framework.py 258.7 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
36 37
import paddle.version as fluid_version
import warnings
38
import functools
39
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
J
jianghaicheng 已提交
47
    'ipu_shard_guard',
48
    'set_ipu_shard',
S
sneaxiy 已提交
49 50
    'cuda_places',
    'cpu_places',
51
    'xpu_places',
52
    'mlu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
J
Jiabin Yang 已提交
54
    '_non_static_mode',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'is_compiled_with_npu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
74
_dygraph_tracer_ = None
75
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
76
_global_expected_place_ = None
77
_current_device = None
78
global_prog_seed = 0
79
_current_pipeline_stage = None
80
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
81
_already_patch_varbase = False
82
_current_cuda_graph_mode = None
83
_global_flags_ = core.globals()
L
Leo Chen 已提交
84 85
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
86
_dy2st_enable_standalone_executor_ = (os.environ.get(
87
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1))
J
Jiabin Yang 已提交
88 89

# Some explanation of our execution system 2022.03
90
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
91
# build a fast execution system for dynamic mode. But we can't just remove all legacy
92
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
93
# these flags.
94
#
J
Jiabin Yang 已提交
95
# 1. _non_static_mode():
96
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
97 98 99 100
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
101
#
J
Jiabin Yang 已提交
102
# They have a relation ship as below:
103
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
104
# dygraph mode means you are not in _in_legacy_dygraph.
105
#
J
Jiabin Yang 已提交
106 107 108 109 110 111
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


112 113 114 115 116
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
117
    from paddle import _C_ops, _legacy_C_ops
118 119 120
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

121 122 123
    global _already_patch_eager_tensor
    global _already_patch_varbase

124
    assert isinstance(is_eager, bool)
125
    # switch into eager mode
126
    if is_eager:
127
        _legacy_C_ops.switch_to_eager_ops()
128 129 130 131 132 133
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
134
    else:
135
        _legacy_C_ops.switch_to_core_ops()
136 137 138 139 140
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
141

142 143 144 145 146 147 148 149 150 151 152
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
153 154


J
Jiabin Yang 已提交
155 156 157
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
158
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
159 160 161 162 163


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
164
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
165 166 167 168 169 170 171


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


172 173 174 175 176 177 178 179 180
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
181 182 183
    # Only enable eager on CPU/GPU/XPU
    is_not_support = core.is_compiled_with_npu() or core.is_compiled_with_ipu(
    ) or core.is_compiled_with_mlu()
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
241 242 243


@signature_safe_contextmanager
J
Jiabin Yang 已提交
244
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
245 246
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
247 248 249
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
250
    try:
J
Jiabin Yang 已提交
251
        yield
252
    finally:
253 254
        if not already_fallback:
            _enable_legacy_dygraph()
255 256


257 258
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
259 260 261 262
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
263 264 265 266 267 268 269 270 271 272 273
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
274
@signature_safe_contextmanager
275
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
276 277 278 279
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
280
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
281
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
282
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
283
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
284
            which means no pipelining computation order and run Ops in terms of graph.
285

G
gouzil 已提交
286 287 288 289 290 291 292
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


327 328 329 330
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
331 332 333 334 335
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

336 337 338 339 340
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
341
            The sharded model will be computed from small to large. The default value is -1,
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
450
        for i in range(len(ver_a)):
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
473 474
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
475 476 477

    if max_version is not None:
        max_version_split = max_version.split('.')
478 479
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


495
def _dygraph_not_support_(func):
496

497
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
498 499
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
500 501 502 503 504 505
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
506

507
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
508
        assert _non_static_mode(
509 510 511 512 513 514
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


515 516 517 518 519 520 521 522 523 524 525
def _non_static_only_(func):

    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
        assert _non_static_mode() or in_declarative_mode(
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


526
def _static_only_(func):
527

528
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
529
        assert not _non_static_mode(
530
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
531 532 533 534 535
        return func(*args, **kwargs)

    return __impl__


536 537 538 539 540
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


541 542 543 544 545 546
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
547
# same base class.
548
def _fake_interface_only_(func):
549

550 551
    def __impl__(*args, **kwargs):
        raise AssertionError(
552 553 554 555 556
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
557 558 559 560

    return __impl__


T
tangwei12 已提交
561 562
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
563 564 565 566
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
567

568 569 570 571 572 573 574 575 576 577 578 579 580
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


581 582
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
583
static_only = wrap_decorator(_static_only_)
584
fake_interface_only = wrap_decorator(_fake_interface_only_)
585
non_static_only = wrap_decorator(_non_static_only_)
586 587


L
lujun 已提交
588 589
def _dygraph_tracer():
    return _dygraph_tracer_
590

W
Wu Yi 已提交
591

592 593 594 595
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
596
def _current_expected_place():
597 598 599
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
600 601 602 603 604
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
605
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
606 607 608 609 610
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
611 612 613 614 615 616
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
617
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
618 619 620 621 622
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
623 624 625 626 627 628
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
629
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
630 631 632 633 634
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
650
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
651 652


L
Leo Chen 已提交
653 654
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
655 656
    """
    convert VarBase tp numpy
T
tangwei12 已提交
657

658 659 660
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
661 662 663 664 665 666 667 668 669
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
670
def _cpu_num():
671
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
672 673 674 675 676 677 678 679
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
680
        os.environ['CPU_NUM'] = str(1)
681
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
682 683 684 685 686 687 688 689
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
690
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
691
    return device_ids
S
sneaxiy 已提交
692 693


694 695 696 697 698
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
699
        device_ids = range(core.get_xpu_device_count())
700 701 702
    return device_ids


703 704 705 706 707
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
708
        device_ids = range(core.get_npu_device_count())
709 710 711
    return device_ids


712 713 714 715 716
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
717
        device_ids = range(core.get_mlu_device_count())
718 719 720
    return device_ids


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


751 752 753 754 755 756 757
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
758

759 760 761 762 763 764
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

765
    Returns: None
766 767 768 769 770 771 772 773 774 775

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
791 792 793 794
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

795
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
796 797 798 799

    Examples:
        .. code-block:: python

800
            import paddle
801
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
802 803 804 805
    """
    return core.is_compiled_with_cuda()


806 807 808 809 810 811 812 813 814 815
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
816
            support_gpu = paddle.device.is_compiled_with_rocm()
817 818 819 820
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
821
def cuda_places(device_ids=None):
L
lujun 已提交
822
    """
823
    Note:
824 825 826
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
827
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
828 829

    If :code:`device_ids` is None, environment variable of
830
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
831
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
832
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
833
    If :code:`FLAGS_selected_gpus` is not set, all visible
834
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
835 836

    If :code:`device_ids` is not None, it should be the device
837
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
838
    the returned list would be
C
Chen Weihang 已提交
839
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
840

841
    Parameters:
842
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
843 844

    Returns:
C
Chen Weihang 已提交
845
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
846 847

    Examples:
848

L
lujun 已提交
849 850
        .. code-block:: python

C
Chen Weihang 已提交
851 852
            import paddle
            import paddle.static as static
T
tangwei12 已提交
853

854
            # required: gpu
855

C
Chen Weihang 已提交
856 857 858
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
859 860

    """
S
sneaxiy 已提交
861 862 863
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
864
        device_ids = _cuda_ids()
S
sneaxiy 已提交
865 866 867 868 869
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


870 871 872 873
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
874 875 876 877 878 879 880 881 882
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
883
        the returned list would be
S
sunzhongkai588 已提交
884
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
885

886 887 888 889 890 891
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
892

893 894
            # required: xpu

895 896
            import paddle
            import paddle.static as static
897

898 899 900 901 902 903 904 905 906 907 908 909
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


910 911 912 913
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
914

915 916 917 918 919 920 921 922 923
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
924
    the returned list would be
925
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
926

927 928 929 930 931 932 933 934 935 936 937
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
938

939 940 941 942 943 944 945 946 947 948 949 950
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
951
def cpu_places(device_count=None):
L
lujun 已提交
952
    """
C
Chen Weihang 已提交
953
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
954

S
add doc  
sneaxiy 已提交
955
    If :code:`device_count` is None, the device count would
956
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
957 958
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
959 960
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
961

962 963
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
964 965

    Returns:
C
Chen Weihang 已提交
966
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
967 968

    Examples:
969

L
lujun 已提交
970 971
        .. code-block:: python

C
Chen Weihang 已提交
972 973
            import paddle
            import paddle.static as static
T
tangwei12 已提交
974

C
Chen Weihang 已提交
975 976 977
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
978 979
    """

S
sneaxiy 已提交
980 981 982 983 984 985
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
986
    """
987
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
988 989

    If :code:`device_count` is None, the device count would
990
    be determined by environment variable :code:`CPU_NUM`.
991 992 993 994
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
995

996 997
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
998 999

    Returns:
1000
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1001 1002 1003 1004

    Examples:
        .. code-block:: python

1005
            import paddle.fluid as fluid
L
lujun 已提交
1006 1007 1008 1009 1010
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
1011 1012 1013
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
1014 1015
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1016 1017


1018 1019
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1061
class NameScope(object):
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1088
@signature_safe_contextmanager
1089 1090
def name_scope(prefix=None):
    """
1091

1092
    Generate hierarchical name prefix for the operators in Static Graph.
1093

1094
    Note:
T
Tao Luo 已提交
1095 1096
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1097
        Don't use it in dygraph, since it will cause memory leak.
1098 1099

    Args:
T
Tao Luo 已提交
1100
        prefix(str, optional): prefix. Default is none.
1101 1102

    Examples:
1103

1104
        .. code-block:: python
T
Tink_Y 已提交
1105

1106 1107 1108
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1109
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1110
             b = a + 1
1111
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1112
                c = b * 1
1113
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1114
                d = c / 1
1115 1116 1117
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1118 1119
                g = f - 1

1120
          # Op are created in the default main program.
1121
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1137 1138
    """
    # TODO(panyx0718): Only [0-9a-z].
1139
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1140
    if _non_static_mode():
L
Leo Chen 已提交
1141 1142
        yield
    else:
T
tianshuo78520a 已提交
1143
        assert prefix, "namescope prefix can not be empty."
1144 1145
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1146 1147 1148 1149
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1162 1163 1164
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1165 1166 1167 1168


def grad_var_name(var_name):
    """
1169 1170
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1171 1172 1173
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1174

1175
def convert_np_dtype_to_dtype_(np_dtype):
1176
    """
1177
    Convert the data type in numpy to the data type in Paddle.
1178

1179
    Args:
1180 1181
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1182

1183
    Returns:
1184
        core.VarDesc.VarType: The data type in Paddle.
1185 1186

    """
1187 1188
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1189 1190 1191
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1192

1193
    if dtype == np.float32:
1194
        return core.VarDesc.VarType.FP32
1195
    elif dtype == np.float64:
1196
        return core.VarDesc.VarType.FP64
1197
    elif dtype == np.float16:
1198
        return core.VarDesc.VarType.FP16
1199
    elif dtype == np.int32:
1200
        return core.VarDesc.VarType.INT32
1201
    elif dtype == np.int16:
1202
        return core.VarDesc.VarType.INT16
1203
    elif dtype == np.int64:
1204
        return core.VarDesc.VarType.INT64
1205
    elif dtype == np.bool_:
1206
        return core.VarDesc.VarType.BOOL
1207
    elif dtype == np.uint16:
1208 1209 1210
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1211 1212
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1213 1214
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1215 1216 1217 1218
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1219
    else:
M
minqiyang 已提交
1220
        raise ValueError("Not supported numpy dtype %s" % dtype)
1221 1222 1223


def dtype_is_floating(dtype):
1224 1225 1226
    """
    Check the data type is floating or not.
    Args:
1227
        dtype(np.dtype|core.VarDesc.VarType): data type.
1228 1229 1230 1231 1232
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1233
    if not isinstance(dtype, core.VarDesc.VarType):
1234 1235
        dtype = convert_np_dtype_to_dtype_(dtype)

1236 1237 1238 1239
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1240 1241


Y
Yang Yang(Tony) 已提交
1242
def _debug_string_(proto, throw_on_error=True):
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1254
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1255
    if not proto.IsInitialized(error_fields) and throw_on_error:
1256 1257 1258
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1259 1260 1261
    return proto.__str__()


1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1272
    if _in_eager_mode_:
1273
        eager_tensor = core.eager.Tensor(
1274
            dtype if dtype else core.VarDesc.VarType.FP32,
1275 1276 1277
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1278 1279
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1280 1281
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1282 1283 1284
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1285 1286


1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1298
class VariableMetaClass(type):
1299

1300 1301 1302 1303
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1304
            return issubclass(t, core.eager.Tensor)
1305
        else:
J
Jiabin Yang 已提交
1306 1307
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1308 1309 1310 1311
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1312

1313 1314 1315 1316
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1317
            return issubclass(t, EagerParamBase)
1318
        else:
J
Jiabin Yang 已提交
1319 1320
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1321 1322 1323
            return issubclass(t, Parameter)


1324
class Variable(metaclass=VariableMetaClass):
1325
    """
J
Jiabin Yang 已提交
1326
    **Notes**:
1327
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1328

1329 1330
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1331 1332 1333
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1334
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1335 1336
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1337

1338
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1339
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1340

T
tianshuo78520a 已提交
1341
    Most of a Variable's member variables can be set to be None. It mean
1342
    it is not available or will be specified later.
1343

1344
    Examples:
1345 1346
        In Static Graph Mode:

1347 1348
        .. code-block:: python

1349
            import paddle.fluid as fluid
1350
            cur_program = fluid.Program()
1351 1352 1353 1354
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1355

J
Jiabin Yang 已提交
1356
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1357 1358 1359 1360 1361 1362 1363 1364 1365

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1366 1367
    """

Y
Yu Yang 已提交
1368 1369
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1370
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1371 1372 1373 1374
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1375
                 capacity=None,
Q
QI JUN 已提交
1376
                 persistable=None,
F
fengjiayi 已提交
1377
                 error_clip=None,
Y
Yu Yang 已提交
1378
                 stop_gradient=False,
F
fengjiayi 已提交
1379
                 is_data=False,
H
Huihuang Zheng 已提交
1380
                 need_check_feed=False,
H
hong 已提交
1381
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1382
                 **kwargs):
Y
Yu Yang 已提交
1383 1384
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1385
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1386

Y
Yu Yang 已提交
1387
        if dtype is not None:
1388
            if not isinstance(dtype, core.VarDesc.VarType):
1389
                dtype = convert_np_dtype_to_dtype_(dtype)
1390

S
Steffy-zxf 已提交
1391 1392 1393 1394
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1395 1396 1397
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1398 1399
        self.belong_to_optimizer = belong_to_optimizer

1400 1401 1402
        self.error_clip = error_clip

        is_new_var = False
1403
        self.desc = self.block.desc.find_var(name.encode())
1404

1405
        if self.desc is None:
1406
            self.desc = self.block.desc.var(name.encode())
1407
            is_new_var = True
1408

1409 1410 1411
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1412 1413
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1414 1415
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1416

1417
        if shape is not None:
1418
            if is_new_var:
1419 1420 1421 1422 1423 1424
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1425 1426
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1427 1428 1429 1430 1431 1432 1433
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1434 1435
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1436 1437 1438 1439 1440 1441 1442 1443 1444
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1445 1446
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1447 1448 1449 1450 1451 1452 1453 1454 1455
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1456 1457
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1458 1459
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1460

1461 1462
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1463

1464 1465 1466 1467 1468 1469 1470
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1471

1472 1473
        self.block.vars[name] = self
        self.op = None
1474
        self.stop_gradient = stop_gradient
1475
        self.is_data = is_data
Y
Yu Yang 已提交
1476

1477 1478 1479
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1480 1481
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1482

1483
        Returns:
J
Jiabin Yang 已提交
1484
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1485 1486 1487 1488

        Examples:
            .. code-block:: python

1489
                import paddle
1490

1491 1492 1493 1494
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1495

1496 1497
                # create a detached Variable
                y = x.detach()
1498
        """
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1511 1512 1513
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1514
        return output
1515

1516
    @fake_interface_only
1517
    def numpy(self):
1518
        """
J
Jiabin Yang 已提交
1519
        **Notes**:
T
tianshuo78520a 已提交
1520
            **This API is ONLY available in Dygraph mode**
1521

J
Jiabin Yang 已提交
1522
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1523 1524 1525 1526 1527

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1528
            ndarray: dtype is same as current Variable
1529 1530 1531 1532 1533 1534

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1535
                from paddle.fluid.dygraph import Linear
1536 1537 1538 1539
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1540
                    linear = Linear(32, 64)
1541
                    data = to_variable(data)
1542
                    x = linear(data)
1543 1544 1545
                    print(x.numpy())

        """
1546
        pass
1547

1548
    @fake_interface_only
1549
    def backward(self, retain_graph=False):
1550
        """
J
Jiabin Yang 已提交
1551
        **Notes**:
T
tianshuo78520a 已提交
1552
            **This API is ONLY available in Dygraph mode**
1553

1554
        Run backward of current Graph which starts from current Tensor.
1555

J
Jiabin Yang 已提交
1556
        Args:
1557 1558 1559 1560
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1561

J
Jiabin Yang 已提交
1562 1563
        Returns:
            NoneType: None
1564 1565 1566 1567 1568

        Examples:
            .. code-block:: python

                import numpy as np
1569 1570
                import paddle
                paddle.disable_static()
1571 1572

                x = np.ones([2, 2], np.float32)
1573 1574 1575 1576 1577 1578 1579
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1580 1581
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1582
                loss.backward()
1583 1584

        """
1585
        pass
1586

1587
    @fake_interface_only
1588
    def gradient(self):
1589
        """
J
Jiabin Yang 已提交
1590
        **Notes**:
T
tianshuo78520a 已提交
1591
            **This API is ONLY available in Dygraph mode**
1592 1593 1594

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1595
        Returns:
1596
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1597 1598 1599 1600 1601 1602 1603

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1604
                # example1: return ndarray
1605 1606 1607 1608 1609 1610 1611 1612 1613
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1614
                    loss2.backward()
1615 1616
                    print(loss2.gradient())

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1630
        """
1631
        pass
1632

1633
    @fake_interface_only
1634
    def clear_gradient(self):
1635
        """
J
Jiabin Yang 已提交
1636
        **Notes**:
T
tianshuo78520a 已提交
1637
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1638 1639

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1640

J
Jiabin Yang 已提交
1641
        Clear  (set to ``0`` ) the Gradient of Current Variable
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1660
                    loss2.backward()
1661 1662 1663 1664 1665
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1666
        pass
X
Xin Pan 已提交
1667

1668 1669 1670 1671
    @fake_interface_only
    def register_hook(self, hook):
        pass

1672
    def __str__(self):
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1689 1690
                import paddle
                import paddle.static as static
1691

1692 1693 1694
                paddle.enable_static()

                cur_program = static.Program()
1695 1696 1697 1698 1699 1700
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1701 1702
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1703
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1704 1705
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1706 1707
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1708
        else:
1709 1710
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1711

1712
        if self.is_parameter:
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1723
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1724
        dist_context = get_default_distributed_context()
1725 1726
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1727 1728
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1729

1730
        return var_str
Y
Yang Yang(Tony) 已提交
1731

F
update  
fengjiayi 已提交
1732
    def to_string(self, throw_on_error, with_details=False):
1733 1734 1735
        """
        Get debug string.

J
Jiabin Yang 已提交
1736 1737 1738 1739 1740
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1741

1742 1743
        Returns:
            str: The debug string.
1744 1745 1746 1747 1748

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1749
                import paddle
1750

1751
                paddle.enable_static()
1752 1753 1754 1755 1756
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1757
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1758
                print("=============with detail===============")
1759
                print(new_variable.to_string(True, True))
1760
        """
1761 1762
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1763
        protostr = self.desc.serialize_to_string()
1764
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1765 1766
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1767
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1768
            for attr_name in additional_attr:
1769
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1770

F
update  
fengjiayi 已提交
1771
        return res_str
1772 1773 1774

    __repr__ = __str__

1775 1776 1777
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1778

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1802
    @property
1803
    def stop_gradient(self):
J
Jiabin Yang 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1819 1820
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1821 1822 1823
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1824 1825
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1826 1827 1828 1829
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1830
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1831 1832
                assert (out1.gradient() == 0).all()
        """
1833
        return self.desc.stop_gradient()
1834

1835 1836
    @stop_gradient.setter
    def stop_gradient(self, s):
1837
        self.desc.set_stop_gradient(s)
1838

1839 1840
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1862
        return self.desc.persistable()
1863

Y
Yu Yang 已提交
1864 1865
    @persistable.setter
    def persistable(self, p):
1866
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1867

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1893 1894
    @property
    def name(self):
J
Jiabin Yang 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1911
        return self.desc.name()
Y
Yu Yang 已提交
1912

1913 1914 1915 1916 1917 1918
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1919 1920
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1933 1934
    @name.setter
    def name(self, new_name):
1935
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1936

Y
Yu Yang 已提交
1937 1938
    @property
    def shape(self):
J
Jiabin Yang 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1956
        # convert to tuple, make it as same as numpy API.
1957
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1958 1959

    @property
F
fengjiayi 已提交
1960
    def dtype(self):
J
Jiabin Yang 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1977
        return self.desc.dtype()
Y
Yu Yang 已提交
1978 1979 1980

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1994
            import paddle
J
Jiabin Yang 已提交
1995
            import paddle.fluid as fluid
1996 1997

            paddle.enable_static()
J
Jiabin Yang 已提交
1998 1999 2000 2001 2002 2003 2004
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2005 2006
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2007 2008
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2009
        return self.desc.lod_level()
Y
Yu Yang 已提交
2010

Y
Yu Yang 已提交
2011 2012
    @property
    def type(self):
J
Jiabin Yang 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2029
        return self.desc.type()
Y
Yu Yang 已提交
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2072 2073 2074 2075 2076 2077 2078
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2079 2080
        return out

2081 2082 2083
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2084
        Variable. It remains in the current graph, that is, the cloned Variable
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2111 2112 2113
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2114 2115
        return output

W
Wu Yi 已提交
2116
    def _set_error_clip(self, error_clip):
2117 2118 2119 2120 2121 2122 2123 2124 2125
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2126 2127
        self.error_clip = error_clip

2128 2129 2130 2131 2132 2133 2134 2135
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2136
        Returns:
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2150
        Returns:
2151 2152 2153 2154 2155 2156
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2168
            raise ValueError("slice step can not be zero")
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2179 2180
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2244
    def _cloneVar(self, copy=False):
2245 2246
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2247 2248
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2249 2250 2251 2252
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2253
        new_var = self._cloneVar()
2254 2255 2256 2257 2258 2259 2260 2261
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2262 2263 2264
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2265
        new_var = self._cloneVar()
2266 2267 2268 2269 2270 2271
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2272 2273 2274 2275 2276
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2277
                return self._cloneVar(True)
2278 2279 2280 2281 2282 2283 2284
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2285 2286
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2287 2288 2289
                        start += step
                else:
                    while start > stop:
2290 2291
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2292 2293 2294 2295
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2296
                return self._cloneVar(True)
2297
            index = int(item)
2298
            if (index > 0 and index >= self.shape[axis]) \
2299 2300 2301 2302 2303 2304 2305
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2306
        return _getitem_impl_(self, item)
2307

2308
    def __setitem__(self, item, value):
2309
        return _setitem_impl_(self, item, value)
2310

2311 2312
    def get_value(self, scope=None):
        """
2313
        Get the value of variable in given scope.
2314 2315

        Args:
2316
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
2327
                import paddle.static as static
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2352 2353
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2354 2355 2356 2357
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2358 2359
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
2372
        Set the value to the tensor in given scope.
2373 2374 2375

        Args:
            value(Tensor/ndarray) : The value to be set.
2376
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2377 2378 2379 2380 2381
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2382

2383 2384 2385 2386
        Examples:
            .. code-block:: python

                import paddle
2387
                import paddle.static as static
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2414
        # can not be imported at the begainning of this file.
2415 2416 2417 2418 2419
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2420 2421
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2422 2423 2424

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2425 2426
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2457 2458 2459 2460
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2461 2462 2463 2464
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2465 2466 2467 2468 2469 2470 2471
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2497 2498 2499
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2500 2501
        return output

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2556
    def dist_attr(self):
2557
        """
2558
        Get distributed attribute of this Variable.
2559
        """
2560
        return self.desc.dist_attr
2561

2562 2563
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2564
        """
2565
        Set distributed attribute of this Variable.
2566
        """
2567
        self.desc.dist_attr = dist_attr
2568

Y
Yu Yang 已提交
2569

F
fengjiayi 已提交
2570 2571 2572
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2573

2574 2575
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2576 2577 2578 2579
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2580
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2581 2582 2583 2584 2585
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2586 2587 2588 2589
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2599
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2600 2601 2602 2603 2604 2605
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2606 2607 2608 2609 2610 2611 2612 2613
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2614 2615
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2616 2617
        return self.op_proto_map[type]

2618 2619
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2620
        custom_op_names = []
2621 2622 2623
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2624 2625 2626
                custom_op_names.append(proto.type)

        return custom_op_names
2627

2628 2629 2630 2631
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2632
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2633
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2634 2635
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2636 2637
        }

F
fengjiayi 已提交
2638

X
Xin Pan 已提交
2639
class Operator(object):
2640
    """
2641 2642 2643 2644 2645 2646 2647
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2648
        type(str): The type of operator. Default None.
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2669
        Block.append_op or Block._prepend_op instead.
2670 2671 2672 2673

    Examples:
        .. code-block:: python

2674
            import paddle.fluid as fluid
2675
            cur_program = fluid.Program()
2676 2677 2678 2679 2680
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2681
    """
2682
    OP_WITHOUT_KERNEL_SET = {
2683 2684
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2685
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2686 2687
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2688
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2689
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2690
        'copy_cross_scope', 'c_gen_cncl_id'
2691
    }
2692

Y
Yu Yang 已提交
2693 2694
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2695
                 desc,
Y
Yu Yang 已提交
2696 2697 2698
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2699
                 attrs=None):
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2710
        if _non_static_mode():
2711 2712
            if type is None:
                raise ValueError(
2713
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2714
            self._type = type
M
minqiyang 已提交
2715
            self.attrs = attrs if attrs else {}
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2726 2727 2728
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2729 2730 2731
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2732 2733
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2734 2735

            role_var_name = op_maker.kOpRoleVarAttrName()
2736 2737
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2738
                op_attrs[role_var_name] = self.block.program._op_role_var
2739 2740 2741 2742 2743

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2744 2745 2746 2747 2748
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2749 2750 2751
                return
            if type is None:
                raise ValueError(
2752
                    "`type` to initialized an Operator can not be None.")
2753 2754
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2755 2756 2757
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2758 2759 2760 2761
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2762 2763 2764 2765 2766 2767 2768

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2780
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2781 2782 2783 2784 2785
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2786 2787 2788 2789 2790
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2791

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2805
                        if not isinstance(in_args, (list, tuple)):
2806 2807 2808 2809 2810 2811
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2812
                        for index, arg in enumerate(in_args):
2813
                            if isinstance(arg, str):
2814
                                in_arg_names.append(arg)
2815
                            elif isinstance(arg, bytes):
2816
                                in_arg_names.append(arg.decode())
2817
                            elif isinstance(arg, (Variable, core.VarBase)):
2818
                                in_arg_names.append(arg.name)
2819
                            else:
2820 2821 2822 2823
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2824 2825
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2826 2827 2828 2829 2830 2831 2832 2833 2834
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2835 2836 2837 2838
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2851
                        if isinstance(arg, str):
2852 2853
                            out_arg_names.append(arg)
                        else:
2854
                            out_arg_names.append(arg.name)
2855
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2856
                        if not _non_static_mode():
2857
                            if isinstance(arg, str):
2858 2859 2860
                                block.var(arg).op = self
                            else:
                                arg.op = self
2861 2862
                    self.desc.set_output(out_proto.name, out_arg_names)

2863
            extra_attrs_map = core.get_op_extra_attrs(type)
2864 2865 2866 2867 2868
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2869 2870
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2871 2872 2873
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2874 2875 2876 2877 2878 2879 2880
                for attr_name in extra_attrs_map.keys():
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
                        self._update_desc_attr(attr_name,
                                               extra_attrs_map[attr_name])
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2881

J
jianghaicheng 已提交
2882 2883
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2884
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2885 2886
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2887
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2888 2889 2890
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2891 2892 2893 2894 2895
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2896
    def _has_kernel(self, op_type):
2897 2898
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2899
    def to_string(self, throw_on_error):
2900
        """
2901 2902
        Get debug string.

2903
        Args:
2904 2905
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2906

2907 2908
        Returns:
            str: The debug string.
2909 2910

        """
2911
        protostr = self.desc.serialize_to_string()
2912
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
2913 2914
        return _debug_string_(proto, throw_on_error)

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2947
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3015
            # it is bytes of serialized protobuf
3016 3017 3018 3019
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3020 3021 3022 3023 3024 3025 3026 3027 3028
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3029 3030 3031
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
3032

3033 3034 3035 3036
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3037
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
3038
        dist_context = get_default_distributed_context()
3039 3040
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3041 3042
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3043

3044 3045
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3046 3047
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3048 3049 3050 3051 3052
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3053
    def __str__(self):
3054
        return self._to_readable_code()
3055 3056 3057

    __repr__ = __str__

F
fengjiayi 已提交
3058 3059
    @property
    def type(self):
3060
        return self.desc.type()
F
fengjiayi 已提交
3061 3062

    def input(self, name):
3063
        r"""
3064
        Get the input arguments according to the input parameter name.
3065

3066 3067
        Args:
            name(str): The input parameter name.
3068

3069 3070 3071
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3072
        """
F
fengjiayi 已提交
3073 3074
        return self.desc.input(name)

W
Wu Yi 已提交
3075
    def _rename_input(self, old_name, new_name):
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3086
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3087

W
Wu Yi 已提交
3088
    def _rename_output(self, old_name, new_name):
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3099
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3100

F
fengjiayi 已提交
3101 3102 3103 3104
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3105 3106 3107 3108 3109 3110 3111 3112
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3113
    def output(self, name):
3114
        r"""
3115
        Get output arguments by the output parameter name.
3116

3117 3118
        Args:
            name(str): The output parameter name.
3119

3120 3121 3122
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3123
        """
F
fengjiayi 已提交
3124 3125 3126 3127 3128 3129
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3130 3131 3132 3133 3134 3135 3136 3137
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3138
    def has_attr(self, name):
3139
        """
3140 3141
        Whether this Operator has the attribute with name or not.

3142
        Args:
3143
            name(str): the attribute name.
3144

3145 3146
        Returns:
            bool: True if has this attribute.
3147 3148

        """
F
fengjiayi 已提交
3149 3150 3151
        return self.desc.has_attr(name)

    def attr_type(self, name):
3152
        """
3153
        Get the type of attribute by attribute's name.
3154

3155 3156
        Args:
            name(str): the attribute name.
3157

3158 3159
        Returns:
            core.AttrType: the attribute type.
3160
        """
3161
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3162

W
Wu Yi 已提交
3163
    def _set_attr(self, name, val):
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3174 3175
        self._update_desc_attr(name, val)

3176 3177 3178
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3190 3191 3192 3193 3194
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3195
            self.desc.set_block_attr(name, val.desc)
3196
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3197
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3198 3199 3200 3201
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3238

F
fengjiayi 已提交
3239 3240
    @property
    def attr_names(self):
3241
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3242 3243

    def attr(self, name):
3244
        """
3245 3246
        Get the attribute by name.

3247
        Args:
3248
            name(str): the attribute name.
3249

3250 3251
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3252 3253
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3254
        return self.desc.attr(name)
Y
Yu Yang 已提交
3255

W
Wu Yi 已提交
3256
    def _block_attr_id(self, name):
3257
        """
G
gongweibao 已提交
3258
        Get the block attribute's id by name.
3259

3260 3261
        Args:
            name(str): the attribute name.
3262

3263 3264
        Returns:
            int: the block index.
3265
        """
W
Wu Yi 已提交
3266
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3267

W
Wu Yi 已提交
3268
    def _block_attr(self, name):
G
gongweibao 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3279
        id = self._block_attr_id(name)
G
gongweibao 已提交
3280 3281 3282
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3283
    def _blocks_attr(self, name):
G
gongweibao 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3294
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3295 3296 3297 3298 3299
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3300
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3311
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3312

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VAR, "Required type attr({}) is Variable, but received {}".format(
            name, attr_type)
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VARS, "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type)
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3348
    def all_attrs(self):
F
fengjiayi 已提交
3349
        """
3350 3351 3352
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3353
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3354 3355 3356 3357
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3358
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3359
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3360
                attr_map[n] = self._block_attr(n)
3361
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3362
                attr_map[n] = self._blocks_attr(n)
3363 3364 3365 3366 3367 3368
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3369

F
fengjiayi 已提交
3370 3371
        return attr_map

3372 3373 3374
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3375 3376 3377 3378

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3379 3380 3381
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3382 3383 3384 3385 3386 3387 3388 3389

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3390 3391
            return False

3392 3393 3394 3395 3396 3397
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3398
    @property
3399
    def dist_attr(self):
3400
        """
3401
        Get distributed attribute of this Variable.
3402
        """
3403
        return self.desc.dist_attr
3404

3405 3406
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3407
        """
3408
        Set distributed attribute of this Variable.
3409
        """
3410
        self.desc.dist_attr = dist_attr
3411

Y
Yu Yang 已提交
3412

Y
Yu Yang 已提交
3413
class Block(object):
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3428
        use `Program._create_block()` to create a block.
3429 3430 3431 3432

    Examples:
        .. code-block:: python

3433 3434 3435
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3436 3437 3438 3439 3440 3441 3442 3443 3444
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3445
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3446
        self.desc = program.desc.block(idx)
3447
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3448
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3449
        self.program = program
3450
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3451

3452
    def __str__(self):
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3487
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3499

F
fengjiayi 已提交
3500 3501
    def to_string(self, throw_on_error, with_details=False):
        """
3502 3503
        Get debug string.

F
fengjiayi 已提交
3504 3505
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3506
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3507
            with_details(bool): more details about variables and parameters
3508 3509
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3510

3511 3512
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3513
        """
3514 3515
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3516
        if with_details:
F
fengjiayi 已提交
3517
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3518 3519
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3520
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3521
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3522
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3523
            for op in self.ops:
F
fengjiayi 已提交
3524 3525
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3526 3527 3528
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3529
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3530 3531
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3532 3533 3534

    __repr__ = __str__

Y
Yu Yang 已提交
3535 3536
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3537
        return self.desc.parent
Y
Yu Yang 已提交
3538

Y
Yu Yang 已提交
3539 3540 3541 3542
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3543
    def _set_forward_block_idx(self, idx):
3544 3545 3546 3547 3548 3549 3550 3551 3552
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3553
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3554

3555 3556 3557 3558 3559 3560 3561 3562
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3563 3564
    @property
    def idx(self):
Y
Yu Yang 已提交
3565
        return self.desc.id
Y
Yu Yang 已提交
3566

Q
Qiao Longfei 已提交
3567
    def var(self, name):
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3581
        if not isinstance(name, str):
M
minqiyang 已提交
3582 3583 3584
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3585 3586
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3587
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3588
        return v
Q
Qiao Longfei 已提交
3589

X
Xin Pan 已提交
3590
    def _find_var_recursive(self, name):
3591 3592 3593 3594 3595 3596 3597
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3598
            Variable: the Variable with the giving name. Or None if not found.
3599
        """
Y
Yu Yang 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3624
        return None
Y
Yu Yang 已提交
3625

X
Xin Pan 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3645

Q
Qiao Longfei 已提交
3646
    def all_parameters(self):
3647
        return list(self.iter_parameters())
3648

3649
    def iter_parameters(self):
3650
        return (item[1] for item in self.vars.items()
3651
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3652

Y
Yu Yang 已提交
3653
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3654
        if _non_static_mode():
L
Leo Chen 已提交
3655 3656
            var = _varbase_creator(*args, **kwargs)
        else:
3657 3658 3659
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3660
        return var
Y
Yu Yang 已提交
3661

Q
Qiao Longfei 已提交
3662 3663 3664
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3665
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3666 3667
        """
        Rename variable in vars and ops' inputs and outputs
3668 3669

        Args:
3670 3671
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3672 3673 3674 3675 3676 3677 3678 3679

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3680
        """
3681 3682 3683 3684
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
        new_name = new_name.decode() if isinstance(new_name,
                                                   bytes) else new_name
M
minqiyang 已提交
3685

T
typhoonzero 已提交
3686
        if not self.has_var(name):
3687
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3688 3689
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3690
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3691 3692 3693 3694 3695 3696
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3697
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3698 3699 3700 3701
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3702
        orig_var_type = v.type
3703
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3704
        # NOTE: v is destroyed by C++ after calling _rename_var.
3705
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3706
        if var_type == "Parameter":
L
Leo Chen 已提交
3707
            if in_dygraph_mode():
3708 3709 3710 3711 3712 3713 3714 3715 3716
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3717
            else:
J
Jiabin Yang 已提交
3718
                if _in_legacy_dygraph():
3719 3720 3721 3722 3723 3724 3725 3726 3727
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3728
                else:
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3739
        elif var_type == "Variable":
3740 3741 3742 3743 3744
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3745

W
Wu Yi 已提交
3746
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3747 3748 3749
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3750
        self._sync_with_cpp()
3751
        return var
T
typhoonzero 已提交
3752

3753 3754 3755
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3756
        self.desc._remove_var(name.encode())
3757 3758
        del self.vars[name]

Y
Yu Yang 已提交
3759 3760
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3761
        param = None
L
Leo Chen 已提交
3762
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3763
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3764
        else:
J
Jiabin Yang 已提交
3765 3766 3767 3768
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3769

3770
        if 'initializer' in kwargs:
3771 3772 3773 3774 3775

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3776
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3777
                        # are treated as initialization ops that cause error.
3778
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3779 3780 3781 3782 3783
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3784
                            continue
3785 3786 3787 3788 3789 3790 3791 3792
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3793 3794
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3795
            elif init_ops_len == 1:
3796
                # TODO already inited, do nothing, should log a warning
3797 3798 3799
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3800
        return param
Y
Yu Yang 已提交
3801

Y
Yu Yang 已提交
3802
    def append_op(self, *args, **kwargs):
3803 3804 3805 3806 3807 3808
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3809
        if _non_static_mode():
3810
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3811
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3812
            type = kwargs.get("type", None)
3813 3814 3815 3816
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3817 3818 3819 3820 3821 3822
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3823

M
minqiyang 已提交
3824 3825 3826
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3827
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3828

3829 3830 3831
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3832 3833
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3834
        else:
3835 3836
            from paddle.fluid.dygraph.base import param_guard

3837
            op_desc = self.desc.append_op()
3838 3839 3840 3841 3842 3843
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3844 3845 3846 3847 3848 3849
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3850

M
minqiyang 已提交
3851
            self.ops.append(op)
M
minqiyang 已提交
3852

3853 3854
        return op

W
Wu Yi 已提交
3855
    def _insert_op(self, index, *args, **kwargs):
3856 3857 3858 3859 3860 3861 3862 3863 3864
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3865
        self._sync_with_cpp()
F
fangshuixun007 已提交
3866
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3867

3868 3869
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
3870
        Insert an Operator according to the giving arguments,
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3885 3886 3887 3888 3889 3890 3891 3892 3893
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3894 3895
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3896
        self.desc._remove_op(index, index + 1)
3897 3898
        del self.ops[index]

W
Wu Yi 已提交
3899
    def _slice_ops(self, start, end):
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3910
        return self.ops[start:end]
Y
Yancey1989 已提交
3911

W
Wu Yi 已提交
3912
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3913
        if _non_static_mode():
J
Jiabin Yang 已提交
3914 3915
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3926
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3927
        else:
3928
            op_desc = self.desc._prepend_op()
3929 3930 3931 3932 3933 3934
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3935
            self.ops.insert(0, op)
3936

Y
Yu Yang 已提交
3937 3938
        return op

W
Wu Yi 已提交
3939
    def _sync_with_cpp(self):
3940
        """
3941 3942
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3943
        """
Q
Qiao Longfei 已提交
3944 3945 3946
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3947 3948 3949 3950
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3951 3952 3953 3954 3955 3956
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3957
                else:
3958 3959 3960 3961
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3962

3963
        # sync variables removed from c++ end
3964
        for var in list(self.vars.keys()):
3965
            if not self.desc.find_var(var.encode()):
3966 3967
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3968
        # sync operators from cpp
3969 3970 3971 3972
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3989 3990 3991 3992 3993

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3994
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3995 3996 3997 3998 3999 4000 4001

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4015 4016 4017 4018
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4019
    def _copy_param_info_from(self, other):
4020
        """
4021 4022
        Copy the information of parameters from the other block.

4023
        Args:
4024 4025 4026 4027 4028
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4029 4030 4031 4032 4033

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4034 4035
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
4036
        for p in other.iter_parameters():
4037 4038 4039
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4040 4041
                # if the Parameter is pruned, v may be None
                continue
4042
            assert isinstance(v, Variable)
4043
            new_p = None
L
Leo Chen 已提交
4044
            if in_dygraph_mode():
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
4055
            else:
J
Jiabin Yang 已提交
4056
                if _in_legacy_dygraph():
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
4081 4082
            self.vars[new_p.name] = new_p

4083
    def _clone_variable(self, var, force_persistable=True):
4084 4085
        """
        Clone a variable into current block.
4086

4087 4088
        Args:
            var: the variable to be cloned.
4089 4090 4091
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4092 4093

        Returns:
4094
            Variable: the new  variable cloned from 'var' in current block.
4095 4096
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4097 4098 4099
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4100 4101 4102
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
4103
        elif var.type == core.VarDesc.VarType.RAW:
4104 4105 4106
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
4107 4108 4109 4110 4111 4112
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4113
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4114 4115
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4116 4117 4118 4119 4120 4121 4122
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4123
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4124 4125
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4126
        return ret_var
4127

Y
Yu Yang 已提交
4128

4129 4130 4131 4132
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4133
# of some old Python Variables(all old Python Operators) may have
4134
# been destructed.
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4246
    def remove_input_by_id(self, node_id):
4247 4248 4249 4250 4251 4252
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4253
        self.node.remove_input(node_id)
4254

4255
    def remove_input(self, node):
4256 4257 4258 4259
        """
        Remove a node from inputs.

        Args:
4260
            node(IrNode): the node being removed.
4261
        """
4262
        self.node.remove_input(node.node)
4263

4264
    def append_input(self, node):
4265 4266 4267 4268
        """
        Append a node in inputs.

        Args:
4269
            node(IrNode): the node being appended.
4270
        """
4271
        self.node.append_input(node.node)
4272 4273 4274 4275 4276 4277 4278 4279

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4280
    def remove_output_by_id(self, node_id):
4281 4282 4283 4284 4285 4286
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4287
        self.node.remove_output(node_id)
4288

4289
    def remove_output(self, node):
4290 4291 4292 4293
        """
        Remove a node from outputs.

        Args:
4294
            node(IrNode): the node being removed.
4295
        """
4296
        self.node.remove_output(node.node)
4297

4298
    def append_output(self, node):
4299 4300 4301 4302
        """
        Append a node in outputs.

        Args:
4303
            node(IrNode): the node being appended.
4304
        """
4305
        self.node.append_output(node.node)
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4353
            "The node variable description can not be None."
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4364
            "The node variable description can not be None."
4365 4366
        return self.node.var().persistable()

4367 4368 4369 4370 4371 4372 4373 4374
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4375
            "The node variable description can not be None."
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4386
            "The node variable description can not be None."
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4397
            "The node variable description can not be None."
4398 4399
        return self.node.var().shape()

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4447
            "The node operator description can not be None."
4448 4449
        self.node.op()._rename_input(old_input_name, new_input_name)

4450 4451 4452 4453 4454 4455 4456 4457 4458
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4459
            "The node operator description can not be None."
4460 4461
        self.node.op()._rename_output(old_output_name, new_output_name)

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4473
            "The node operator description can not be None."
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4487
            "The node operator description can not be None."
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4498
            "The node operator description can not be None."
4499 4500
        return self.node.op().set_type(new_type)

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4516
            "The node operator description can not be None."
4517
        desc = self.node.op()
4518 4519 4520 4521 4522
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4523
            desc.set_block_attr(name, val.desc)
4524
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4525 4526
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4527
                isinstance(val, core.ProgramDesc):
4528 4529 4530 4531
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4532 4533 4534 4535 4536 4537 4538 4539
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4540
            "The node operator description can not be None."
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4551
            "The node operator description can not be None."
4552 4553
        return self.node.op().output_arg_names()

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4575 4576
class IrGraph(object):
    """
4577
    Python IrGraph. Beneath it is a core.Graph, which is used for
4578
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4579 4580
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4581 4582 4583 4584
    """

    def __init__(self, graph, for_test=False):
        """
4585 4586
        Construct an IrGraph using core.Graph.

4587 4588 4589 4590 4591 4592 4593 4594 4595
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4596 4597 4598 4599
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4600 4601 4602
        Warns:
            The method only clones the graph structure, not its attributes.

4603 4604 4605
        Returns:
            IrGraph: A new and duplicated graph.
        """
4606
        g = self.graph.clone()
4607 4608
        return IrGraph(g, self._for_test)

4609
    def is_test(self):
4610 4611 4612
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4613 4614
        return self._for_test

W
WangZhen 已提交
4615
    def all_nodes(self):
4616 4617 4618
        """
        Return all nodes included in the graph as a set.
        """
4619
        return {IrNode(node) for node in self.graph.nodes()}
4620

4621
    def all_var_nodes(self):
4622 4623 4624
        """
        Return all variable nodes included in the graph as a set.
        """
4625
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4626

4627
    def all_persistable_nodes(self):
4628 4629 4630
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4631 4632 4633 4634 4635
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4636
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4637

4638
    def all_op_nodes(self):
4639 4640 4641
        """
        Return all operator nodes included in the graph as a set.
        """
4642
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4643

4644 4645 4646 4647 4648 4649
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4650
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4651 4652 4653 4654 4655 4656 4657 4658 4659
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4660
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4672
            IrVarNode: the created persistable variable node.
4673
        """
4674 4675 4676 4677 4678
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4679
        return IrVarNode(self.graph.create_var_node(var_desc))
4680 4681

    def create_var_node(self, name, var_type, shape, var_dtype):
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4693
            IrVarNode: the created variable node.
4694 4695
        """

4696 4697 4698 4699
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4700
        return IrVarNode(self.graph.create_var_node(var_desc))
4701

4702 4703 4704 4705 4706 4707
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4708
    def create_var_node_from_desc(self, var_desc):
4709 4710 4711 4712 4713 4714 4715 4716
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4717
            IrVarNode: the created variable node.
4718
        """
4719
        return IrVarNode(self.graph.create_var_node(var_desc))
4720 4721

    def create_op_node(self, op_type, attrs, inputs, outputs):
4722 4723 4724 4725 4726 4727 4728
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4729
            outputs(dict): the outputs of the operator node.
4730 4731

        Returns:
4732
            IrOpNode: the created operator node.
4733
        """
4734 4735
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4736
        for attr, value in attrs.items():
4737
            self._update_desc_attr(op_desc, attr, value)
4738
        for input_name, var_nodes in inputs.items():
4739 4740 4741 4742
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4743
        for output_name, var_nodes in outputs.items():
4744 4745 4746 4747
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4748
        return IrOpNode(self.graph.create_op_node(op_desc))
4749 4750

    def create_op_node_from_desc(self, op_desc):
4751 4752 4753 4754 4755 4756 4757
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4758
            IrOpNode: the created operator node.
4759
        """
4760
        return IrOpNode(self.graph.create_op_node(op_desc))
4761 4762

    def update_input_link(self, old_input_node, new_input_node, op_node):
4763 4764 4765 4766
        """
        Update the input's link of a operator node.

        Args:
4767 4768 4769
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4770
        """
4771
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4772
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4773
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4774 4775 4776 4777
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4778
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4779

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4790
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4791
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4792 4793 4794 4795 4796 4797
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4798
    def link_to(self, node_in, node_out):
4799 4800 4801 4802
        """
        Connect two nodes.

        Args:
4803 4804
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4805
        """
4806 4807 4808 4809
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4810 4811
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4812 4813

    def safe_remove_nodes(self, remove_nodes):
4814 4815 4816 4817 4818 4819 4820
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4821
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4822 4823 4824 4825
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4826 4827
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4828

Z
Zhen Wang 已提交
4829 4830 4831 4832 4833 4834 4835 4836
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4837
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4838 4839 4840 4841
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4842
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4843 4844 4845
                        ]
                    else:
                        var_nodes[each_var_name].append(
4846 4847
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4848 4849
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4850
    def has_circle(self):
4851 4852 4853 4854 4855 4856
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4857 4858 4859
        return core.has_circle(self.graph)

    def graph_num(self):
4860 4861 4862 4863 4864 4865
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4866 4867 4868
        return core.graph_num(self.graph)

    def topology_sort(self):
4869 4870 4871
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4872
        Notes: the `graph` can not contain a circle.
4873 4874

        Returns:
Z
Zhen Wang 已提交
4875
            list(IrNode): nodes in topology order.
4876
        """
4877
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4878
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4879 4880

    def build_adjacency_list(self):
4881 4882 4883 4884
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4885
            dict{IrNode: set(IrNode)}: the adjacency list.
4886
        """
4887 4888
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
4889
        for k, v in adj_list.items():
4890 4891
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4892

4893 4894 4895 4896 4897 4898 4899 4900
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4901
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4902 4903 4904 4905 4906
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4907 4908
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4909 4910 4911
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4912 4913 4914 4915 4916
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4917
        remove_ctr_vars = set()
4918
        if remove_ctr_var:
4919
            for node in self.all_var_nodes():
4920 4921 4922
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4923 4924
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4925 4926
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4927 4928 4929 4930 4931 4932
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4933 4934 4935 4936
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4937 4938
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4939 4940 4941 4942 4943 4944 4945
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4946 4947 4948
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4949
        WARN: When the graph includes backward operator nodes, the
4950 4951 4952 4953 4954 4955
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4956
        convert_pass = core.get_pass('graph_to_program_pass')
4957 4958
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4959 4960 4961 4962
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4963 4964 4965 4966 4967 4968 4969 4970
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4971 4972
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4973 4974
        return target_node

4975 4976 4977 4978
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4979 4980 4981 4982 4983
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4984
            desc.set_block_attr(name, val.desc)
4985
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4986 4987 4988 4989 4990 4991 4992 4993
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4994
class Program(object):
D
dzhwinter 已提交
4995
    """
4996
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4997
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4998
    it will contain nested block.
4999

J
Jiabin Yang 已提交
5000 5001 5002
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5003

J
Jiabin Yang 已提交
5004
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5005
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5006 5007 5008 5009 5010 5011 5012
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5013
    **Notes**:
5014 5015 5016
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5017 5018

    Returns:
J
Jiabin Yang 已提交
5019
        Program: An empty Program.
D
dzhwinter 已提交
5020 5021

    Examples:
5022 5023
        .. code-block:: python

5024 5025 5026 5027
            import paddle
            import paddle.static as static

            paddle.enable_static()
5028

5029 5030 5031 5032 5033
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5034
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5035 5036 5037

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5038 5039 5040

    """

5041 5042
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5043 5044
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5045 5046
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5047
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5048
        self.__op_role_var = []
T
tangwei12 已提交
5049

5050 5051
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5052
        self._is_distributed = False
5053
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5054
        self._is_chief = False
5055 5056 5057
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5058
        self._endpoints = []
5059 5060 5061
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5062
        self._trainers_endpoints = []
5063
        # the distributed lookup table names
T
tangwei12 已提交
5064
        self._distributed_lookup_table = None
5065 5066 5067

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5068 5069
        self._use_lamb = False

5070 5071 5072
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5073

5074 5075 5076
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5077
        self._program_config = None
5078

H
hutuxian 已提交
5079 5080 5081
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5082 5083 5084
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5085 5086 5087
        # appending gradients times
        self._appending_grad_times = 0

5088 5089 5090 5091
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

5092 5093
        # compiled program, i.e. Graph
        self._graph = None
5094 5095
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5096

5097
    def _find_var_class_kwargs(self, new_desc):
5098 5099 5100 5101 5102 5103 5104 5105
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5106 5107 5108 5109
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5110 5111
            if (idx > (len(self.blocks) - 1)):
                self._create_block()
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5122 5123 5124 5125 5126 5127
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5128 5129 5130 5131
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5132 5133
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5134 5135 5136 5137 5138 5139 5140 5141 5142
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5183
        assert block_num == self.desc.num_blocks()
5184 5185

        # clear old blocks and desc
5186 5187 5188 5189 5190 5191 5192 5193 5194
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5195

5196
        del desc
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5226 5227
                import paddle
                import paddle.static as static
5228

5229 5230 5231
                paddle.enable_static()

                prog = static.default_main_program()
5232 5233 5234 5235 5236
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5237
                prog1 = static.default_main_program()
5238 5239 5240 5241 5242 5243 5244 5245
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5246
    @property
5247
    def _op_role(self):
Y
yuyang18 已提交
5248 5249 5250 5251 5252 5253 5254 5255
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5256
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5257 5258 5259 5260
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5261 5262
        return self._current_role

5263 5264
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5265 5266 5267
        self._current_role = role

    @property
5268
    def _op_role_var(self):
Y
yuyang18 已提交
5269
        """
5270
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5271

5272
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5273 5274 5275

        Notes: This is a very low-level API. Users should not use it directly.
        """
5276
        return self.__op_role_var
Y
yuyang18 已提交
5277

5278
    @signature_safe_contextmanager
5279 5280 5281 5282 5283
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5284 5285 5286 5287
        try:
            yield
        finally:
            self._current_role = tmp_role
5288

S
rename  
sneaxiy 已提交
5289
    @signature_safe_contextmanager
W
Wu Yi 已提交
5290
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5291 5292 5293 5294 5295 5296 5297
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5298
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5299 5300 5301

        Examples:

5302
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5303
            >>> p, g = backward(...)
W
Wu Yi 已提交
5304
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5305 5306
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5307
        tmp_role = self._current_role
5308
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5309

Y
yuyang18 已提交
5310 5311
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5312
        self.__op_role_var = [
5313 5314 5315
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5316 5317 5318 5319 5320
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5321

S
rename  
sneaxiy 已提交
5322
    @signature_safe_contextmanager
X
Xin Pan 已提交
5323
    def _lr_schedule_guard(self, is_with_opt=False):
5324 5325 5326 5327 5328 5329 5330
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5331 5332 5333 5334
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5335 5336 5337

        Examples:

5338
            >>> import paddle.fluid as fluid
5339 5340 5341 5342
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5343 5344

        tmp_role = self._current_role
5345
        tmp_var = self.__op_role_var
5346

5347 5348
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5349 5350
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5351
        # TODO(typhoonzero): how to set target learning rate var
5352
        self.__op_role_var = []
5353 5354 5355 5356 5357
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5358

5359
    def __str__(self):
Y
yuyang18 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5389 5390
            import paddle
            import paddle.static as static
5391

5392 5393 5394
            paddle.enable_static()

            cur_program = static.Program()
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5406
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5407 5408 5409 5410
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5411
            program_str += '\n'
5412
        return program_str
Y
Yang Yang(Tony) 已提交
5413

F
fengjiayi 已提交
5414 5415 5416
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5417

J
Jiabin Yang 已提交
5418 5419 5420
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5421

J
Jiabin Yang 已提交
5422
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5423

H
haowang101779990 已提交
5424
        Returns:
J
Jiabin Yang 已提交
5425
            str: The debug string describe current Program.
Y
yuyang18 已提交
5426 5427

        Raises:
J
Jiabin Yang 已提交
5428
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5429

5430 5431 5432
        Examples:
            .. code-block:: python

5433 5434 5435 5436
                import paddle
                import paddle.static as static

                paddle.enable_static()
5437

5438 5439 5440
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5441
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5442
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5443
                print("program string without detail: {}".format(prog_string))
5444
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5445
        """
5446 5447 5448 5449 5450 5451 5452 5453 5454
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5455 5456 5457 5458 5459 5460
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5461
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5462 5463
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5464

W
Wu Yi 已提交
5465
    def _get_desc(self):
Y
yuyang18 已提交
5466 5467 5468 5469 5470 5471 5472
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5473 5474
        return self.desc

X
version  
Xin Pan 已提交
5475 5476 5477
    def _version(self):
        return self.desc._version()

5478
    def clone(self, for_test=False):
Y
yuyang18 已提交
5479
        """
5480
        .. note:::
5481 5482
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5483
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5484

5485
        Create a new Program with forward content of original one when ``for_test=True``.
5486
        Create a new Program as same as the original one when ``for_test=False``.
5487

5488
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5489 5490 5491
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5492

5493 5494
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5495 5496
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5497
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5498

J
Jiabin Yang 已提交
5499
        For Example:
5500
          ::
L
Luo Tao 已提交
5501

5502 5503 5504 5505 5506 5507
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5508
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5509
            loss = paddle.mean(pred)
5510
            # Here we use clone before Momentum
5511 5512
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5513
            optimizer.minimize(loss)
5514

J
Jiabin Yang 已提交
5515
        Args:
5516

5517 5518
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5519

J
Jiabin Yang 已提交
5520
        Returns:
5521
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5522

Y
yuyang18 已提交
5523 5524 5525

        Examples:

5526 5527 5528 5529 5530 5531 5532
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5544
                        for key, value in sorted(op.all_attrs().items()):
5545 5546 5547 5548
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5549
            1. To clone a test program, the sample code is:
5550 5551
                .. code-block:: python

5552 5553 5554 5555 5556 5557
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5558 5559

                    def print_prog(prog):
5560
                        for name, value in sorted(prog.block(0).vars.items()):
5561 5562 5563 5564 5565
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5566
                            for key, value in sorted(op.all_attrs().items()):
5567 5568 5569
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5570 5571
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5572 5573 5574

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5575 5576 5577
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5578
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5579 5580
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5581
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5582 5583
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5584
                            test_program = train_program.clone(for_test=True)
5585
                    print_prog(test_program)
J
Jiabin Yang 已提交
5586 5587 5588 5589

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5590
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5591 5592 5593 5594
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5595 5596 5597
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5598 5599 5600
                            sgd.minimize(avg_loss)


5601
            2. The clone method can be avoid if you create program for training and program for testing individually.
5602 5603
                .. code-block:: python

5604 5605 5606 5607 5608 5609
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5610 5611

                    def print_prog(prog):
5612
                        for name, value in sorted(prog.block(0).vars.items()):
5613 5614 5615 5616 5617
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5618
                            for key, value in sorted(op.all_attrs().items()):
5619 5620
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5621

5622
                    def network():
5623
                        img = static.data(name='image', shape=[None, 784])
5624
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5625 5626
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5627
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5628 5629
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5630 5631
                        return avg_loss

5632 5633 5634 5635 5636
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5637
                            avg_loss = network()
5638
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5639
                            sgd.minimize(avg_loss)
5640
                    # the test startup program is not used.
5641 5642
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5643 5644
                            avg_loss = network()
                    print_prog(test_program_2)
5645

5646
            The two code snippets above will generate and print same programs.
5647
        """
5648

T
tangwei12 已提交
5649
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5650 5651 5652
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5653
        pruned_origin_block_id_map = None
5654
        if for_test:
5655 5656 5657 5658 5659
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
5660
                for i in range(forward_prog.desc.num_blocks())
5661 5662 5663
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5664
        else:
5665
            p = Program()
G
gongweibao 已提交
5666 5667
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5668
            p.desc = core.ProgramDesc(self.desc)
5669
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5670 5671

            p._current_role = self._current_role
5672
            p.__op_role_var = self.__op_role_var
5673
            p._appending_grad_times = self._appending_grad_times
5674 5675
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5676

T
tangwei12 已提交
5677
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5678
            # its desc.
W
Wu Yi 已提交
5679
            p._sync_with_cpp()
5680

W
Wu Yi 已提交
5681
        p._copy_param_info_from(self)
5682
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5683
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5684
        return p
5685

5686
    def _prune(self, targets):
Y
yuyang18 已提交
5687 5688 5689 5690 5691 5692 5693 5694
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5695
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5696 5697 5698 5699
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5700
        """
5701
        return self._prune_with_input([], targets)
5702 5703

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5704
        """
5705
        Prune operators and variables which are not needed to generate
5706 5707
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5708 5709 5710 5711 5712 5713 5714

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5715
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5716 5717 5718 5719 5720 5721
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5722
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5723 5724 5725
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5726 5727
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5728 5729
        if not isinstance(targets, list):
            targets = [targets]
5730 5731

        for var in feeded_var_names:
5732
            if not isinstance(var, str):
5733 5734 5735
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5736

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5753 5754 5755 5756
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5757
                    name = t.name
5758
                elif isinstance(t, str):
5759
                    name = str(t)
5760
                else:
5761 5762 5763
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5764 5765 5766 5767 5768 5769

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5770 5771 5772
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5773

5774 5775 5776 5777 5778 5779 5780 5781 5782
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5783
                        # Skip optimize op except for optimize op in targets,
5784 5785 5786 5787 5788
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5789

5790
                if target_op is not None:
5791 5792 5793
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5794

5795
        res = Program()
5796 5797
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
5798
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
5799
        res._sync_with_cpp()
5800 5801 5802 5803 5804

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5805 5806
        return res

X
Xin Pan 已提交
5807
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5808
        """
F
fengjiayi 已提交
5809 5810 5811 5812 5813
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5814
        3. change the :code:`is_test`
Y
yuyang18 已提交
5815 5816 5817
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5818
        Args:
X
Xin Pan 已提交
5819 5820
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5821

Y
yuyang18 已提交
5822 5823 5824 5825 5826 5827
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5828
        res = Program()
5829
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5830 5831 5832 5833

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5834
        if prune_read_op:
5835 5836 5837 5838 5839 5840 5841 5842 5843
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
5844
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
5845 5846

        # change all `is_test` attributes to True
5847
        for i in range(res.desc.num_blocks()):
5848
            block = res.desc.block(i)
5849
            for j in range(block.op_size()):
5850 5851
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5852
                    op._set_attr('is_test', True)
5853 5854 5855
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
5856
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
5857
        res._sync_with_cpp()
5858 5859
        return res

5860
    def _remove_training_info(self, clip_extra=True):
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

5875
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
5876 5877
        res._sync_with_cpp()

5878 5879
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
5880
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
5881

5882
        for i in range(res.desc.num_blocks()):
5883 5884 5885 5886
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5887 5888
            if not clip_extra:
                continue
5889 5890 5891 5892
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
5893 5894 5895

                extra_attrs_map = core.get_op_extra_attrs(op.type())

5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
5909 5910 5911
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
5925 5926 5927
                # The extra output of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
5928 5929 5930 5931 5932 5933 5934 5935 5936 5937

                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
5938 5939
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
5940
                remove_attr_list = []
5941 5942 5943 5944 5945 5946
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
5947
                    if len(extra_attrs_map) > 0:
5948
                        if name in common_clipped_attrs_list:
5949
                            op.remove_attr(name)
5950
                        continue
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5961 5962
        return res

5963 5964
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5965
        """
5966
        .. note::
5967
            1. All information about parameters will be lost after serialization;
5968
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5969

5970 5971
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5972

J
Jiabin Yang 已提交
5973
        Args:
Y
yuyang18 已提交
5974

J
Jiabin Yang 已提交
5975
            binary_str_type (str): the binary prootbuf string.
5976

J
Jiabin Yang 已提交
5977 5978
        Returns:
            Program: A deserialized Program.
5979 5980 5981 5982

        Examples:
            .. code-block:: python

5983 5984 5985 5986
                import paddle
                import paddle.static as static

                paddle.enable_static()
5987

5988 5989 5990 5991
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5992

5993
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5994

5995
                    z = paddle.matmul(x=x, y=y)
5996

5997 5998
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5999

6000
                    print(static.default_main_program())
6001
                    print(prog_restored)
Y
yuyang18 已提交
6002
        """
6003 6004
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6005
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6006
        p._sync_with_cpp()
6007
        return p
Y
Yu Yang 已提交
6008

6009
    @staticmethod
6010
    def _construct_from_desc(desc):
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6022
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6023 6024 6025
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6026 6027
    @property
    def random_seed(self):
Y
yuyang18 已提交
6028
        """
J
Jiabin Yang 已提交
6029
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6030 6031
        the random seed from random device.

6032
        .. note::
6033
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6034 6035 6036

        Returns:
            int64: Random seed in current Program
6037

6038 6039 6040 6041

        Examples:
            .. code-block:: python

6042 6043 6044
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6045

6046 6047 6048
                paddle.enable_static()

                prog = static.default_main_program()
6049
                random_seed = prog.random_seed
6050
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6051 6052 6053
                print(random_seed)
                ## 0
                ## the default random seed is 0
6054

6055
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6056
                prog.random_seed = 1
6057
                z_var = F.dropout(x_var, 0.7)
6058

6059
                print(prog.random_seed)
6060 6061
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6062
        """
D
dzhwinter 已提交
6063 6064
        return self._seed

Q
qiaolongfei 已提交
6065 6066
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6067
        """
6068 6069
        The number of :ref:`api_guide_Block_en`  in this Program.

6070
        .. note::
6071
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6072 6073 6074

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6075

6076 6077 6078 6079

        Examples:
            .. code-block:: python

6080 6081 6082 6083
                import paddle
                import paddle.static as static

                paddle.enable_static()
6084

6085
                prog = static.default_main_program()
6086 6087
                num_blocks = prog.num_blocks
                print(num_blocks)
6088

6089 6090
                # print result:
                # 1
Y
yuyang18 已提交
6091
        """
Q
qiaolongfei 已提交
6092 6093
        return self.desc.num_blocks()

D
dzhwinter 已提交
6094 6095 6096
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6097 6098 6099
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
6100 6101
        self._seed = seed

Y
Yu Yang 已提交
6102
    def __repr__(self):
6103
        return self.__str__()
6104

Y
Yu Yang 已提交
6105
    def global_block(self):
Y
yuyang18 已提交
6106
        """
6107 6108
        .. note::
            This API has no effect in Dygraph mode.
6109 6110 6111

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6112 6113
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6114

6115 6116 6117 6118

        Examples:
            .. code-block:: python

6119 6120 6121 6122
                import paddle
                import paddle.static as static

                paddle.enable_static()
6123

6124
                prog = static.default_main_program()
6125 6126
                gb_block = prog.global_block()
                print(gb_block)
6127

Y
yuyang18 已提交
6128
        """
Y
Yu Yang 已提交
6129 6130
        return self.blocks[0]

Q
Qiao Longfei 已提交
6131
    def block(self, index):
Y
yuyang18 已提交
6132
        """
6133 6134
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6135

6136 6137
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6138 6139
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6140

J
Jiabin Yang 已提交
6141 6142
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6143 6144 6145 6146

        Examples:
            .. code-block:: python

6147 6148 6149 6150
                import paddle
                import paddle.static as static

                paddle.enable_static()
6151

6152
                prog = static.default_main_program()
6153 6154
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6155
        """
Q
Qiao Longfei 已提交
6156 6157
        return self.blocks[index]

Y
Yu Yang 已提交
6158
    def current_block(self):
Y
yuyang18 已提交
6159
        """
6160 6161
        .. note::
            This API has no effect in Dygraph mode.
6162

J
Jiabin Yang 已提交
6163 6164
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6165

J
Jiabin Yang 已提交
6166 6167
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6168

6169 6170 6171
        Examples:
            .. code-block:: python

6172 6173 6174 6175
                import paddle
                import paddle.static as static

                paddle.enable_static()
6176

6177
                prog = static.default_main_program()
6178 6179
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6180
        """
Y
Yu Yang 已提交
6181 6182
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6183
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6184 6185 6186 6187 6188
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6189

Y
yuyang18 已提交
6190 6191 6192 6193 6194
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6195
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6196 6197 6198
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6199 6200 6201 6202
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6203
    def _rollback(self):
Y
yuyang18 已提交
6204 6205 6206 6207 6208
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6209 6210
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6211
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6222 6223 6224
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6225
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6226

W
Wu Yi 已提交
6227
    def _copy_param_info_from(self, other):
6228
        """
6229
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6230

Y
yuyang18 已提交
6231 6232 6233
        Notes: This is a very low level API. Users should not invoke it
        directly.

6234 6235 6236 6237 6238 6239 6240
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6241 6242 6243
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6244

W
Wu Yi 已提交
6245
        self.global_block()._copy_param_info_from(other.global_block())
6246

6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6258 6259 6260
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6261 6262
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6263
        self._parameters_on_pservers = other._parameters_on_pservers
6264
        self._endpoints = other._endpoints
6265
        self._ps_endpoint = other._ps_endpoint
6266 6267
        self._distributed_lookup_table = other._distributed_lookup_table

6268
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6269 6270
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6271

Y
yuyang18 已提交
6272 6273 6274
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6275 6276
        Args:
            other(Program): Other program
6277
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6278 6279
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6280
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6281 6282 6283 6284 6285

        Returns:
            None
        """
        if not isinstance(other, Program):
6286 6287 6288
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6289

6290 6291 6292
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
6293
                for i in range(self.desc.num_blocks())
6294
            }
6295 6296 6297

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6298 6299
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6300
            for var in list(block.vars.values()):
6301 6302 6303 6304 6305 6306 6307
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6308

6309
    def list_vars(self):
Y
yuyang18 已提交
6310
        """
6311
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6312

J
Jiabin Yang 已提交
6313
        Returns:
6314
            iterable Tensors: The Generator will yield every Tensor in this program.
6315 6316 6317 6318

        Examples:
            .. code-block:: python

6319 6320
                import paddle
                import paddle.static as static
6321

6322 6323 6324 6325 6326
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6327 6328
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6329

6330 6331
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6332
        """
6333
        for each_block in self.blocks:
6334
            for each_var in list(each_block.vars.values()):
6335 6336
                yield each_var

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6347 6348 6349 6350
                import paddle
                import paddle.static as static

                paddle.enable_static()
6351

6352 6353
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6354
                hidden = static.nn.fc(x=data, size=10)
6355 6356
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6357 6358 6359 6360 6361 6362 6363

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6364 6365
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6376 6377 6378 6379 6380 6381 6382 6383 6384
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6385 6386 6387
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6388 6389
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6390
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6418
        # can not be imported at the begainning of this file.
6419 6420 6421 6422
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6423 6424
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6425 6426 6427 6428 6429

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6430 6431 6432
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6459 6460
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6461 6462 6463 6464 6465 6466 6467 6468

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6469 6470
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6471 6472 6473 6474 6475 6476
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6477
        Set parameters and persistable buffers in state_dict to program.
6478
        An exception will throw if shape or dtype of the parameters is not match.
6479

6480 6481 6482 6483
        .. note::
            This function MUST called after run start_up_program

        Args:
6484
            state_dict(dict): the dict store parameters and persistable buffers.
6485 6486
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6487
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6488 6489
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6490

6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6540 6541 6542
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6543

Y
Yu Yang 已提交
6544

6545
class Parameter(Variable, metaclass=ParameterMetaClass):
6546
    """
6547
    Parameter is derived from Variable. A parameter is a persistable
6548
    Variable, and will be updated by optimizers after each iteration.
6549
    The training of a neural network is essentially the updating of
6550 6551
    its parameters.

6552
    Relative to a general Variable, a Parameter has several its own
6553 6554
    member variables:

6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6565
        need_clip (bool): Whether the parameter gradient need to be cliped
6566
            in optimizer. Default is True.
6567 6568
    """

6569 6570 6571 6572 6573 6574
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6575 6576 6577 6578 6579
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6580 6581
        for each in shape:
            if each < 0:
6582 6583 6584
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6585

6586 6587 6588 6589 6590 6591 6592
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6593 6594 6595 6596
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6597 6598
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6599
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6600

6601 6602
        self.need_clip = kwargs.get('need_clip', True)

6603 6604
        self.is_distributed = False

6605 6606
        self.is_parameter = True

F
fengjiayi 已提交
6607
    def __str__(self):
6608
        return self._to_readable_code()
F
fengjiayi 已提交
6609

F
update  
fengjiayi 已提交
6610 6611 6612
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6613

F
update  
fengjiayi 已提交
6614 6615 6616 6617 6618 6619 6620 6621
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6622 6623 6624 6625 6626 6627 6628 6629 6630
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6631
        """
6632 6633
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6634 6635 6636
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6637
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6638
            for attr_name in additional_attr:
6639
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6640 6641
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6642 6643 6644 6645
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6646

6647 6648
class ParamBase(core.VarBase):
    """
6649 6650
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6651
    after each iteration.
6652 6653 6654
    The training of a neural network is essentially the updating of
    its ParamBase.

6655
    Relative to a general Tensor, a ParamBase has several its own
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6668
        need_clip (bool): Whether the parameter gradient need to be cliped
6669
            in optimizer. Default is True.
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6691 6692 6693 6694
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6695

6696 6697
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6698 6699 6700 6701 6702 6703 6704

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6705 6706
        self.need_clip = kwargs.get('need_clip', True)

6707
        self.is_distributed = kwargs.get('is_distributed', False)
6708
        # self.block = default_main_program().global_block()
6709

6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6723
    def __str__(self):
6724
        """
6725
        Convert a ParamBase object to a readable string.
6726

6727
        Returns(str): A readable string.
6728 6729 6730 6731

        Examples:
            .. code-block:: python

6732
                import paddle
6733 6734 6735 6736 6737 6738 6739
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6740
        """
6741 6742
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6743

6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6755

6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6774 6775 6776 6777
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6778 6779 6780 6781 6782 6783
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6784
    _core_eager_eagertensor = core.eager.Tensor
6785 6786 6787 6788 6789 6790
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
6791 6792
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6810
        need_clip (bool): Whether the parameter gradient need to be cliped
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6833 6834 6835
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6836 6837 6838 6839
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
6854 6855 6856
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
6857 6858

    def set_init_func(self, obj):
6859
        self._init_func = obj
6860 6861 6862

    @dygraph_only
    def initialize(self):
6863 6864
        assert self._init_func is not None, "Required self._init_func is not None, but received None."
        self._init_func()
6865
        # clear function handle to release resource
6866
        self._init_func = None
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6881 6882 6883 6884 6885 6886 6887
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
        assert self._init_op_creator is not None, "Required self._init_op_creator is not None, but received None."
        self._init_op_creator(block)

6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6943 6944
        return new_param

6945 6946 6947
    __repr__ = __str__


Y
Yu Yang 已提交
6948
# program is a global instance.
Y
Yu Yang 已提交
6949 6950
_main_program_ = Program()
_startup_program_ = Program()
6951
_startup_program_._is_start_up_program_ = True
6952

6953

6954
def default_startup_program():
Y
Yu Yang 已提交
6955
    """
Y
yuyang18 已提交
6956 6957
    Get default/global startup program.

6958
    The :code:`paddle.nn` function will append the initialization operators into startup program.
6959
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
6960

6961 6962
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6963

6964 6965
    Returns:
        Program: current default startup program.
6966

6967
    Returns type:
6968 6969 6970 6971

    Examples:
        .. code-block:: python

6972
            import paddle
6973

6974
            paddle.enable_static()
6975 6976 6977 6978
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6979
    """
Y
Yu Yang 已提交
6980
    return _startup_program_
6981

6982

6983
def default_main_program():
Y
Yu Yang 已提交
6984
    """
6985
    This API can be used to get ``default main program`` which store the
6986
    descriptions of Ops and tensors.
T
tangwei12 已提交
6987

6988 6989
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
6990

6991
    The ``default main program`` is the default value for ``Program`` parameter in
6992
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6993
    :code:`default_main_program` when the program is not specified.
6994

6995
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6996

Y
Yu Yang 已提交
6997
    Returns:
6998
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6999 7000 7001 7002

    Examples:
        ..  code-block:: python

7003
            import paddle
7004

7005
            paddle.enable_static()
7006
            # Sample Network:
7007 7008 7009
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7010

7011 7012 7013
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7014
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7015
    """
Y
Yu Yang 已提交
7016
    return _main_program_
Y
Yu Yang 已提交
7017 7018 7019 7020 7021


def switch_main_program(program):
    """
    Switch the main program to a new program.
7022

Y
Yu Yang 已提交
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7037
    Switch the startup program to a new program
Y
Yu Yang 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7050
@signature_safe_contextmanager
Y
Yu Yang 已提交
7051 7052
def program_guard(main_program, startup_program=None):
    """
7053 7054
    :api_attr: Static Graph

7055 7056 7057
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7058

G
guofei 已提交
7059
    Args:
7060
        main_program(Program): New main program inside ``with`` statement.
7061 7062
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7063 7064 7065
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7066
    Examples:
7067
       .. code-block:: python
T
tangwei12 已提交
7068

7069
          import paddle
Y
yuyang18 已提交
7070

7071 7072 7073 7074 7075
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7076
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7077 7078 7079

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7080

Y
Yu Yang 已提交
7081
    Examples:
7082
       .. code-block:: python
Y
yuyang18 已提交
7083

7084
          import paddle
7085

7086 7087 7088 7089 7090
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7091

Y
Yu Yang 已提交
7092
    """
7093
    from .data_feeder import check_type
7094 7095
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
7096 7097
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7098
        check_type(startup_program, 'startup_program', Program,
7099
                   'paddle.static.program_guard')
7100 7101
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7102
        startup_program = switch_startup_program(startup_program)
7103 7104 7105 7106 7107 7108
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7109 7110


W
Wu Yi 已提交
7111
def _get_var(name, program=None):
X
xuwei06 已提交
7112
    """
Y
yuyang18 已提交
7113
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7114

X
xuwei06 已提交
7115 7116 7117
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7118
        If None, default_global_program() will be used.
X
xuwei06 已提交
7119 7120 7121 7122 7123 7124 7125

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7126
    assert isinstance(program, Program)
X
xuwei06 已提交
7127 7128

    return program.global_block().var(name)
7129 7130


S
rename  
sneaxiy 已提交
7131
@signature_safe_contextmanager
L
lujun 已提交
7132 7133
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7134
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7135
    _dygraph_tracer_ = tracer
7136
    core._switch_tracer(tracer)
M
minqiyang 已提交
7137

7138 7139 7140
    try:
        yield
    finally:
7141 7142
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7143 7144


S
rename  
sneaxiy 已提交
7145
@signature_safe_contextmanager
L
lujun 已提交
7146
def _dygraph_place_guard(place):
7147 7148 7149
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7150 7151
    _set_dygraph_tracer_expected_place(place)

7152 7153 7154
    try:
        yield
    finally:
7155
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7156
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7157 7158


7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7169

7170 7171
    Note:
        The API only supports static mode.
7172 7173 7174 7175

    A context manager that specifies the device on which the OP will be placed.

    Args:
7176
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7177
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7178 7179 7180 7181 7182 7183 7184
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7185

7186
        .. code-block:: python
7187

7188
            # required: gpu
Z
Zhang Ting 已提交
7189
            import paddle
7190

Z
Zhang Ting 已提交
7191 7192 7193
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7194
            if support_gpu:
Z
Zhang Ting 已提交
7195
                place = paddle.CUDAPlace(0)
7196 7197

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7198 7199 7200
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7201

Z
Zhang Ting 已提交
7202
            with paddle.static.device_guard("cpu"):
7203
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7204 7205
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7206
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7207
                out = paddle.reshape(data1, shape=shape)
7208

Z
Zhang Ting 已提交
7209 7210
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7211 7212 7213
            result = exe.run(fetch_list=[out])
    """

7214 7215 7216 7217 7218
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7219
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7220
        raise ValueError(
7221
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7222
            "when there is no need to specify device. But received %s" % device)
7223 7224
    if index:
        device = ":".join([device, index])
7225
    pre_device = switch_device(device)
7226 7227 7228 7229
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7230 7231


7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7263 7264 7265
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7266
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7267 7268 7269 7270 7271 7272 7273

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7274 7275
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7276 7277 7278 7279
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7280 7281
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7282 7283 7284 7285 7286 7287 7288 7289
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7290
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7301
            import paddle
G
guofei 已提交
7302 7303

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7304
            res = paddle.get_flags(flags)
G
guofei 已提交
7305 7306 7307 7308 7309 7310
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7311 7312
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7313 7314 7315 7316 7317 7318 7319
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7320 7321
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7322 7323 7324 7325 7326 7327 7328 7329
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7330 7331 7332 7333 7334 7335 7336


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7337
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7338
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7339 7340 7341 7342 7343 7344 7345 7346 7347
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7348

7349 7350 7351
    if (place == "device"):
        return core.Place()

7352
    # GPU
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7368 7369

    # XPU
7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7417
    raise ValueError(
7418 7419
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret