371 372
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

373 374 375 376 377 378 379 380 381
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
382
/*
I
Ingo Molnar 已提交
383 384
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
385
 */
I
Ingo Molnar 已提交
386
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
387 388 389 390 391 392
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
393 394 395
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
406 407 408 409 410
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
411 412 413 414 415 416 417 418 419 420
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
421
}
I
Ingo Molnar 已提交
422

I
Ingo Molnar 已提交
423 424 425 426
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
427 428
}

N
Nick Piggin 已提交
429 430
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
432 433 434 435
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
436 437
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
438 439 440 441 442 443

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
457
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
458 459
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
460 461
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
462 463 464
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
465
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
466
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
467 468
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
469
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
470 471 472

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

473 474 475 476 477 478
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

479 480 481 482 483 484 485 486
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
487
	struct rq *rq;
488

489
	local_irq_save(flags);
I
Ingo Molnar 已提交
490
	rq = cpu_rq(cpu);
491 492 493 494 495 496
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
497
	now = rq->clock;
498
	local_irq_restore(flags);
499 500 501

	return now;
}
P
Paul E. McKenney 已提交
502
EXPORT_SYMBOL_GPL(cpu_clock);
503

L
Linus Torvalds 已提交
504
#ifndef prepare_arch_switch
505 506 507 508 509 510
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

511 512 513 514 515
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

516
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
517
static inline int task_running(struct rq *rq, struct task_struct *p)
518
{
519
	return task_current(rq, p);
520 521
}

522
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
523 524 525
{
}

526
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
527
{
528 529 530 531
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
532 533 534 535 536 537 538
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

539 540 541 542
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
543
static inline int task_running(struct rq *rq, struct task_struct *p)
544 545 546 547
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
548
	return task_current(rq, p);
549 550 551
#endif
}

552
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

569
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
570 571 572 573 574 575 576 577 578 579 580 581
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
582
#endif
583 584
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
585

586 587 588 589
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
590
static inline struct rq *__task_rq_lock(struct task_struct *p)
591 592
	__acquires(rq->lock)
{
593 594 595 596 597
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
598 599 600 601
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
602 603
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
604
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
605 606
 * explicitly disabling preemption.
 */
607
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
608 609
	__acquires(rq->lock)
{
610
	struct rq *rq;
L
Linus Torvalds 已提交
611

612 613 614 615 616 617
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
618 619 620 621
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
622
static void __task_rq_unlock(struct rq *rq)
623 624 625 626 627
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

628
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
629 630 631 632 633 634
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
635
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
636
 */
A
Alexey Dobriyan 已提交
637
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
638 639
	__acquires(rq->lock)
{
640
	struct rq *rq;
L
Linus Torvalds 已提交
641 642 643 644 645 646 647 648

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

649
/*
650
 * We are going deep-idle (irqs are disabled):
651
 */
652
void sched_clock_idle_sleep_event(void)
653
{
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
670

671
	touch_softlockup_watchdog();
672 673 674 675 676 677 678 679 680 681 682
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
683
}
684
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
685

I
Ingo Molnar 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

738 739 740 741 742 743 744 745
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
746 747 748
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
749
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
750

751
static unsigned long
752 753 754 755 756 757
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
758
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
759 760 761 762 763

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
764
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
765
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
766 767
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
768
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
769

770
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
771 772 773 774 775 776 777 778
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

779
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
780 781 782 783
{
	lw->weight += inc;
}

784
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
785 786 787 788
{
	lw->weight -= dec;
}

789 790 791 792
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
793
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
794 795 796 797
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
798 799 800 801 802 803 804 805 806 807 808
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
809 810 811
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
812 813
 */
static const int prio_to_weight[40] = {
814 815 816 817 818 819 820 821
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
822 823
};

824 825 826 827 828 829 830
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
831
static const u32 prio_to_wmult[40] = {
832 833 834 835 836 837 838 839
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
840
};
841

I
Ingo Molnar 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

855 856 857 858 859 860 861 862 863 864 865 866
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
867

868 869 870 871 872 873
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

I
Ingo Molnar 已提交
874 875
#include "sched_stats.h"
#include "sched_idletask.c"
876 877
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
878 879 880 881 882 883
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

884 885 886 887
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
888
 * total load (rq->load.weight) on the runqueue, while
889 890 891 892 893 894 895
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
896
 * This function is called /before/ updating rq->load
897 898
 * and when switching tasks.
 */
899
static inline void inc_load(struct rq *rq, const struct task_struct *p)
900
{
901
	update_load_add(&rq->load, p->se.load.weight);
902 903
}

904
static inline void dec_load(struct rq *rq, const struct task_struct *p)
905
{
906
	update_load_sub(&rq->load, p->se.load.weight);
907 908
}

909
static void inc_nr_running(struct task_struct *p, struct rq *rq)
910 911
{
	rq->nr_running++;
912
	inc_load(rq, p);
913 914
}

915
static void dec_nr_running(struct task_struct *p, struct rq *rq)
916 917
{
	rq->nr_running--;
918
	dec_load(rq, p);
919 920
}

921 922 923
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
924 925 926 927
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
928

I
Ingo Molnar 已提交
929 930 931 932 933 934 935 936
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
937

I
Ingo Molnar 已提交
938 939
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
940 941
}

942
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
943
{
I
Ingo Molnar 已提交
944
	sched_info_queued(p);
945
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
946
	p->se.on_rq = 1;
947 948
}

949
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
950
{
951
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
952
	p->se.on_rq = 0;
953 954
}

955
/*
I
Ingo Molnar 已提交
956
 * __normal_prio - return the priority that is based on the static prio
957 958 959
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
960
	return p->static_prio;
961 962
}

963 964 965 966 967 968 969
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
970
static inline int normal_prio(struct task_struct *p)
971 972 973
{
	int prio;

974
	if (task_has_rt_policy(p))
975 976 977 978 979 980 981 982 983 984 985 986 987
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
988
static int effective_prio(struct task_struct *p)
989 990 991 992 993 994 995 996 997 998 999 1000
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1001
/*
I
Ingo Molnar 已提交
1002
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1003
 */
I
Ingo Molnar 已提交
1004
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1005
{
I
Ingo Molnar 已提交
1006 1007
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1008

1009
	enqueue_task(rq, p, wakeup);
1010
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1011 1012 1013 1014 1015
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1016
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1017
{
I
Ingo Molnar 已提交
1018 1019 1020
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1021
	dequeue_task(rq, p, sleep);
1022
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1029
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1030 1031 1032 1033
{
	return cpu_curr(task_cpu(p)) == p;
}

1034 1035 1036
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1037
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1038 1039 1040 1041
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1042
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1043
#ifdef CONFIG_SMP
1044 1045 1046 1047 1048 1049
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1050 1051
	task_thread_info(p)->cpu = cpu;
#endif
1052 1053
}

L
Linus Torvalds 已提交
1054
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1067 1068 1069 1070 1071
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1072 1073 1074 1075 1076 1077
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1078
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1079
{
I
Ingo Molnar 已提交
1080 1081
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1082 1083
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1084
	u64 clock_offset;
I
Ingo Molnar 已提交
1085 1086

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1087 1088 1089 1090

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1091 1092 1093 1094
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1095 1096 1097 1098 1099
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1100
#endif
1101 1102
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1103 1104

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1105 1106
}

1107
struct migration_req {
L
Linus Torvalds 已提交
1108 1109
	struct list_head list;

1110
	struct task_struct *task;
L
Linus Torvalds 已提交
1111 1112 1113
	int dest_cpu;

	struct completion done;
1114
};
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1120
static int
1121
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1122
{
1123
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1124 1125 1126 1127 1128

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1129
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1130 1131 1132 1133 1134 1135 1136 1137
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1138

L
Linus Torvalds 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1151
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1152 1153
{
	unsigned long flags;
I
Ingo Molnar 已提交
1154
	int running, on_rq;
1155
	struct rq *rq;
L
Linus Torvalds 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1214

1215 1216 1217 1218 1219 1220 1221
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1237
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1249 1250
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1251 1252 1253 1254
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1255
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1256
{
1257
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1258
	unsigned long total = weighted_cpuload(cpu);
1259

1260
	if (type == 0)
I
Ingo Molnar 已提交
1261
		return total;
1262

I
Ingo Molnar 已提交
1263
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1264 1265 1266
}

/*
1267 1268
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1269
 */
A
Alexey Dobriyan 已提交
1270
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1271
{
1272
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1273
	unsigned long total = weighted_cpuload(cpu);
1274

N
Nick Piggin 已提交
1275
	if (type == 0)
I
Ingo Molnar 已提交
1276
		return total;
1277

I
Ingo Molnar 已提交
1278
	return max(rq->cpu_load[type-1], total);
1279 1280 1281 1282 1283 1284 1285
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1286
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1287
	unsigned long total = weighted_cpuload(cpu);
1288 1289
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1290
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1291 1292
}

N
Nick Piggin 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1310 1311
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1312
			continue;
1313

N
Nick Piggin 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1330 1331
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1332 1333 1334 1335 1336 1337 1338 1339

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1340
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1341 1342 1343 1344 1345 1346 1347

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1348
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1349
 */
I
Ingo Molnar 已提交
1350 1351
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1352
{
1353
	cpumask_t tmp;
N
Nick Piggin 已提交
1354 1355 1356 1357
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1358 1359 1360 1361
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1362
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1388

