framework.py 165.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
62 63
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
64 65


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
173
def in_dygraph_mode():
L
lujun 已提交
174
    """
Y
Youwei Song 已提交
175 176
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
177 178

    Returns:
Y
Youwei Song 已提交
179
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
180 181 182 183

    Examples:
        .. code-block:: python

184
            import paddle.fluid as fluid
L
lujun 已提交
185
            if fluid.in_dygraph_mode():
Y
Youwei Song 已提交
186 187 188
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
189 190

    """
L
lujun 已提交
191
    return _dygraph_tracer_ is not None
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
216 217
def _dygraph_tracer():
    return _dygraph_tracer_
218

W
Wu Yi 已提交
219

M
minqiyang 已提交
220
def _current_expected_place():
L
lujun 已提交
221
    return _dygraph_current_expected_place_
M
minqiyang 已提交
222 223


S
sneaxiy 已提交
224
def _cpu_num():
225
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
226 227 228 229 230 231 232 233
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
234
        os.environ['CPU_NUM'] = str(1)
235
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
236 237 238 239 240 241 242 243 244 245
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
246 247


C
chengduo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


H
hong 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275
def _var_base_to_np(var_base):
    """
    convert VarBase tp numpy
    
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase

    """
    var = var_base._copy_to(core.CPUPlace(), True)
    return np.array(var.value().get_tensor())


S
sneaxiy 已提交
276
def cuda_places(device_ids=None):
L
lujun 已提交
277
    """
278 279 280 281 282
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
283 284

    If :code:`device_ids` is None, environment variable of
285
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
286 287 288
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
289
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
290 291

    If :code:`device_ids` is not None, it should be the device
292
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
293 294 295
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
296 297
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
298 299

    Returns:
300
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
301 302 303 304

    Examples:
        .. code-block:: python

305
            import paddle.fluid as fluid
L
lujun 已提交
306 307 308
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
309 310 311
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
312
        device_ids = _cuda_ids()
S
sneaxiy 已提交
313 314 315 316 317 318
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
319
    """
320
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
321 322 323
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
324 325
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
326 327
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
328

329 330
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
331 332

    Returns:
333
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
334 335 336 337

    Examples:
        .. code-block:: python

338
            import paddle.fluid as fluid
L
lujun 已提交
339 340 341
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
342 343 344 345 346 347
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
348
    """
349
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
350 351 352

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
353 354 355 356
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
357

358 359
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
360 361

    Returns:
362
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
363 364 365 366

    Examples:
        .. code-block:: python

367
            import paddle.fluid as fluid
L
lujun 已提交
368 369 370 371 372
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
373 374 375
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
376 377
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
378 379


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
406
@signature_safe_contextmanager
407 408 409 410
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
411 412 413
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
414 415

    Args:
T
Tao Luo 已提交
416
        prefix(str, optional): prefix. Default is none.
417 418 419

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
420

421
          import paddle.fluid as fluid
422
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
423 424 425 426 427 428
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
429
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
430
                f = fluid.layers.pow(d, 2.0)
431
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
451 452
    """
    # TODO(panyx0718): Only [0-9a-z].
453 454 455 456 457 458 459 460 461
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
462 463 464 465 466 467 468 469 470 471 472 473


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
474 475 476
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
477 478 479 480


def grad_var_name(var_name):
    """
481 482
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
483 484 485
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
486

487
def convert_np_dtype_to_dtype_(np_dtype):
488 489
    """
    Convert the data type in numpy to the data type in Paddle
490

491
    Args:
492
        np_dtype(np.dtype): the data type in numpy.
493

494 495
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
496 497

    """
498 499
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
500
        return core.VarDesc.VarType.FP32
501
    elif dtype == np.float64:
502
        return core.VarDesc.VarType.FP64
503
    elif dtype == np.float16:
504
        return core.VarDesc.VarType.FP16
505
    elif dtype == np.int32:
506
        return core.VarDesc.VarType.INT32
507
    elif dtype == np.int16:
508
        return core.VarDesc.VarType.INT16
509
    elif dtype == np.int64:
510
        return core.VarDesc.VarType.INT64
511
    elif dtype == np.bool:
512
        return core.VarDesc.VarType.BOOL
513 514
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
515 516
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
517 518
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
519
    else:
M
minqiyang 已提交
520
        raise ValueError("Not supported numpy dtype %s" % dtype)
521 522 523


def dtype_is_floating(dtype):
524 525 526
    """
    Check the data type is floating or not.
    Args:
527
        dtype(np.dtype|core.VarDesc.VarType): data type.
528 529 530 531 532
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
533
    if not isinstance(dtype, core.VarDesc.VarType):
534 535
        dtype = convert_np_dtype_to_dtype_(dtype)

536 537 538 539
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
540 541


Y
Yang Yang(Tony) 已提交
542
def _debug_string_(proto, throw_on_error=True):
543 544 545 546 547 548 549 550 551 552 553
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
554
    error_fields = list()
Y
Yang Yang(Tony) 已提交
555
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
556 557
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
558 559 560
    return proto.__str__()


X
Xin Pan 已提交
561
class Variable(object):
562
    """
J
Jiabin Yang 已提交
563
    **Notes**:
564
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
565

566 567
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
568 569 570
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
571
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
572 573
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
574

575
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
576
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
577

578
    Most of a Variable's member variables can be setted to be None. It mean
579
    it is not available or will be specified later.
580

581
    Examples:
582 583
        In Static Graph Mode:

584 585
        .. code-block:: python

586
            import paddle.fluid as fluid
587
            cur_program = fluid.Program()
588 589 590 591
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
592
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
593 594 595 596 597 598 599 600 601

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

602 603
    """

Y
Yu Yang 已提交
604 605
    def __init__(self,
                 block,
Y
Yu Yang 已提交
606
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
607 608 609 610
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
611
                 capacity=None,
Q
QI JUN 已提交
612
                 persistable=None,
F
fengjiayi 已提交
613
                 error_clip=None,
Y
Yu Yang 已提交
614
                 stop_gradient=False,
F
fengjiayi 已提交
615
                 is_data=False,
H
Huihuang Zheng 已提交
616
                 need_check_feed=False,
H
hong 已提交
617
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
618
                 **kwargs):
Y
Yu Yang 已提交
619 620
        self.block = block
        if name is None:
Y
Yu Yang 已提交
621
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
622

Y
Yu Yang 已提交
623
        if dtype is not None:
624
            if not isinstance(dtype, core.VarDesc.VarType):
625
                dtype = convert_np_dtype_to_dtype_(dtype)
626

H
hong 已提交
627 628
        self.belong_to_optimizer = belong_to_optimizer

L
lujun 已提交
629
        if in_dygraph_mode():
M
minqiyang 已提交
630
            # record vars in tracer rather than blocks
M
minqiyang 已提交
631
            self._ivar = kwargs.get("ivar", None)
632
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
633
            if not self._ivar:
634
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
635 636 637
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
638
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
639
                    if persistable else False)
M
minqiyang 已提交
640
            if persistable:
L
lujun 已提交
641
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
642
            self.op = None
M
minqiyang 已提交
643
        else:
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
708 709 710
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

711 712 713 714 715 716 717 718
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
719
            self.block.vars[name] = self
720
            self.op = None
721
            self._stop_gradient = stop_gradient
722
            self.is_data = is_data
Y
Yu Yang 已提交
723

724
    @dygraph_only
725 726
    def detach(self):
        """
J
Jiabin Yang 已提交
727 728
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
729

730
        Returns a new Variable, detached from the current graph.
731

732
        Returns:
J
Jiabin Yang 已提交
733
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
734

735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

763
    @dygraph_only
764
    def numpy(self):
765
        """
J
Jiabin Yang 已提交
766 767
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
768

J
Jiabin Yang 已提交
769
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
770 771 772 773 774

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
775
            ndarray: dtype is same as current Variable
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
797
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
798
        return np.array(new_ivar.value().get_tensor())
799

800 801 802
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
803 804 805
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
H
hong 已提交
829 830 831 832
        assert isinstance(value, (Variable, np.ndarray, core.VarBase)), \
                "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
833
        if isinstance(value, Variable):
H
hong 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847
            value_np = value.numpy()
        elif isinstance(value, core.VarBase):
            value_np = _var_base_to_np(value)
        self_tensor = self._ivar.value().get_tensor()

        self_tensor_np = np.array(self_tensor)

        assert self_tensor_np.shape == value_np.shape,  \
                                      "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self._ivar.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype,  \
                                      "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format( self._ivar.name, self_tensor_np.dtype, value_np.dtype)

        self_tensor.set(value_np, _current_expected_place())
848

849
    @dygraph_only
850
    def backward(self, backward_strategy=None):
851
        """
J
Jiabin Yang 已提交
852 853
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
854 855 856

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
857 858
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
859

J
Jiabin Yang 已提交
860 861
        Returns:
            NoneType: None
862 863 864 865 866 867 868 869 870 871 872 873

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
874 875
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
876 877 878 879 880 881 882 883 884
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
885 886 887 888 889
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
890

J
Jiabin Yang 已提交
891 892 893 894
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
895

896
    @dygraph_only
897
    def gradient(self):
898
        """
J
Jiabin Yang 已提交
899 900
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
901 902 903

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
904
        Returns:
905
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
932
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
933 934 935 936 937
        if self._ivar._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())
938

939
    @dygraph_only
940
    def clear_gradient(self):
941
        """
J
Jiabin Yang 已提交
942 943 944 945
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
946

J
Jiabin Yang 已提交
947
        Clear  (set to ``0`` ) the Gradient of Current Variable
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
974
        self._ivar._clear_gradient()
X
Xin Pan 已提交
975

976
    def __str__(self):
Y
Yang Yang(Tony) 已提交
977 978
        return self.to_string(True)

F
update  
fengjiayi 已提交
979
    def to_string(self, throw_on_error, with_details=False):
980 981 982
        """
        Get debug string.

J
Jiabin Yang 已提交
983 984 985 986 987
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
988

989 990
        Returns:
            str: The debug string.
991 992 993 994 995

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
996

997 998 999 1000 1001
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1002
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1003
                print("=============with detail===============")
1004
                print(new_variable.to_string(True, True))
1005
        """
L
lujun 已提交
1006
        if in_dygraph_mode():
L
lujun 已提交
1007
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
1008 1009 1010 1011 1012 1013 1014
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
1015

F
update  
fengjiayi 已提交
1016 1017
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1018
        protostr = self.desc.serialize_to_string()
1019
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1020 1021 1022 1023
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1024 1025 1026
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1027
        return res_str
1028 1029 1030

    __repr__ = __str__

1031
    @property
1032
    def stop_gradient(self):
J
Jiabin Yang 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1062
        if in_dygraph_mode():
M
minqiyang 已提交
1063 1064
            return self._ivar.stop_gradient
        else:
1065
            return self._stop_gradient
1066

1067 1068
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1069
        if in_dygraph_mode():
M
minqiyang 已提交
1070
            self._ivar.stop_gradient = s
1071
        else:
1072
            self._stop_gradient = s
1073

1074 1075
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1097
        if in_dygraph_mode():
1098 1099 1100
            return self._ivar.persistable
        else:
            return self.desc.persistable()
1101

Y
Yu Yang 已提交
1102 1103
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1104
        if in_dygraph_mode():
1105 1106 1107
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1108 1109
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1110

Y
Yu Yang 已提交
1111 1112
    @property
    def name(self):
J
Jiabin Yang 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1129
        if in_dygraph_mode():
1130 1131 1132
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1154 1155
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1156
        if in_dygraph_mode():
1157 1158 1159
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1160

Y
Yu Yang 已提交
1161 1162
    @property
    def shape(self):
J
Jiabin Yang 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1180
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1181
        if in_dygraph_mode():
1182 1183 1184
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1185 1186

    @property
F
fengjiayi 已提交
1187
    def dtype(self):
J
Jiabin Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1204
        if in_dygraph_mode():
1205 1206 1207
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1208 1209

    @property
1210
    @dygraph_not_support
Y
Yu Yang 已提交
1211
    def lod_level(self):
J
Jiabin Yang 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1233
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1234 1235
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1236
        return self.desc.lod_level()
Y
Yu Yang 已提交
1237

Y
Yu Yang 已提交
1238 1239
    @property
    def type(self):
J
Jiabin Yang 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1256
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1257
            return self._ivar.type
1258 1259
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1260

W
Wu Yi 已提交
1261
    def _set_error_clip(self, error_clip):
1262 1263 1264 1265 1266 1267 1268 1269 1270
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1271 1272
        self.error_clip = error_clip

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1389
    def _cloneVar(self, copy=False):
1390 1391
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1392 1393
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1394 1395 1396 1397
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1398
        new_var = self._cloneVar()
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1409
        new_var = self._cloneVar()
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1420
                return self._cloneVar(True)
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1439
                return self._cloneVar(True)
1440
            index = int(item)
1441
            if (index > 0 and index >= self.shape[axis]) \
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1458 1459 1460 1461 1462 1463 1464 1465

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
1466 1467
        slice_step = []
        use_strided_slice = False
H
Hongyu Liu 已提交
1468 1469
        reverse_axis = []

1470
        def fill_constant(shape, value, force_cpu=False, out=None):
1471 1472 1473 1474 1475 1476 1477 1478
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
1479
                    'force_cpu': force_cpu
1480 1481 1482 1483 1484
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1485 1486 1487 1488
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
1489
                step = slice_item.step
H
Hongyu Liu 已提交
1490

1491 1492
                if start is None and end is None and step is None:
                    continue
H
Hongyu Liu 已提交
1493

1494 1495
                if step is None:
                    step = 1
H
Hongyu Liu 已提交
1496 1497

                if start is None and end is None:
1498 1499
                    assert (step == -1)
                    reverse_axis.append(dim)
H
Hongyu Liu 已提交
1500 1501 1502 1503 1504 1505 1506 1507
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

1508 1509 1510
                if step != 1:
                    use_strided_slice = True

H
Hongyu Liu 已提交
1511 1512 1513
                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1514
                slice_step.append(step)
1515
            else:
H
Hongyu Liu 已提交
1516 1517 1518
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1519
                slice_step.append(1)
1520 1521
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
1522
                    fill_constant([1], 1, force_cpu=True, out=temp_1)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
1550
                    fill_constant([1], dim, force_cpu=True, out=temp_out)
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
1561 1562
        if (use_strided_slice == True):
            attrs['strides'] = []
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        infer_flags = list(1 for i in range(len(slice_axis)))
        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        # strides
        if use_strided_slice == True:
            if not contain_var(slice_step):
                attrs['strides'] = slice_step
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
                for i, dim in enumerate(slice_step):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
1598 1599
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1600 1601

        out = self
1602
        if use_strided_slice == False and len(slice_axis) > 0:
H
Hongyu Liu 已提交
1603 1604 1605 1606 1607 1608 1609 1610
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1611
                inputs=inputs,
H
Hongyu Liu 已提交
1612
                outputs={'Out': [slice_out_var]},
1613
                attrs=attrs)
H
Hongyu Liu 已提交
1614 1615

            out = slice_out_var
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        elif use_strided_slice == True and len(slice_axis) > 0:
            strided_slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_strided_slice"),
                dtype=self.dtype)
            self.block.append_op(
                type="strided_slice",
                inputs=inputs,
                outputs={'Out': [strided_slice_out_var]},
                attrs=attrs)

            out = strided_slice_out_var
H
Hongyu Liu 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1643

Y
Yu Yang 已提交
1644

F
fengjiayi 已提交
1645 1646 1647
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1648

1649 1650
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1651 1652 1653 1654
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1655
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1656 1657 1658 1659 1660
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1661 1662 1663 1664
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1674
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1675 1676 1677 1678 1679 1680
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1681 1682 1683 1684 1685 1686 1687 1688
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1689 1690
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1691 1692
        return self.op_proto_map[type]

1693 1694 1695 1696 1697 1698
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1699 1700 1701 1702
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1703
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1704 1705
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1706 1707
        }

F
fengjiayi 已提交
1708

X
Xin Pan 已提交
1709
class Operator(object):
1710
    """
1711 1712 1713 1714 1715 1716 1717
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1718
        type(str): The type of operator. Default None.
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1739
        Block.append_op or Block._prepend_op instead.
1740 1741 1742 1743

    Examples:
        .. code-block:: python

1744
            import paddle.fluid as fluid
1745
            cur_program = fluid.Program()
1746 1747 1748 1749 1750
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1751
    """
1752
    OP_WITHOUT_KERNEL_SET = {
1753 1754
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1755 1756
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1757
        'c_sync_comm_stream'
1758
    }
1759

Y
Yu Yang 已提交
1760 1761
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1762
                 desc,
Y
Yu Yang 已提交
1763 1764 1765
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1766
                 attrs=None):
L
lujun 已提交
1767
        if in_dygraph_mode():
1768 1769
            if type is None:
                raise ValueError(
1770
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1771
            self._type = type
M
minqiyang 已提交
1772
            self.attrs = attrs if attrs else {}
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1787
                )] = self.block.program._op_role
1788 1789 1790

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1791 1792
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1793 1794 1795 1796 1797 1798 1799 1800

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1801
                    "`type` to initialized an Operator can not be None.")
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1833
                        for index, arg in enumerate(in_args):
1834 1835 1836 1837
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1838
                            elif isinstance(arg, Variable):
1839
                                in_arg_names.append(cpt.to_text(arg.name))
1840
                            else:
1841 1842 1843 1844 1845 1846
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
                                    "but received : " % (in_proto.name, type),
                                    arg)
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1873
                        if not in_dygraph_mode():
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1893
    def _has_kernel(self, op_type):
1894 1895
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1896
    def to_string(self, throw_on_error):
1897
        """
1898 1899
        Get debug string.

1900
        Args:
1901 1902
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1903

1904 1905
        Returns:
            str: The debug string.
1906 1907

        """
1908
        protostr = self.desc.serialize_to_string()
1909
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1910 1911 1912 1913
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1914 1915 1916

    __repr__ = __str__

F
fengjiayi 已提交
1917 1918
    @property
    def type(self):
L
lujun 已提交
1919
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1920
            return self._type
1921 1922
        else:
            return self.desc.type()
F
fengjiayi 已提交
1923 1924

    def input(self, name):
1925
        """
1926
        Get the input arguments according to the input parameter name.
1927

1928 1929
        Args:
            name(str): The input parameter name.
1930

1931 1932 1933
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1934
        """
F
fengjiayi 已提交
1935 1936
        return self.desc.input(name)

W
Wu Yi 已提交
1937
    def _rename_input(self, old_name, new_name):
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1948
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1949

W
Wu Yi 已提交
1950
    def _rename_output(self, old_name, new_name):
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1961
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1962

F
fengjiayi 已提交
1963 1964 1965 1966
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1967 1968 1969 1970 1971 1972 1973 1974
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1975
    def output(self, name):
1976
        """
1977
        Get output arguments by the output parameter name.
1978

1979 1980
        Args:
            name(str): The output parameter name.
1981

1982 1983 1984
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1985
        """
F
fengjiayi 已提交
1986 1987 1988 1989 1990 1991
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1992 1993 1994 1995 1996 1997 1998 1999
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2000
    def has_attr(self, name):
2001
        """
2002 2003
        Whether this Operator has the attribute with name or not.

2004
        Args:
2005
            name(str): the attribute name.
2006

2007 2008
        Returns:
            bool: True if has this attribute.
2009 2010

        """
F
fengjiayi 已提交
2011 2012 2013
        return self.desc.has_attr(name)

    def attr_type(self, name):
2014
        """
2015
        Get the type of attribute by attribute's name.
2016

2017 2018
        Args:
            name(str): the attribute name.
2019

2020 2021
        Returns:
            core.AttrType: the attribute type.
2022
        """
F
fengjiayi 已提交
2023 2024
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2025
    def _set_attr(self, name, val):
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2036 2037
        self._update_desc_attr(name, val)

2038 2039 2040
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2052 2053
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2054 2055
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2056
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2057 2058 2059 2060
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2061
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2062

F
fengjiayi 已提交
2063 2064 2065 2066 2067
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2068
        """
2069 2070
        Get the attribute by name.

2071
        Args:
2072
            name(str): the attribute name.
2073

2074 2075
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2076 2077
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2078
        return self.desc.attr(name)
Y
Yu Yang 已提交
2079

W
Wu Yi 已提交
2080
    def _block_attr_id(self, name):
2081
        """
G
gongweibao 已提交
2082
        Get the block attribute's id by name.
2083

2084 2085
        Args:
            name(str): the attribute name.
2086

2087 2088
        Returns:
            int: the block index.
2089
        """
W
Wu Yi 已提交
2090
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2091

W
Wu Yi 已提交
2092
    def _block_attr(self, name):
G
gongweibao 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2103
        id = self._block_attr_id(name)
G
gongweibao 已提交
2104 2105 2106
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2107
    def _blocks_attr(self, name):
G
gongweibao 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2118
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2119 2120 2121 2122 2123
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2124
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2135
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2136

J
JiayiFeng 已提交
2137
    def all_attrs(self):
F
fengjiayi 已提交
2138
        """
2139 2140 2141
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2142
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2143 2144 2145 2146
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2147 2148
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2149
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2150 2151 2152
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2153
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2154 2155 2156 2157
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2158 2159
        return attr_map

Y
Yu Yang 已提交
2160

Y
Yu Yang 已提交
2161
class Block(object):
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2176
        use `Program._create_block()` to create a block.
2177 2178 2179 2180

    Examples:
        .. code-block:: python

2181 2182 2183
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2184 2185 2186 2187 2188 2189 2190 2191 2192
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2193
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2194
        self.desc = program.desc.block(idx)
2195
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2196
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2197
        self.program = program
2198
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2199

2200
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2201 2202
        return self.to_string(True)

F
fengjiayi 已提交
2203 2204
    def to_string(self, throw_on_error, with_details=False):
        """
2205 2206
        Get debug string.

F
fengjiayi 已提交
2207 2208
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2209
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2210
            with_details(bool): more details about variables and parameters
2211 2212
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2213

2214 2215
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2216 2217 2218 2219
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2220
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2221 2222
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2223
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2224
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2225
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2226
            for op in self.ops:
F
fengjiayi 已提交
2227 2228
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2229 2230 2231
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2232 2233
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2234 2235
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2236 2237 2238

    __repr__ = __str__

Y
Yu Yang 已提交
2239 2240
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2241
        return self.desc.parent
Y
Yu Yang 已提交
2242

Y
Yu Yang 已提交
2243 2244 2245 2246
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2247
    def _set_forward_block_idx(self, idx):
2248 2249 2250 2251 2252 2253 2254 2255 2256
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2257
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2258

Y
Yu Yang 已提交
2259 2260
    @property
    def idx(self):
Y
Yu Yang 已提交
2261
        return self.desc.id
Y
Yu Yang 已提交
2262

Q
Qiao Longfei 已提交
2263
    def var(self, name):
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2277
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2278 2279 2280
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2281 2282
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2283
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2284
        return v
Q
Qiao Longfei 已提交
2285

X
Xin Pan 已提交
2286
    def _find_var_recursive(self, name):
2287 2288 2289 2290 2291 2292 2293
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2294
            Variable: the Variable with the giving name. Or None if not found.
2295
        """
Y
Yu Yang 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2320
        return None
Y
Yu Yang 已提交
2321

X
Xin Pan 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2341

Q
Qiao Longfei 已提交
2342
    def all_parameters(self):
2343
        return list(self.iter_parameters())
2344

2345
    def iter_parameters(self):
M
minqiyang 已提交
2346
        return (item[1] for item in six.iteritems(self.vars)
2347
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2348

Y
Yu Yang 已提交
2349
    def create_var(self, *args, **kwargs):
2350
        var = Variable(block=self, *args, **kwargs)
2351 2352
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2353
        return var
Y
Yu Yang 已提交
2354

Q
Qiao Longfei 已提交
2355 2356 2357
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2358
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2359 2360
        """
        Rename variable in vars and ops' inputs and outputs
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2373
        """
M
minqiyang 已提交
2374 2375
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2376

T
typhoonzero 已提交
2377
        if not self.has_var(name):
2378
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2379 2380
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2381
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2382 2383 2384 2385 2386 2387 2388
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2389
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2390 2391 2392 2393
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2394
        orig_var_type = v.type
M
minqiyang 已提交
2395
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2396
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2397
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2398
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2399 2400 2401 2402
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2403
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2404 2405 2406 2407 2408 2409 2410
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2411
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2412 2413
            var = Variable(
                self,
T
typhoonzero 已提交
2414
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2415 2416 2417 2418
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2419
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2420 2421 2422
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2423
        self._sync_with_cpp()
2424
        return var
T
typhoonzero 已提交
2425

W
Wu Yi 已提交
2426 2427
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2428
        self.desc._remove_var(cpt.to_bytes(name))
2429 2430
        del self.vars[name]

Y
Yu Yang 已提交
2431 2432
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2433
        param = Parameter(global_block, *args, **kwargs)
2434
        if 'initializer' in kwargs:
2435 2436 2437 2438 2439

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2440 2441 2442 2443 2444
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2460
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2461
        return param
Y
Yu Yang 已提交
2462

Y
Yu Yang 已提交
2463
    def append_op(self, *args, **kwargs):
2464 2465 2466 2467 2468 2469
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2470
        if in_dygraph_mode():
2471 2472 2473
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2474 2475 2476 2477 2478
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2479

J
Jiabin Yang 已提交
2480 2481
            type = kwargs.get("type", None)

2482 2483 2484
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2485
                type=type,
M
minqiyang 已提交
2486 2487
                inputs=None,
                outputs=None,
2488
                attrs=attrs)
2489

M
minqiyang 已提交
2490 2491 2492
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2493
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2494 2495

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2496
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2497 2498
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2499
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2500
        else:
2501 2502 2503 2504 2505 2506 2507 2508 2509
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2510
            self.ops.append(op)
M
minqiyang 已提交
2511

2512 2513
        return op

W
Wu Yi 已提交
2514
    def _insert_op(self, index, *args, **kwargs):
2515 2516 2517 2518 2519 2520 2521 2522 2523
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2524 2525
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2526 2527 2528 2529
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2530
    def _remove_op(self, index):
2531 2532 2533 2534 2535 2536 2537 2538 2539
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2540 2541
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2542 2543
        del self.ops[index]

W
Wu Yi 已提交
2544
    def _slice_ops(self, start, end):
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2555
        return self.ops[start:end]
Y
Yancey1989 已提交
2556

W
Wu Yi 已提交
2557
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2558
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2559 2560
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2561
            op = Operator(
J
Jiabin Yang 已提交
2562
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2563

J
Jiabin Yang 已提交
2564
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2565
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2566 2567
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2568
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2569
        else:
2570 2571 2572 2573 2574 2575 2576 2577
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2578
            self.ops.insert(0, op)
2579

Y
Yu Yang 已提交
2580 2581
        return op

W
Wu Yi 已提交
2582
    def _sync_with_cpp(self):
2583
        """
2584 2585
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2586
        """
Q
Qiao Longfei 已提交
2587 2588 2589 2590 2591
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2592
        # sync variables removed from c++ end
2593
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2594
            if not self.desc.find_var(cpt.to_bytes(var)):
2595 2596
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2597
        # sync operators from cpp
2598 2599 2600 2601
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2618 2619 2620 2621 2622

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2623
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2624 2625 2626 2627 2628 2629 2630

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2644 2645 2646 2647
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2648
    def _copy_param_info_from(self, other):
2649
        """
2650 2651
        Copy the information of parameters from the other block.

2652
        Args:
2653 2654 2655 2656 2657
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2658 2659 2660 2661 2662

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2663 2664
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2665
        for p in other.iter_parameters():
2666 2667 2668
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2669
                raise ValueError("_copy_param_info_from should be invoked with "
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2682
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2683
                error_clip=p.error_clip,
2684 2685 2686
                name=v.name)
            self.vars[new_p.name] = new_p

2687
    def _clone_variable(self, var, force_persistable=True):
2688 2689
        """
        Clone a variable into current block.
2690

2691 2692
        Args:
            var: the variable to be cloned.
2693 2694 2695
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2696 2697

        Returns:
2698
            Variable: the new  variable cloned from 'var' in current block.
2699 2700
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2701 2702 2703 2704 2705
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2706 2707
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2708
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2709 2710 2711 2712 2713 2714
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2715
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2716 2717
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2718 2719 2720 2721 2722 2723 2724
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2725
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2726 2727
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2728
        return ret_var
2729

Y
Yu Yang 已提交
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2826
    def remove_input_by_id(self, node_id):
2827 2828 2829 2830 2831 2832
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2833
        self.node.remove_input(node_id)
2834

2835
    def remove_input(self, node):
2836 2837 2838 2839
        """
        Remove a node from inputs.

        Args:
2840
            node(IrNode): the node being removed.
2841
        """
2842
        self.node.remove_input(node.node)
2843

2844
    def append_input(self, node):
2845 2846 2847 2848
        """
        Append a node in inputs.

        Args:
2849
            node(IrNode): the node being appended.
2850
        """
2851
        self.node.append_input(node.node)
2852 2853 2854 2855 2856 2857 2858 2859

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2860
    def remove_output_by_id(self, node_id):
2861 2862 2863 2864 2865 2866
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2867
        self.node.remove_output(node_id)
2868

2869
    def remove_output(self, node):
2870 2871 2872 2873
        """
        Remove a node from outputs.

        Args:
2874
            node(IrNode): the node being removed.
2875
        """
2876
        self.node.remove_output(node.node)
2877

2878
    def append_output(self, node):
2879 2880 2881 2882
        """
        Append a node in outputs.

        Args:
2883
            node(IrNode): the node being appended.
2884
        """
2885
        self.node.append_output(node.node)
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3103
                all(isinstance(v, Block) for v in val):
3104 3105
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3106
                isinstance(val, core.ProgramDesc):
3107 3108 3109 3110
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3154 3155
class IrGraph(object):
    """
3156
    Python IrGraph. Beneath it is a core.Graph, which is used for
3157
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3158 3159
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3160 3161 3162 3163
    """

    def __init__(self, graph, for_test=False):
        """
3164 3165
        Construct an IrGraph using core.Graph.

3166 3167 3168 3169 3170 3171 3172 3173 3174
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3175 3176 3177 3178
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3179 3180 3181
        Warns:
            The method only clones the graph structure, not its attributes.

3182 3183 3184
        Returns:
            IrGraph: A new and duplicated graph.
        """
3185
        g = self.graph.clone()
3186 3187
        return IrGraph(g, self._for_test)

3188
    def is_test(self):
3189 3190 3191
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3192 3193
        return self._for_test

W
WangZhen 已提交
3194
    def all_nodes(self):
3195 3196 3197
        """
        Return all nodes included in the graph as a set.
        """
3198
        return {IrNode(node) for node in self.graph.nodes()}
3199

3200
    def all_var_nodes(self):
3201 3202 3203
        """
        Return all variable nodes included in the graph as a set.
        """
3204
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3205

3206
    def all_persistable_nodes(self):
3207 3208 3209
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3210 3211 3212 3213 3214
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3215
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3216

3217
    def all_op_nodes(self):
3218 3219 3220
        """
        Return all operator nodes included in the graph as a set.
        """
3221
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3222

3223
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3235
            IrVarNode: the created persistable variable node.
3236
        """
3237 3238 3239 3240 3241
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3242
        return IrVarNode(self.graph.create_var_node(var_desc))
3243 3244

    def create_var_node(self, name, var_type, shape, var_dtype):
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3256
            IrVarNode: the created variable node.
3257 3258
        """

3259 3260 3261 3262
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3263
        return IrVarNode(self.graph.create_var_node(var_desc))
3264 3265

    def create_var_node_from_desc(self, var_desc):
3266 3267 3268 3269 3270 3271 3272 3273
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3274
            IrVarNode: the created variable node.
3275
        """
3276
        return IrVarNode(self.graph.create_var_node(var_desc))
3277 3278

    def create_op_node(self, op_type, attrs, inputs, outputs):
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3289
            IrOpNode: the created operator node.
3290
        """
3291 3292
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3293
        for attr, value in six.iteritems(attrs):
3294
            self._update_desc_attr(op_desc, attr, value)
3295
        for input_name, var_nodes in six.iteritems(inputs):
3296 3297 3298 3299
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3300
        for output_name, var_nodes in six.iteritems(outputs):
3301 3302 3303 3304
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3305
        return IrOpNode(self.graph.create_op_node(op_desc))
3306 3307

    def create_op_node_from_desc(self, op_desc):
3308 3309 3310 3311 3312 3313 3314
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3315
            IrOpNode: the created operator node.
3316
        """
3317
        return IrOpNode(self.graph.create_op_node(op_desc))
3318 3319

    def update_input_link(self, old_input_node, new_input_node, op_node):
3320 3321 3322 3323
        """
        Update the input's link of a operator node.

        Args:
3324 3325 3326
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3327
        """
3328
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3329 3330
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3331 3332 3333 3334
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3335
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3336

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3355
    def link_to(self, node_in, node_out):
3356 3357 3358 3359
        """
        Connect two nodes.

        Args:
3360 3361
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3362
        """
3363
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3364
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3365 3366
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3367 3368

    def safe_remove_nodes(self, remove_nodes):
3369 3370 3371 3372 3373 3374 3375
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3376
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3377 3378 3379 3380
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3381 3382
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3383

Z
Zhen Wang 已提交
3384 3385 3386 3387 3388 3389 3390 3391
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3392
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3393 3394 3395 3396
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3397
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3398 3399 3400
                        ]
                    else:
                        var_nodes[each_var_name].append(
3401 3402
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3403 3404
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3405
    def has_circle(self):
3406 3407 3408 3409 3410 3411
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3412 3413 3414
        return core.has_circle(self.graph)

    def graph_num(self):
3415 3416 3417 3418 3419 3420
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3421 3422 3423
        return core.graph_num(self.graph)

    def topology_sort(self):
3424 3425 3426 3427 3428 3429
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3430
            list(IrNode): nodes in topology order.
3431
        """
3432
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3433
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3434 3435

    def build_adjacency_list(self):
3436 3437 3438 3439
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3440
            dict{IrNode: set(IrNode)}: the adjacency list.
3441
        """
3442 3443 3444 3445 3446
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3447

3448 3449 3450 3451 3452 3453 3454 3455
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3456
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3457 3458 3459 3460 3461
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3462 3463 3464
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3465
                                          + ' -o ' + pdf_save_path, shell=True)
3466 3467 3468 3469 3470
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3471
        remove_ctr_vars = set()
3472
        if remove_ctr_var:
3473
            for node in self.all_var_nodes():
3474 3475 3476
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3477 3478
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3479 3480
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3481 3482 3483 3484 3485 3486
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3487 3488 3489 3490
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3491 3492
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3493 3494 3495 3496 3497 3498 3499
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3500 3501 3502
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3503
        WARN: When the graph includes backward operator nodes, the
3504 3505 3506 3507 3508 3509
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3510
        convert_pass = core.get_pass('graph_to_program_pass')
3511 3512
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3513 3514 3515 3516
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3544
class Program(object):
D
dzhwinter 已提交
3545
    """
3546 3547
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3548
    it will contain nested block.
3549

J
Jiabin Yang 已提交
3550 3551 3552
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3553

J
Jiabin Yang 已提交
3554
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3555
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3556 3557 3558 3559 3560 3561 3562
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3563 3564 3565 3566
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3567 3568

    Returns:
J
Jiabin Yang 已提交
3569
        Program: An empty Program.
D
dzhwinter 已提交
3570 3571

    Examples:
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3585 3586 3587

    """

3588 3589
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3590 3591
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3592
        self._seed = 0
Y
yuyang18 已提交
3593
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3594
        self.__op_role_var = []
T
tangwei12 已提交
3595

3596 3597
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3598
        self._is_distributed = False
3599
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3600
        self._is_chief = False
3601 3602 3603
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3604
        self._endpoints = []
3605 3606 3607
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3608
        self._trainers_endpoints = []
3609
        # the distributed lookup table names
T
tangwei12 已提交
3610
        self._distributed_lookup_table = None
3611 3612 3613

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3614 3615
        self._use_lamb = False

3616 3617 3618
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3619

3620 3621 3622
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3623
        self._program_config = None
3624

H
hutuxian 已提交
3625 3626 3627
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3628 3629 3630
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3631
    @property
3632
    def _op_role(self):
Y
yuyang18 已提交
3633 3634 3635 3636 3637 3638 3639 3640
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3641
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3642 3643 3644 3645
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3646 3647
        return self._current_role

3648 3649
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3650 3651 3652
        self._current_role = role

    @property
3653
    def _op_role_var(self):
Y
yuyang18 已提交
3654
        """
3655
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3656

3657
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3658 3659 3660

        Notes: This is a very low-level API. Users should not use it directly.
        """
3661
        return self.__op_role_var
Y
yuyang18 已提交
3662

3663 3664 3665 3666 3667 3668 3669 3670 3671
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3672
    @signature_safe_contextmanager
W
Wu Yi 已提交
3673
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3674 3675 3676 3677 3678 3679 3680
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3681
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3682 3683 3684

        Examples:

3685
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3686
            >>> p, g = backward(...)
W
Wu Yi 已提交
3687
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3688 3689
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3690
        tmp_role = self._current_role
3691
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3692

Y
yuyang18 已提交
3693 3694
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3695
        self.__op_role_var = [
3696 3697 3698
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3699
        yield
3700
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3701
        self._current_role = tmp_role
Y
Yu Yang 已提交
3702

S
rename  
sneaxiy 已提交
3703
    @signature_safe_contextmanager
X
Xin Pan 已提交
3704
    def _lr_schedule_guard(self, is_with_opt=False):
3705 3706 3707 3708 3709 3710 3711
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3712 3713 3714 3715
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3716 3717 3718

        Examples:

3719
            >>> import paddle.fluid as fluid
3720 3721 3722 3723
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3724 3725

        tmp_role = self._current_role
3726
        tmp_var = self.__op_role_var
3727

3728 3729
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3730 3731
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3732
        # TODO(typhoonzero): how to set target learning rate var
3733
        self.__op_role_var = []
3734
        yield
3735
        self.__op_role_var = tmp_var
3736
        self._current_role = tmp_role
3737

3738
    def __str__(self):
Y
yuyang18 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3748 3749
        return self.to_string(True)

F
fengjiayi 已提交
3750 3751 3752
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3753

J
Jiabin Yang 已提交
3754 3755 3756
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3757

J
Jiabin Yang 已提交
3758
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3759

H
haowang101779990 已提交
3760
        Returns:
J
Jiabin Yang 已提交
3761
            str: The debug string describe current Program.
Y
yuyang18 已提交
3762 3763

        Raises:
J
Jiabin Yang 已提交
3764
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3765

3766 3767 3768 3769 3770 3771 3772
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
J
Jiabin Yang 已提交
3773 3774 3775
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3785 3786
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3787 3788
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3789

W
Wu Yi 已提交
3790
    def _get_desc(self):
Y
yuyang18 已提交
3791 3792 3793 3794 3795 3796 3797
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3798 3799
        return self.desc

X
version  
Xin Pan 已提交
3800 3801 3802
    def _version(self):
        return self.desc._version()

3803
    @dygraph_not_support
3804
    def clone(self, for_test=False):
Y
yuyang18 已提交
3805
        """
3806
        **Notes**:
J
Jiabin Yang 已提交
3807 3808 3809 3810
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3811
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3812

3813 3814
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3815

3816

J
Jiabin Yang 已提交
3817
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3818 3819 3820
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3821

Y
yuyang18 已提交
3822
        * Set for_test to False when we want to clone the program for training.
3823
        * Set for_test to True when we want to clone the program for testing.
3824 3825
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3826
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3827

J
Jiabin Yang 已提交
3828 3829
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3830

J
Jiabin Yang 已提交
3831 3832 3833 3834
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3835

J
Jiabin Yang 已提交
3836
        Args:
3837

J
Jiabin Yang 已提交
3838
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3839

J
Jiabin Yang 已提交
3840 3841
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3842

Y
yuyang18 已提交
3843 3844 3845

        Examples:

J
Jiabin Yang 已提交
3846
        **Notes: The Program's order maybe different after** :code:`clone` **and
3847
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3848
        example we give you an simple method** :code:`print_prog(program)` **to
3849
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3850
        after** :code:`clone`:
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3888 3889 3890

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3958 3959
        """
        if for_test:
3960
            if self._appending_grad_times > 0:
3961 3962 3963 3964 3965 3966 3967
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3968 3969 3970
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3971
        else:
3972
            p = Program()
G
gongweibao 已提交
3973 3974
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3975
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3976 3977 3978
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3979 3980

            p._current_role = self._current_role
3981
            p.__op_role_var = self.__op_role_var
3982
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3983

W
Wu Yi 已提交
3984
            p._sync_with_cpp()
3985

W
Wu Yi 已提交
3986
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3987
        p._copy_data_info_from(self)
3988
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3989
        return p
3990

3991
    def _prune(self, targets):
Y
yuyang18 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4005 4006 4007 4008
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4044
        """
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4062 4063
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4064 4065
        if not isinstance(targets, list):
            targets = [targets]
4066 4067 4068 4069 4070 4071

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4072 4073 4074 4075
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4076 4077
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
4078
                    # and we need to find the current op that generate this
4079 4080 4081 4082 4083 4084 4085 4086
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4087
                    t = t.op
4088 4089 4090 4091
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4092
                else:
4093 4094
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4095 4096 4097

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4098
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4099 4100 4101
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4102
        res._sync_with_cpp()
4103 4104
        return res

X
Xin Pan 已提交
4105
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4106
        """
F
fengjiayi 已提交
4107 4108 4109 4110 4111
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4112
        3. change the :code:`is_test`
Y
yuyang18 已提交
4113 4114 4115
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4116
        Args:
X
Xin Pan 已提交
4117 4118
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4119

Y
yuyang18 已提交
4120 4121 4122 4123 4124 4125
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4126
        res = Program()
4127
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4128 4129 4130 4131

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4132
        if prune_read_op:
4133 4134 4135 4136 4137 4138 4139 4140 4141
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4142
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4143 4144

        # change all `is_test` attributes to True
M
minqiyang 已提交
4145
        for i in six.moves.range(res.desc.num_blocks()):
4146
            block = res.desc.block(i)
M
minqiyang 已提交
4147
            for j in six.moves.range(block.op_size()):
4148 4149
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4150
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4151 4152 4153
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4154
        res._sync_with_cpp()
4155 4156
        return res

4157 4158
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4159
        """
J
Jiabin Yang 已提交
4160 4161 4162 4163
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4164

4165 4166
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4167

J
Jiabin Yang 已提交
4168
        Args:
Y
yuyang18 已提交
4169

J
Jiabin Yang 已提交
4170
            binary_str_type (str): the binary prootbuf string.
4171

J
Jiabin Yang 已提交
4172 4173
        Returns:
            Program: A deserialized Program.
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4196
        """
4197 4198
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4199
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4200
        p._sync_with_cpp()
4201
        return p
Y
Yu Yang 已提交
4202

4203
    @staticmethod
4204
    def _construct_from_desc(desc):
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4220 4221
    @property
    def random_seed(self):
Y
yuyang18 已提交
4222
        """
J
Jiabin Yang 已提交
4223
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4224 4225
        the random seed from random device.

J
Jiabin Yang 已提交
4226 4227 4228 4229
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4230

4231 4232 4233 4234 4235 4236 4237 4238

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4239 4240 4241
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4242 4243
                print(random_seed)
                prog.random_seed = 1
4244 4245
                z_var = fluid.layers.dropout(x_var, 0.7)

4246
                print(prog.random_seed)
Y
yuyang18 已提交
4247
        """
D
dzhwinter 已提交
4248 4249
        return self._seed

Q
qiaolongfei 已提交
4250 4251
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4252
        """
4253 4254
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4255 4256 4257 4258
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4259

4260 4261 4262 4263 4264 4265 4266 4267 4268

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4269 4270


Y
yuyang18 已提交
4271
        """
Q
qiaolongfei 已提交
4272 4273
        return self.desc.num_blocks()

D
dzhwinter 已提交
4274 4275 4276 4277 4278 4279
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4280
    def __repr__(self):
4281
        return self.__str__()
4282

Y
Yu Yang 已提交
4283
    def global_block(self):
Y
yuyang18 已提交
4284
        """
J
Jiabin Yang 已提交
4285 4286
        **Notes**:
            **This API has no effect in Dygraph mode**
4287 4288 4289

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4290 4291
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4292

4293 4294 4295 4296 4297 4298 4299 4300 4301

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4302

Y
yuyang18 已提交
4303
        """
Y
Yu Yang 已提交
4304 4305
        return self.blocks[0]

Q
Qiao Longfei 已提交
4306
    def block(self, index):
Y
yuyang18 已提交
4307
        """
J
Jiabin Yang 已提交
4308 4309
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4310

4311 4312
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4313 4314
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4315

J
Jiabin Yang 已提交
4316 4317
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4318 4319 4320 4321 4322 4323 4324 4325 4326

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4327
        """
Q
Qiao Longfei 已提交
4328 4329
        return self.blocks[index]

Y
Yu Yang 已提交
4330
    def current_block(self):
Y
yuyang18 已提交
4331
        """
J
Jiabin Yang 已提交
4332 4333
        **Notes**:
            **This API has no effect in Dygraph mode**
4334

J
Jiabin Yang 已提交
4335 4336
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4337

J
Jiabin Yang 已提交
4338 4339
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4340

4341 4342 4343 4344 4345 4346 4347 4348
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4349
        """
Y
Yu Yang 已提交
4350 4351
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4352
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4353 4354 4355 4356 4357
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4358

Y
yuyang18 已提交
4359 4360 4361 4362 4363
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4364
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4365 4366 4367
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4368 4369 4370 4371
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4372
    def _rollback(self):
Y
yuyang18 已提交
4373 4374 4375 4376 4377
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4378 4379
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4380
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4391 4392 4393
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4394
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4395

W
Wu Yi 已提交
4396
    def _copy_param_info_from(self, other):
4397
        """
4398
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4399

Y
yuyang18 已提交
4400 4401 4402
        Notes: This is a very low level API. Users should not invoke it
        directly.

4403 4404 4405 4406 4407 4408 4409
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4410
            raise TypeError("_copy_param_info_from should be invoked with "
4411 4412 4413
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4414
            raise ValueError("_copy_param_info_from should be invoked with two "
4415
                             "program, with represent the same topology")
W
Wu Yi 已提交
4416
        self.global_block()._copy_param_info_from(other.global_block())
4417

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4433
        self._parameters_on_pservers = other._parameters_on_pservers
4434
        self._endpoints = other._endpoints
4435
        self._ps_endpoint = other._ps_endpoint
4436 4437
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4438
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4439 4440
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4441

Y
yuyang18 已提交
4442 4443 4444
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4445 4446 4447 4448 4449 4450 4451
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4452
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4453 4454 4455
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4456
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4457
                             "program, with represent the same topology")
4458
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4459 4460
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4461 4462
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4463

4464
    @dygraph_not_support
4465
    def list_vars(self):
Y
yuyang18 已提交
4466
        """
J
Jiabin Yang 已提交
4467
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4468

J
Jiabin Yang 已提交
4469 4470
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4482
        """
4483
        for each_block in self.blocks:
4484
            for each_var in list(each_block.vars.values()):
4485 4486
                yield each_var

Y
Yu Yang 已提交
4487

Y
Yu Yang 已提交
4488
class Parameter(Variable):
4489
    """
4490
    Parameter is derived from Variable. A parameter is a persistable
4491
    Variable, and will be updated by optimizers after each iteration.
4492
    The training of a neural network is essentially the updating of
4493 4494
    its parameters.

4495
    Relative to a general Variable, a Parameter has several its own
4496 4497
    member variables:

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4510 4511
    """

Y
Yu Yang 已提交
4512
    def __init__(self, block, shape, dtype, **kwargs):
4513 4514 4515 4516 4517
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4518
        if len(shape) == 0:
4519 4520
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4521 4522 4523

        for each in shape:
            if each < 0:
4524 4525 4526
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4527 4528 4529

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4530 4531 4532 4533
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4534 4535
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4536
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4537

W
wanghaoshuang 已提交
4538
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4539

4540 4541
        self.is_distributed = False

F
fengjiayi 已提交
4542 4543 4544
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4545 4546 4547
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4548

F
update  
fengjiayi 已提交
4549 4550 4551 4552 4553 4554 4555 4556
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4557 4558 4559 4560 4561 4562 4563 4564 4565
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4566 4567 4568 4569 4570 4571
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4572
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4573
            for attr_name in additional_attr:
4574 4575
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4576 4577
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4578 4579 4580 4581
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4582

Y
Yu Yang 已提交
4583
# program is a global instance.
Y
Yu Yang 已提交
4584 4585
_main_program_ = Program()
_startup_program_ = Program()
4586

4587

4588
def default_startup_program():
Y
Yu Yang 已提交
4589
    """
Y
yuyang18 已提交
4590 4591
    Get default/global startup program.

J
Jiabin Yang 已提交
4592 4593 4594
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4595 4596 4597
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4598
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4599

J
Jiabin Yang 已提交
4600
    Returns: current default startup :ref:`api_fluid_Program`
4601

J
Jiabin Yang 已提交
4602
    Returns type: :ref:`api_fluid_Program`
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4618
    """
Y
Yu Yang 已提交
4619
    return _startup_program_
4620

4621

4622
def default_main_program():
Y
Yu Yang 已提交
4623
    """
4624 4625 4626 4627 4628
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4629

4630 4631
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4632
    :code:`default_main_program` when the program is not specified.
4633

4634 4635
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4636
    Returns:
4637
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4638 4639 4640 4641 4642

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4643

4644
            # Sample Network:
4645 4646
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4666
            #print the number of blocks in the program, 1 in this case
4667
            print(fluid.default_main_program().num_blocks)
4668 4669

            #print the description of variable 'image'
4670
            print(fluid.default_main_program().blocks[0].var('image'))
4671

Y
Yu Yang 已提交
4672
    """
Y
Yu Yang 已提交
4673
    return _main_program_
Y
Yu Yang 已提交
4674 4675 4676 4677 4678


def switch_main_program(program):
    """
    Switch the main program to a new program.
4679

Y
Yu Yang 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4694
    Switch the startup program to a new program
Y
Yu Yang 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4707
@signature_safe_contextmanager
Y
Yu Yang 已提交
4708 4709
def program_guard(main_program, startup_program=None):
    """
4710 4711
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4712
    variables to the new main programs.
4713

G
guofei 已提交
4714 4715 4716 4717 4718 4719 4720
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4721
    Examples:
4722 4723 4724
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4725

4726 4727 4728
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4729
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4730
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4731 4732 4733

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4734

Y
Yu Yang 已提交
4735
    Examples:
4736
       .. code-block:: python
Y
yuyang18 已提交
4737

4738 4739 4740 4741 4742
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4743 4744
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4757 4758


W
Wu Yi 已提交
4759
def _get_var(name, program=None):
X
xuwei06 已提交
4760
    """
Y
yuyang18 已提交
4761
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4762

X
xuwei06 已提交
4763 4764 4765
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4766
        If None, default_global_program() will be used.
X
xuwei06 已提交
4767 4768 4769 4770 4771 4772 4773

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4774
    assert isinstance(program, Program)
X
xuwei06 已提交
4775 4776

    return program.global_block().var(name)
4777 4778


S
rename  
sneaxiy 已提交
4779
@signature_safe_contextmanager
L
lujun 已提交
4780 4781 4782 4783
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
4784
    core._switch_tracer(tracer)
M
minqiyang 已提交
4785

4786
    yield
P
Paddle CI 已提交
4787

4788
    core._switch_tracer(tmp_trace)
L
lujun 已提交
4789
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4790 4791


S
rename  
sneaxiy 已提交
4792
@signature_safe_contextmanager
L
lujun 已提交
4793 4794 4795 4796
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4797

4798
    yield
M
minqiyang 已提交
4799

L
lujun 已提交
4800
    _dygraph_current_expected_place_ = tmp_place
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()