memcontrol.c 144.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299 300 301

	bool		oom_lock;
	atomic_t	under_oom;
302
	atomic_t	oom_wakeups;
303

304
	int	swappiness;
305 306
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
307

308 309 310 311
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
312
	struct mem_cgroup_thresholds thresholds;
313

314
	/* thresholds for mem+swap usage. RCU-protected */
315
	struct mem_cgroup_thresholds memsw_thresholds;
316

K
KAMEZAWA Hiroyuki 已提交
317 318
	/* For oom notifier event fd */
	struct list_head oom_notify;
319

320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
324
	unsigned long move_charge_at_immigrate;
325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
328
	atomic_t		moving_account;
329
	/* taken only while moving_account > 0 */
330 331 332
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
333
	/*
334
	 * percpu counter.
335
	 */
336
	struct mem_cgroup_stat_cpu __percpu *stat;
337 338 339 340 341 342
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
343

M
Michal Hocko 已提交
344
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
345
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
346
#endif
347 348 349 350
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
351 352 353 354 355 356 357

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
358

359 360 361 362
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

363 364
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
365 366
};

367
#ifdef CONFIG_MEMCG_KMEM
368 369
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
370
	return memcg->kmemcg_id >= 0;
371
}
372 373
#endif

374 375
/* Stuffs for move charges at task migration. */
/*
376 377
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
378 379
 */
enum move_type {
380
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
381
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
382 383 384
	NR_MOVE_TYPE,
};

385 386
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
387
	spinlock_t	  lock; /* for from, to */
388 389
	struct mem_cgroup *from;
	struct mem_cgroup *to;
390
	unsigned long immigrate_flags;
391
	unsigned long precharge;
392
	unsigned long moved_charge;
393
	unsigned long moved_swap;
394 395 396
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
397
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
398 399
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
400

D
Daisuke Nishimura 已提交
401 402
static bool move_anon(void)
{
403
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
404 405
}

406 407
static bool move_file(void)
{
408
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
409 410
}

411 412 413 414
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
415
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
416
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
417

418 419
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
420
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
421
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
422
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
423 424 425
	NR_CHARGE_TYPE,
};

426
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
427 428 429 430
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
431
	_KMEM,
G
Glauber Costa 已提交
432 433
};

434 435
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
436
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
437 438
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
439

440 441 442 443 444 445 446
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

447 448
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
449
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
450 451
}

452 453 454 455 456 457 458 459 460 461 462 463 464
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

465 466 467 468 469
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

470 471 472 473 474 475
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
476 477
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
478
	return memcg->css.id;
L
Li Zefan 已提交
479 480 481 482 483 484
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

485
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
486 487 488
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
489
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
490
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
491 492 493

void sock_update_memcg(struct sock *sk)
{
494
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
495
		struct mem_cgroup *memcg;
496
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
497 498 499

		BUG_ON(!sk->sk_prot->proto_cgroup);

500 501 502 503 504 505 506 507 508 509
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
510
			css_get(&sk->sk_cgrp->memcg->css);
511 512 513
			return;
		}

G
Glauber Costa 已提交
514 515
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
516
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
517
		if (!mem_cgroup_is_root(memcg) &&
518 519
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
520
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
521 522 523 524 525 526 527 528
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
529
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
530 531 532
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
533
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
534 535
	}
}
G
Glauber Costa 已提交
536 537 538 539 540 541

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

542
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
543 544
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
545

546 547
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
548
	if (!memcg_proto_activated(&memcg->tcp_mem))
549 550 551 552 553 554 555 556 557
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

558
#ifdef CONFIG_MEMCG_KMEM
559 560
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
561 562 563 564 565
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
566 567 568 569 570 571
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
572 573
int memcg_limited_groups_array_size;

574 575 576 577 578 579
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
580
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
581 582
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
583
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
584 585 586
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
587
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
588

589 590 591 592 593 594
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
595
struct static_key memcg_kmem_enabled_key;
596
EXPORT_SYMBOL(memcg_kmem_enabled_key);
597

598 599
static void memcg_free_cache_id(int id);

600 601
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
602
	if (memcg_kmem_is_active(memcg)) {
603
		static_key_slow_dec(&memcg_kmem_enabled_key);
604
		memcg_free_cache_id(memcg->kmemcg_id);
605
	}
606 607 608 609
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
610
	WARN_ON(page_counter_read(&memcg->kmem));
611 612 613 614 615 616 617 618 619 620 621 622 623
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

624
static struct mem_cgroup_per_zone *
625
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
626
{
627 628 629
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

630
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
631 632
}

633
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
634
{
635
	return &memcg->css;
636 637
}

638
static struct mem_cgroup_per_zone *
639
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640
{
641 642
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
643

644
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

662 663
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
664
					 unsigned long new_usage_in_excess)
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

694 695
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
696 697 698 699 700 701 702
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

703 704
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
705
{
706 707 708
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
709
	__mem_cgroup_remove_exceeded(mz, mctz);
710
	spin_unlock_irqrestore(&mctz->lock, flags);
711 712
}

713 714 715 716 717 718 719 720 721 722 723
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
724 725 726

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
727
	unsigned long excess;
728 729 730
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

731
	mctz = soft_limit_tree_from_page(page);
732 733 734 735 736
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
737
		mz = mem_cgroup_page_zoneinfo(memcg, page);
738
		excess = soft_limit_excess(memcg);
739 740 741 742 743
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
744 745 746
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
747 748
			/* if on-tree, remove it */
			if (mz->on_tree)
749
				__mem_cgroup_remove_exceeded(mz, mctz);
750 751 752 753
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
754
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
755
			spin_unlock_irqrestore(&mctz->lock, flags);
756 757 758 759 760 761 762
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
763 764
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
765

766 767 768 769
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
770
			mem_cgroup_remove_exceeded(mz, mctz);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
793
	__mem_cgroup_remove_exceeded(mz, mctz);
794
	if (!soft_limit_excess(mz->memcg) ||
795
	    !css_tryget_online(&mz->memcg->css))
796 797 798 799 800 801 802 803 804 805
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

806
	spin_lock_irq(&mctz->lock);
807
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
808
	spin_unlock_irq(&mctz->lock);
809 810 811
	return mz;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
831
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
832
				 enum mem_cgroup_stat_index idx)
833
{
834
	long val = 0;
835 836
	int cpu;

837 838
	get_online_cpus();
	for_each_online_cpu(cpu)
839
		val += per_cpu(memcg->stat->count[idx], cpu);
840
#ifdef CONFIG_HOTPLUG_CPU
841 842 843
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
844 845
#endif
	put_online_cpus();
846 847 848
	return val;
}

849
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
850 851 852 853 854
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

855
	get_online_cpus();
856
	for_each_online_cpu(cpu)
857
		val += per_cpu(memcg->stat->events[idx], cpu);
858
#ifdef CONFIG_HOTPLUG_CPU
859 860 861
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
862
#endif
863
	put_online_cpus();
864 865 866
	return val;
}

867
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
868
					 struct page *page,
869
					 int nr_pages)
870
{
871 872 873 874
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
875
	if (PageAnon(page))
876
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
877
				nr_pages);
878
	else
879
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
880
				nr_pages);
881

882 883 884 885
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

886 887
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
888
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
889
	else {
890
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
891 892
		nr_pages = -nr_pages; /* for event */
	}
893

894
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
895 896
}

897
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
898 899 900 901 902 903 904
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

905 906 907
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
908
{
909
	unsigned long nr = 0;
910 911
	int zid;

912
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
913

914 915 916 917 918 919 920 921 922 923 924 925
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
926
}
927

928
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
929
			unsigned int lru_mask)
930
{
931
	unsigned long nr = 0;
932
	int nid;
933

934
	for_each_node_state(nid, N_MEMORY)
935 936
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
937 938
}

939 940
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
941 942 943
{
	unsigned long val, next;

944
	val = __this_cpu_read(memcg->stat->nr_page_events);
945
	next = __this_cpu_read(memcg->stat->targets[target]);
946
	/* from time_after() in jiffies.h */
947 948 949 950 951
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
952 953 954
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
955 956 957 958 959 960 961 962
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
963
	}
964
	return false;
965 966 967 968 969 970
}

/*
 * Check events in order.
 *
 */
971
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
972 973
{
	/* threshold event is triggered in finer grain than soft limit */
974 975
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
976
		bool do_softlimit;
977
		bool do_numainfo __maybe_unused;
978

979 980
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
981 982 983 984
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
985
		mem_cgroup_threshold(memcg);
986 987
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
988
#if MAX_NUMNODES > 1
989
		if (unlikely(do_numainfo))
990
			atomic_inc(&memcg->numainfo_events);
991
#endif
992
	}
993 994
}

995
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
996
{
997 998 999 1000 1001 1002 1003 1004
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1005
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1006 1007
}

1008
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1009
{
1010
	struct mem_cgroup *memcg = NULL;
1011

1012 1013
	rcu_read_lock();
	do {
1014 1015 1016 1017 1018 1019
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1020
			memcg = root_mem_cgroup;
1021 1022 1023 1024 1025
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1026
	} while (!css_tryget_online(&memcg->css));
1027
	rcu_read_unlock();
1028
	return memcg;
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1048
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1049
				   struct mem_cgroup *prev,
1050
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1051
{
1052 1053
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1054
	struct mem_cgroup *memcg = NULL;
1055
	struct mem_cgroup *pos = NULL;
1056

1057 1058
	if (mem_cgroup_disabled())
		return NULL;
1059

1060 1061
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1062

1063
	if (prev && !reclaim)
1064
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1065

1066 1067
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1068
			goto out;
1069
		return root;
1070
	}
K
KAMEZAWA Hiroyuki 已提交
1071

1072
	rcu_read_lock();
M
Michal Hocko 已提交
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1108
		}
K
KAMEZAWA Hiroyuki 已提交
1109

1110 1111 1112 1113 1114 1115
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1116

1117 1118
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1119

1120
		if (css_tryget(css)) {
1121 1122 1123 1124 1125 1126 1127
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1128

1129
			css_put(css);
1130
		}
1131

1132
		memcg = NULL;
1133
	}
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1154
	}
1155

1156 1157
out_unlock:
	rcu_read_unlock();
1158
out:
1159 1160 1161
	if (prev && prev != root)
		css_put(&prev->css);

1162
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1163
}
K
KAMEZAWA Hiroyuki 已提交
1164

1165 1166 1167 1168 1169 1170 1171
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1172 1173 1174 1175 1176 1177
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1178

1179 1180 1181 1182 1183 1184
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1185
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1186
	     iter != NULL;				\
1187
	     iter = mem_cgroup_iter(root, iter, NULL))
1188

1189
#define for_each_mem_cgroup(iter)			\
1190
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1191
	     iter != NULL;				\
1192
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1193

1194
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1195
{
1196
	struct mem_cgroup *memcg;
1197 1198

	rcu_read_lock();
1199 1200
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1201 1202 1203 1204
		goto out;

	switch (idx) {
	case PGFAULT:
1205 1206 1207 1208
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1209 1210 1211 1212 1213 1214 1215
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1216
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1217

1218 1219 1220
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1221
 * @memcg: memcg of the wanted lruvec
1222 1223 1224 1225 1226 1227 1228 1229 1230
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1231
	struct lruvec *lruvec;
1232

1233 1234 1235 1236
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1237

1238
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1249 1250 1251
}

/**
1252
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1253
 * @page: the page
1254
 * @zone: zone of the page
1255 1256 1257 1258
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1259
 */
1260
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1261 1262
{
	struct mem_cgroup_per_zone *mz;
1263
	struct mem_cgroup *memcg;
1264
	struct lruvec *lruvec;
1265

1266 1267 1268 1269
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1270

1271
	memcg = page->mem_cgroup;
1272
	/*
1273
	 * Swapcache readahead pages are added to the LRU - and
1274
	 * possibly migrated - before they are charged.
1275
	 */
1276 1277
	if (!memcg)
		memcg = root_mem_cgroup;
1278

1279
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1290
}
1291

1292
/**
1293 1294 1295 1296
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1297
 *
1298 1299
 * This function must be called when a page is added to or removed from an
 * lru list.
1300
 */
1301 1302
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1303 1304
{
	struct mem_cgroup_per_zone *mz;
1305
	unsigned long *lru_size;
1306 1307 1308 1309

	if (mem_cgroup_disabled())
		return;

1310 1311 1312 1313
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1314
}
1315

1316
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1317
{
1318
	if (root == memcg)
1319
		return true;
1320
	if (!root->use_hierarchy)
1321
		return false;
1322
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1323 1324
}

1325
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1326
{
1327
	struct mem_cgroup *task_memcg;
1328
	struct task_struct *p;
1329
	bool ret;
1330

1331
	p = find_lock_task_mm(task);
1332
	if (p) {
1333
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1334 1335 1336 1337 1338 1339 1340
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1341
		rcu_read_lock();
1342 1343
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1344
		rcu_read_unlock();
1345
	}
1346 1347
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1348 1349 1350
	return ret;
}

1351
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1352
{
1353
	unsigned long inactive_ratio;
1354
	unsigned long inactive;
1355
	unsigned long active;
1356
	unsigned long gb;
1357

1358 1359
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1360

1361 1362 1363 1364 1365 1366
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1367
	return inactive * inactive_ratio < active;
1368 1369
}

1370
#define mem_cgroup_from_counter(counter, member)	\
1371 1372
	container_of(counter, struct mem_cgroup, member)

1373
/**
1374
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1375
 * @memcg: the memory cgroup
1376
 *
1377
 * Returns the maximum amount of memory @mem can be charged with, in
1378
 * pages.
1379
 */
1380
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1381
{
1382 1383 1384
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1399 1400
}

1401
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1402 1403
{
	/* root ? */
1404
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1405 1406
		return vm_swappiness;

1407
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1408 1409
}

1410
/*
Q
Qiang Huang 已提交
1411
 * A routine for checking "mem" is under move_account() or not.
1412
 *
Q
Qiang Huang 已提交
1413 1414 1415
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1416
 */
1417
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1418
{
1419 1420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1421
	bool ret = false;
1422 1423 1424 1425 1426 1427 1428 1429 1430
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1431

1432 1433
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1434 1435
unlock:
	spin_unlock(&mc.lock);
1436 1437 1438
	return ret;
}

1439
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1440 1441
{
	if (mc.moving_task && current != mc.moving_task) {
1442
		if (mem_cgroup_under_move(memcg)) {
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1455
#define K(x) ((x) << (PAGE_SHIFT-10))
1456
/**
1457
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1458 1459 1460 1461 1462 1463 1464 1465
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1466
	/* oom_info_lock ensures that parallel ooms do not interleave */
1467
	static DEFINE_MUTEX(oom_info_lock);
1468 1469
	struct mem_cgroup *iter;
	unsigned int i;
1470

1471
	if (!p)
1472 1473
		return;

1474
	mutex_lock(&oom_info_lock);
1475 1476
	rcu_read_lock();

T
Tejun Heo 已提交
1477 1478
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1479
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1480
	pr_cont_cgroup_path(memcg->css.cgroup);
1481
	pr_cont("\n");
1482 1483 1484

	rcu_read_unlock();

1485 1486 1487 1488 1489 1490 1491 1492 1493
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1494 1495

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1496 1497
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1513
	mutex_unlock(&oom_info_lock);
1514 1515
}

1516 1517 1518 1519
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1520
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1521 1522
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1523 1524
	struct mem_cgroup *iter;

1525
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1526
		num++;
1527 1528 1529
	return num;
}

D
David Rientjes 已提交
1530 1531 1532
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1533
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1534
{
1535
	unsigned long limit;
1536

1537
	limit = memcg->memory.limit;
1538
	if (mem_cgroup_swappiness(memcg)) {
1539
		unsigned long memsw_limit;
1540

1541 1542
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1543 1544
	}
	return limit;
D
David Rientjes 已提交
1545 1546
}

1547 1548
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1549 1550 1551 1552 1553 1554 1555
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1556
	/*
1557 1558 1559
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1560
	 */
1561
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1562 1563 1564 1565 1566
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1567
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1568
	for_each_mem_cgroup_tree(iter, memcg) {
1569
		struct css_task_iter it;
1570 1571
		struct task_struct *task;

1572 1573
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1586
				css_task_iter_end(&it);
1587 1588 1589 1590 1591 1592 1593 1594
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1607
		}
1608
		css_task_iter_end(&it);
1609 1610 1611 1612 1613 1614 1615 1616 1617
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1618 1619
#if MAX_NUMNODES > 1

1620 1621
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1622
 * @memcg: the target memcg
1623 1624 1625 1626 1627 1628 1629
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1630
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1631 1632
		int nid, bool noswap)
{
1633
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1634 1635 1636
		return true;
	if (noswap || !total_swap_pages)
		return false;
1637
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1638 1639 1640 1641
		return true;
	return false;

}
1642 1643 1644 1645 1646 1647 1648

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1649
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1650 1651
{
	int nid;
1652 1653 1654 1655
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1656
	if (!atomic_read(&memcg->numainfo_events))
1657
		return;
1658
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1659 1660 1661
		return;

	/* make a nodemask where this memcg uses memory from */
1662
	memcg->scan_nodes = node_states[N_MEMORY];
1663

1664
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1665

1666 1667
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1668
	}
1669

1670 1671
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1686
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687 1688 1689
{
	int node;

1690 1691
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1692

1693
	node = next_node(node, memcg->scan_nodes);
1694
	if (node == MAX_NUMNODES)
1695
		node = first_node(memcg->scan_nodes);
1696 1697 1698 1699 1700 1701 1702 1703 1704
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1705
	memcg->last_scanned_node = node;
1706 1707 1708
	return node;
}
#else
1709
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1710 1711 1712 1713 1714
{
	return 0;
}
#endif

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1730
	excess = soft_limit_excess(root_memcg);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1759
		if (!soft_limit_excess(root_memcg))
1760
			break;
1761
	}
1762 1763
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1764 1765
}

1766 1767 1768 1769 1770 1771
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1772 1773
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1774 1775 1776 1777
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1778
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1779
{
1780
	struct mem_cgroup *iter, *failed = NULL;
1781

1782 1783
	spin_lock(&memcg_oom_lock);

1784
	for_each_mem_cgroup_tree(iter, memcg) {
1785
		if (iter->oom_lock) {
1786 1787 1788 1789 1790
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1791 1792
			mem_cgroup_iter_break(memcg, iter);
			break;
1793 1794
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1795
	}
K
KAMEZAWA Hiroyuki 已提交
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1808
		}
1809 1810
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1811 1812 1813 1814

	spin_unlock(&memcg_oom_lock);

	return !failed;
1815
}
1816

1817
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1818
{
K
KAMEZAWA Hiroyuki 已提交
1819 1820
	struct mem_cgroup *iter;

1821
	spin_lock(&memcg_oom_lock);
1822
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1823
	for_each_mem_cgroup_tree(iter, memcg)
1824
		iter->oom_lock = false;
1825
	spin_unlock(&memcg_oom_lock);
1826 1827
}

1828
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1829 1830 1831
{
	struct mem_cgroup *iter;

1832
	for_each_mem_cgroup_tree(iter, memcg)
1833 1834 1835
		atomic_inc(&iter->under_oom);
}

1836
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1837 1838 1839
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1840 1841 1842 1843 1844
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1845
	for_each_mem_cgroup_tree(iter, memcg)
1846
		atomic_add_unless(&iter->under_oom, -1, 0);
1847 1848
}

K
KAMEZAWA Hiroyuki 已提交
1849 1850
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1851
struct oom_wait_info {
1852
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1853 1854 1855 1856 1857 1858
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1859 1860
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1864
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1865

1866 1867
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1868 1869 1870 1871
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1872
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1873
{
1874
	atomic_inc(&memcg->oom_wakeups);
1875 1876
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1877 1878
}

1879
static void memcg_oom_recover(struct mem_cgroup *memcg)
1880
{
1881 1882
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1883 1884
}

1885
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1886
{
1887 1888
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1889
	/*
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1902
	 */
1903 1904 1905 1906
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1907 1908 1909 1910
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1911
 * @handle: actually kill/wait or just clean up the OOM state
1912
 *
1913 1914
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1915
 *
1916
 * Memcg supports userspace OOM handling where failed allocations must
1917 1918 1919 1920
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1921
 * the end of the page fault to complete the OOM handling.
1922 1923
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1924
 * completed, %false otherwise.
1925
 */
1926
bool mem_cgroup_oom_synchronize(bool handle)
1927
{
1928
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1929
	struct oom_wait_info owait;
1930
	bool locked;
1931 1932 1933

	/* OOM is global, do not handle */
	if (!memcg)
1934
		return false;
1935

1936 1937
	if (!handle)
		goto cleanup;
1938 1939 1940 1941 1942 1943

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1944

1945
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1959
		schedule();
1960 1961 1962 1963 1964
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1965 1966 1967 1968 1969 1970 1971 1972
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1973 1974
cleanup:
	current->memcg_oom.memcg = NULL;
1975
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1976
	return true;
1977 1978
}

1979 1980 1981
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1982
 *
1983 1984 1985
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1986
 *
1987
 *   memcg = mem_cgroup_begin_page_stat(page);
1988 1989
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1990
 *   mem_cgroup_end_page_stat(memcg);
1991
 */
1992
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1993 1994
{
	struct mem_cgroup *memcg;
1995
	unsigned long flags;
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2009 2010 2011 2012
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2013
again:
2014
	memcg = page->mem_cgroup;
2015
	if (unlikely(!memcg))
2016 2017
		return NULL;

Q
Qiang Huang 已提交
2018
	if (atomic_read(&memcg->moving_account) <= 0)
2019
		return memcg;
2020

2021
	spin_lock_irqsave(&memcg->move_lock, flags);
2022
	if (memcg != page->mem_cgroup) {
2023
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2024 2025
		goto again;
	}
2026 2027 2028 2029 2030 2031 2032 2033

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2034 2035

	return memcg;
2036 2037
}

2038 2039 2040 2041
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2042
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2043
{
2044 2045 2046 2047 2048 2049 2050 2051
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2052

2053
	rcu_read_unlock();
2054 2055
}

2056 2057 2058 2059 2060 2061 2062 2063 2064
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2065
				 enum mem_cgroup_stat_index idx, int val)
2066
{
2067
	VM_BUG_ON(!rcu_read_lock_held());
2068

2069 2070
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2071
}
2072

2073 2074 2075 2076
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2077
#define CHARGE_BATCH	32U
2078 2079
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2080
	unsigned int nr_pages;
2081
	struct work_struct work;
2082
	unsigned long flags;
2083
#define FLUSHING_CACHED_CHARGE	0
2084 2085
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2086
static DEFINE_MUTEX(percpu_charge_mutex);
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2098
 */
2099
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2100 2101
{
	struct memcg_stock_pcp *stock;
2102
	bool ret = false;
2103

2104
	if (nr_pages > CHARGE_BATCH)
2105
		return ret;
2106

2107
	stock = &get_cpu_var(memcg_stock);
2108
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2109
		stock->nr_pages -= nr_pages;
2110 2111
		ret = true;
	}
2112 2113 2114 2115 2116
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2117
 * Returns stocks cached in percpu and reset cached information.
2118 2119 2120 2121 2122
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2123
	if (stock->nr_pages) {
2124
		page_counter_uncharge(&old->memory, stock->nr_pages);
2125
		if (do_swap_account)
2126
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2127
		css_put_many(&old->css, stock->nr_pages);
2128
		stock->nr_pages = 0;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2139
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2140
	drain_stock(stock);
2141
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2142 2143
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2155
/*
2156
 * Cache charges(val) to local per_cpu area.
2157
 * This will be consumed by consume_stock() function, later.
2158
 */
2159
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160 2161 2162
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2163
	if (stock->cached != memcg) { /* reset if necessary */
2164
		drain_stock(stock);
2165
		stock->cached = memcg;
2166
	}
2167
	stock->nr_pages += nr_pages;
2168 2169 2170 2171
	put_cpu_var(memcg_stock);
}

/*
2172
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2173
 * of the hierarchy under it.
2174
 */
2175
static void drain_all_stock(struct mem_cgroup *root_memcg)
2176
{
2177
	int cpu, curcpu;
2178

2179 2180 2181
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2182 2183
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2184
	curcpu = get_cpu();
2185 2186
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2187
		struct mem_cgroup *memcg;
2188

2189 2190
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2191
			continue;
2192
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2193
			continue;
2194 2195 2196 2197 2198 2199
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2200
	}
2201
	put_cpu();
A
Andrew Morton 已提交
2202
	put_online_cpus();
2203
	mutex_unlock(&percpu_charge_mutex);
2204 2205
}

2206 2207 2208 2209
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2210
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2211 2212 2213
{
	int i;

2214
	spin_lock(&memcg->pcp_counter_lock);
2215
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2216
		long x = per_cpu(memcg->stat->count[i], cpu);
2217

2218 2219
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2220
	}
2221
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2222
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2223

2224 2225
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2226
	}
2227
	spin_unlock(&memcg->pcp_counter_lock);
2228 2229
}

2230
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2231 2232 2233 2234 2235
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2236
	struct mem_cgroup *iter;
2237

2238
	if (action == CPU_ONLINE)
2239 2240
		return NOTIFY_OK;

2241
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2242
		return NOTIFY_OK;
2243

2244
	for_each_mem_cgroup(iter)
2245 2246
		mem_cgroup_drain_pcp_counter(iter, cpu);

2247 2248 2249 2250 2251
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2252 2253
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2254
{
2255
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2256
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2257
	struct mem_cgroup *mem_over_limit;
2258
	struct page_counter *counter;
2259
	unsigned long nr_reclaimed;
2260 2261
	bool may_swap = true;
	bool drained = false;
2262
	int ret = 0;
2263

2264 2265
	if (mem_cgroup_is_root(memcg))
		goto done;
2266
retry:
2267 2268
	if (consume_stock(memcg, nr_pages))
		goto done;
2269

2270
	if (!do_swap_account ||
2271 2272
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2273
			goto done_restock;
2274
		if (do_swap_account)
2275 2276
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2277
	} else {
2278
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2279
		may_swap = false;
2280
	}
2281

2282 2283 2284 2285
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2301 2302
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2303

2304 2305
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2306

2307
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2308
		goto retry;
2309

2310
	if (!drained) {
2311
		drain_all_stock(mem_over_limit);
2312 2313 2314 2315
		drained = true;
		goto retry;
	}

2316 2317
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2318 2319 2320 2321 2322 2323 2324 2325 2326
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2327
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2328 2329 2330 2331 2332 2333 2334 2335
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2336 2337 2338
	if (nr_retries--)
		goto retry;

2339 2340 2341
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2342 2343 2344
	if (fatal_signal_pending(current))
		goto bypass;

2345
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2346
nomem:
2347
	if (!(gfp_mask & __GFP_NOFAIL))
2348
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2349
bypass:
2350
	return -EINTR;
2351 2352

done_restock:
2353
	css_get_many(&memcg->css, batch);
2354 2355 2356
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2357
	return ret;
2358
}
2359

2360
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2361
{
2362 2363 2364
	if (mem_cgroup_is_root(memcg))
		return;

2365
	page_counter_uncharge(&memcg->memory, nr_pages);
2366
	if (do_swap_account)
2367
		page_counter_uncharge(&memcg->memsw, nr_pages);
2368

2369
	css_put_many(&memcg->css, nr_pages);
2370 2371
}

2372 2373
/*
 * A helper function to get mem_cgroup from ID. must be called under
2374 2375 2376
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2377 2378 2379 2380 2381 2382
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2383
	return mem_cgroup_from_id(id);
2384 2385
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2396
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2397
{
2398
	struct mem_cgroup *memcg;
2399
	unsigned short id;
2400 2401
	swp_entry_t ent;

2402
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2403

2404
	memcg = page->mem_cgroup;
2405 2406
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2407
			memcg = NULL;
2408
	} else if (PageSwapCache(page)) {
2409
		ent.val = page_private(page);
2410
		id = lookup_swap_cgroup_id(ent);
2411
		rcu_read_lock();
2412
		memcg = mem_cgroup_lookup(id);
2413
		if (memcg && !css_tryget_online(&memcg->css))
2414
			memcg = NULL;
2415
		rcu_read_unlock();
2416
	}
2417
	return memcg;
2418 2419
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2451
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2452
			  bool lrucare)
2453
{
2454
	int isolated;
2455

2456
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2457 2458 2459 2460 2461

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2462 2463
	if (lrucare)
		lock_page_lru(page, &isolated);
2464

2465 2466
	/*
	 * Nobody should be changing or seriously looking at
2467
	 * page->mem_cgroup at this point:
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2479
	page->mem_cgroup = memcg;
2480

2481 2482
	if (lrucare)
		unlock_page_lru(page, isolated);
2483
}
2484

2485
#ifdef CONFIG_MEMCG_KMEM
2486 2487
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2488
{
2489
	struct page_counter *counter;
2490 2491
	int ret = 0;

2492 2493
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2494 2495
		return ret;

2496
	ret = try_charge(memcg, gfp, nr_pages);
2497 2498
	if (ret == -EINTR)  {
		/*
2499 2500 2501 2502 2503 2504
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2505 2506 2507
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2508 2509 2510
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2511 2512
		 * directed to the root cgroup in memcontrol.h
		 */
2513
		page_counter_charge(&memcg->memory, nr_pages);
2514
		if (do_swap_account)
2515
			page_counter_charge(&memcg->memsw, nr_pages);
2516
		css_get_many(&memcg->css, nr_pages);
2517 2518
		ret = 0;
	} else if (ret)
2519
		page_counter_uncharge(&memcg->kmem, nr_pages);
2520 2521 2522 2523

	return ret;
}

2524
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2525
{
2526
	page_counter_uncharge(&memcg->memory, nr_pages);
2527
	if (do_swap_account)
2528
		page_counter_uncharge(&memcg->memsw, nr_pages);
2529

2530
	page_counter_uncharge(&memcg->kmem, nr_pages);
2531

2532
	css_put_many(&memcg->css, nr_pages);
2533 2534
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2545
static int memcg_alloc_cache_id(void)
2546
{
2547 2548 2549 2550 2551 2552 2553
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2564 2565 2566 2567 2568
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	err = memcg_update_all_caches(size);
	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2580 2581 2582 2583 2584 2585 2586 2587 2588
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2589
	memcg_limited_groups_array_size = num;
2590 2591
}

2592
struct memcg_kmem_cache_create_work {
2593 2594 2595 2596 2597
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2598
static void memcg_kmem_cache_create_func(struct work_struct *w)
2599
{
2600 2601
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2602 2603
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2604

2605
	memcg_create_kmem_cache(memcg, cachep);
2606

2607
	css_put(&memcg->css);
2608 2609 2610 2611 2612 2613
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2614 2615
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2616
{
2617
	struct memcg_kmem_cache_create_work *cw;
2618

2619
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2620
	if (!cw)
2621
		return;
2622 2623

	css_get(&memcg->css);
2624 2625 2626

	cw->memcg = memcg;
	cw->cachep = cachep;
2627
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2628 2629 2630 2631

	schedule_work(&cw->work);
}

2632 2633
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2634 2635 2636 2637
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2638
	 * in __memcg_schedule_kmem_cache_create will recurse.
2639 2640 2641 2642 2643 2644 2645
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2646
	current->memcg_kmem_skip_account = 1;
2647
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2648
	current->memcg_kmem_skip_account = 0;
2649
}
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2664
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2665 2666
{
	struct mem_cgroup *memcg;
2667
	struct kmem_cache *memcg_cachep;
2668 2669 2670 2671

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2672
	if (current->memcg_kmem_skip_account)
2673 2674
		return cachep;

2675
	memcg = get_mem_cgroup_from_mm(current->mm);
2676
	if (!memcg_kmem_is_active(memcg))
2677
		goto out;
2678

2679
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2680 2681
	if (likely(memcg_cachep))
		return memcg_cachep;
2682 2683 2684 2685 2686 2687 2688 2689 2690

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2691 2692 2693
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2694
	 */
2695
	memcg_schedule_kmem_cache_create(memcg, cachep);
2696
out:
2697
	css_put(&memcg->css);
2698
	return cachep;
2699 2700
}

2701 2702 2703 2704 2705 2706
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2728

2729
	memcg = get_mem_cgroup_from_mm(current->mm);
2730

2731
	if (!memcg_kmem_is_active(memcg)) {
2732 2733 2734 2735
		css_put(&memcg->css);
		return true;
	}

2736
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2751
		memcg_uncharge_kmem(memcg, 1 << order);
2752 2753
		return;
	}
2754
	page->mem_cgroup = memcg;
2755 2756 2757 2758
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2759
	struct mem_cgroup *memcg = page->mem_cgroup;
2760 2761 2762 2763

	if (!memcg)
		return;

2764
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2765

2766
	memcg_uncharge_kmem(memcg, 1 << order);
2767
	page->mem_cgroup = NULL;
2768 2769 2770
}
#endif /* CONFIG_MEMCG_KMEM */

2771 2772 2773 2774
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2775 2776 2777
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2778
 */
2779
void mem_cgroup_split_huge_fixup(struct page *head)
2780
{
2781
	int i;
2782

2783 2784
	if (mem_cgroup_disabled())
		return;
2785

2786
	for (i = 1; i < HPAGE_PMD_NR; i++)
2787
		head[i].mem_cgroup = head->mem_cgroup;
2788

2789
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2790
		       HPAGE_PMD_NR);
2791
}
2792
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2793

2794
/**
2795
 * mem_cgroup_move_account - move account of the page
2796
 * @page: the page
2797
 * @nr_pages: number of regular pages (>1 for huge pages)
2798 2799 2800 2801
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2802
 * - page is not on LRU (isolate_page() is useful.)
2803
 * - compound_lock is held when nr_pages > 1
2804
 *
2805 2806
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2807
 */
2808 2809 2810
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2811
				   struct mem_cgroup *to)
2812
{
2813 2814
	unsigned long flags;
	int ret;
2815

2816
	VM_BUG_ON(from == to);
2817
	VM_BUG_ON_PAGE(PageLRU(page), page);
2818 2819 2820 2821 2822 2823 2824
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2825
	if (nr_pages > 1 && !PageTransHuge(page))
2826 2827
		goto out;

2828
	/*
2829
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2830 2831 2832 2833 2834
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2835 2836

	ret = -EINVAL;
2837
	if (page->mem_cgroup != from)
2838
		goto out_unlock;
2839

2840
	spin_lock_irqsave(&from->move_lock, flags);
2841

2842
	if (!PageAnon(page) && page_mapped(page)) {
2843 2844 2845 2846 2847
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2848

2849 2850 2851 2852 2853 2854
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2855

2856
	/*
2857
	 * It is safe to change page->mem_cgroup here because the page
2858 2859 2860
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2861

2862
	/* caller should have done css_get */
2863
	page->mem_cgroup = to;
2864 2865
	spin_unlock_irqrestore(&from->move_lock, flags);

2866
	ret = 0;
2867 2868 2869

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2870
	memcg_check_events(to, page);
2871
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2872
	memcg_check_events(from, page);
2873 2874 2875
	local_irq_enable();
out_unlock:
	unlock_page(page);
2876
out:
2877 2878 2879
	return ret;
}

A
Andrew Morton 已提交
2880
#ifdef CONFIG_MEMCG_SWAP
2881 2882
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2883
{
2884 2885
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2886
}
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2899
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2900 2901 2902
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2903
				struct mem_cgroup *from, struct mem_cgroup *to)
2904 2905 2906
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2907 2908
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2909 2910 2911

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2912
		mem_cgroup_swap_statistics(to, true);
2913 2914 2915 2916 2917 2918
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2919
				struct mem_cgroup *from, struct mem_cgroup *to)
2920 2921 2922
{
	return -EINVAL;
}
2923
#endif
K
KAMEZAWA Hiroyuki 已提交
2924

2925
static DEFINE_MUTEX(memcg_limit_mutex);
2926

2927
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2928
				   unsigned long limit)
2929
{
2930 2931 2932
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2933
	int retry_count;
2934
	int ret;
2935 2936 2937 2938 2939 2940

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2941 2942
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2943

2944
	oldusage = page_counter_read(&memcg->memory);
2945

2946
	do {
2947 2948 2949 2950
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2951 2952 2953 2954

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2955
			ret = -EINVAL;
2956 2957
			break;
		}
2958 2959 2960 2961
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2962 2963 2964 2965

		if (!ret)
			break;

2966 2967
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2968
		curusage = page_counter_read(&memcg->memory);
2969
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2970
		if (curusage >= oldusage)
2971 2972 2973
			retry_count--;
		else
			oldusage = curusage;
2974 2975
	} while (retry_count);

2976 2977
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2978

2979 2980 2981
	return ret;
}

L
Li Zefan 已提交
2982
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2983
					 unsigned long limit)
2984
{
2985 2986 2987
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2988
	int retry_count;
2989
	int ret;
2990

2991
	/* see mem_cgroup_resize_res_limit */
2992 2993 2994 2995 2996 2997
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2998 2999 3000 3001
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3002 3003 3004 3005

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3006 3007 3008
			ret = -EINVAL;
			break;
		}
3009 3010 3011 3012
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3013 3014 3015 3016

		if (!ret)
			break;

3017 3018
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3019
		curusage = page_counter_read(&memcg->memsw);
3020
		/* Usage is reduced ? */
3021
		if (curusage >= oldusage)
3022
			retry_count--;
3023 3024
		else
			oldusage = curusage;
3025 3026
	} while (retry_count);

3027 3028
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3029

3030 3031 3032
	return ret;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3042
	unsigned long excess;
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3067
		spin_lock_irq(&mctz->lock);
3068
		__mem_cgroup_remove_exceeded(mz, mctz);
3069 3070 3071 3072 3073 3074

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3075 3076 3077
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3078
		excess = soft_limit_excess(mz->memcg);
3079 3080 3081 3082 3083 3084 3085 3086 3087
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3088
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3089
		spin_unlock_irq(&mctz->lock);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3107 3108 3109 3110 3111 3112
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3113 3114
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3115 3116
	bool ret;

3117
	/*
3118 3119 3120 3121
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3122
	 */
3123 3124 3125 3126 3127 3128
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3129 3130
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3141 3142
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3143
	/* try to free all pages in this cgroup */
3144
	while (nr_retries && page_counter_read(&memcg->memory)) {
3145
		int progress;
3146

3147 3148 3149
		if (signal_pending(current))
			return -EINTR;

3150 3151
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3152
		if (!progress) {
3153
			nr_retries--;
3154
			/* maybe some writeback is necessary */
3155
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3156
		}
3157 3158

	}
3159 3160

	return 0;
3161 3162
}

3163 3164 3165
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3166
{
3167
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3168

3169 3170
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3171
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3172 3173
}

3174 3175
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3176
{
3177
	return mem_cgroup_from_css(css)->use_hierarchy;
3178 3179
}

3180 3181
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3182 3183
{
	int retval = 0;
3184
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3185
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3186

3187
	mutex_lock(&memcg_create_mutex);
3188 3189 3190 3191

	if (memcg->use_hierarchy == val)
		goto out;

3192
	/*
3193
	 * If parent's use_hierarchy is set, we can't make any modifications
3194 3195 3196 3197 3198 3199
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3200
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3201
				(val == 1 || val == 0)) {
3202
		if (!memcg_has_children(memcg))
3203
			memcg->use_hierarchy = val;
3204 3205 3206 3207
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3208 3209

out:
3210
	mutex_unlock(&memcg_create_mutex);
3211 3212 3213 3214

	return retval;
}

3215 3216
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3234 3235 3236 3237 3238 3239
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3240
		if (!swap)
3241
			val = page_counter_read(&memcg->memory);
3242
		else
3243
			val = page_counter_read(&memcg->memsw);
3244 3245 3246 3247
	}
	return val << PAGE_SHIFT;
}

3248 3249 3250 3251 3252 3253 3254
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3255

3256
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3257
			       struct cftype *cft)
B
Balbir Singh 已提交
3258
{
3259
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3260
	struct page_counter *counter;
3261

3262
	switch (MEMFILE_TYPE(cft->private)) {
3263
	case _MEM:
3264 3265
		counter = &memcg->memory;
		break;
3266
	case _MEMSWAP:
3267 3268
		counter = &memcg->memsw;
		break;
3269
	case _KMEM:
3270
		counter = &memcg->kmem;
3271
		break;
3272 3273 3274
	default:
		BUG();
	}
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3294
}
3295 3296

#ifdef CONFIG_MEMCG_KMEM
3297 3298
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3299 3300 3301 3302 3303 3304 3305
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3318
	mutex_lock(&memcg_create_mutex);
3319 3320
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3321 3322 3323 3324
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3325

3326
	memcg_id = memcg_alloc_cache_id();
3327 3328 3329 3330 3331 3332
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3333 3334
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3335
	 */
3336
	err = page_counter_limit(&memcg->kmem, nr_pages);
3337 3338 3339 3340
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3341 3342
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3343 3344 3345
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3346
	memcg->kmemcg_id = memcg_id;
3347
out:
3348 3349 3350 3351
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3352
				   unsigned long limit)
3353 3354 3355
{
	int ret;

3356
	mutex_lock(&memcg_limit_mutex);
3357
	if (!memcg_kmem_is_active(memcg))
3358
		ret = memcg_activate_kmem(memcg, limit);
3359
	else
3360 3361
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3362 3363 3364
	return ret;
}

3365
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3366
{
3367
	int ret = 0;
3368
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3369

3370 3371
	if (!parent)
		return 0;
3372

3373
	mutex_lock(&memcg_limit_mutex);
3374
	/*
3375 3376
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3377
	 */
3378
	if (memcg_kmem_is_active(parent))
3379 3380
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3381
	return ret;
3382
}
3383 3384
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3385
				   unsigned long limit)
3386 3387 3388
{
	return -EINVAL;
}
3389
#endif /* CONFIG_MEMCG_KMEM */
3390

3391 3392 3393 3394
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3395 3396
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3397
{
3398
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3399
	unsigned long nr_pages;
3400 3401
	int ret;

3402
	buf = strstrip(buf);
3403 3404 3405
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3406

3407
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3408
	case RES_LIMIT:
3409 3410 3411 3412
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3413 3414 3415
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3416
			break;
3417 3418
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3419
			break;
3420 3421 3422 3423
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3424
		break;
3425 3426 3427
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3428 3429
		break;
	}
3430
	return ret ?: nbytes;
B
Balbir Singh 已提交
3431 3432
}

3433 3434
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3435
{
3436
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3437
	struct page_counter *counter;
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3452

3453
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3454
	case RES_MAX_USAGE:
3455
		page_counter_reset_watermark(counter);
3456 3457
		break;
	case RES_FAILCNT:
3458
		counter->failcnt = 0;
3459
		break;
3460 3461
	default:
		BUG();
3462
	}
3463

3464
	return nbytes;
3465 3466
}

3467
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3468 3469
					struct cftype *cft)
{
3470
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3471 3472
}

3473
#ifdef CONFIG_MMU
3474
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3475 3476
					struct cftype *cft, u64 val)
{
3477
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3478 3479 3480

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3481

3482
	/*
3483 3484 3485 3486
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3487
	 */
3488
	memcg->move_charge_at_immigrate = val;
3489 3490
	return 0;
}
3491
#else
3492
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3493 3494 3495 3496 3497
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3498

3499
#ifdef CONFIG_NUMA
3500
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3501
{
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3514
	int nid;
3515
	unsigned long nr;
3516
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3527 3528
	}

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3544 3545 3546 3547 3548 3549
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3550
static int memcg_stat_show(struct seq_file *m, void *v)
3551
{
3552
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3553
	unsigned long memory, memsw;
3554 3555
	struct mem_cgroup *mi;
	unsigned int i;
3556

3557 3558
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3559
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3560
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3561
			continue;
3562 3563
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3564
	}
L
Lee Schermerhorn 已提交
3565

3566 3567 3568 3569 3570 3571 3572 3573
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3574
	/* Hierarchical information */
3575 3576 3577 3578
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3579
	}
3580 3581 3582 3583 3584
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3585

3586 3587 3588
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3589
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3590
			continue;
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3611
	}
K
KAMEZAWA Hiroyuki 已提交
3612

K
KOSAKI Motohiro 已提交
3613 3614 3615 3616
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3617
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3618 3619 3620 3621 3622
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3623
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3624
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3625

3626 3627 3628 3629
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3630
			}
3631 3632 3633 3634
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3635 3636 3637
	}
#endif

3638 3639 3640
	return 0;
}

3641 3642
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3643
{
3644
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3645

3646
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3647 3648
}

3649 3650
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3651
{
3652
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3653

3654
	if (val > 100)
K
KOSAKI Motohiro 已提交
3655 3656
		return -EINVAL;

3657
	if (css->parent)
3658 3659 3660
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3661

K
KOSAKI Motohiro 已提交
3662 3663 3664
	return 0;
}

3665 3666 3667
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3668
	unsigned long usage;
3669 3670 3671 3672
	int i;

	rcu_read_lock();
	if (!swap)
3673
		t = rcu_dereference(memcg->thresholds.primary);
3674
	else
3675
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3676 3677 3678 3679

	if (!t)
		goto unlock;

3680
	usage = mem_cgroup_usage(memcg, swap);
3681 3682

	/*
3683
	 * current_threshold points to threshold just below or equal to usage.
3684 3685 3686
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3687
	i = t->current_threshold;
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3711
	t->current_threshold = i - 1;
3712 3713 3714 3715 3716 3717
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3718 3719 3720 3721 3722 3723 3724
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3725 3726 3727 3728 3729 3730 3731
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3732 3733 3734 3735 3736 3737 3738
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3739 3740
}

3741
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3742 3743 3744
{
	struct mem_cgroup_eventfd_list *ev;

3745 3746
	spin_lock(&memcg_oom_lock);

3747
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3748
		eventfd_signal(ev->eventfd, 1);
3749 3750

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3751 3752 3753
	return 0;
}

3754
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3755
{
K
KAMEZAWA Hiroyuki 已提交
3756 3757
	struct mem_cgroup *iter;

3758
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3759
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3760 3761
}

3762
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3763
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3764
{
3765 3766
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3767 3768
	unsigned long threshold;
	unsigned long usage;
3769
	int i, size, ret;
3770

3771
	ret = page_counter_memparse(args, &threshold);
3772 3773 3774 3775
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3776

3777
	if (type == _MEM) {
3778
		thresholds = &memcg->thresholds;
3779
		usage = mem_cgroup_usage(memcg, false);
3780
	} else if (type == _MEMSWAP) {
3781
		thresholds = &memcg->memsw_thresholds;
3782
		usage = mem_cgroup_usage(memcg, true);
3783
	} else
3784 3785 3786
		BUG();

	/* Check if a threshold crossed before adding a new one */
3787
	if (thresholds->primary)
3788 3789
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3790
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3791 3792

	/* Allocate memory for new array of thresholds */
3793
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3794
			GFP_KERNEL);
3795
	if (!new) {
3796 3797 3798
		ret = -ENOMEM;
		goto unlock;
	}
3799
	new->size = size;
3800 3801

	/* Copy thresholds (if any) to new array */
3802 3803
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3804
				sizeof(struct mem_cgroup_threshold));
3805 3806
	}

3807
	/* Add new threshold */
3808 3809
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3810 3811

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3812
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3813 3814 3815
			compare_thresholds, NULL);

	/* Find current threshold */
3816
	new->current_threshold = -1;
3817
	for (i = 0; i < size; i++) {
3818
		if (new->entries[i].threshold <= usage) {
3819
			/*
3820 3821
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3822 3823
			 * it here.
			 */
3824
			++new->current_threshold;
3825 3826
		} else
			break;
3827 3828
	}

3829 3830 3831 3832 3833
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3834

3835
	/* To be sure that nobody uses thresholds */
3836 3837 3838 3839 3840 3841 3842 3843
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3844
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3845 3846
	struct eventfd_ctx *eventfd, const char *args)
{
3847
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3848 3849
}

3850
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3851 3852
	struct eventfd_ctx *eventfd, const char *args)
{
3853
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3854 3855
}

3856
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3857
	struct eventfd_ctx *eventfd, enum res_type type)
3858
{
3859 3860
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3861
	unsigned long usage;
3862
	int i, j, size;
3863 3864

	mutex_lock(&memcg->thresholds_lock);
3865 3866

	if (type == _MEM) {
3867
		thresholds = &memcg->thresholds;
3868
		usage = mem_cgroup_usage(memcg, false);
3869
	} else if (type == _MEMSWAP) {
3870
		thresholds = &memcg->memsw_thresholds;
3871
		usage = mem_cgroup_usage(memcg, true);
3872
	} else
3873 3874
		BUG();

3875 3876 3877
	if (!thresholds->primary)
		goto unlock;

3878 3879 3880 3881
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3882 3883 3884
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3885 3886 3887
			size++;
	}

3888
	new = thresholds->spare;
3889

3890 3891
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3892 3893
		kfree(new);
		new = NULL;
3894
		goto swap_buffers;
3895 3896
	}

3897
	new->size = size;
3898 3899

	/* Copy thresholds and find current threshold */
3900 3901 3902
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3903 3904
			continue;

3905
		new->entries[j] = thresholds->primary->entries[i];
3906
		if (new->entries[j].threshold <= usage) {
3907
			/*
3908
			 * new->current_threshold will not be used
3909 3910 3911
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3912
			++new->current_threshold;
3913 3914 3915 3916
		}
		j++;
	}

3917
swap_buffers:
3918 3919
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3920 3921 3922 3923 3924 3925
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3926
	rcu_assign_pointer(thresholds->primary, new);
3927

3928
	/* To be sure that nobody uses thresholds */
3929
	synchronize_rcu();
3930
unlock:
3931 3932
	mutex_unlock(&memcg->thresholds_lock);
}
3933

3934
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3935 3936
	struct eventfd_ctx *eventfd)
{
3937
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3938 3939
}

3940
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3941 3942
	struct eventfd_ctx *eventfd)
{
3943
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3944 3945
}

3946
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3947
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3948 3949 3950 3951 3952 3953 3954
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3955
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3956 3957 3958 3959 3960

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3961
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3962
		eventfd_signal(eventfd, 1);
3963
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3964 3965 3966 3967

	return 0;
}

3968
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3969
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3970 3971 3972
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3973
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3974

3975
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3976 3977 3978 3979 3980 3981
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3982
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3983 3984
}

3985
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3986
{
3987
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3988

3989 3990
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3991 3992 3993
	return 0;
}

3994
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3995 3996
	struct cftype *cft, u64 val)
{
3997
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3998 3999

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4000
	if (!css->parent || !((val == 0) || (val == 1)))
4001 4002
		return -EINVAL;

4003
	memcg->oom_kill_disable = val;
4004
	if (!val)
4005
		memcg_oom_recover(memcg);
4006

4007 4008 4009
	return 0;
}

A
Andrew Morton 已提交
4010
#ifdef CONFIG_MEMCG_KMEM
4011
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4012
{
4013 4014 4015 4016 4017
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4018

4019
	return mem_cgroup_sockets_init(memcg, ss);
4020
}
4021

4022
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4023
{
4024
	memcg_destroy_kmem_caches(memcg);
4025
	mem_cgroup_sockets_destroy(memcg);
4026
}
4027
#else
4028
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4029 4030 4031
{
	return 0;
}
G
Glauber Costa 已提交
4032

4033 4034 4035
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4036 4037
#endif

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4051 4052 4053 4054 4055
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4056
static void memcg_event_remove(struct work_struct *work)
4057
{
4058 4059
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4060
	struct mem_cgroup *memcg = event->memcg;
4061 4062 4063

	remove_wait_queue(event->wqh, &event->wait);

4064
	event->unregister_event(memcg, event->eventfd);
4065 4066 4067 4068 4069 4070

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4071
	css_put(&memcg->css);
4072 4073 4074 4075 4076 4077 4078
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4079 4080
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4081
{
4082 4083
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4084
	struct mem_cgroup *memcg = event->memcg;
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4097
		spin_lock(&memcg->event_list_lock);
4098 4099 4100 4101 4102 4103 4104 4105
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4106
		spin_unlock(&memcg->event_list_lock);
4107 4108 4109 4110 4111
	}

	return 0;
}

4112
static void memcg_event_ptable_queue_proc(struct file *file,
4113 4114
		wait_queue_head_t *wqh, poll_table *pt)
{
4115 4116
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4117 4118 4119 4120 4121 4122

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4123 4124
 * DO NOT USE IN NEW FILES.
 *
4125 4126 4127 4128 4129
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4130 4131
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4132
{
4133
	struct cgroup_subsys_state *css = of_css(of);
4134
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4135
	struct mem_cgroup_event *event;
4136 4137 4138 4139
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4140
	const char *name;
4141 4142 4143
	char *endp;
	int ret;

4144 4145 4146
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4147 4148
	if (*endp != ' ')
		return -EINVAL;
4149
	buf = endp + 1;
4150

4151
	cfd = simple_strtoul(buf, &endp, 10);
4152 4153
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4154
	buf = endp + 1;
4155 4156 4157 4158 4159

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4160
	event->memcg = memcg;
4161
	INIT_LIST_HEAD(&event->list);
4162 4163 4164
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4190 4191 4192 4193 4194
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4195 4196
	 *
	 * DO NOT ADD NEW FILES.
4197
	 */
A
Al Viro 已提交
4198
	name = cfile.file->f_path.dentry->d_name.name;
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4210 4211
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4212 4213 4214 4215 4216
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4217
	/*
4218 4219 4220
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4221
	 */
A
Al Viro 已提交
4222
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4223
					       &memory_cgrp_subsys);
4224
	ret = -EINVAL;
4225
	if (IS_ERR(cfile_css))
4226
		goto out_put_cfile;
4227 4228
	if (cfile_css != css) {
		css_put(cfile_css);
4229
		goto out_put_cfile;
4230
	}
4231

4232
	ret = event->register_event(memcg, event->eventfd, buf);
4233 4234 4235 4236 4237
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4238 4239 4240
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4241 4242 4243 4244

	fdput(cfile);
	fdput(efile);

4245
	return nbytes;
4246 4247

out_put_css:
4248
	css_put(css);
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4261 4262
static struct cftype mem_cgroup_files[] = {
	{
4263
		.name = "usage_in_bytes",
4264
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4265
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4266
	},
4267 4268
	{
		.name = "max_usage_in_bytes",
4269
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4270
		.write = mem_cgroup_reset,
4271
		.read_u64 = mem_cgroup_read_u64,
4272
	},
B
Balbir Singh 已提交
4273
	{
4274
		.name = "limit_in_bytes",
4275
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4276
		.write = mem_cgroup_write,
4277
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4278
	},
4279 4280 4281
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4282
		.write = mem_cgroup_write,
4283
		.read_u64 = mem_cgroup_read_u64,
4284
	},
B
Balbir Singh 已提交
4285 4286
	{
		.name = "failcnt",
4287
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4288
		.write = mem_cgroup_reset,
4289
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4290
	},
4291 4292
	{
		.name = "stat",
4293
		.seq_show = memcg_stat_show,
4294
	},
4295 4296
	{
		.name = "force_empty",
4297
		.write = mem_cgroup_force_empty_write,
4298
	},
4299 4300 4301 4302 4303
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4304
	{
4305
		.name = "cgroup.event_control",		/* XXX: for compat */
4306
		.write = memcg_write_event_control,
4307 4308 4309
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4310 4311 4312 4313 4314
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4315 4316 4317 4318 4319
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4320 4321
	{
		.name = "oom_control",
4322
		.seq_show = mem_cgroup_oom_control_read,
4323
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4324 4325
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4326 4327 4328
	{
		.name = "pressure_level",
	},
4329 4330 4331
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4332
		.seq_show = memcg_numa_stat_show,
4333 4334
	},
#endif
4335 4336 4337 4338
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4339
		.write = mem_cgroup_write,
4340
		.read_u64 = mem_cgroup_read_u64,
4341 4342 4343 4344
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4345
		.read_u64 = mem_cgroup_read_u64,
4346 4347 4348 4349
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4350
		.write = mem_cgroup_reset,
4351
		.read_u64 = mem_cgroup_read_u64,
4352 4353 4354 4355
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4356
		.write = mem_cgroup_reset,
4357
		.read_u64 = mem_cgroup_read_u64,
4358
	},
4359 4360 4361
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4362 4363 4364 4365
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4366 4367
	},
#endif
4368
#endif
4369
	{ },	/* terminate */
4370
};
4371

4372 4373 4374 4375 4376
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4377
		.read_u64 = mem_cgroup_read_u64,
4378 4379 4380 4381
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4382
		.write = mem_cgroup_reset,
4383
		.read_u64 = mem_cgroup_read_u64,
4384 4385 4386 4387
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4388
		.write = mem_cgroup_write,
4389
		.read_u64 = mem_cgroup_read_u64,
4390 4391 4392 4393
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4394
		.write = mem_cgroup_reset,
4395
		.read_u64 = mem_cgroup_read_u64,
4396 4397 4398 4399
	},
	{ },	/* terminate */
};
#endif
4400
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4401 4402
{
	struct mem_cgroup_per_node *pn;
4403
	struct mem_cgroup_per_zone *mz;
4404
	int zone, tmp = node;
4405 4406 4407 4408 4409 4410 4411 4412
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4413 4414
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4415
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4416 4417
	if (!pn)
		return 1;
4418 4419 4420

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4421
		lruvec_init(&mz->lruvec);
4422 4423
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4424
		mz->memcg = memcg;
4425
	}
4426
	memcg->nodeinfo[node] = pn;
4427 4428 4429
	return 0;
}

4430
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4431
{
4432
	kfree(memcg->nodeinfo[node]);
4433 4434
}

4435 4436
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4437
	struct mem_cgroup *memcg;
4438
	size_t size;
4439

4440 4441
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4442

4443
	memcg = kzalloc(size, GFP_KERNEL);
4444
	if (!memcg)
4445 4446
		return NULL;

4447 4448
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4449
		goto out_free;
4450 4451
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4452 4453

out_free:
4454
	kfree(memcg);
4455
	return NULL;
4456 4457
}

4458
/*
4459 4460 4461 4462 4463 4464 4465 4466
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4467
 */
4468 4469

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4470
{
4471
	int node;
4472

4473
	mem_cgroup_remove_from_trees(memcg);
4474 4475 4476 4477 4478 4479

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4480
	disarm_static_keys(memcg);
4481
	kfree(memcg);
4482
}
4483

4484 4485 4486
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4487
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4488
{
4489
	if (!memcg->memory.parent)
4490
		return NULL;
4491
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4492
}
G
Glauber Costa 已提交
4493
EXPORT_SYMBOL(parent_mem_cgroup);
4494

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4518
static struct cgroup_subsys_state * __ref
4519
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4520
{
4521
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4522
	long error = -ENOMEM;
4523
	int node;
B
Balbir Singh 已提交
4524

4525 4526
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4527
		return ERR_PTR(error);
4528

B
Bob Liu 已提交
4529
	for_each_node(node)
4530
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4531
			goto free_out;
4532

4533
	/* root ? */
4534
	if (parent_css == NULL) {
4535
		root_mem_cgroup = memcg;
4536
		page_counter_init(&memcg->memory, NULL);
4537
		memcg->soft_limit = PAGE_COUNTER_MAX;
4538 4539
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4540
	}
4541

4542 4543 4544 4545 4546
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4547
	vmpressure_init(&memcg->vmpressure);
4548 4549
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4550 4551 4552
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4553 4554 4555 4556 4557 4558 4559 4560 4561

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4562
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4563
{
4564
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4565
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4566
	int ret;
4567

4568
	if (css->id > MEM_CGROUP_ID_MAX)
4569 4570
		return -ENOSPC;

T
Tejun Heo 已提交
4571
	if (!parent)
4572 4573
		return 0;

4574
	mutex_lock(&memcg_create_mutex);
4575 4576 4577 4578 4579 4580

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4581
		page_counter_init(&memcg->memory, &parent->memory);
4582
		memcg->soft_limit = PAGE_COUNTER_MAX;
4583 4584
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4585

4586
		/*
4587 4588
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4589
		 */
4590
	} else {
4591
		page_counter_init(&memcg->memory, NULL);
4592
		memcg->soft_limit = PAGE_COUNTER_MAX;
4593 4594
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4595 4596 4597 4598 4599
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4600
		if (parent != root_mem_cgroup)
4601
			memory_cgrp_subsys.broken_hierarchy = true;
4602
	}
4603
	mutex_unlock(&memcg_create_mutex);
4604

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4617 4618
}

4619
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4620
{
4621
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4622
	struct mem_cgroup_event *event, *tmp;
4623 4624 4625 4626 4627 4628

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4629 4630
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4631 4632 4633
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4634
	spin_unlock(&memcg->event_list_lock);
4635

4636
	vmpressure_cleanup(&memcg->vmpressure);
4637 4638
}

4639
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4640
{
4641
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4642

4643
	memcg_destroy_kmem(memcg);
4644
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4645 4646
}

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4664 4665 4666
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4667
	memcg->soft_limit = PAGE_COUNTER_MAX;
4668 4669
}

4670
#ifdef CONFIG_MMU
4671
/* Handlers for move charge at task migration. */
4672
static int mem_cgroup_do_precharge(unsigned long count)
4673
{
4674
	int ret;
4675 4676

	/* Try a single bulk charge without reclaim first */
4677
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4678
	if (!ret) {
4679 4680 4681
		mc.precharge += count;
		return ret;
	}
4682
	if (ret == -EINTR) {
4683
		cancel_charge(root_mem_cgroup, count);
4684 4685
		return ret;
	}
4686 4687

	/* Try charges one by one with reclaim */
4688
	while (count--) {
4689
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4690 4691 4692
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4693 4694
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4695
		 */
4696
		if (ret == -EINTR)
4697
			cancel_charge(root_mem_cgroup, 1);
4698 4699
		if (ret)
			return ret;
4700
		mc.precharge++;
4701
		cond_resched();
4702
	}
4703
	return 0;
4704 4705 4706
}

/**
4707
 * get_mctgt_type - get target type of moving charge
4708 4709 4710
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4711
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4712 4713 4714 4715 4716 4717
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4718 4719 4720
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4721 4722 4723 4724 4725
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4726
	swp_entry_t	ent;
4727 4728 4729
};

enum mc_target_type {
4730
	MC_TARGET_NONE = 0,
4731
	MC_TARGET_PAGE,
4732
	MC_TARGET_SWAP,
4733 4734
};

D
Daisuke Nishimura 已提交
4735 4736
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4737
{
D
Daisuke Nishimura 已提交
4738
	struct page *page = vm_normal_page(vma, addr, ptent);
4739

D
Daisuke Nishimura 已提交
4740 4741 4742 4743
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
4744
		if (!move_anon())
D
Daisuke Nishimura 已提交
4745
			return NULL;
4746 4747
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4748 4749 4750 4751 4752 4753 4754
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4755
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4756 4757 4758 4759 4760 4761 4762 4763
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
4764 4765 4766 4767
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4768
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4769 4770 4771 4772 4773
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4774 4775 4776 4777 4778 4779 4780
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4781

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
4795
	pgoff = linear_page_index(vma, addr);
4796 4797

	/* page is moved even if it's not RSS of this task(page-faulted). */
4798 4799
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4812
#endif
4813 4814 4815
	return page;
}

4816
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4817 4818 4819
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4820
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4821 4822 4823 4824 4825 4826
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4827
	else if (pte_none(ptent))
4828
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4829 4830

	if (!page && !ent.val)
4831
		return ret;
4832 4833
	if (page) {
		/*
4834
		 * Do only loose check w/o serialization.
4835
		 * mem_cgroup_move_account() checks the page is valid or
4836
		 * not under LRU exclusion.
4837
		 */
4838
		if (page->mem_cgroup == mc.from) {
4839 4840 4841 4842 4843 4844 4845
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4846 4847
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4848
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4849 4850 4851
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4852 4853 4854 4855
	}
	return ret;
}

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4869
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4870 4871
	if (!move_anon())
		return ret;
4872
	if (page->mem_cgroup == mc.from) {
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4889 4890 4891 4892 4893 4894 4895 4896
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4897
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4898 4899
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4900
		spin_unlock(ptl);
4901
		return 0;
4902
	}
4903

4904 4905
	if (pmd_trans_unstable(pmd))
		return 0;
4906 4907
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4908
		if (get_mctgt_type(vma, addr, *pte, NULL))
4909 4910 4911 4912
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4913 4914 4915
	return 0;
}

4916 4917 4918 4919 4920
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4921
	down_read(&mm->mmap_sem);
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4933
	up_read(&mm->mmap_sem);
4934 4935 4936 4937 4938 4939 4940 4941 4942

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4943 4944 4945 4946 4947
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4948 4949
}

4950 4951
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4952
{
4953 4954 4955
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4956
	/* we must uncharge all the leftover precharges from mc.to */
4957
	if (mc.precharge) {
4958
		cancel_charge(mc.to, mc.precharge);
4959 4960 4961 4962 4963 4964 4965
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4966
		cancel_charge(mc.from, mc.moved_charge);
4967
		mc.moved_charge = 0;
4968
	}
4969 4970 4971
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4972
		if (!mem_cgroup_is_root(mc.from))
4973
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4974

4975
		/*
4976 4977
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4978
		 */
4979
		if (!mem_cgroup_is_root(mc.to))
4980 4981
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4982
		css_put_many(&mc.from->css, mc.moved_swap);
4983

L
Li Zefan 已提交
4984
		/* we've already done css_get(mc.to) */
4985 4986
		mc.moved_swap = 0;
	}
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5000
	spin_lock(&mc.lock);
5001 5002
	mc.from = NULL;
	mc.to = NULL;
5003
	spin_unlock(&mc.lock);
5004 5005
}

5006
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5007
				 struct cgroup_taskset *tset)
5008
{
5009
	struct task_struct *p = cgroup_taskset_first(tset);
5010
	int ret = 0;
5011
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5012
	unsigned long move_charge_at_immigrate;
5013

5014 5015 5016 5017 5018 5019 5020
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5021 5022 5023
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5024
		VM_BUG_ON(from == memcg);
5025 5026 5027 5028 5029

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5030 5031 5032 5033
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5034
			VM_BUG_ON(mc.moved_charge);
5035
			VM_BUG_ON(mc.moved_swap);
5036

5037
			spin_lock(&mc.lock);
5038
			mc.from = from;
5039
			mc.to = memcg;
5040
			mc.immigrate_flags = move_charge_at_immigrate;
5041
			spin_unlock(&mc.lock);
5042
			/* We set mc.moving_task later */
5043 5044 5045 5046

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5047 5048
		}
		mmput(mm);
5049 5050 5051 5052
	}
	return ret;
}

5053
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5054
				     struct cgroup_taskset *tset)
5055
{
5056 5057
	if (mc.to)
		mem_cgroup_clear_mc();
5058 5059
}

5060 5061 5062
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5063
{
5064 5065 5066 5067
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5068 5069 5070
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5071

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5082
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5083
		if (mc.precharge < HPAGE_PMD_NR) {
5084
			spin_unlock(ptl);
5085 5086 5087 5088 5089 5090 5091
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5092
							     mc.from, mc.to)) {
5093 5094 5095 5096 5097 5098 5099
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5100
		spin_unlock(ptl);
5101
		return 0;
5102 5103
	}

5104 5105
	if (pmd_trans_unstable(pmd))
		return 0;
5106 5107 5108 5109
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5110
		swp_entry_t ent;
5111 5112 5113 5114

		if (!mc.precharge)
			break;

5115
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5116 5117 5118 5119
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5120
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5121
				mc.precharge--;
5122 5123
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5124 5125
			}
			putback_lru_page(page);
5126
put:			/* get_mctgt_type() gets the page */
5127 5128
			put_page(page);
			break;
5129 5130
		case MC_TARGET_SWAP:
			ent = target.ent;
5131
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5132
				mc.precharge--;
5133 5134 5135
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5136
			break;
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5151
		ret = mem_cgroup_do_precharge(1);
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5164 5165 5166 5167 5168 5169 5170
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5202
	up_read(&mm->mmap_sem);
5203
	atomic_dec(&mc.from->moving_account);
5204 5205
}

5206
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5207
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5208
{
5209
	struct task_struct *p = cgroup_taskset_first(tset);
5210
	struct mm_struct *mm = get_task_mm(p);
5211 5212

	if (mm) {
5213 5214
		if (mc.to)
			mem_cgroup_move_charge(mm);
5215 5216
		mmput(mm);
	}
5217 5218
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5219
}
5220
#else	/* !CONFIG_MMU */
5221
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5222
				 struct cgroup_taskset *tset)
5223 5224 5225
{
	return 0;
}
5226
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5227
				     struct cgroup_taskset *tset)
5228 5229
{
}
5230
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5231
				 struct cgroup_taskset *tset)
5232 5233 5234
{
}
#endif
B
Balbir Singh 已提交
5235

5236 5237
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5238 5239
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5240
 */
5241
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5242 5243
{
	/*
5244
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5245 5246 5247
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5248
	if (cgroup_on_dfl(root_css->cgroup))
5249
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5250 5251
}

5252
struct cgroup_subsys memory_cgrp_subsys = {
5253
	.css_alloc = mem_cgroup_css_alloc,
5254
	.css_online = mem_cgroup_css_online,
5255 5256
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5257
	.css_reset = mem_cgroup_css_reset,
5258 5259
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5260
	.attach = mem_cgroup_move_task,
5261
	.bind = mem_cgroup_bind,
5262
	.legacy_cftypes = mem_cgroup_files,
5263
	.early_init = 0,
B
Balbir Singh 已提交
5264
};
5265

A
Andrew Morton 已提交
5266
#ifdef CONFIG_MEMCG_SWAP
5267 5268
static int __init enable_swap_account(char *s)
{
5269
	if (!strcmp(s, "1"))
5270
		really_do_swap_account = 1;
5271
	else if (!strcmp(s, "0"))
5272 5273 5274
		really_do_swap_account = 0;
	return 1;
}
5275
__setup("swapaccount=", enable_swap_account);
5276

5277 5278
static void __init memsw_file_init(void)
{
5279 5280
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5281 5282 5283 5284 5285 5286 5287 5288
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5289
}
5290

5291
#else
5292
static void __init enable_swap_cgroup(void)
5293 5294
{
}
5295
#endif
5296

5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5307
	struct mem_cgroup *memcg;
5308 5309 5310 5311 5312 5313 5314 5315
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5316
	memcg = page->mem_cgroup;
5317 5318

	/* Readahead page, never charged */
5319
	if (!memcg)
5320 5321
		return;

5322
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5323
	VM_BUG_ON_PAGE(oldid, page);
5324 5325
	mem_cgroup_swap_statistics(memcg, true);

5326
	page->mem_cgroup = NULL;
5327

5328 5329 5330 5331 5332
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5333

5334 5335
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5356
		if (!mem_cgroup_is_root(memcg))
5357
			page_counter_uncharge(&memcg->memsw, 1);
5358 5359 5360 5361 5362 5363 5364
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5400
		if (page->mem_cgroup)
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5461 5462
	commit_charge(page, memcg, lrucare);

5463 5464 5465 5466 5467
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5468 5469 5470 5471
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5513 5514 5515 5516
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5517
	unsigned long nr_pages = nr_anon + nr_file;
5518 5519
	unsigned long flags;

5520
	if (!mem_cgroup_is_root(memcg)) {
5521 5522 5523
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5524 5525
		memcg_oom_recover(memcg);
	}
5526 5527 5528 5529 5530 5531

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5532
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5533 5534
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5535 5536

	if (!mem_cgroup_is_root(memcg))
5537
		css_put_many(&memcg->css, nr_pages);
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5560
		if (!page->mem_cgroup)
5561 5562 5563 5564
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5565
		 * page->mem_cgroup at this point, we have fully
5566
		 * exclusive access to the page.
5567 5568
		 */

5569
		if (memcg != page->mem_cgroup) {
5570
			if (memcg) {
5571 5572 5573
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5574
			}
5575
			memcg = page->mem_cgroup;
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5589
		page->mem_cgroup = NULL;
5590 5591 5592 5593 5594

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5595 5596
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5597 5598
}

5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5611
	/* Don't touch page->lru of any random page, pre-check: */
5612
	if (!page->mem_cgroup)
5613 5614
		return;

5615 5616 5617
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5618

5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5630

5631 5632
	if (!list_empty(page_list))
		uncharge_list(page_list);
5633 5634 5635 5636 5637 5638
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5639
 * @lrucare: either or both pages might be on the LRU already
5640 5641 5642 5643 5644 5645 5646 5647
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5648
	struct mem_cgroup *memcg;
5649 5650 5651 5652 5653 5654 5655
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5656 5657
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5658 5659 5660 5661 5662

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5663
	if (newpage->mem_cgroup)
5664 5665
		return;

5666 5667 5668 5669 5670 5671
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5672
	memcg = oldpage->mem_cgroup;
5673
	if (!memcg)
5674 5675 5676 5677 5678
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5679
	oldpage->mem_cgroup = NULL;
5680 5681 5682 5683

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5684
	commit_charge(newpage, memcg, lrucare);
5685 5686
}

5687
/*
5688 5689 5690 5691 5692 5693
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5694 5695 5696 5697
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5698
	enable_swap_cgroup();
5699
	mem_cgroup_soft_limit_tree_init();
5700
	memcg_stock_init();
5701 5702 5703
	return 0;
}
subsys_initcall(mem_cgroup_init);