1389
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1390 1391 1392
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1393 1394
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1395 1396
		if (tmp->flags & flag)
			sd = tmp;
1397
	}
N
Nick Piggin 已提交
1398 1399 1400 1401

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1402 1403 1404 1405 1406 1407
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1408 1409 1410

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1411 1412 1413 1414
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1415

1416
		new_cpu = find_idlest_cpu(group, t, cpu);
1417 1418 1419 1420 1421
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1422

1423
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1450
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1451 1452 1453 1454 1455
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1466 1467 1468 1469
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1470
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1471
			for_each_cpu_mask(i, tmp) {
1472 1473 1474 1475 1476
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1477
					return i;
1478
				}
L
Linus Torvalds 已提交
1479
			}
I
Ingo Molnar 已提交
1480
		} else {
N
Nick Piggin 已提交
1481
			break;
I
Ingo Molnar 已提交
1482
		}
L
Linus Torvalds 已提交
1483 1484 1485 1486
	}
	return cpu;
}
#else
1487
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1507
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1508
{
1509
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1510 1511
	unsigned long flags;
	long old_state;
1512
	struct rq *rq;
L
Linus Torvalds 已提交
1513
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1514
	struct sched_domain *sd, *this_sd = NULL;
1515
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522 1523
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1524
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1525 1526 1527
		goto out_running;

	cpu = task_cpu(p);
1528
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1535 1536
	new_cpu = cpu;

1537
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1538 1539
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1540 1541 1542 1543 1544 1545 1546 1547
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1548 1549 1550
		}
	}

N
Nick Piggin 已提交
1551
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1552 1553 1554
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1555
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1556
	 */
N
Nick Piggin 已提交
1557 1558 1559
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1560

1561 1562
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1563 1564
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1565

N
Nick Piggin 已提交
1566 1567
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1568 1569
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1570 1571
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1572 1573 1574 1575 1576 1577
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1578
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1579
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1580

L
Linus Torvalds 已提交
1581
			/*
1582 1583 1584
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1585
			 */
1586
			if (sync)
I
Ingo Molnar 已提交
1587
				tl -= current->se.load.weight;
1588 1589

			if ((tl <= load &&
1590
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1591
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1592 1593 1594 1595 1596 1597
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1598
				schedstat_inc(p, se.nr_wakeups_affine);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1610
				schedstat_inc(p, se.nr_wakeups_passive);
1611 1612
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1627
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1628 1629 1630 1631 1632 1633 1634 1635
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1636 1637 1638 1639 1640 1641 1642 1643 1644
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1645
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1646
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1647
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1658
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1665
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1673 1674 1675 1676 1677 1678 1679
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1680
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1681 1682 1683

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1684 1685 1686 1687 1688 1689
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1690
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1691
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1692
#endif
N
Nick Piggin 已提交
1693

I
Ingo Molnar 已提交
1694 1695
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1696

1697 1698 1699 1700
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1701 1702 1703 1704 1705 1706 1707
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1722
	set_task_cpu(p, cpu);
1723 1724 1725 1726 1727

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1728 1729
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1730

1731
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1732
	if (likely(sched_info_on()))
1733
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1734
#endif
1735
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1736 1737
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1738
#ifdef CONFIG_PREEMPT
1739
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1740
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1741
#endif
N
Nick Piggin 已提交
1742
	put_cpu();
L
Linus Torvalds 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1752
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1753 1754
{
	unsigned long flags;
I
Ingo Molnar 已提交
1755
	struct rq *rq;
L
Linus Torvalds 已提交
1756 1757

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1758
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1759
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1760 1761 1762

	p->prio = effective_prio(p);

1763
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1764
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1765 1766
	} else {
		/*
I
Ingo Molnar 已提交
1767 1768
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1769
		 */
1770
		p->sched_class->task_new(rq, p);
1771
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1772
	}
I
Ingo Molnar 已提交
1773 1774
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1775 1776
}

1777 1778 1779
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1780 1781
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1782 1783 1784 1785 1786 1787 1788 1789 1790
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1791
 * @notifier: notifier struct to unregister
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1835 1836 1837
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1838
 * @prev: the current task that is being switched out
1839 1840 1841 1842 1843 1844 1845 1846 1847
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1848 1849 1850
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1851
{
1852
	fire_sched_out_preempt_notifiers(prev, next);
1853 1854 1855 1856
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1857 1858
/**
 * finish_task_switch - clean up after a task-switch
1859
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1860 1861
 * @prev: the thread we just switched away from.
 *
1862 1863 1864 1865
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1866 1867
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1868
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1869 1870 1871
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1872
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1873 1874 1875
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1876
	long prev_state;
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1882
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1883 1884
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1885
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1891
	prev_state = prev->state;
1892 1893
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1894
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1895 1896
	if (mm)
		mmdrop(mm);
1897
	if (unlikely(prev_state == TASK_DEAD)) {
1898 1899 1900
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1901
		 */
1902
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1903
		put_task_struct(prev);
1904
	}
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1911
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1912 1913
	__releases(rq->lock)
{
1914 1915
	struct rq *rq = this_rq();

1916 1917 1918 1919 1920
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1921
	if (current->set_child_tid)
1922
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1929
static inline void
1930
context_switch(struct rq *rq, struct task_struct *prev,
1931
	       struct task_struct *next)
L
Linus Torvalds 已提交
1932
{
I
Ingo Molnar 已提交
1933
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1934

1935
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1936 1937
	mm = next->mm;
	oldmm = prev->active_mm;
1938 1939 1940 1941 1942 1943 1944
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1945
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1952
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1953 1954 1955
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1956 1957 1958 1959 1960 1961 1962
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964
#endif
L
Linus Torvalds 已提交
1965 1966 1967 1968

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1969 1970 1971 1972 1973 1974 1975
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1999
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2014 2015
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2016

2017
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2027
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2048
/*
I
Ingo Molnar 已提交
2049 2050
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2051
 */
I
Ingo Molnar 已提交
2052
static void update_cpu_load(struct rq *this_rq)
2053
{
2054
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2067 2068 2069 2070 2071 2072 2073
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2074 2075
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2076 2077
}

I
Ingo Molnar 已提交
2078 2079
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2086
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2087 2088 2089
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2090
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2091 2092 2093 2094
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2095
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101 2102
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2103 2104
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109 2110 2111 2112
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2113
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2127
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2128 2129 2130 2131
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2132 2133 2134 2135 2136
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2137
	if (unlikely(!spin_trylock(&busiest->lock))) {
2138
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2150
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2151 2152
 * the cpu_allowed mask is restored.
 */
2153
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2154
{
2155
	struct migration_req req;
L
Linus Torvalds 已提交
2156
	unsigned long flags;
2157
	struct rq *rq;
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2168

L
Linus Torvalds 已提交
2169 2170 2171 2172 2173
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2174

L
Linus Torvalds 已提交
2175 2176 2177 2178 2179 2180 2181
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2182 2183
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2184 2185 2186 2187
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2188
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2189
	put_cpu();
N
Nick Piggin 已提交
2190 2191
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196 2197
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2198 2199
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2200
{
2201
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2202
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2203
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2204 2205 2206 2207
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2208
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2214
static
2215
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2216
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2217
		     int *all_pinned)
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2225 2226
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2227
		return 0;
2228
	}
2229 2230
	*all_pinned = 0;

2231 2232
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2233
		return 0;
2234
	}
L
Linus Torvalds 已提交
2235

2236 2237 2238 2239 2240 2241
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2242 2243
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2244
#ifdef CONFIG_SCHEDSTATS
2245
		if (task_hot(p, rq->clock, sd)) {
2246
			schedstat_inc(sd, lb_hot_gained[idle]);
2247 2248
			schedstat_inc(p, se.nr_forced_migrations);
		}
2249 2250 2251 2252
#endif
		return 1;
	}

2253 2254
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2255
		return 0;
2256
	}
L
Linus Torvalds 已提交
2257 2258 2259
	return 1;
}

2260 2261 2262 2263 2264
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2265
{
2266
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2267 2268
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2269

2270
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2271 2272
		goto out;

2273 2274
	pinned = 1;

L
Linus Torvalds 已提交
2275
	/*
I
Ingo Molnar 已提交
2276
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2277
	 */
I
Ingo Molnar 已提交
2278 2279
	p = iterator->start(iterator->arg);
next:
2280
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2281
		goto out;
2282
	/*
2283
	 * To help distribute high priority tasks across CPUs we don't
2284 2285 2286
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2287 2288
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2289
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2290 2291 2292
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2293 2294
	}

I
Ingo Molnar 已提交
2295
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2296
	pulled++;
I
Ingo Molnar 已提交
2297
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2298

2299
	/*
2300
	 * We only want to steal up to the prescribed amount of weighted load.
2301
	 */
2302
	if (rem_load_move > 0) {
2303 2304
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2305 2306
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2307 2308 2309
	}
out:
	/*
2310
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2311 2312 2313 2314
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2315 2316 2317

	if (all_pinned)
		*all_pinned = pinned;
2318 2319

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2320 2321
}

I
Ingo Molnar 已提交
2322
/*
P
Peter Williams 已提交
2323 2324 2325
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2326 2327 2328 2329
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2330
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2331 2332 2333
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2334
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2335
	unsigned long total_load_moved = 0;
2336
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2337 2338

	do {
P
Peter Williams 已提交
2339 2340
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2341
				max_load_move - total_load_moved,
2342
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2343
		class = class->next;
P
Peter Williams 已提交
2344
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2345

