pybind.cc 159.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/convert_utils.h"
32
#include "paddle/fluid/framework/custom_operator.h"
33
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/executor.h"
36
#include "paddle/fluid/framework/executor_cache.h"
37
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
41
#include "paddle/fluid/framework/io/fs.h"
42
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
43
#include "paddle/fluid/framework/ir/cost_model.h"
44
#include "paddle/fluid/framework/ir/generate_pass.h"
45
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
53
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
55
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
56
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/scope_pool.h"
58
#include "paddle/fluid/framework/selected_rows_utils.h"
59
#include "paddle/fluid/framework/tensor_util.h"
60
#include "paddle/fluid/framework/trainer.h"
61
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
62
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
64
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
65
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
66
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
67
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
68
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/operators/py_func_op.h"
70
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
71
#include "paddle/fluid/platform/cpu_info.h"
72
#include "paddle/fluid/platform/device/device_wrapper.h"
73
#include "paddle/fluid/platform/device_context.h"
74
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/platform/enforce.h"
76
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
77
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
78 79
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
80
#include "paddle/fluid/pybind/cuda_streams_py.h"
81
#include "paddle/fluid/pybind/distributed_py.h"
82
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
83
#include "paddle/fluid/pybind/imperative.h"
84
#include "paddle/fluid/pybind/io.h"
85 86
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
87
#include "paddle/utils/none.h"
88 89 90
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
91
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
92
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
93
#include "paddle/fluid/pybind/box_helper_py.h"
94
#include "paddle/fluid/pybind/communication.h"
95
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
96
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
97
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
98
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
99
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
100
#include "paddle/fluid/pybind/generator_py.h"
101
#include "paddle/fluid/pybind/global_value_getter_setter.h"
102
#include "paddle/fluid/pybind/gloo_context_py.h"
103
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
104
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
105
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
106
#include "paddle/fluid/pybind/ir.h"
107
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
108
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
109
#include "paddle/fluid/pybind/pybind_boost_headers.h"
110

111
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
112
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
113
#endif
114
#include "paddle/fluid/framework/data_type.h"
115 116
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
117
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
118
#include "paddle/fluid/pybind/tensor_py.h"
119
#include "paddle/fluid/string/to_string.h"
120 121
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
122
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
123
#endif
124
#ifndef PADDLE_WITH_HIP
125
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
126
#endif
127
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
128 129
#endif

130
#ifdef PADDLE_WITH_ASCEND_CL
131
#include "paddle/fluid/platform/collective_helper.h"
132 133
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
134 135
#endif

136
#ifdef PADDLE_WITH_XPU
137
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
138
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
139 140
#endif

141
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
142

J
jianghaicheng 已提交
143
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
144 145
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
146
#endif
147

148 149 150 151
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
152 153 154 155
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
156
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
157 158 159
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
160 161
#include "pybind11/stl.h"

162
DECLARE_bool(use_mkldnn);
163

Q
Qiao Longfei 已提交
164 165
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
166 167 168
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
169

170
namespace paddle {
171
namespace pybind {
172 173 174 175 176 177 178

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
179
PyTypeObject *g_mluplace_pytype = nullptr;
180
PyTypeObject *g_framework_tensor_pytype = nullptr;
181
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
182

183
bool IsCompiledWithCUDA() {
184 185 186 187 188 189 190
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

191 192 193 194 195 196 197 198
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

199 200
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
201 202 203 204 205 206
  return false;
#else
  return true;
#endif
}

207 208 209 210 211 212 213 214
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

215 216 217 218 219 220 221 222
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

223 224 225 226 227 228 229 230
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
231 232 233 234 235 236 237 238
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

247 248 249 250 251 252 253 254
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

255 256 257 258 259 260 261 262
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

263 264 265 266 267 268 269 270
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

271 272 273 274 275 276 277 278 279 280 281
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

282 283 284 285 286 287 288 289 290 291 292
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

310
bool IsCompiledWithBrpc() {
311
#ifndef PADDLE_WITH_DISTRIBUTE
312 313
  return false;
#endif
314
  return true;
315 316
}

Y
update  
Yancey1989 已提交
317
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
318
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
319 320 321 322 323 324
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
325 326 327 328 329 330 331
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
332
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
333 334
}

H
hong 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
357 358 359
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
373 374
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
375 376
    }
    vec_res.emplace_back(
377
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
378 379 380 381 382 383 384 385 386 387 388 389
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
390 391
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
392 393 394 395 396 397 398 399 400 401 402 403
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
404 405 406
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
407 408 409 410
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
411 412
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
413 414 415 416
  }
  return vec_res;
}

417 418 419 420 421 422 423 424
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
425 426
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
427 428 429 430 431 432 433 434 435 436 437 438 439
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
440 441 442
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
443 444 445 446 447
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
448 449 450 451 452
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
453 454
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
455 456 457
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
458 459 460 461
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
462
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
463 464
        tensor_temp->mutable_data(
            exe->GetPlace(),
465
            framework::TransToPhiDataType(var_desc.GetDataType()));
466 467 468
      }
    }
  } else {
469 470
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
471 472 473 474 475
  }

  return;
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
500 501 502 503
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
504
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
505 506 507 508 509 510 511 512
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
513 514 515 516 517 518 519 520 521 522 523
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

524 525 526 527 528 529
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
530
  BindImperative(&m);
531
  BindEager(&m);
532 533
  BindCudaStream(&m);

Y
Yu Yang 已提交
534 535 536
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
537
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
538

539 540
  AssertStaticGraphAndDygraphGradMakerNoDiff();

541
  m.doc() = "C++ core of PaddlePaddle";
542

543 544 545 546
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

547
  BindException(&m);
Y
Yu Yang 已提交
548

549 550
  m.def("set_num_threads", &platform::SetNumThreads);

551 552
  m.def("disable_signal_handler", &DisableSignalHandler);

553 554 555 556 557 558 559 560
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

561
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
562
  m.def("cudnn_version", &platform::DnnVersion);
563 564 565 566 567 568
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
569
#endif
570

Z
Zeng Jinle 已提交
571 572 573 574
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

575 576 577 578 579 580 581 582 583 584
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
585 586
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
587 588
#endif

Z
Zeng Jinle 已提交
589 590 591 592
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
593 594 595
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
596 597 598 599 600 601

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
602 603
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
604
    framework::Tensor tensor;
6
633WHU 已提交
605

S
Siming Dai 已提交
606
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
607 608
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
609
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
610
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
611 612 613 614 615
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
616

617 618 619 620 621 622
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

623 624 625 626 627 628
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
629 630
  });

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
656 657
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
658 659
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
660 661
  });

S
sneaxiy 已提交
662
  m.def(
S
sneaxiy 已提交
663
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
664 665 666 667
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
668 669 670
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
688 689
            }
          }
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
709 710
                }
              }
711 712 713
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
714 715 716
            }
          }

717 718 719 720
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
721 722 723
           Return the registered kernels in paddle.

           Args:
724
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
725
           )DOC");
726

S
sneaxiy 已提交
727 728 729
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
730
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
731

732
  m.def("_set_fuse_parameter_group_size",
733
        &paddle::framework::ir::SetFuseParameterGroupsSize);
734
  m.def("_set_fuse_parameter_memory_size",
735
        &paddle::framework::ir::SetFuseParameterMemorySize);
736

S
sneaxiy 已提交
737 738 739
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

740 741
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

742 743 744
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

745 746 747 748 749
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
750 751
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
752 753 754 755
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
756
      .def("_is_initialized",
757
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
758
      .def("_get_dims",
759
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
760
      .def("_set_dims",
761
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
762
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
763
           })
Y
yuyang18 已提交
764
      .def("_set_layout",
765
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
766 767
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
768
      .def("_alloc_float",
769
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
770
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
771
           })
772
      .def("_alloc_float",
773
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
774 775
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
776
      .def("_alloc_float",
777
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
778
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
779
           })
780 781 782 783
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
784 785 786 787
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
788
      .def("_alloc_double",
789
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
790 791
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
792
      .def("_alloc_int",
793
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
794
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
795
           })
796
      .def("_alloc_int",
797
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
798 799
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
800
      .def("_alloc_int",
801
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
802
             self.mutable_data<int>(place);
Q
qijun 已提交
803
           })
804 805 806 807
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
808
      .def("_alloc_int",
809 810
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
811 812
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
813
      .def("_alloc_float",
814 815
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
816 817
             self.mutable_data<float>(place);
           })
818
      .def("_mutable_data",
819
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
820
              paddle::framework::proto::VarType::Type type) {
821 822
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
823
           })
824
      .def("_mutable_data",
825
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
826
              paddle::framework::proto::VarType::Type type) {
827 828
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
829
           })
830
      .def("_mutable_data",
831
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
832
              paddle::framework::proto::VarType::Type type) {
833 834
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
835 836
           })
      .def("_mutable_data",
837
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
838
              paddle::framework::proto::VarType::Type type) {
839 840
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
841
           })
842 843 844
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
845 846
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
847
           })
848
      .def("_clear", &framework::Tensor::clear)
849 850 851
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
852 853
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
854
           })
Z
Zeng Jinle 已提交
855 856 857 858 859 860 861 862 863 864
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
865 866
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
867
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
868
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
869
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
870
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
871 872
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
873
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
874
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
875 876
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
877 878
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
879 880
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
881
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
882 883
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
884
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
885 886 887
        
        Args:
          lod (numpy.ndarray): The data to set.
888
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
889
          Tensor is to be set.
890 891
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
892 893 894 895 896 897 898 899 900 901

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

902
                t = fluid.Tensor()
L
Leo Chen 已提交
903 904
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
905

906 907 908
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
909
           Return the shape of Tensor.
L
Leo Chen 已提交
910 911

           Returns:
912
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
913 914 915 916 917 918 919 920


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

921
                  t = fluid.Tensor()
L
Leo Chen 已提交
922 923 924
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
925
      .def("_to_dlpack",
926
           [](framework::Tensor &self) {
6
633WHU 已提交
927
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
928
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
946 947 948 949
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
950
      .def("_place", [](framework::Tensor &self) { return self.place(); })
951 952 953 954
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
955
      .def("_layout",
956 957 958 959
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
960
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
980 981
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
982 983 984 985
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
986
      .def("__init__",
987 988
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
989
           })
G
gongweibao 已提交
990
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
991 992
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
993 994 995
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
996
      .def("set_lod",
997 998
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
999
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1000
             LoD new_lod;
1001 1002
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1003 1004
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1005 1006
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1007
             self.set_lod(new_lod);
S
sneaxiy 已提交
1008 1009
           },
           py::arg("lod"), R"DOC(
1010
           Set LoD of the Tensor.
S
sneaxiy 已提交
1011 1012

           Args:
L
Leo Chen 已提交
1013 1014 1015 1016
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1017 1018 1019 1020 1021 1022 1023

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1024
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1025 1026
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1027
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1028
           )DOC")
1029
      .def("set_recursive_sequence_lengths",
1030 1031
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1032 1033 1034 1035 1036 1037 1038 1039
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1040 1041
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1042
                 platform::errors::InvalidArgument(
1043 1044
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1045 1046 1047
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1048
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1049 1050
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1051
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1052

L
Leo Chen 已提交
1053
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1054
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1055
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1056 1057

           Args:
L
Leo Chen 已提交
1058 1059 1060 1061
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1062 1063 1064 1065 1066 1067 1068

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1069
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1070 1071
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1072
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1073
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1074
           )DOC")
1075
      .def("lod",
1076
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1077 1078 1079 1080 1081 1082
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1083 1084
           },
           R"DOC(
1085
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1086 1087

           Returns:
1088
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1089
           
Z
Zeng Jinle 已提交
1090 1091 1092 1093 1094 1095
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1096
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1097 1098 1099
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1100
           )DOC")
G
gongweibao 已提交
1101
      // Set above comments of set_lod.
1102
      .def("recursive_sequence_lengths",
1103
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1104
             // output the length-based lod info
1105
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1106 1107 1108 1109
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1110 1111
           },
           R"DOC(
L
Leo Chen 已提交
1112
           Return the recursive sequence lengths corresponding to of the LodD 
1113
           of the Tensor.
S
sneaxiy 已提交
1114 1115

           Returns:
L
Leo Chen 已提交
1116
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1117 1118 1119 1120 1121 1122 1123

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1124
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1125 1126 1127
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1128 1129
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1130
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1131
             // Check that the lod info is valid and match the outermost
1132
             // dimension of the Tensor data
S
sneaxiy 已提交
1133 1134 1135
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1136
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1137 1138

           Returns:
L
Leo Chen 已提交
1139
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1140 1141 1142 1143 1144 1145 1146

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1147
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1148 1149 1150
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1151
           )DOC")
L
Leo Chen 已提交
1152
      .def("_as_type",
1153
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1154
              paddle::framework::proto::VarType::Type type) {
1155
             framework::Tensor dst;
L
Leo Chen 已提交
1156 1157 1158 1159 1160
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1174
#ifdef _WIN32
1175
           });
1176 1177 1178
#else
           })
      .def(py::pickle(
1179
          [](const framework::Tensor &t) {  // __getstate__
1180
            auto holder = t.Holder();
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1193 1194 1195
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1196 1197
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1198 1199 1200
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1201
              throw std::runtime_error("Invalid Tensor state!");
1202 1203

            // 1. Create a new C++ instance
1204
            framework::Tensor tensor;
1205 1206 1207 1208 1209

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1210 1211
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1212 1213

            // 3. Maintain global fd set
1214
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1215 1216
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1217 1218 1219
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1220
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1221
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1222 1223 1224 1225 1226
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1227

1228
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1229
      .def("__init__",
1230 1231
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1232
           })
Q
qijun 已提交
1233
      .def("__init__",
1234
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1235
              const int64_t &height) {
1236
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1237 1238
           })
      .def("get_tensor",
1239
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1240
           py::return_value_policy::reference)
1241
      .def("numel",
1242
           [](phi::SelectedRows &self) -> int64_t {
1243 1244
             return self.value().numel();
           })
1245 1246
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1247
      .def("set_rows",
1248
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1249
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1250 1251 1252 1253 1254 1255
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1256
      .def("sync_index",
1257 1258
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1259 1260 1261 1262 1263
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1264
      });
Q
qijun 已提交
1265

1266
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1267 1268 1269

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1270
      .def(py::init<>())
1271
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1272
      .def("set_int",
1273 1274
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1275 1276 1277 1278 1279 1280 1281
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1282
      .def("get_tensor",
1283 1284
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1285 1286
           },
           py::return_value_policy::reference)
1287 1288 1289 1290
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1303 1304 1305
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1306
      .def("get_selected_rows",
1307 1308
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1309 1310
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1311 1312 1313
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1314 1315 1316
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1317
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1318 1319 1320 1321 1322
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1323
#endif
Y
Refine  
Yu Yang 已提交
1324 1325
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1326 1327 1328 1329
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1330 1331
             return self.GetMutable<framework::ReaderHolder>();
           },
1332
           py::return_value_policy::reference)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1344 1345 1346 1347
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1348

S
sneaxiy 已提交
1349
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1350

S
sneaxiy 已提交
1351
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1365
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1366 1367 1368 1369 1370 1371
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1372 1373
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1374
      .def("var",
1375
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1376
             return self.Var(name);
Y
Yu Yang 已提交
1377
           },
S
sneaxiy 已提交
1378 1379
           py::arg("name"),
           R"DOC(
1380
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1381

1382
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1383
           current scope, the variable would be created. Otherwise,
1384
           return the existing variable.
S
sneaxiy 已提交
1385 1386

           Args:
1387 1388
               name (str): the variable name.

S
sneaxiy 已提交
1389
           Returns:
1390
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1391 1392 1393 1394
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1395
           Find variable named :code:`name` in the current scope or
1396
           its parent scope. Return None if not found. 
1397

S
sneaxiy 已提交
1398 1399
           Args:
               name (str): the variable name.
1400

S
sneaxiy 已提交
1401
           Returns:
1402
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1403
           )DOC",
1404
           py::return_value_policy::reference)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1417
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1418 1419 1420 1421 1422 1423
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1424
           py::return_value_policy::reference)
S
sneaxiy 已提交
1425 1426 1427
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1428 1429
           )DOC")
      .def("_kids", &Scope::kids);
1430

S
sneaxiy 已提交
1431 1432 1433 1434 1435 1436
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1437 1438
        R"DOC(
        Create a new scope.
1439

S
sneaxiy 已提交
1440 1441 1442
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1443 1444
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1445 1446
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1447 1448
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1449 1450 1451 1452
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1453 1454
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1455 1456
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1457 1458 1459
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1460 1461
    return ret_values;
  });
1462 1463 1464 1465 1466 1467 1468 1469
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1470
              res = op_checker->GetDefaultAttrsMap();
1471 1472 1473 1474
            }
          }
          return res;
        });
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1491 1492 1493
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1494 1495 1496 1497 1498
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1499 1500 1501
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1516
  m.def("prune", [](const ProgramDesc &origin,
1517
                    const std::set<std::string> &feeded_var_names,
1518
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1519
    ProgramDesc prog_with_targets(origin);
1520

1521
    for (const auto &t : targets) {
1522
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1523
    }
1524
    proto::ProgramDesc pruned_desc;
1525 1526 1527 1528
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1529
  });
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1547 1548 1549 1550
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1551 1552 1553
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1554 1555
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1556

Q
qijun 已提交
1557
  // clang-format off
Y
Yu Yang 已提交
1558
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1559 1560
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1561
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1576
                  })
1577 1578 1579 1580 1581 1582 1583 1584 1585
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1612 1613
#endif
                  })
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1626
      .def_static("create",
D
dzhwinter 已提交
1627
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1628
                      -> paddle::platform::DeviceContext* {
1629
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1630 1631 1632 1633
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1634
#else
W
Wilber 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1650
#endif
C
chengduoZH 已提交
1651 1652 1653 1654
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1655
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1656 1657 1658 1659
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1660 1661 1662 1663
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1664
// clang-format on
1665
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1666 1667
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1668 1669 1670
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1671
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1685
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1699
    devices = phi::DeviceManager::GetAllDeviceList();
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1713
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

1750 1751
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
1752
               int dev_count = static_cast<int>(
1753
                   phi::DeviceManager::GetDeviceCount(device_type));
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
1801
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1802 1803 1804 1805 1806

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1807
    The memory of CUDAPlace with different dev_id is not accessible.
1808 1809 1810 1811 1812 1813 1814 1815
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1816 1817 1818 1819

    Examples:
        .. code-block:: python

1820 1821 1822
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1823

1824 1825 1826
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1827 1828
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1829
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1830 1831 1832 1833 1834 1835 1836 1837
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1838 1839
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1840 1841 1842 1843 1844 1845 1846 1847
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1848 1849
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1850 1851 1852 1853
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1854 1855
             new (&self) platform::CUDAPlace(dev_id);
#else
1856 1857 1858 1859 1860 1861 1862 1863 1864
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1865 1866
#endif
           })
1867
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1868 1869
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1870 1871 1872 1873
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1874
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1875
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1876
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1877 1878
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1879 1880 1881
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1882
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1883
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1884

1885
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1886 1887 1888 1889 1890
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1891 1892 1893
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1932
#ifdef PADDLE_WITH_XPU
1933 1934 1935 1936 1937 1938 1939
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1940 1941 1942
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1943
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1944
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1945
#ifdef PADDLE_WITH_XPU
1946 1947 1948
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1949
      .export_values();
1950
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1951 1952
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1953 1954 1955 1956 1957
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1958 1959
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1960 1961
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1962
    return platform::get_xpu_version(place.device) >
1963
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1964 1965 1966
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1967
    return platform::get_xpu_version(place.device) >
1968
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1969
  });
1970
#endif
1971

1972
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1973
    CPUPlace is a descriptor of a device.
1974
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1975 1976 1977 1978

    Examples:
        .. code-block:: python

1979 1980
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1981

1982 1983 1984
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1985 1986
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1987
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1988
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1989 1990 1991 1992
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1993
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1994
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1995

1996 1997
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1998 1999 2000 2001 2002 2003
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2004 2005 2006 2007

    Examples:
        .. code-block:: python

2008 2009
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2010

2011 2012 2013 2014
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2015
      .def("__init__",
S
sneaxiy 已提交
2016
           [](platform::CUDAPinnedPlace &self) {
2017
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2018 2019 2020
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2021
#endif
S
sneaxiy 已提交
2022
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2023
           })
S
sneaxiy 已提交
2024 2025 2026 2027
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2028 2029
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2030 2031
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2032 2033 2034 2035
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2036
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2037 2038
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2039
  // NPUPlace
2040
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2041 2042 2043 2044 2045 2046 2047 2048
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2049 2050 2051
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2083
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2098 2099
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2100 2101
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2223 2224 2225
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2226 2227 2228 2229
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2230
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2231
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2232
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2233
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2234
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2235 2236
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2237 2238
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2239 2240
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2241 2242
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2243 2244
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2245 2246 2247 2248
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2249 2250
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2251 2252 2253
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2254 2255 2256 2257 2258
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2259 2260
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2261 2262
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2263 2264 2265 2266
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2267 2268 2269 2270
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2271
      .def("set_place",
D
dzhwinter 已提交
2272
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2273
             self = gpu_place;
C
chengduoZH 已提交
2274
           })
2275 2276 2277 2278 2279
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2280 2281 2282 2283
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2284 2285 2286 2287
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2288 2289 2290 2291
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2292 2293 2294 2295
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2296 2297
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2298

Y
Yu Yang 已提交
2299
  py::class_<OperatorBase>(m, "Operator")
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2314
      .def("run",
2315
           [](OperatorBase &self, const Scope &scope,
2316 2317 2318 2319
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2320 2321
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2322 2323 2324 2325
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2326 2327
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2328 2329 2330 2331
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2332 2333
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2334 2335 2336 2337
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2338 2339 2340
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2341
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2342 2343
             self.Run(scope, place);
           })
2344 2345 2346 2347 2348 2349
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2350 2351 2352 2353 2354 2355 2356
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2357 2358
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2359
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2360
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2361 2362 2363 2364
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2365

2366 2367 2368
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2369 2370 2371 2372 2373 2374 2375
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2376 2377
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2378

2379 2380
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2381
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2382
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2383
      .def("close", &Executor::Close)
2384 2385
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2386 2387
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2388 2389 2390 2391
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2392
             pybind11::gil_scoped_release release;
2393 2394 2395 2396 2397 2398 2399
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2400 2401 2402
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2403
              std::map<std::string, FetchType *> *fetch_targets,
2404 2405 2406 2407 2408 2409 2410 2411
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2412
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2413 2414 2415 2416 2417 2418 2419
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2430
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2431 2432
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2433
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2434 2435
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2436
      });
S
sneaxiy 已提交
2437

2438
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2439
      .def(py::init<>())
2440 2441 2442 2443 2444
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2445

2446
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2447 2448 2449
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2450
           [](StandaloneExecutor &self,
H
hong 已提交
2451
              const std::unordered_map<std::string, py::array> &input_dict,
2452
              std::vector<std::string> fetch_names) {
2453
             std::vector<framework::LoDTensor> feed_tensors;
2454
             std::vector<std::string> feed_names;
H
hong 已提交
2455 2456 2457 2458 2459

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2460 2461
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2462 2463
             }

2464 2465 2466 2467 2468 2469 2470 2471 2472
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2473
              const std::unordered_map<std::string, framework::LoDTensor>
2474 2475
                  &input_dict,
              std::vector<std::string> fetch_names) {
2476
             std::vector<framework::LoDTensor> feed_tensors;
2477 2478 2479 2480 2481 2482 2483
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2484 2485 2486 2487
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2488
             }
W
wanghuancoder 已提交
2489
             return py::cast(std::move(ret));
2490
           })
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2501 2502 2503
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2504
             std::vector<framework::LoDTensor> feed_tensors;
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2515
             framework::interpreter::CostInfo cost_info;
2516 2517 2518 2519 2520
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2521 2522
           });

D
dzhwinter 已提交
2523
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2524
  m.def("init_glog", framework::InitGLOG);
2525 2526
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2527
  m.def("init_devices", []() { framework::InitDevices(); });
2528

2529
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2530
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2531
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2532
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2533
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2534
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2535
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2536
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2537
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2538
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2539
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2540
  m.def("supports_bfloat16", SupportsBfloat16);
2541
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2542 2543
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2544
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2545
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2546
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2547 2548 2549
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2569 2570 2571 2572 2573 2574 2575
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2585
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2586 2587
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2588
    return platform::GetGPUComputeCapability(place.device) >= 53;
2589 2590
  });
#endif
2591

S
Steffy-zxf 已提交
2592 2593 2594 2595 2596 2597
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2598 2599 2600 2601 2602
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2603
            return py::cast(BOOST_GET(LoDTensor, var));
2604
          } else {
2605
            return py::cast(BOOST_GET(LoDTensorArray, var));
2606 2607
          }
        });
2608
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2609

X
Xin Pan 已提交
2610 2611
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2612 2613 2614 2615
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2616
  BindCostModel(&m);
2617
  BindConstValue(&m);
2618
  BindGlobalValueGetterSetter(&m);
2619
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2620
  BindFleetExecutor(&m);
2621
  BindTCPStore(&m);
Y
Yu Yang 已提交
2622

Y
Yu Yang 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2632
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2633
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2634 2635 2636

    Examples:
        .. code-block:: python
2637

Z
Zeng Jinle 已提交
2638 2639 2640
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2641 2642 2643 2644
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2645 2646
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2647 2648 2649 2650 2651 2652
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2653 2654 2655 2656
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2657 2658 2659
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2660 2661 2662 2663 2664 2665
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2666 2667
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2668 2669 2670 2671 2672 2673
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2696

2697 2698 2699 2700 2701 2702 2703 2704
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2705
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2706 2707
                 res[i] = py::cast(std::move(data));
               } else {
2708
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2724
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2725 2726 2727 2728 2729 2730 2731 2732
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2733
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2734 2735 2736 2737 2738 2739 2740 2741 2742
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2743 2744
        )DOC")
      .def("_move_to_list",
2745
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2746 2747 2748 2749
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2750
                 if (data_is_lod_tensor(self[i][j])) {
2751
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2752 2753
                   tmp[j] = py::cast(std::move(var));
                 } else {
2754
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2755 2756 2757 2758 2759 2760
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2770
  m.def("op_support_gpu", OpSupportGPU);
2771
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2772
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2773 2774 2775 2776 2777 2778 2779 2780
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2781 2782 2783 2784 2785 2786 2787
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2813
      });
D
dangqingqing 已提交
2814

2815
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2816 2817 2818
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2819 2820 2821 2822
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2823
#endif
P
peizhilin 已提交
2824
#endif
Y
Yu Yang 已提交
2825

2826 2827
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2828
  m.def("npu_finalize", []() {
2829 2830
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2831 2832 2833
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2834
      platform::NPUDeviceGuard guard(devices[i]);
2835 2836 2837 2838
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2859 2860 2861 2862
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2863 2864 2865 2866
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2867 2868 2869 2870 2871 2872
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2873 2874 2875 2876
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2877
      .value("kAll", platform::ProfilerState::kAll)
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2889
  m.def("set_tracer_option", platform::SetTracerOption);
2890 2891
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2892
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2893
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2894
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2895 2896
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2897 2898 2899
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2900
    callable.inc_ref();
2901 2902 2903 2904 2905 2906 2907 2908
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2909
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2910 2911 2912
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2913

2914 2915
  m.def("size_of_dtype", framework::SizeOfType);

2916
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2917 2918
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2919 2920
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2921
#endif  // PADDLE_WITH_CUDA
2922 2923
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2924

2925 2926 2927
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2928 2929
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2930
      .def("has", &ir::Pass::Has)
2931 2932 2933
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2934
           })
2935
      .def(
2936
          "set",
2937 2938 2939
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2940 2941
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2942 2943
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2944 2945 2946 2947 2948
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2963 2964
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2965
        self.Apply(graph.get());
F
flame 已提交
2966
      });
2967

X
fix  
Xin Pan 已提交
2968 2969
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2984
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2985
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2986 2987 2988 2989
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2990 2991 2992
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2993 2994 2995
    Examples:
        .. code-block:: python

2996 2997 2998 2999 3000 3001 3002 3003 3004
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3005

3006 3007
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3008

3009
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3010 3011
          sgd_optimizer.minimize(avg_loss)

3012
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3013 3014
          exec_strategy.num_threads = 4

3015 3016 3017
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3018 3019
        )DOC");

3020 3021 3022 3023
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3024

Y
yuyang18 已提交
3025
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3026 3027 3028 3029 3030
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3031
          },
3032 3033
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3034 3035 3036 3037 3038 3039 3040
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3054
      .def_property(
3055 3056
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3057
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3058 3059 3060
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3061 3062 3063 3064 3065
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3066 3067 3068
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3069 3070
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3071 3072 3073 3074 3075 3076 3077
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3078 3079 3080 3081
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3082
                because the temp variable's shape maybe the same between two iterations.
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3093

3094 3095 3096 3097 3098 3099 3100
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3101
              )DOC")
Q
Qiao Longfei 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3123
              )DOC")
3124 3125 3126 3127 3128 3129 3130 3131
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3132 3133 3134 3135 3136
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3137

Y
yuyang18 已提交
3138
  exec_strategy.def_property(
Y
yuyang18 已提交
3139 3140 3141 3142 3143 3144 3145
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3146 3147
      });

C
chengduo 已提交
3148 3149 3150 3151
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3152 3153 3154
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3155 3156 3157
    Examples:
        .. code-block:: python

3158
            import os
3159 3160 3161 3162
            import paddle
            import paddle.static as static

            paddle.enable_static()
3163

3164 3165
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3166

3167 3168 3169 3170
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3171

3172
            build_strategy = static.BuildStrategy()
3173 3174
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3175 3176
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3177
            program = program.with_data_parallel(loss_name=loss.name,
3178 3179
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3180
)DOC");
Y
yuyang18 已提交
3181 3182 3183

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3184 3185
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3186 3187 3188 3189 3190 3191 3192 3193
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3194
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3195 3196 3197 3198
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3199 3200 3201 3202
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3203
            self.reduce_ = strategy;
C
chengduo 已提交
3204
          },
3205
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3206 3207
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3208
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3209 3210
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3211
                Default is 'AllReduce'.
F
flame 已提交
3212 3213 3214 3215

                Examples:
                    .. code-block:: python

3216 3217 3218 3219 3220 3221 3222
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3223
                  )DOC")
Y
yuyang18 已提交
3224 3225 3226 3227 3228
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3229 3230 3231 3232
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3233
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3234
          },
3235
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3236
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3237 3238
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3239
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3240 3241 3242 3243

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3244 3245
                        import numpy
                        import os
3246 3247 3248 3249
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3250 3251

                        use_cuda = True
3252 3253
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3254 3255

                        # NOTE: If you use CPU to run the program, you need
3256
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3257 3258 3259 3260 3261 3262
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3263
                            places = static.cpu_places()
C
chengduo 已提交
3264
                        else:
3265
                            places = static.cuda_places()
C
chengduo 已提交
3266

3267 3268 3269 3270
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3271

3272
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3273

3274
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3275
                        build_strategy.gradient_scale_strategy = \
3276 3277 3278
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3279
                                          loss_name=loss.name, build_strategy=build_strategy,
3280
                                          places=places)
C
chengduo 已提交
3281 3282 3283 3284 3285 3286

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3287 3288
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3289
                   )DOC")
Y
yuyang18 已提交
3290 3291 3292 3293
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3294 3295 3296 3297
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3298
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3299
          },
3300
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3301
                writing the SSA Graph to file in the form of graphviz.
3302
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3303 3304 3305 3306

                Examples:
                    .. code-block:: python

3307 3308 3309 3310
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3311

3312 3313
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3314
                    )DOC")
S
sneaxiy 已提交
3315 3316 3317 3318 3319 3320
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3321 3322 3323 3324
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3325 3326
            self.enable_sequential_execution_ = b;
          },
3327 3328
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3329 3330 3331 3332

                Examples:
                    .. code-block:: python

3333 3334 3335 3336 3337 3338
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3339 3340
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3341 3342 3343 3344 3345 3346
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3347 3348 3349 3350
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3351 3352
            self.remove_unnecessary_lock_ = b;
          },
3353 3354
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3355 3356 3357 3358

                Examples:
                    .. code-block:: python

3359 3360 3361 3362 3363 3364
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3365 3366
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3367 3368 3369 3370
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3371
#ifdef WIN32
3372
            PADDLE_THROW(platform::errors::Unavailable(
3373
                "Distribution mode is not supported on Windows platform."));
3374
#endif
3375 3376
            self.num_trainers_ = num_trainers;
          })
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3389 3390 3391 3392 3393 3394
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3395 3396 3397 3398 3399 3400
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3401
      .def_property("use_hierarchical_allreduce",
3402 3403 3404 3405 3406 3407
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3408
      .def_property("hierarchical_allreduce_inter_nranks",
3409 3410 3411 3412 3413 3414 3415
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3416 3417 3418 3419 3420 3421
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3422 3423 3424 3425
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3426 3427
            self.fuse_elewise_add_act_ops_ = b;
          },
3428
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3429
                to fuse elementwise_add_op and activation_op,
3430
                it may make the execution faster. Default is False.
F
flame 已提交
3431 3432 3433 3434

                Examples:
                    .. code-block:: python

3435 3436 3437 3438 3439 3440
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3441 3442
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3443 3444 3445 3446
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3447
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3448
                              platform::errors::PreconditionNotMet(
3449 3450
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3460 3461 3462 3463 3464 3465
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3466 3467
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3493 3494 3495 3496
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3497
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3498
                              platform::errors::PreconditionNotMet(
3499 3500
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3511 3512 3513 3514 3515 3516
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3517 3518
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3519 3520 3521 3522 3523 3524
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3525 3526 3527 3528
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3529 3530
            self.fuse_relu_depthwise_conv_ = b;
          },
3531
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3532 3533 3534
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3535
                Default is False.
F
flame 已提交
3536 3537 3538 3539

                Examples:
                    .. code-block:: python

3540 3541 3542 3543 3544 3545
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3546 3547
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3548 3549 3550
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3551
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3552 3553
                    },
                    [](BuildStrategy &self, bool b) {
3554 3555 3556 3557
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3558 3559
                      self.fuse_broadcast_ops_ = b;
                    },
3560
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3561 3562 3563 3564
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3565 3566 3567 3568 3569
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3570 3571 3572 3573 3574 3575
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3576 3577
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3578 3579
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3580
                      return self.fuse_all_optimizer_ops_ == true ||
3581
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3582 3583
                    },
                    [](BuildStrategy &self, bool b) {
3584 3585 3586 3587
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3588 3589
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3590 3591 3592 3593
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3594 3595 3596 3597
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3598 3599
            self.sync_batch_norm_ = b;
          },
3600
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3601 3602 3603
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3604 3605
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3606 3607 3608 3609

                Examples:
                    .. code-block:: python

3610 3611 3612 3613 3614 3615
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3616 3617
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3618 3619
      .def_property(
          "memory_optimize",
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3630
              self.memory_optimize_ = paddle::none;
3631 3632 3633
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3634
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3635 3636
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3637 3638
            }
          },
3639
          R"DOC((bool, optional): memory opitimize aims to save total memory
3640
                consumption, set to True to enable it.
3641

3642 3643 3644
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3659 3660 3661
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3662 3663 3664
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3665
              PADDLE_THROW(platform::errors::Unavailable(
3666
                  "Distribution mode is not supported on Windows platform."));
3667 3668 3669 3670 3671
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3672 3673 3674
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3675
      .def_property(
D
dzhwinter 已提交
3676 3677 3678
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3679 3680 3681 3682
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3683 3684
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3685 3686
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3687
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3688
          },
C
chengduo 已提交
3689
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3690 3691 3692 3693 3694 3695 3696
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3697 3698 3699 3700
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3701 3702 3703 3704 3705 3706 3707 3708 3709
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3710 3711 3712 3713 3714 3715
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3716 3717 3718 3719 3720 3721 3722
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3723 3724 3725 3726 3727 3728
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3729
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3730
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3731 3732 3733 3734 3735
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3736

3737 3738 3739 3740 3741 3742
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3743
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3744
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3745
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3746
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3747 3748 3749 3750
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3751 3752 3753 3754 3755
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3756 3757 3758
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3759 3760 3761 3762
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3763 3764
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3765 3766 3767 3768 3769 3770 3771 3772
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3773
               return py::cast(
3774
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3775 3776
             } else {
               return py::cast(std::move(
3777
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3778
             }
3779 3780
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3781

J
jianghaicheng 已提交
3782 3783
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
3795
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
3917 3918
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
3919 3920 3921
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
3922 3923
#endif

D
dongdaxiang 已提交
3924
  BindFleetWrapper(&m);
3925
  BindIO(&m);
T
Thunderbrook 已提交
3926

T
Thunderbrook 已提交
3927
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3928
  BindHeterWrapper(&m);
3929
  BindMetrics(&m);
T
Thunderbrook 已提交
3930
#endif
T
Thunderbrook 已提交
3931
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3932
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3933
#endif
3934
  BindGlooWrapper(&m);
H
hutuxian 已提交
3935
  BindBoxHelper(&m);
H
hutuxian 已提交
3936 3937 3938
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3939
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3940
  BindNCCLWrapper(&m);
3941 3942 3943
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3944
#endif
F
flame 已提交
3945 3946
  BindGraph(&m);
  BindNode(&m);
3947
  BindPass(&m);
F
flame 已提交
3948
  BindInferenceApi(&m);
3949
  BindCompatible(&m);
3950
  BindDataset(&m);
Y
yaoxuefeng 已提交
3951
  BindGenerator(&m);
3952 3953 3954
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
3955 3956 3957
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3958
  BindAscendDevice(&m);
3959
#endif
Y
Yanghello 已提交
3960 3961 3962
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3963

T
tangwei12 已提交
3964
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3965 3966
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3967
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3968 3969
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3970 3971 3972 3973 3974
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3975 3976 3977 3978
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3979
  BindSparseShardingTools(&m);
3980
#endif
L
Luo Tao 已提交
3981
}
3982
}  // namespace pybind
3983
}  // namespace paddle