P
Peter Williams 已提交
2346 2347 2348
	return total_load_moved > 0;
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2385
	const struct sched_class *class;
P
Peter Williams 已提交
2386 2387

	for (class = sched_class_highest; class; class = class->next)
2388
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2389 2390 2391
			return 1;

	return 0;
I
Ingo Molnar 已提交
2392 2393
}

L
Linus Torvalds 已提交
2394 2395
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2396 2397
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2398 2399 2400
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2401 2402
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2403 2404 2405
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2406
	unsigned long max_pull;
2407 2408
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2409
	int load_idx, group_imb = 0;
2410 2411 2412 2413 2414 2415
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2416 2417

	max_load = this_load = total_load = total_pwr = 0;
2418 2419
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2420
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2421
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2422
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2423 2424 2425
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2426 2427

	do {
2428
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2429 2430
		int local_group;
		int i;
2431
		int __group_imb = 0;
2432
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2433
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2434 2435 2436

		local_group = cpu_isset(this_cpu, group->cpumask);

2437 2438 2439
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2440
		/* Tally up the load of all CPUs in the group */
2441
		sum_weighted_load = sum_nr_running = avg_load = 0;
2442 2443
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2444 2445

		for_each_cpu_mask(i, group->cpumask) {
2446 2447 2448 2449 2450 2451
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2452

2453
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2454 2455
				*sd_idle = 0;

L
Linus Torvalds 已提交
2456
			/* Bias balancing toward cpus of our domain */
2457 2458 2459 2460 2461 2462
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2463
				load = target_load(i, load_idx);
2464
			} else {
N
Nick Piggin 已提交
2465
				load = source_load(i, load_idx);
2466 2467 2468 2469 2470
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2471 2472

			avg_load += load;
2473
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2474
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2475 2476
		}

2477 2478 2479
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2480 2481
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2482
		 */
2483 2484
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2485 2486 2487 2488
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2489
		total_load += avg_load;
2490
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2491 2492

		/* Adjust by relative CPU power of the group */
2493 2494
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2495

2496 2497 2498
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2499
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2500

L
Linus Torvalds 已提交
2501 2502 2503
		if (local_group) {
			this_load = avg_load;
			this = group;
2504 2505 2506
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2507
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2508 2509
			max_load = avg_load;
			busiest = group;
2510 2511
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2512
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2513
		}
2514 2515 2516 2517 2518 2519

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2520 2521 2522
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2523 2524 2525 2526 2527 2528 2529 2530 2531

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2532
		/*
2533 2534
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2535 2536
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2537
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2538
			goto group_next;
2539

I
Ingo Molnar 已提交
2540
		/*
2541
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2542 2543 2544 2545 2546
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2547 2548
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2549 2550
			group_min = group;
			min_nr_running = sum_nr_running;
2551 2552
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2553
		}
2554

I
Ingo Molnar 已提交
2555
		/*
2556
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2568
		}
2569 2570
group_next:
#endif
L
Linus Torvalds 已提交
2571 2572 2573
		group = group->next;
	} while (group != sd->groups);

2574
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580 2581 2582
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2583
	busiest_load_per_task /= busiest_nr_running;
2584 2585 2586
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593 2594
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2595
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2596 2597
	 * appear as very large values with unsigned longs.
	 */
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2610 2611

	/* Don't want to pull so many tasks that a group would go idle */
2612
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2613

L
Linus Torvalds 已提交
2614
	/* How much load to actually move to equalise the imbalance */
2615 2616
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2617 2618
			/ SCHED_LOAD_SCALE;

2619 2620 2621 2622 2623 2624
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2625
	if (*imbalance < busiest_load_per_task) {
2626
		unsigned long tmp, pwr_now, pwr_move;
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2638

I
Ingo Molnar 已提交
2639 2640
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2641
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2651 2652 2653 2654
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2655 2656 2657
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2658 2659
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2660
		if (max_load > tmp)
2661
			pwr_move += busiest->__cpu_power *
2662
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2663 2664

		/* Amount of load we'd add */
2665
		if (max_load * busiest->__cpu_power <
2666
				busiest_load_per_task * SCHED_LOAD_SCALE)
2667 2668
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2669
		else
2670 2671 2672 2673
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2674 2675 2676
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2677 2678
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683
	}

	return busiest;

out_balanced:
2684
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2685
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2686
		goto ret;
L
Linus Torvalds 已提交
2687

2688 2689 2690 2691 2692
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2693
ret:
L
Linus Torvalds 已提交
2694 2695 2696 2697 2698 2699 2700
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2701
static struct rq *
I
Ingo Molnar 已提交
2702
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2703
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2704
{
2705
	struct rq *busiest = NULL, *rq;
2706
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2707 2708 2709
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2710
		unsigned long wl;
2711 2712 2713 2714

		if (!cpu_isset(i, *cpus))
			continue;

2715
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2716
		wl = weighted_cpuload(i);
2717

I
Ingo Molnar 已提交
2718
		if (rq->nr_running == 1 && wl > imbalance)
2719
			continue;
L
Linus Torvalds 已提交
2720

I
Ingo Molnar 已提交
2721 2722
		if (wl > max_load) {
			max_load = wl;
2723
			busiest = rq;
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728 2729
		}
	}

	return busiest;
}

2730 2731 2732 2733 2734 2735
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2736 2737 2738 2739
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2740
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2741
			struct sched_domain *sd, enum cpu_idle_type idle,
2742
			int *balance)
L
Linus Torvalds 已提交
2743
{
P
Peter Williams 已提交
2744
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2745 2746
	struct sched_group *group;
	unsigned long imbalance;
2747
	struct rq *busiest;
2748
	cpumask_t cpus = CPU_MASK_ALL;
2749
	unsigned long flags;
N
Nick Piggin 已提交
2750

2751 2752 2753
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2754
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2755
	 * portraying it as CPU_NOT_IDLE.
2756
	 */
I
Ingo Molnar 已提交
2757
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2758
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2759
		sd_idle = 1;
L
Linus Torvalds 已提交
2760

2761
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2762

2763 2764
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2765 2766
				   &cpus, balance);

2767
	if (*balance == 0)
2768 2769
		goto out_balanced;

L
Linus Torvalds 已提交
2770 2771 2772 2773 2774
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2775
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2776 2777 2778 2779 2780
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2781
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2782 2783 2784

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2785
	ld_moved = 0;
L
Linus Torvalds 已提交
2786 2787 2788 2789
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2790
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2791 2792
		 * correctly treated as an imbalance.
		 */
2793
		local_irq_save(flags);
N
Nick Piggin 已提交
2794
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2795
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2796
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2797
		double_rq_unlock(this_rq, busiest);
2798
		local_irq_restore(flags);
2799

2800 2801 2802
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2803
		if (ld_moved && this_cpu != smp_processor_id())
2804 2805
			resched_cpu(this_cpu);

2806
		/* All tasks on this runqueue were pinned by CPU affinity */
2807 2808 2809 2810
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2811
			goto out_balanced;
2812
		}
L
Linus Torvalds 已提交
2813
	}
2814

P
Peter Williams 已提交
2815
	if (!ld_moved) {
L
Linus Torvalds 已提交
2816 2817 2818 2819 2820
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2821
			spin_lock_irqsave(&busiest->lock, flags);
2822 2823 2824 2825 2826

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2827
				spin_unlock_irqrestore(&busiest->lock, flags);
2828 2829 2830 2831
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2832 2833 2834
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2835
				active_balance = 1;
L
Linus Torvalds 已提交
2836
			}
2837
			spin_unlock_irqrestore(&busiest->lock, flags);
2838
			if (active_balance)
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2845
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2846
		}
2847
	} else
L
Linus Torvalds 已提交
2848 2849
		sd->nr_balance_failed = 0;

2850
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2851 2852
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2853 2854 2855 2856 2857 2858 2859 2860 2861
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2862 2863
	}

P
Peter Williams 已提交
2864
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2865
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2866
		return -1;
P
Peter Williams 已提交
2867
	return ld_moved;
L
Linus Torvalds 已提交
2868 2869 2870 2871

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2872
	sd->nr_balance_failed = 0;
2873 2874

out_one_pinned:
L
Linus Torvalds 已提交
2875
	/* tune up the balancing interval */
2876 2877
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2878 2879
		sd->balance_interval *= 2;

2880
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2881
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2882
		return -1;
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888 2889
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2890
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2891 2892
 * this_rq is locked.
 */
2893
static int
2894
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2895 2896
{
	struct sched_group *group;
2897
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2898
	unsigned long imbalance;
P
Peter Williams 已提交
2899
	int ld_moved = 0;
N
Nick Piggin 已提交
2900
	int sd_idle = 0;
2901
	int all_pinned = 0;
2902
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2903

2904 2905 2906 2907
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2908
	 * portraying it as CPU_NOT_IDLE.
2909 2910 2911
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2912
		sd_idle = 1;
L
Linus Torvalds 已提交
2913

2914
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2915
redo:
I
Ingo Molnar 已提交
2916
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2917
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2918
	if (!group) {
I
Ingo Molnar 已提交
2919
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2920
		goto out_balanced;
L
Linus Torvalds 已提交
2921 2922
	}

I
Ingo Molnar 已提交
2923
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2924
				&cpus);
N
Nick Piggin 已提交
2925
	if (!busiest) {
I
Ingo Molnar 已提交
2926
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2927
		goto out_balanced;
L
Linus Torvalds 已提交
2928 2929
	}

N
Nick Piggin 已提交
2930 2931
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2932
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2933

P
Peter Williams 已提交
2934
	ld_moved = 0;
2935 2936 2937
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2938 2939
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2940
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2941 2942
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2943
		spin_unlock(&busiest->lock);
2944

2945
		if (unlikely(all_pinned)) {
2946 2947 2948 2949
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2950 2951
	}

P
Peter Williams 已提交
2952
	if (!ld_moved) {
I
Ingo Molnar 已提交
2953
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2954 2955
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2956 2957
			return -1;
	} else
2958
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2959

P
Peter Williams 已提交
2960
	return ld_moved;
2961 2962

out_balanced:
I
Ingo Molnar 已提交
2963
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2964
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2965
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2966
		return -1;
2967
	sd->nr_balance_failed = 0;
2968

2969
	return 0;
L
Linus Torvalds 已提交
2970 2971 2972 2973 2974 2975
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2976
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2977 2978
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2979 2980
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2981 2982

	for_each_domain(this_cpu, sd) {
2983 2984 2985 2986 2987 2988
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2989
			/* If we've pulled tasks over stop searching: */
2990
			pulled_task = load_balance_newidle(this_cpu,
2991 2992 2993 2994 2995 2996 2997
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2998
	}
I
Ingo Molnar 已提交
2999
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3000 3001 3002 3003 3004
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3005
	}
L
Linus Torvalds 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3016
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3017
{
3018
	int target_cpu = busiest_rq->push_cpu;
3019 3020
	struct sched_domain *sd;
	struct rq *target_rq;
3021

3022
	/* Is there any task to move? */
3023 3024 3025 3026
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3027 3028

	/*
3029
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3030
	 * we need to fix it. Originally reported by
3031
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3032
	 */
3033
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3034

3035 3036
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3037 3038
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3039 3040

	/* Search for an sd spanning us and the target CPU. */
3041
	for_each_domain(target_cpu, sd) {
3042
		if ((sd->flags & SD_LOAD_BALANCE) &&
3043
		    cpu_isset(busiest_cpu, sd->span))
3044
				break;
3045
	}
3046

3047
	if (likely(sd)) {
3048
		schedstat_inc(sd, alb_count);
3049

P
Peter Williams 已提交
3050 3051
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3052 3053 3054 3055
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3056
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3057 3058
}

3059 3060 3061
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3062
	cpumask_t cpu_mask;
3063 3064 3065 3066 3067
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3068
/*
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3079
 *
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3136 3137 3138 3139 3140
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3141
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3142
{
3143 3144
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3145 3146
	unsigned long interval;
	struct sched_domain *sd;
3147
	/* Earliest time when we have to do rebalance again */
3148
	unsigned long next_balance = jiffies + 60*HZ;
3149
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3150

3151
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3152 3153 3154 3155
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3156
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3157 3158 3159 3160 3161 3162
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3163 3164 3165
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3166

3167 3168 3169 3170 3171
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3172
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3173
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3174 3175
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3176 3177 3178
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3179
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3180
			}
3181
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3182
		}
3183 3184 3185
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3186
		if (time_after(next_balance, sd->last_balance + interval)) {
3187
			next_balance = sd->last_balance + interval;
3188 3189
			update_next_balance = 1;
		}
3190 3191 3192 3193 3194 3195 3196 3197

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3198
	}
3199 3200 3201 3202 3203 3204 3205 3206

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3207 3208 3209 3210 3211 3212 3213 3214 3215
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3216 3217 3218 3219
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3220

I
Ingo Molnar 已提交
3221
	rebalance_domains(this_cpu, idle);
3222 3223 3224 3225 3226 3227 3228

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3229 3230
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3231 3232 3233 3234
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3235
		cpu_clear(this_cpu, cpus);
3236 3237 3238 3239 3240 3241 3242 3243 3244
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3245
			rebalance_domains(balance_cpu, CPU_IDLE);
3246 3247

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3248 3249
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3262
static inline void trigger_load_balance(struct rq *rq, int cpu)
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3314
}
I
Ingo Molnar 已提交
3315 3316 3317

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3318 3319 3320
/*
 * on UP we do not need to balance between CPUs:
 */
3321
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3322 3323
{
}
I
Ingo Molnar 已提交
3324

L
Linus Torvalds 已提交
3325 3326 3327 3328 3329 3330 3331
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3332 3333
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3334
 */
3335
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3336 3337
{
	unsigned long flags;
3338 3339
	u64 ns, delta_exec;
	struct rq *rq;
3340

3341 3342
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3343
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3344 3345
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3346 3347 3348 3349
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3350

L
Linus Torvalds 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3374 3375 3376 3377 3378
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3379
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3413
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3414 3415
	cputime64_t tmp;

3416 3417
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3418

L
Linus Torvalds 已提交
3419 3420 3421 3422 3423 3424 3425 3426
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3427
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3428
		cpustat->system = cputime64_add(cpustat->system, tmp);
3429
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435 3436
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3457
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462 3463 3464

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3465
	} else
L
Linus Torvalds 已提交
3466 3467 3468
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3480
	struct task_struct *curr = rq->curr;
3481
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3482 3483

	spin_lock(&rq->lock);
3484
	__update_rq_clock(rq);
3485 3486 3487 3488 3489 3490
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3491
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3492 3493 3494
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3495

3496
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3497 3498
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3499
#endif
L
Linus Torvalds 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3509 3510
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3511 3512 3513 3514
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3515 3516
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523 3524
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3525 3526
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3527 3528 3529
	/*
	 * Is the spinlock portion underflowing?
	 */
3530 3531 3532 3533
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539 3540
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3541
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3542
 */
I
Ingo Molnar 已提交
3543
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3544
{
3545 3546 3547 3548 3549
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3550 3551 3552
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3553 3554 3555 3556 3557

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3558
}
L
Linus Torvalds 已提交
3559

I
Ingo Molnar 已提交
3560 3561 3562 3563 3564
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3565
	/*
I
Ingo Molnar 已提交
3566
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3567 3568 3569
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3570 3571 3572
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3573 3574
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3575
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3576 3577
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3578 3579
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3580 3581
	}
#endif
I
Ingo Molnar 已提交
3582 3583 3584 3585 3586 3587
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3588
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3589
{
3590
	const struct sched_class *class;
I
Ingo Molnar 已提交
3591
	struct task_struct *p;
L
Linus Torvalds 已提交
3592 3593

	/*
I
Ingo Molnar 已提交
3594 3595
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3596
	 */
I
Ingo Molnar 已提交
3597
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3598
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3599 3600
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3601 3602
	}

I
Ingo Molnar 已提交
3603 3604
	class = sched_class_highest;
	for ( ; ; ) {
3605
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3615

I
Ingo Molnar 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3638

3639 3640 3641 3642
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3643
	__update_rq_clock(rq);
3644 3645
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3646 3647 3648

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3649
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3650
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3651
		} else {
3652
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3653
		}
I
Ingo Molnar 已提交
3654
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3655 3656
	}

I
Ingo Molnar 已提交
3657
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3658 3659
		idle_balance(cpu, rq);

3660
	prev->sched_class->put_prev_task(rq, prev);
3661
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3662 3663

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3664

L
Linus Torvalds 已提交
3665 3666 3667 3668 3669
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3670
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3671 3672 3673
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3674 3675 3676
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3677
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3678
	}
L
Linus Torvalds 已提交
3679 3680 3681 3682 3683 3684 3685 3686
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3687
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3688
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3700
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3701
	 */
N
Nick Piggin 已提交
3702
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3703 3704
		return;

3705 3706 3707 3708 3709 3710 3711 3712
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3713
#ifdef CONFIG_PREEMPT_BKL
3714 3715
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3716
#endif
3717
		schedule();
L
Linus Torvalds 已提交
3718
#ifdef CONFIG_PREEMPT_BKL
3719
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3720
#endif
3721
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3722

3723 3724 3725 3726 3727 3728
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3729 3730 3731 3732
}
EXPORT_SYMBOL(preempt_schedule);

/*
3733
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3745
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3746 3747
	BUG_ON(ti->preempt_count || !irqs_disabled());

3748 3749 3750 3751 3752 3753 3754 3755
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3756
#ifdef CONFIG_PREEMPT_BKL
3757 3758
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3759
#endif
3760 3761 3762
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3763
#ifdef CONFIG_PREEMPT_BKL
3764
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3765
#endif
3766
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3767

3768 3769 3770 3771 3772 3773
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3774 3775 3776 3777
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3778 3779
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3780
{
3781
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3782 3783 3784 3785
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3786 3787
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3788 3789 3790
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3791
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3792 3793 3794 3795 3796
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3797
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3798

3799
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3800 3801
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3802
		if (curr->func(curr, mode, sync, key) &&
3803
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3813
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3814 3815
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3816
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3835
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3847 3848
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3865
void complete(struct completion *x)
L
Linus Torvalds 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3877
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3889 3890
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3891 3892 3893 3894 3895 3896 3897
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3898 3899 3900 3901 3902 3903
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3904 3905 3906 3907 3908
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3909
				return timeout;
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915 3916 3917
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3918 3919
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3920 3921 3922 3923
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3924
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3925
	spin_unlock_irq(&x->wait.lock);
3926 3927
	return timeout;
}
L
Linus Torvalds 已提交
3928

3929
void __sched wait_for_completion(struct completion *x)
3930 3931
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3932
}
3933
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3934

3935
unsigned long __sched
3936
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3937
{
3938
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3939
}
3940
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3941

3942
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3943
{
3944 3945 3946 3947
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3948
}
3949
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3950

3951
unsigned long __sched
3952 3953
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3954
{
3955
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3956
}
3957
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3958

3959 3960
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3961
{
I
Ingo Molnar 已提交
3962 3963 3964 3965
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3966

3967
	__set_current_state(state);
L
Linus Torvalds 已提交
3968

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3983 3984 3985
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3986
long __sched
I
Ingo Molnar 已提交
3987
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3988
{
3989
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3990 3991 3992
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3993
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3994
{
3995
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3996 3997 3998
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3999
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4000
{
4001
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4002 4003 4004
}
EXPORT_SYMBOL(sleep_on_timeout);

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4017
void rt_mutex_setprio(struct task_struct *p, int prio)
4018 4019
{
	unsigned long flags;
4020
	int oldprio, on_rq, running;
4021
	struct rq *rq;
4022 4023 4024 4025

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4026
	update_rq_clock(rq);
4027

4028
	oldprio = p->prio;
I
Ingo Molnar 已提交
4029
	on_rq = p->se.on_rq;
4030
	running = task_current(rq, p);
4031
	if (on_rq) {
4032
		dequeue_task(rq, p, 0);
4033 4034 4035
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4036 4037 4038 4039 4040 4041

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4042 4043
	p->prio = prio;

I
Ingo Molnar 已提交
4044
	if (on_rq) {
4045 4046
		if (running)
			p->sched_class->set_curr_task(rq);
4047
		enqueue_task(rq, p, 0);
4048 4049
		/*
		 * Reschedule if we are currently running on this runqueue and
4050 4051
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4052
		 */
4053
		if (running) {
4054 4055
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4056 4057 4058
		} else {
			check_preempt_curr(rq, p);
		}
4059 4060 4061 4062 4063 4064
	}
	task_rq_unlock(rq, &flags);
}

#endif

4065
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4066
{
I
Ingo Molnar 已提交
4067
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4068
	unsigned long flags;
4069
	struct rq *rq;
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075 4076 4077

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4078
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4079 4080 4081 4082
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4083
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4084
	 */
4085
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4086 4087 4088
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4089 4090
	on_rq = p->se.on_rq;
	if (on_rq) {
4091
		dequeue_task(rq, p, 0);
4092
		dec_load(rq, p);
4093
	}
L
Linus Torvalds 已提交
4094 4095

	p->static_prio = NICE_TO_PRIO(nice);
4096
	set_load_weight(p);
4097 4098 4099
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4100

I
Ingo Molnar 已提交
4101
	if (on_rq) {
4102
		enqueue_task(rq, p, 0);
4103
		inc_load(rq, p);
L
Linus Torvalds 已提交
4104
		/*
4105 4106
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4107
		 */
4108
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113 4114 4115
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4116 4117 4118 4119 4120
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4121
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4122
{
4123 4124
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4125

M
Matt Mackall 已提交
4126 4127 4128 4129
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4141
	long nice, retval;
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4148 4149
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4159 4160 4161
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4180
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4181 4182 4183 4184 4185 4186 4187 4188
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4189
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4208
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214 4215 4216
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4217
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4218
{
4219
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4220 4221 4222
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4223 4224
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4225
{
I
Ingo Molnar 已提交
4226
	BUG_ON(p->se.on_rq);
4227

L
Linus Torvalds 已提交
4228
	p->policy = policy;
I
Ingo Molnar 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4241
	p->rt_priority = prio;
4242 4243 4244
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4245
	set_load_weight(p);
L
Linus Torvalds 已提交
4246 4247 4248
}

/**
4249
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4250 4251 4252
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4253
 *
4254
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4255
 */
I
Ingo Molnar 已提交
4256 4257
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4258
{
4259
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4260
	unsigned long flags;
4261
	struct rq *rq;
L
Linus Torvalds 已提交
4262

4263 4264
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4265 4266 4267 4268 4269
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4270 4271
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4272
		return -EINVAL;
L
Linus Torvalds 已提交
4273 4274
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4275 4276
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4277 4278
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4279
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4281
		return -EINVAL;
4282
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4283 4284
		return -EINVAL;

4285 4286 4287 4288
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4289
		if (rt_policy(policy)) {
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4306 4307 4308 4309 4310 4311
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4312

4313 4314 4315 4316 4317
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4318 4319 4320 4321

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4322 4323 4324 4325 4326
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4327 4328 4329 4330
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4331
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4332 4333 4334
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4335 4336
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4337 4338
		goto recheck;
	}
I
Ingo Molnar 已提交
4339
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4340
	on_rq = p->se.on_rq;
4341
	running = task_current(rq, p);
4342
	if (on_rq) {
4343
		deactivate_task(rq, p, 0);
4344 4345 4346
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4347

L
Linus Torvalds 已提交
4348
	oldprio = p->prio;
I
Ingo Molnar 已提交
4349
	__setscheduler(rq, p, policy, param->sched_priority);
4350

I
Ingo Molnar 已提交
4351
	if (on_rq) {
4352 4353
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4354
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4355 4356
		/*
		 * Reschedule if we are currently running on this runqueue and
4357 4358
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4359
		 */
4360
		if (running) {
4361 4362
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4363 4364 4365
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4366
	}
4367 4368 4369
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4370 4371
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4372 4373 4374 4375
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4376 4377
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4378 4379 4380
{
	struct sched_param lparam;
	struct task_struct *p;
4381
	int retval;
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4387 4388 4389

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4390
	p = find_process_by_pid(pid);
4391 4392 4393
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4394

L
Linus Torvalds 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4404 4405
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4406
{
4407 4408 4409 4410
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4430
	struct task_struct *p;
4431
	int retval;
L
Linus Torvalds 已提交
4432 4433

	if (pid < 0)
4434
		return -EINVAL;
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4456
	struct task_struct *p;
4457
	int retval;
L
Linus Torvalds 已提交
4458 4459

	if (!param || pid < 0)
4460
		return -EINVAL;
L
Linus Torvalds 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4490 4491
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4492

4493
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4494 4495 4496 4497 4498
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4499
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4505
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4516 4517 4518 4519
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4520 4521
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4522
 again:
L
Linus Torvalds 已提交
4523 4524
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4537 4538
out_unlock:
	put_task_struct(p);
4539
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4580
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4581 4582 4583
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4584
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4585 4586
EXPORT_SYMBOL(cpu_online_map);

4587
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4588
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4589 4590 4591 4592
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4593
	struct task_struct *p;
L
Linus Torvalds 已提交
4594 4595
	int retval;

4596
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4597 4598 4599 4600 4601 4602 4603
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4604 4605 4606 4607
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4608
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4609 4610 4611

out_unlock:
	read_unlock(&tasklist_lock);
4612
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4613

4614
	return retval;
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4645 4646
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4647 4648 4649
 */
asmlinkage long sys_sched_yield(void)
{
4650
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4651

4652
	schedstat_inc(rq, yld_count);
4653
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4654 4655 4656 4657 4658 4659

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4660
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667 4668
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4669
static void __cond_resched(void)
L
Linus Torvalds 已提交
4670
{
4671 4672 4673
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4674 4675 4676 4677 4678
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4688 4689
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4701
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4702 4703 4704
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4705
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4706
{
J
Jan Kara 已提交
4707 4708
	int ret = 0;

L
Linus Torvalds 已提交
4709 4710 4711
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4712
		ret = 1;
L
Linus Torvalds 已提交
4713 4714
		spin_lock(lock);
	}
4715
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4716
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4717 4718 4719
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4720
		ret = 1;
L
Linus Torvalds 已提交
4721 4722
		spin_lock(lock);
	}
J
Jan Kara 已提交
4723
	return ret;
L
Linus Torvalds 已提交
4724 4725 4726 4727 4728 4729 4730
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4731
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4732
		local_bh_enable();
L
Linus Torvalds 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4744
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4755
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4756 4757 4758 4759 4760 4761 4762
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4763
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4764

4765
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4766 4767 4768
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4769
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4775
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4776 4777
	long ret;

4778
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4779 4780 4781
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4782
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4803
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4804
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4828
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4829
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4846
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4847
	unsigned int time_slice;
4848
	int retval;
L
Linus Torvalds 已提交
4849 4850 4851
	struct timespec t;

	if (pid < 0)
4852
		return -EINVAL;
L
Linus Torvalds 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4864 4865 4866 4867 4868 4869
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4870
		time_slice = DEF_TIMESLICE;
4871
	} else {
D
Dmitry Adamushko 已提交
4872 4873 4874 4875 4876
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4877 4878
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4879 4880
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4881
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4882
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4883 4884
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4885

L
Linus Torvalds 已提交
4886 4887 4888 4889 4890
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4891
static const char stat_nam[] = "RSDTtZX";
4892 4893

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4894 4895
{
	unsigned long free = 0;
4896
	unsigned state;
L
Linus Torvalds 已提交
4897 4898

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4899
	printk(KERN_INFO "%-13.13s %c", p->comm,
4900
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4901
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4902
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4903
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4904
	else
I
Ingo Molnar 已提交
4905
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4906 4907
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4908
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4909
	else
I
Ingo Molnar 已提交
4910
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4911 4912 4913
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4914
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4915 4916
		while (!*n)
			n++;
4917
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4918 4919
	}
#endif
4920 4921
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4922 4923 4924 4925 4926

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4927
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4928
{
4929
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4930

4931 4932 4933
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4934
#else
4935 4936
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4937 4938 4939 4940 4941 4942 4943 4944
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4945
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4946
			show_task(p);
L
Linus Torvalds 已提交
4947 4948
	} while_each_thread(g, p);

4949 4950
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4951 4952 4953
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4954
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4955 4956 4957 4958 4959
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4960 4961
}

I
Ingo Molnar 已提交
4962 4963
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4964
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4965 4966
}

4967 4968 4969 4970 4971 4972 4973 4974
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4975
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4976
{
4977
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4978 4979
	unsigned long flags;

I
Ingo Molnar 已提交
4980 4981 4982
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4983
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4984
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4985
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4986 4987 4988

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4989 4990 4991
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4992 4993 4994 4995
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4996
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4997
#else
A
Al Viro 已提交
4998
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4999
#endif
I
Ingo Molnar 已提交
5000 5001 5002 5003
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5041 5042 5043 5044
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5045
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5064
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5065 5066
 * call is not atomic; no spinlocks may be held.
 */
5067
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5068
{
5069
	struct migration_req req;
L
Linus Torvalds 已提交
5070
	unsigned long flags;
5071
	struct rq *rq;
5072
	int ret = 0;
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5095

L
Linus Torvalds 已提交
5096 5097 5098 5099 5100
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5101
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5108 5109
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5110
 */
5111
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5112
{
5113
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5114
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5115 5116

	if (unlikely(cpu_is_offline(dest_cpu)))
5117
		return ret;
L
Linus Torvalds 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5130
	on_rq = p->se.on_rq;
5131
	if (on_rq)
5132
		deactivate_task(rq_src, p, 0);
5133

L
Linus Torvalds 已提交
5134
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5135 5136 5137
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5138
	}
5139
	ret = 1;
L
Linus Torvalds 已提交
5140 5141
out:
	double_rq_unlock(rq_src, rq_dest);
5142
	return ret;
L
Linus Torvalds 已提交
5143 5144 5145 5146 5147 5148 5149
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5150
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5151 5152
{
	int cpu = (long)data;
5153
	struct rq *rq;
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158 5159

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5160
		struct migration_req *req;
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5183
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5184 5185
		list_del_init(head->next);

N
Nick Piggin 已提交
5186 5187 5188
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5218
/*
5219
 * Figure out where task on dead CPU should go, use force if necessary.
5220 5221
 * NOTE: interrupts should be disabled by the caller
 */
5222
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5223
{
5224
	unsigned long flags;
L
Linus Torvalds 已提交
5225
	cpumask_t mask;
5226 5227
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5228

5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5241 5242 5243 5244 5245
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5246
			 * cpuset_cpus_allowed() will not block. It must be
5247 5248
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5249
			rq = task_rq_lock(p, &flags);
5250
			p->cpus_allowed = cpus_allowed;
5251 5252
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5253

5254 5255 5256 5257 5258
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5259
			if (p->mm && printk_ratelimit()) {
5260 5261
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5262 5263
					task_pid_nr(p), p->comm, dead_cpu);
			}
5264
		}
5265
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5266 5267 5268 5269 5270 5271 5272 5273 5274
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5275
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5276
{
5277
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5291
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5292

5293
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5294

5295 5296
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5297 5298
			continue;

5299 5300 5301
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5302

5303
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5304 5305
}

I
Ingo Molnar 已提交
5306 5307
/*
 * Schedules idle task to be the next runnable task on current CPU.
5308 5309
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5310 5311 5312
 */
void sched_idle_next(void)
{
5313
	int this_cpu = smp_processor_id();
5314
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5315 5316 5317 5318
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5319
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5320

5321 5322 5323
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5324 5325 5326
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5327
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5328

5329 5330
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5331 5332 5333 5334

	spin_unlock_irqrestore(&rq->lock, flags);
}

5335 5336
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5350
/* called under rq->lock with disabled interrupts */
5351
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5352
{
5353
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5354 5355

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5356
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5357 5358

	/* Cannot have done final schedule yet: would have vanished. */
5359
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5360

5361
	get_task_struct(p);
L
Linus Torvalds 已提交
5362 5363 5364

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5365
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5366 5367
	 * fine.
	 */
5368
	spin_unlock_irq(&rq->lock);
5369
	move_task_off_dead_cpu(dead_cpu, p);
5370
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5371

5372
	put_task_struct(p);
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5378
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5379
	struct task_struct *next;
5380

I
Ingo Molnar 已提交
5381 5382 5383
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5384
		update_rq_clock(rq);
5385
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5386 5387 5388
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5389

L
Linus Torvalds 已提交
5390 5391 5392 5393
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5394 5395 5396
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5397 5398
	{
		.procname	= "sched_domain",
5399
		.mode		= 0555,
5400
	},
I
Ingo Molnar 已提交
5401
	{0, },
5402 5403 5404
};

static struct ctl_table sd_ctl_root[] = {
5405
	{
5406
		.ctl_name	= CTL_KERN,
5407
		.procname	= "kernel",
5408
		.mode		= 0555,
5409 5410
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5411
	{0, },
5412 5413 5414 5415 5416
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5417
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5418 5419 5420 5421

	return entry;
}

5422 5423
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5424
	struct ctl_table *entry;
5425

5426 5427 5428
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5429
	 * will always be set. In the lowest directory the names are
5430 5431 5432
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5433 5434
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5435 5436 5437
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5438 5439 5440 5441 5442

	kfree(*tablep);
	*tablep = NULL;
}

5443
static void
5444
set_table_entry(struct ctl_table *entry,
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5458
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5459

5460 5461 5462
	if (table == NULL)
		return NULL;

5463
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5464
		sizeof(long), 0644, proc_doulongvec_minmax);
5465
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5466
		sizeof(long), 0644, proc_doulongvec_minmax);
5467
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5468
		sizeof(int), 0644, proc_dointvec_minmax);
5469
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5470
		sizeof(int), 0644, proc_dointvec_minmax);
5471
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5472
		sizeof(int), 0644, proc_dointvec_minmax);
5473
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5474
		sizeof(int), 0644, proc_dointvec_minmax);
5475
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5476
		sizeof(int), 0644, proc_dointvec_minmax);
5477
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5478
		sizeof(int), 0644, proc_dointvec_minmax);
5479
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5480
		sizeof(int), 0644, proc_dointvec_minmax);
5481
	set_table_entry(&table[9], "cache_nice_tries",
5482 5483
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5484
	set_table_entry(&table[10], "flags", &sd->flags,
5485
		sizeof(int), 0644, proc_dointvec_minmax);
5486
	/* &table[11] is terminator */
5487 5488 5489 5490

	return table;
}

5491
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5492 5493 5494 5495 5496 5497 5498 5499 5500
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5501 5502
	if (table == NULL)
		return NULL;
5503 5504 5505 5506 5507

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5508
		entry->mode = 0555;
5509 5510 5511 5512 5513 5514 5515 5516
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5517
static void register_sched_domain_sysctl(void)
5518 5519 5520 5521 5522
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5523 5524 5525
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5526 5527 5528
	if (entry == NULL)
		return;

5529
	for_each_online_cpu(i) {
5530 5531
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5532
		entry->mode = 0555;
5533
		entry->child = sd_alloc_ctl_cpu_table(i);
5534
		entry++;
5535
	}
5536 5537

	WARN_ON(sd_sysctl_header);
5538 5539
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5540

5541
/* may be called multiple times per register */
5542 5543
static void unregister_sched_domain_sysctl(void)
{
5544 5545
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5546
	sd_sysctl_header = NULL;
5547 5548
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5549
}
5550
#else
5551 5552 5553 5554
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5555 5556 5557 5558
{
}
#endif

L
Linus Torvalds 已提交
5559 5560 5561 5562
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5563 5564
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5565 5566
{
	struct task_struct *p;
5567
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5568
	unsigned long flags;
5569
	struct rq *rq;
L
Linus Torvalds 已提交
5570 5571

	switch (action) {
5572 5573 5574 5575
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5576
	case CPU_UP_PREPARE:
5577
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5578
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5579 5580 5581 5582 5583
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5584
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5585 5586 5587
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5588

L
Linus Torvalds 已提交
5589
	case CPU_ONLINE:
5590
	case CPU_ONLINE_FROZEN:
5591
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5592 5593
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5594

L
Linus Torvalds 已提交
5595 5596
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5597
	case CPU_UP_CANCELED_FROZEN:
5598 5599
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5600
		/* Unbind it from offline cpu so it can run. Fall thru. */
5601 5602
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5603 5604 5605
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5606

L
Linus Torvalds 已提交
5607
	case CPU_DEAD:
5608
	case CPU_DEAD_FROZEN:
5609
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5610 5611 5612 5613 5614
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5615
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5616
		update_rq_clock(rq);
5617
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5618
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5619 5620
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5621
		migrate_dead_tasks(cpu);
5622
		spin_unlock_irq(&rq->lock);
5623
		cpuset_unlock();
L
Linus Torvalds 已提交
5624 5625 5626
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5627 5628 5629 5630 5631
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5632 5633
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5634 5635
			struct migration_req *req;

L
Linus Torvalds 已提交
5636
			req = list_entry(rq->migration_queue.next,
5637
					 struct migration_req, list);
L
Linus Torvalds 已提交
5638 5639 5640 5641 5642 5643
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5644 5645 5646
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5647 5648 5649 5650 5651 5652 5653
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5654
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5655 5656 5657 5658
	.notifier_call = migration_call,
	.priority = 10
};

5659
void __init migration_init(void)
L
Linus Torvalds 已提交
5660 5661
{
	void *cpu = (void *)(long)smp_processor_id();
5662
	int err;
5663 5664

	/* Start one for the boot CPU: */
5665 5666
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5673 5674 5675 5676 5677

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5678
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5679 5680

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5681
{
I
Ingo Molnar 已提交
5682 5683 5684
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5685

I
Ingo Molnar 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5697 5698
	}

I
Ingo Molnar 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5709

I
Ingo Molnar 已提交
5710
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5711
	do {
I
Ingo Molnar 已提交
5712 5713 5714
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5715 5716 5717
			break;
		}

I
Ingo Molnar 已提交
5718 5719 5720 5721 5722 5723
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5724

I
Ingo Molnar 已提交
5725 5726 5727 5728 5729
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5730

I
Ingo Molnar 已提交
5731 5732 5733 5734 5735
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5736

I
Ingo Molnar 已提交
5737
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5738

I
Ingo Molnar 已提交
5739 5740
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5741

I
Ingo Molnar 已提交
5742 5743 5744
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5745

I
Ingo Molnar 已提交
5746 5747
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5748

I
Ingo Molnar 已提交
5749 5750 5751 5752 5753
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5754

I
Ingo Molnar 已提交
5755 5756 5757
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5758

I
Ingo Molnar 已提交
5759 5760 5761 5762
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5763

I
Ingo Molnar 已提交
5764 5765 5766 5767 5768
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5769 5770
		level++;
		sd = sd->parent;
5771
		if (!sd)
I
Ingo Molnar 已提交
5772 5773
			break;
	}
L
Linus Torvalds 已提交
5774 5775
}
#else
5776
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5777 5778
#endif

5779
static int sd_degenerate(struct sched_domain *sd)
5780 5781 5782 5783 5784 5785 5786 5787
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5788 5789 5790
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5804 5805
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5824 5825 5826
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5827 5828 5829 5830 5831 5832 5833
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5834 5835 5836 5837
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5838
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5839
{
5840
	struct rq *rq = cpu_rq(cpu);
5841 5842 5843 5844 5845 5846 5847
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5848
		if (sd_parent_degenerate(tmp, parent)) {
5849
			tmp->parent = parent->parent;
5850 5851 5852
			if (parent->parent)
				parent->parent->child = tmp;
		}
5853 5854
	}

5855
	if (sd && sd_degenerate(sd)) {
5856
		sd = sd->parent;
5857 5858 5859
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5860 5861 5862

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5863
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5864 5865 5866
}

/* cpus with isolated domains */
5867
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5882
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5883 5884

/*
5885 5886 5887 5888
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5889 5890 5891 5892 5893
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5894
static void
5895 5896 5897
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5898 5899 5900 5901 5902 5903
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5904 5905
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5906 5907 5908 5909 5910 5911
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5912
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5913 5914

		for_each_cpu_mask(j, span) {
5915
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5930
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5931

5932
#ifdef CONFIG_NUMA
5933

5934 5935 5936 5937 5938
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5939
 * Find the next node to include in a given scheduling domain. Simply
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
5979
 * Given a node, construct a good cpumask for its sched_domain to span. It
5980 5981 5982 5983 5984 5985
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5986 5987
	cpumask_t span, nodemask;
	int i;
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5998

5999 6000 6001 6002 6003 6004 6005 6006
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6007
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6008

6009
/*
6010
 * SMT sched-domains:
6011
 */
L
Linus Torvalds 已提交
6012 6013
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6014
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6015

I
Ingo Molnar 已提交
6016 6017
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6018
{
6019 6020
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6021 6022 6023 6024
	return cpu;
}
#endif

6025 6026 6027
/*
 * multi-core sched-domains:
 */
6028 6029
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6030
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6031 6032 6033
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6034 6035
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6036
{
6037
	int group;
6038
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6039
	cpus_and(mask, mask, *cpu_map);
6040 6041 6042 6043
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6044 6045
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6046 6047
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6048
{
6049 6050
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6051 6052 6053 6054
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6055
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6056
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6057

I
Ingo Molnar 已提交
6058 6059
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6060
{
6061
	int group;
6062
#ifdef CONFIG_SCHED_MC
6063
	cpumask_t mask = cpu_coregroup_map(cpu);
6064
	cpus_and(mask, mask, *cpu_map);
6065
	group = first_cpu(mask);
6066
#elif defined(CONFIG_SCHED_SMT)
6067
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6068
	cpus_and(mask, mask, *cpu_map);
6069
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6070
#else
6071
	group = cpu;
L
Linus Torvalds 已提交
6072
#endif
6073 6074 6075
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6076 6077 6078 6079
}

#ifdef CONFIG_NUMA
/*
6080 6081 6082
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6083
 */
6084
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6085
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6086

6087
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6088
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6089

6090 6091
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6092
{
6093 6094 6095 6096 6097 6098 6099 6100 6101
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6102
}
6103

6104 6105 6106 6107 6108 6109 6110
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6111 6112 6113
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6114

6115 6116 6117 6118 6119 6120 6121 6122
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6123

6124 6125 6126 6127
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6128
}
L
Linus Torvalds 已提交
6129 6130
#endif

6131
#ifdef CONFIG_NUMA
6132 6133 6134
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6135
	int cpu, i;
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6166 6167 6168 6169 6170
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6171

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6198 6199
	sd->groups->__cpu_power = 0;

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6210
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6211 6212 6213 6214 6215 6216 6217 6218
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6219
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6220 6221 6222 6223
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6224
/*
6225 6226
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6227
 */
6228
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6229 6230
{
	int i;
6231 6232
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6233
	int sd_allnodes = 0;
6234 6235 6236 6237

	/*
	 * Allocate the per-node list of sched groups
	 */
6238
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6239
				    GFP_KERNEL);
6240 6241
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6242
		return -ENOMEM;
6243 6244 6245
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6246 6247

	/*
6248
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6249
	 */
6250
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6251 6252 6253
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6254
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6255 6256

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6257 6258
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6259 6260 6261
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6262
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6263
			p = sd;
6264
			sd_allnodes = 1;
6265 6266 6267
		} else
			p = NULL;

L
Linus Torvalds 已提交
6268 6269
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6270 6271
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6272 6273
		if (p)
			p->child = sd;
6274
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6275 6276 6277 6278 6279 6280 6281
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6282 6283
		if (p)
			p->child = sd;
6284
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6285

6286 6287 6288 6289 6290 6291 6292
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6293
		p->child = sd;
6294
		cpu_to_core_group(i, cpu_map, &sd->groups);
6295 6296
#endif

L
Linus Torvalds 已提交
6297 6298 6299 6300
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6301
		sd->span = per_cpu(cpu_sibling_map, i);
6302
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6303
		sd->parent = p;
6304
		p->child = sd;
6305
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6306 6307 6308 6309 6310
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6311
	for_each_cpu_mask(i, *cpu_map) {
6312
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6313
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6314 6315 6316
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6317 6318
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6319 6320 6321
	}
#endif

6322 6323 6324 6325 6326 6327 6328
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6329 6330
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6331 6332 6333
	}
#endif

L
Linus Torvalds 已提交
6334 6335 6336 6337
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6338
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6339 6340 6341
		if (cpus_empty(nodemask))
			continue;

6342
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6343 6344 6345 6346
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6347
	if (sd_allnodes)
I
Ingo Molnar 已提交
6348 6349
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6360 6361
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6362
			continue;
6363
		}
6364 6365 6366 6367

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6368
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6369 6370 6371 6372 6373
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6374 6375 6376
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6377

6378 6379 6380
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6381
		sg->__cpu_power = 0;
6382
		sg->cpumask = nodemask;
6383
		sg->next = sg;
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6402 6403
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6404 6405 6406
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6407
				goto error;
6408
			}
6409
			sg->__cpu_power = 0;
6410
			sg->cpumask = tmp;
6411
			sg->next = prev->next;
6412 6413 6414 6415 6416
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6417 6418 6419
#endif

	/* Calculate CPU power for physical packages and nodes */
6420
#ifdef CONFIG_SCHED_SMT
6421
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6422 6423
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6424
		init_sched_groups_power(i, sd);
6425
	}
L
Linus Torvalds 已提交
6426
#endif
6427
#ifdef CONFIG_SCHED_MC
6428
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6429 6430
		struct sched_domain *sd = &per_cpu(core_domains, i);

6431
		init_sched_groups_power(i, sd);
6432 6433
	}
#endif
6434

6435
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6436 6437
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6438
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6439 6440
	}

6441
#ifdef CONFIG_NUMA
6442 6443
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6444

6445 6446
	if (sd_allnodes) {
		struct sched_group *sg;
6447

6448
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6449 6450
		init_numa_sched_groups_power(sg);
	}
6451 6452
#endif

L
Linus Torvalds 已提交
6453
	/* Attach the domains */
6454
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6455 6456 6457
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6458 6459
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6465 6466 6467

	return 0;

6468
#ifdef CONFIG_NUMA
6469 6470 6471
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6472
#endif
L
Linus Torvalds 已提交
6473
}
P
Paul Jackson 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6485
/*
I
Ingo Molnar 已提交
6486
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6487 6488
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6489
 */
6490
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6491
{
6492 6493
	int err;

P
Paul Jackson 已提交
6494 6495 6496 6497 6498
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6499
	err = build_sched_domains(doms_cur);
6500
	register_sched_domain_sysctl();
6501 6502

	return err;
6503 6504 6505
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6506
{
6507
	free_sched_groups(cpu_map);
6508
}
L
Linus Torvalds 已提交
6509

6510 6511 6512 6513
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6514
static void detach_destroy_domains(const cpumask_t *cpu_map)
6515 6516 6517
{
	int i;

6518 6519
	unregister_sched_domain_sysctl();

6520 6521 6522 6523 6524 6525
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6526 6527
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6528
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6529 6530 6531 6532
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6533 6534 6535
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6536 6537 6538
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6539 6540
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6551 6552 6553
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6589 6590

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6591 6592
}

6593
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6594
static int arch_reinit_sched_domains(void)
6595 6596 6597
{
	int err;

6598
	mutex_lock(&sched_hotcpu_mutex);
6599 6600
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6601
	mutex_unlock(&sched_hotcpu_mutex);
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6628 6629
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6630 6631 6632
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6633 6634
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6635 6636 6637 6638 6639 6640 6641
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6642 6643
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6644 6645 6646
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6667 6668
#endif

L
Linus Torvalds 已提交
6669
/*
I
Ingo Molnar 已提交
6670
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6671
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6672
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6673 6674 6675 6676 6677 6678 6679
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6680
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6681
	case CPU_DOWN_PREPARE:
6682
	case CPU_DOWN_PREPARE_FROZEN:
6683
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6684 6685 6686
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6687
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6688
	case CPU_DOWN_FAILED:
6689
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6690
	case CPU_ONLINE:
6691
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6692
	case CPU_DEAD:
6693
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6694 6695 6696 6697 6698 6699 6700 6701 6702
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6703
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6704 6705 6706 6707 6708 6709

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6710 6711
	cpumask_t non_isolated_cpus;

6712
	mutex_lock(&sched_hotcpu_mutex);
6713
	arch_init_sched_domains(&cpu_online_map);
6714
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6715 6716
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6717
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6718 6719
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6720 6721 6722 6723

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6724
	sched_init_granularity();
L
Linus Torvalds 已提交
6725 6726 6727 6728
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6729
	sched_init_granularity();
L
Linus Torvalds 已提交
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6740
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6741 6742 6743 6744 6745
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6746
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6747 6748
}

L
Linus Torvalds 已提交
6749 6750
void __init sched_init(void)
{
6751
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6752 6753
	int i, j;

6754
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6755
		struct rt_prio_array *array;
6756
		struct rq *rq;
L
Linus Torvalds 已提交
6757 6758 6759

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6760
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6761
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6762 6763 6764 6765
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6766 6767 6768 6769 6770 6771 6772
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6773
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6774
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6775 6776
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6777 6778 6779
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6780
			se->load.weight = init_task_group_load;
6781
			se->load.inv_weight =
6782
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6783 6784
			se->parent = NULL;
		}
6785
		init_task_group.shares = init_task_group_load;
6786
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6787
#endif
L
Linus Torvalds 已提交
6788

I
Ingo Molnar 已提交
6789 6790
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6791
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6792
		rq->sd = NULL;
L
Linus Torvalds 已提交
6793
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6794
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6795
		rq->push_cpu = 0;
6796
		rq->cpu = i;
L
Linus Torvalds 已提交
6797 6798 6799 6800 6801
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6802 6803 6804 6805
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6806
		}
6807
		highest_cpu = i;
I
Ingo Molnar 已提交
6808 6809
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6810 6811
	}

6812
	set_load_weight(&init_task);
6813

6814 6815 6816 6817
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6818
#ifdef CONFIG_SMP
6819
	nr_cpu_ids = highest_cpu + 1;
6820 6821 6822
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6823 6824 6825 6826
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6840 6841 6842 6843
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6844 6845 6846 6847 6848
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6849
#ifdef in_atomic
L
Linus Torvalds 已提交
6850 6851 6852 6853 6854 6855 6856
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6857
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6858 6859 6860
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6861
		debug_show_held_locks(current);
6862 6863
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6864 6865 6866 6867 6868 6869 6870 6871
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6886 6887
void normalize_rt_tasks(void)
{
6888
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6889
	unsigned long flags;
6890
	struct rq *rq;
L
Linus Torvalds 已提交
6891 6892

	read_lock_irq(&tasklist_lock);
6893
	do_each_thread(g, p) {
6894 6895 6896 6897 6898 6899
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6900 6901
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6902 6903 6904
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6905
#endif
I
Ingo Molnar 已提交
6906 6907 6908 6909 6910 6911 6912 6913 6914
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6915
			continue;
I
Ingo Molnar 已提交
6916
		}
L
Linus Torvalds 已提交
6917

6918 6919
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6920

6921
		normalize_task(rq, p);
6922

6923 6924
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6925 6926
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6927 6928 6929 6930
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6949
struct task_struct *curr_task(int cpu)
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6960 6961
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6962 6963 6964 6965 6966 6967 6968
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6969
void set_curr_task(int cpu, struct task_struct *p)
6970 6971 6972 6973 6974
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6975 6976 6977 6978

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6979
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6980
{
6981
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6982 6983
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6984
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6985 6986 6987 6988 6989 6990
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6991
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6992 6993
	if (!tg->cfs_rq)
		goto err;
6994
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6995 6996 6997 6998
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6999
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7026 7027 7028 7029 7030
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
7031

7032
	tg->shares = NICE_0_LOAD;
7033
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
7034

7035
	return tg;
S
Srivatsa Vaddagiri 已提交
7036 7037 7038

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7039
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7040
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7041
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7042 7043
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7044 7045 7046
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7047 7048 7049 7050

	return ERR_PTR(-ENOMEM);
}

7051 7052
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7053
{
7054 7055
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7073
/* Destroy runqueue etc associated with a task group */
7074
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7075
{
7076
	struct cfs_rq *cfs_rq = NULL;
7077
	int i;
S
Srivatsa Vaddagiri 已提交
7078

7079 7080 7081 7082 7083
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

7084
	BUG_ON(!cfs_rq);
7085 7086

	/* wait for possible concurrent references to cfs_rqs complete */
7087
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7088 7089
}

7090
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7091 7092 7093
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7094 7095
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7096 7097 7098 7099 7100 7101 7102
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7103
	if (tsk->sched_class != &fair_sched_class) {
7104
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7105
		goto done;
7106
	}
S
Srivatsa Vaddagiri 已提交
7107 7108 7109

	update_rq_clock(rq);

7110
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7111 7112
	on_rq = tsk->se.on_rq;

7113
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7114
		dequeue_task(rq, tsk, 0);
7115 7116 7117
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7118

7119
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7120

7121 7122 7123
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7124
		enqueue_task(rq, tsk, 0);
7125
	}
S
Srivatsa Vaddagiri 已提交
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7152
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7153 7154 7155
{
	int i;

7156
	spin_lock(&tg->lock);
7157
	if (tg->shares == shares)
7158
		goto done;
S
Srivatsa Vaddagiri 已提交
7159

7160
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7161
	for_each_possible_cpu(i)
7162
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7163

7164 7165
done:
	spin_unlock(&tg->lock);
7166
	return 0;
S
Srivatsa Vaddagiri 已提交
7167 7168
}

7169 7170 7171 7172 7173
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7174
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7175 7176 7177 7178

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7179
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7180
{
7181 7182
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7183 7184 7185
}

static struct cgroup_subsys_state *
7186
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7187 7188 7189
{
	struct task_group *tg;

7190
	if (!cgrp->parent) {
7191
		/* This is early initialization for the top cgroup */
7192
		init_task_group.css.cgroup = cgrp;
7193 7194 7195 7196
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7197
	if (cgrp->parent->parent)
7198 7199 7200 7201 7202 7203 7204
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7205
	tg->css.cgroup = cgrp;
7206 7207 7208 7209

	return &tg->css;
}

I
Ingo Molnar 已提交
7210 7211
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7212
{
7213
	struct task_group *tg = cgroup_tg(cgrp);
7214 7215 7216 7217

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7218 7219 7220
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7221 7222 7223 7224 7225 7226 7227 7228 7229
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7230
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7231 7232 7233 7234 7235
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7236 7237
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7238
{
7239
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7240 7241
}

7242
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7243
{
7244
	struct task_group *tg = cgroup_tg(cgrp);
7245 7246 7247 7248

	return (u64) tg->shares;
}

7249 7250 7251 7252 7253 7254
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7255 7256 7257 7258
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7259
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7260 7261 7262
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7263 7264 7265 7266 7267 7268 7269
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7270 7271 7272 7273
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7326 7327
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */