framework.py 253.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
78
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Leo Chen 已提交
87 88
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117 118 119 120 121
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
    from paddle import _C_ops
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127 128
    if is_eager:
        _C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135 136
    else:
        _C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148 149 150 151 152 153
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
154 155


J
Jiabin Yang 已提交
156 157 158
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
159
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
160 161 162 163 164


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
165
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
166 167 168 169 170 171 172


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


173 174 175 176 177 178 179 180 181 182 183
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
J
Jiabin Yang 已提交
184
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu()
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
242 243 244


@signature_safe_contextmanager
J
Jiabin Yang 已提交
245
def _test_eager_guard(place=None):
246 247 248 249 250
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
251
    try:
J
Jiabin Yang 已提交
252
        yield
253
    finally:
254 255
        if not already_fallback:
            _enable_legacy_dygraph()
256 257


258 259
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
260 261 262 263
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
264 265 266 267 268 269 270 271 272 273 274
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
275
@signature_safe_contextmanager
276
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
277 278 279 280
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
281
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
282
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
283
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
284
            The sharded model will be computed from small to large. The default value is -1, 
J
jianghaicheng 已提交
285 286 287
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
288
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
289
    to :code:`paddle.static.IpuStrategy` . 
290
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is -1, 
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
470 471
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
472 473 474

    if max_version is not None:
        max_version_split = max_version.split('.')
475 476
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


492
def _dygraph_not_support_(func):
493

494
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
495 496
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
497 498 499 500 501 502
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
503

504
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
505
        assert _non_static_mode(
506 507 508 509 510 511 512
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
513

514
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
515
        assert not _non_static_mode(
516
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
517 518 519 520 521
        return func(*args, **kwargs)

    return __impl__


522 523 524 525 526
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


527 528 529 530 531 532
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
533
# same base class.
534
def _fake_interface_only_(func):
535

536 537
    def __impl__(*args, **kwargs):
        raise AssertionError(
538 539 540 541 542
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
543 544 545 546

    return __impl__


T
tangwei12 已提交
547 548
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
549 550 551 552
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
553

554 555 556 557 558 559 560 561 562 563 564 565 566
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


567 568
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
569
static_only = wrap_decorator(_static_only_)
570
fake_interface_only = wrap_decorator(_fake_interface_only_)
571 572


L
lujun 已提交
573 574
def _dygraph_tracer():
    return _dygraph_tracer_
575

W
Wu Yi 已提交
576

577 578 579 580
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
581
def _current_expected_place():
582 583 584
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
585 586 587 588 589
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
590
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
591 592 593 594 595
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
596 597 598 599 600 601
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
602
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
603 604 605 606 607
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
608 609 610 611 612 613
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
614
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
615 616 617 618 619
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
635
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
636 637


L
Leo Chen 已提交
638 639 640 641
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
642

L
Leo Chen 已提交
643 644 645 646 647 648 649 650 651 652 653 654
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
655
def _cpu_num():
656
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
657 658 659 660 661 662 663 664
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
665
        os.environ['CPU_NUM'] = str(1)
666
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
667 668 669 670 671 672 673 674 675 676
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
677 678


679 680 681 682 683 684 685 686 687
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


688 689 690 691 692 693 694 695 696
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


697 698 699 700 701 702 703 704 705
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
776 777 778 779
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

780
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
781 782 783 784

    Examples:
        .. code-block:: python

785
            import paddle
786
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
787 788 789 790
    """
    return core.is_compiled_with_cuda()


791 792 793 794 795 796 797 798 799 800
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
801
            support_gpu = paddle.device.is_compiled_with_rocm()
802 803 804 805
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
806
def cuda_places(device_ids=None):
L
lujun 已提交
807
    """
808
    Note:
809 810 811
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
812
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
813 814

    If :code:`device_ids` is None, environment variable of
815
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
816
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
817
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
818
    If :code:`FLAGS_selected_gpus` is not set, all visible
819
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
820 821

    If :code:`device_ids` is not None, it should be the device
822
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
823
    the returned list would be 
C
Chen Weihang 已提交
824
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
825

826
    Parameters:
827
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
828 829

    Returns:
C
Chen Weihang 已提交
830
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
831 832

    Examples:
833
    
L
lujun 已提交
834 835
        .. code-block:: python

C
Chen Weihang 已提交
836 837
            import paddle
            import paddle.static as static
T
tangwei12 已提交
838

839 840
            # required: gpu
            
C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
844 845

    """
S
sneaxiy 已提交
846 847 848
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
849
        device_ids = _cuda_ids()
S
sneaxiy 已提交
850 851 852 853 854
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


855 856 857 858
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
859 860 861 862 863 864 865 866 867 868 869
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
870 871 872 873 874 875 876
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
877

878 879
            # required: xpu

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
936
def cpu_places(device_count=None):
L
lujun 已提交
937
    """
C
Chen Weihang 已提交
938
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
939

S
add doc  
sneaxiy 已提交
940 941
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
942 943
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
944 945
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
946

947 948
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
949 950

    Returns:
C
Chen Weihang 已提交
951
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
952 953

    Examples:
954
    
L
lujun 已提交
955 956
        .. code-block:: python

C
Chen Weihang 已提交
957 958
            import paddle
            import paddle.static as static
T
tangwei12 已提交
959

C
Chen Weihang 已提交
960 961 962
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
963 964
    """

S
sneaxiy 已提交
965 966 967 968 969 970
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
971
    """
972
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
973 974 975

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
976 977 978 979
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
980

981 982
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
983 984

    Returns:
985
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
986 987 988 989

    Examples:
        .. code-block:: python

990
            import paddle.fluid as fluid
L
lujun 已提交
991 992 993 994 995
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
996 997 998
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
999 1000
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1001 1002


1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1045
class NameScope(object):
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1072
@signature_safe_contextmanager
1073 1074
def name_scope(prefix=None):
    """
1075

1076
    Generate hierarchical name prefix for the operators in Static Graph.
1077

T
Tao Luo 已提交
1078 1079 1080
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1081
        Don't use it in dygraph, since it will cause memory leak.
1082 1083

    Args:
T
Tao Luo 已提交
1084
        prefix(str, optional): prefix. Default is none.
1085 1086

    Examples:
1087
    
1088
        .. code-block:: python
T
Tink_Y 已提交
1089

1090 1091 1092
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1093
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1094
             b = a + 1
1095
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1096
                c = b * 1
1097
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1098
                d = c / 1
1099 1100 1101
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1102 1103 1104
                g = f - 1

          # Op are created in the default main program.  
1105
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1121 1122
    """
    # TODO(panyx0718): Only [0-9a-z].
1123
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1124
    if _non_static_mode():
L
Leo Chen 已提交
1125 1126
        yield
    else:
T
tianshuo78520a 已提交
1127
        assert prefix, "namescope prefix can not be empty."
1128 1129
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1130 1131 1132 1133
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1146 1147 1148
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1149 1150 1151 1152


def grad_var_name(var_name):
    """
1153 1154
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1155 1156 1157
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1158

1159
def convert_np_dtype_to_dtype_(np_dtype):
1160 1161
    """
    Convert the data type in numpy to the data type in Paddle
1162

1163
    Args:
1164
        np_dtype(np.dtype): the data type in numpy.
1165

1166 1167
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1168 1169

    """
1170 1171
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1172
        return core.VarDesc.VarType.FP32
1173
    elif dtype == np.float64:
1174
        return core.VarDesc.VarType.FP64
1175
    elif dtype == np.float16:
1176
        return core.VarDesc.VarType.FP16
1177
    elif dtype == np.int32:
1178
        return core.VarDesc.VarType.INT32
1179
    elif dtype == np.int16:
1180
        return core.VarDesc.VarType.INT16
1181
    elif dtype == np.int64:
1182
        return core.VarDesc.VarType.INT64
1183
    elif dtype == np.bool_:
1184
        return core.VarDesc.VarType.BOOL
1185
    elif dtype == np.uint16:
1186 1187 1188
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1189 1190
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1191 1192
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1193 1194 1195 1196
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1197
    else:
M
minqiyang 已提交
1198
        raise ValueError("Not supported numpy dtype %s" % dtype)
1199 1200 1201


def dtype_is_floating(dtype):
1202 1203 1204
    """
    Check the data type is floating or not.
    Args:
1205
        dtype(np.dtype|core.VarDesc.VarType): data type.
1206 1207 1208 1209 1210
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1211
    if not isinstance(dtype, core.VarDesc.VarType):
1212 1213
        dtype = convert_np_dtype_to_dtype_(dtype)

1214 1215 1216 1217
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1218 1219


Y
Yang Yang(Tony) 已提交
1220
def _debug_string_(proto, throw_on_error=True):
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1232
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1233
    if not proto.IsInitialized(error_fields) and throw_on_error:
1234 1235 1236
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1237 1238 1239
    return proto.__str__()


1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1250
    if _in_eager_mode_:
1251
        eager_tensor = core.eager.Tensor(
1252
            dtype if dtype else core.VarDesc.VarType.FP32,
1253 1254 1255
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1256 1257
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1258 1259
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1260 1261 1262
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1263 1264


1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1276
class VariableMetaClass(type):
1277

1278 1279 1280 1281
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1282
            return issubclass(t, core.eager.Tensor)
1283
        else:
J
Jiabin Yang 已提交
1284 1285
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1286 1287 1288 1289
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1290

1291 1292 1293 1294
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1295
            return issubclass(t, EagerParamBase)
1296
        else:
J
Jiabin Yang 已提交
1297 1298
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1299 1300 1301 1302
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1303
class Variable(object):
1304
    """
J
Jiabin Yang 已提交
1305
    **Notes**:
1306
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1307

1308 1309
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1310 1311 1312
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1313
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1314 1315
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1316

1317
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1318
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1319

T
tianshuo78520a 已提交
1320
    Most of a Variable's member variables can be set to be None. It mean
1321
    it is not available or will be specified later.
1322

1323
    Examples:
1324 1325
        In Static Graph Mode:

1326 1327
        .. code-block:: python

1328
            import paddle.fluid as fluid
1329
            cur_program = fluid.Program()
1330 1331 1332 1333
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1334

J
Jiabin Yang 已提交
1335
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1336 1337 1338 1339 1340 1341 1342 1343 1344

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1345 1346
    """

Y
Yu Yang 已提交
1347 1348
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1349
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1350 1351 1352 1353
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1354
                 capacity=None,
Q
QI JUN 已提交
1355
                 persistable=None,
F
fengjiayi 已提交
1356
                 error_clip=None,
Y
Yu Yang 已提交
1357
                 stop_gradient=False,
F
fengjiayi 已提交
1358
                 is_data=False,
H
Huihuang Zheng 已提交
1359
                 need_check_feed=False,
H
hong 已提交
1360
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1361
                 **kwargs):
Y
Yu Yang 已提交
1362 1363
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1364
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1365

Y
Yu Yang 已提交
1366
        if dtype is not None:
1367
            if not isinstance(dtype, core.VarDesc.VarType):
1368
                dtype = convert_np_dtype_to_dtype_(dtype)
1369

S
Steffy-zxf 已提交
1370 1371 1372 1373
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1374 1375
        self.belong_to_optimizer = belong_to_optimizer

1376 1377 1378 1379 1380
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1381

1382 1383 1384
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1385

1386 1387 1388
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1389 1390
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1391 1392
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1393

1394
        if shape is not None:
1395
            if is_new_var:
1396 1397 1398 1399 1400 1401
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1402 1403
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1404 1405 1406 1407 1408 1409 1410
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1411 1412
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1413 1414 1415 1416 1417 1418 1419 1420 1421
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1422 1423
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1424 1425 1426 1427 1428 1429 1430 1431 1432
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1433 1434
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1435 1436
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1437

1438 1439
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1440

1441 1442 1443 1444 1445 1446 1447
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1448

1449 1450
        self.block.vars[name] = self
        self.op = None
1451
        self.stop_gradient = stop_gradient
1452
        self.is_data = is_data
Y
Yu Yang 已提交
1453

1454 1455 1456
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1457 1458
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1459

1460
        Returns:
J
Jiabin Yang 已提交
1461
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1462 1463 1464 1465

        Examples:
            .. code-block:: python

1466
                import paddle
1467

1468 1469 1470 1471
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1472

1473 1474
                # create a detached Variable
                y = x.detach()
1475
        """
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1488 1489 1490
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1491
        return output
1492

1493
    @fake_interface_only
1494
    def numpy(self):
1495
        """
J
Jiabin Yang 已提交
1496
        **Notes**:
T
tianshuo78520a 已提交
1497
            **This API is ONLY available in Dygraph mode**
1498

J
Jiabin Yang 已提交
1499
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1500 1501 1502 1503 1504

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1505
            ndarray: dtype is same as current Variable
1506 1507 1508 1509 1510 1511

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1512
                from paddle.fluid.dygraph import Linear
1513 1514 1515 1516
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1517
                    linear = Linear(32, 64)
1518
                    data = to_variable(data)
1519
                    x = linear(data)
1520 1521 1522
                    print(x.numpy())

        """
1523
        pass
1524

1525
    @fake_interface_only
1526
    def backward(self, retain_graph=False):
1527
        """
J
Jiabin Yang 已提交
1528
        **Notes**:
T
tianshuo78520a 已提交
1529
            **This API is ONLY available in Dygraph mode**
1530

1531
        Run backward of current Graph which starts from current Tensor.
1532

J
Jiabin Yang 已提交
1533
        Args:
1534 1535 1536 1537
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1538

J
Jiabin Yang 已提交
1539 1540
        Returns:
            NoneType: None
1541 1542 1543 1544 1545

        Examples:
            .. code-block:: python

                import numpy as np
1546 1547
                import paddle
                paddle.disable_static()
1548 1549

                x = np.ones([2, 2], np.float32)
1550 1551 1552 1553 1554 1555 1556
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1557 1558
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1559
                loss.backward()
1560 1561

        """
1562
        pass
1563

1564
    @fake_interface_only
1565
    def gradient(self):
1566
        """
J
Jiabin Yang 已提交
1567
        **Notes**:
T
tianshuo78520a 已提交
1568
            **This API is ONLY available in Dygraph mode**
1569 1570 1571

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1572
        Returns:
1573
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1574 1575 1576 1577 1578 1579 1580

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1581
                # example1: return ndarray
1582 1583 1584 1585 1586 1587 1588 1589 1590
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1591
                    loss2.backward()
1592 1593
                    print(loss2.gradient())

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1607
        """
1608
        pass
1609

1610
    @fake_interface_only
1611
    def clear_gradient(self):
1612
        """
J
Jiabin Yang 已提交
1613
        **Notes**:
T
tianshuo78520a 已提交
1614
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1615 1616

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1617

J
Jiabin Yang 已提交
1618
        Clear  (set to ``0`` ) the Gradient of Current Variable
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1637
                    loss2.backward()
1638 1639 1640 1641 1642
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1643
        pass
X
Xin Pan 已提交
1644

1645 1646 1647 1648
    @fake_interface_only
    def register_hook(self, hook):
        pass

1649
    def __str__(self):
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1666 1667
                import paddle
                import paddle.static as static
1668

1669 1670 1671
                paddle.enable_static()

                cur_program = static.Program()
1672 1673 1674 1675 1676 1677
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1678 1679
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1680
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1681 1682
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1683 1684
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1685
        else:
1686 1687
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1688

1689
        if self.is_parameter:
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1700
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1701
        dist_context = get_default_distributed_context()
1702 1703
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1704 1705
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1706

1707
        return var_str
Y
Yang Yang(Tony) 已提交
1708

F
update  
fengjiayi 已提交
1709
    def to_string(self, throw_on_error, with_details=False):
1710 1711 1712
        """
        Get debug string.

J
Jiabin Yang 已提交
1713 1714 1715 1716 1717
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1718

1719 1720
        Returns:
            str: The debug string.
1721 1722 1723 1724 1725

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1726
                import paddle
1727

1728
                paddle.enable_static()
1729 1730 1731 1732 1733
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1734
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1735
                print("=============with detail===============")
1736
                print(new_variable.to_string(True, True))
1737
        """
1738 1739
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1740
        protostr = self.desc.serialize_to_string()
1741
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1742 1743
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1744
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1745
            for attr_name in additional_attr:
1746 1747 1748
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1749
        return res_str
1750 1751 1752

    __repr__ = __str__

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1780
    @property
1781
    def stop_gradient(self):
J
Jiabin Yang 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1797 1798
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1799 1800 1801
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1802 1803
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1804 1805 1806 1807
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1808
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1809 1810
                assert (out1.gradient() == 0).all()
        """
1811
        return self.desc.stop_gradient()
1812

1813 1814
    @stop_gradient.setter
    def stop_gradient(self, s):
1815
        self.desc.set_stop_gradient(s)
1816

1817 1818
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1840
        return self.desc.persistable()
1841

Y
Yu Yang 已提交
1842 1843
    @persistable.setter
    def persistable(self, p):
1844
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1871 1872
    @property
    def name(self):
J
Jiabin Yang 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1889
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1890

1891 1892 1893 1894 1895 1896
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1897 1898
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1911 1912
    @name.setter
    def name(self, new_name):
1913
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1914

Y
Yu Yang 已提交
1915 1916
    @property
    def shape(self):
J
Jiabin Yang 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1934
        # convert to tuple, make it as same as numpy API.
1935
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1936 1937

    @property
F
fengjiayi 已提交
1938
    def dtype(self):
J
Jiabin Yang 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1955
        return self.desc.dtype()
Y
Yu Yang 已提交
1956 1957 1958

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1972
            import paddle
J
Jiabin Yang 已提交
1973
            import paddle.fluid as fluid
1974 1975

            paddle.enable_static()
J
Jiabin Yang 已提交
1976 1977 1978 1979 1980 1981 1982
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1983 1984
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1985 1986
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1987
        return self.desc.lod_level()
Y
Yu Yang 已提交
1988

Y
Yu Yang 已提交
1989 1990
    @property
    def type(self):
J
Jiabin Yang 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2007
        return self.desc.type()
Y
Yu Yang 已提交
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2050 2051 2052 2053 2054 2055 2056
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2057 2058
        return out

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2089 2090 2091
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2092 2093
        return output

W
Wu Yi 已提交
2094
    def _set_error_clip(self, error_clip):
2095 2096 2097 2098 2099 2100 2101 2102 2103
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2104 2105
        self.error_clip = error_clip

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2146
            raise ValueError("slice step can not be zero")
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2157 2158
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2222
    def _cloneVar(self, copy=False):
2223 2224
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2225 2226
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2227 2228 2229 2230
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2231
        new_var = self._cloneVar()
2232 2233 2234 2235 2236 2237 2238 2239
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2240 2241 2242
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2243
        new_var = self._cloneVar()
2244 2245 2246 2247 2248 2249
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2250 2251 2252 2253 2254
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2255
                return self._cloneVar(True)
2256 2257 2258 2259 2260 2261 2262
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2263 2264
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2265 2266 2267
                        start += step
                else:
                    while start > stop:
2268 2269
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2270 2271 2272 2273
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2274
                return self._cloneVar(True)
2275
            index = int(item)
2276
            if (index > 0 and index >= self.shape[axis]) \
2277 2278 2279 2280 2281 2282 2283
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2284
        return _getitem_impl_(self, item)
2285

2286
    def __setitem__(self, item, value):
2287
        return _setitem_impl_(self, item, value)
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2330 2331
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2332 2333 2334 2335
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2336 2337
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2392
        # can not be imported at the begainning of this file.
2393 2394 2395 2396 2397
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2398 2399
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2400 2401 2402

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2403 2404
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2435 2436 2437 2438
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2439 2440 2441 2442
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2443 2444 2445 2446 2447 2448 2449
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2475 2476 2477
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2478 2479
        return output

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2534
    def dist_attr(self):
2535
        """
2536
        Get distributed attribute of this Variable.
2537
        """
2538
        return self.desc.dist_attr
2539

2540 2541
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2542
        """
2543
        Set distributed attribute of this Variable.
2544
        """
2545
        self.desc.dist_attr = dist_attr
2546

Y
Yu Yang 已提交
2547

F
fengjiayi 已提交
2548 2549 2550
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2551

2552 2553
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2554 2555 2556 2557
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2558
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2559 2560 2561 2562 2563
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2564 2565 2566 2567
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2577
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2578 2579 2580 2581 2582 2583
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2584 2585 2586 2587 2588 2589 2590 2591
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2592 2593
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2594 2595
        return self.op_proto_map[type]

2596 2597
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2598
        custom_op_names = []
2599 2600 2601
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2602 2603 2604
                custom_op_names.append(proto.type)

        return custom_op_names
2605

2606 2607 2608 2609
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2610
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2611
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2612 2613
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2614 2615
        }

F
fengjiayi 已提交
2616

X
Xin Pan 已提交
2617
class Operator(object):
2618
    """
2619 2620 2621 2622 2623 2624 2625
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2626
        type(str): The type of operator. Default None.
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2647
        Block.append_op or Block._prepend_op instead.
2648 2649 2650 2651

    Examples:
        .. code-block:: python

2652
            import paddle.fluid as fluid
2653
            cur_program = fluid.Program()
2654 2655 2656 2657 2658
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2659
    """
2660
    OP_WITHOUT_KERNEL_SET = {
2661 2662
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2663
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2664 2665
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2666
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2667
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2668
        'copy_cross_scope', 'c_gen_cncl_id'
2669
    }
2670

Y
Yu Yang 已提交
2671 2672
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2673
                 desc,
Y
Yu Yang 已提交
2674 2675 2676
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2677
                 attrs=None):
J
Jiabin Yang 已提交
2678
        if _non_static_mode():
2679 2680
            if type is None:
                raise ValueError(
2681
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2682
            self._type = type
M
minqiyang 已提交
2683
            self.attrs = attrs if attrs else {}
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2694 2695 2696
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2697 2698 2699
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2700 2701
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2702 2703

            role_var_name = op_maker.kOpRoleVarAttrName()
2704 2705
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2706
                op_attrs[role_var_name] = self.block.program._op_role_var
2707 2708 2709 2710 2711

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2712 2713 2714 2715 2716
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2717 2718 2719
                return
            if type is None:
                raise ValueError(
2720
                    "`type` to initialized an Operator can not be None.")
2721 2722
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2723 2724 2725
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2726 2727 2728 2729
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2730 2731 2732 2733 2734 2735 2736

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2748
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2749 2750 2751 2752 2753
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2754 2755 2756 2757 2758
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2773
                        if not isinstance(in_args, (list, tuple)):
2774 2775 2776 2777 2778 2779
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2780
                        for index, arg in enumerate(in_args):
2781 2782 2783 2784
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2785
                            elif isinstance(arg, (Variable, core.VarBase)):
2786
                                in_arg_names.append(cpt.to_text(arg.name))
2787
                            else:
2788 2789 2790 2791
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2792 2793
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2794 2795 2796 2797 2798 2799 2800 2801 2802
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2803 2804 2805 2806
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2819 2820 2821 2822
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2823
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2824
                        if not _non_static_mode():
2825 2826 2827 2828
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2829 2830 2831 2832 2833 2834 2835
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2836 2837
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2838 2839 2840 2841
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2842 2843
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2844
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2845 2846
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2847
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2848 2849 2850
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2851 2852 2853 2854 2855
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2856
    def _has_kernel(self, op_type):
2857 2858
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2859
    def to_string(self, throw_on_error):
2860
        """
2861 2862
        Get debug string.

2863
        Args:
2864 2865
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2866

2867 2868
        Returns:
            str: The debug string.
2869 2870

        """
2871
        protostr = self.desc.serialize_to_string()
2872
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2873 2874
        return _debug_string_(proto, throw_on_error)

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2907
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2975
            # it is bytes of serialized protobuf
2976 2977 2978 2979
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
2980 2981 2982 2983 2984 2985 2986 2987 2988
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

2989 2990 2991
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
2992

2993 2994 2995 2996
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2997
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2998
        dist_context = get_default_distributed_context()
2999 3000
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3001 3002
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3003

3004 3005
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3006 3007
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3008 3009 3010 3011 3012
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3013
    def __str__(self):
3014
        return self._to_readable_code()
3015 3016 3017

    __repr__ = __str__

F
fengjiayi 已提交
3018 3019
    @property
    def type(self):
3020
        return self.desc.type()
F
fengjiayi 已提交
3021 3022

    def input(self, name):
3023
        r"""
3024
        Get the input arguments according to the input parameter name.
3025

3026 3027
        Args:
            name(str): The input parameter name.
3028

3029 3030 3031
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3032
        """
F
fengjiayi 已提交
3033 3034
        return self.desc.input(name)

W
Wu Yi 已提交
3035
    def _rename_input(self, old_name, new_name):
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3046
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3047

W
Wu Yi 已提交
3048
    def _rename_output(self, old_name, new_name):
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3059
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3060

F
fengjiayi 已提交
3061 3062 3063 3064
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3065 3066 3067 3068 3069 3070 3071 3072
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3073
    def output(self, name):
3074
        r"""
3075
        Get output arguments by the output parameter name.
3076

3077 3078
        Args:
            name(str): The output parameter name.
3079

3080 3081 3082
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3083
        """
F
fengjiayi 已提交
3084 3085 3086 3087 3088 3089
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3090 3091 3092 3093 3094 3095 3096 3097
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3098
    def has_attr(self, name):
3099
        """
3100 3101
        Whether this Operator has the attribute with name or not.

3102
        Args:
3103
            name(str): the attribute name.
3104

3105 3106
        Returns:
            bool: True if has this attribute.
3107 3108

        """
F
fengjiayi 已提交
3109 3110 3111
        return self.desc.has_attr(name)

    def attr_type(self, name):
3112
        """
3113
        Get the type of attribute by attribute's name.
3114

3115 3116
        Args:
            name(str): the attribute name.
3117

3118 3119
        Returns:
            core.AttrType: the attribute type.
3120
        """
F
fengjiayi 已提交
3121 3122
        return self.desc.attr_type(name)

W
Wu Yi 已提交
3123
    def _set_attr(self, name, val):
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3134 3135
        self._update_desc_attr(name, val)

3136 3137 3138
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3150 3151 3152 3153 3154
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3155
            self.desc.set_block_attr(name, val.desc)
3156
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3157
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3158 3159 3160 3161
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
3162
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
3163

F
fengjiayi 已提交
3164 3165
    @property
    def attr_names(self):
3166
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3167 3168

    def attr(self, name):
3169
        """
3170 3171
        Get the attribute by name.

3172
        Args:
3173
            name(str): the attribute name.
3174

3175 3176
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3177 3178
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3179
        return self.desc.attr(name)
Y
Yu Yang 已提交
3180

W
Wu Yi 已提交
3181
    def _block_attr_id(self, name):
3182
        """
G
gongweibao 已提交
3183
        Get the block attribute's id by name.
3184

3185 3186
        Args:
            name(str): the attribute name.
3187

3188 3189
        Returns:
            int: the block index.
3190
        """
W
Wu Yi 已提交
3191
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3192

W
Wu Yi 已提交
3193
    def _block_attr(self, name):
G
gongweibao 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3204
        id = self._block_attr_id(name)
G
gongweibao 已提交
3205 3206 3207
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3208
    def _blocks_attr(self, name):
G
gongweibao 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3219
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3220 3221 3222 3223 3224
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3225
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3236
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3237

J
JiayiFeng 已提交
3238
    def all_attrs(self):
F
fengjiayi 已提交
3239
        """
3240 3241 3242
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3243
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3244 3245 3246 3247
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3248 3249
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3250
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3251 3252 3253
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3254
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3255 3256 3257 3258
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3259 3260
        return attr_map

3261 3262 3263
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3264 3265 3266 3267

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3268 3269 3270
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3271 3272 3273 3274 3275 3276 3277 3278

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3279 3280
            return False

3281 3282 3283 3284 3285 3286
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3287
    @property
3288
    def dist_attr(self):
3289
        """
3290
        Get distributed attribute of this Variable.
3291
        """
3292
        return self.desc.dist_attr
3293

3294 3295
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3296
        """
3297
        Set distributed attribute of this Variable.
3298
        """
3299
        self.desc.dist_attr = dist_attr
3300

Y
Yu Yang 已提交
3301

Y
Yu Yang 已提交
3302
class Block(object):
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3317
        use `Program._create_block()` to create a block.
3318 3319 3320 3321

    Examples:
        .. code-block:: python

3322 3323 3324
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3325 3326 3327 3328 3329 3330 3331 3332 3333
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3334
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3335
        self.desc = program.desc.block(idx)
3336
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3337
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3338
        self.program = program
3339
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3340

3341
    def __str__(self):
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3376
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3388

F
fengjiayi 已提交
3389 3390
    def to_string(self, throw_on_error, with_details=False):
        """
3391 3392
        Get debug string.

F
fengjiayi 已提交
3393 3394
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3395
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3396
            with_details(bool): more details about variables and parameters
3397 3398
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3399

3400 3401
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3402
        """
3403 3404
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3405
        if with_details:
F
fengjiayi 已提交
3406
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3407 3408
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3409
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3410
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3411
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3412
            for op in self.ops:
F
fengjiayi 已提交
3413 3414
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3415 3416 3417
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3418 3419
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3420 3421
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3422 3423 3424

    __repr__ = __str__

Y
Yu Yang 已提交
3425 3426
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3427
        return self.desc.parent
Y
Yu Yang 已提交
3428

Y
Yu Yang 已提交
3429 3430 3431 3432
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3433
    def _set_forward_block_idx(self, idx):
3434 3435 3436 3437 3438 3439 3440 3441 3442
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3443
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3444

3445 3446 3447 3448 3449 3450 3451 3452
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3453 3454
    @property
    def idx(self):
Y
Yu Yang 已提交
3455
        return self.desc.id
Y
Yu Yang 已提交
3456

Q
Qiao Longfei 已提交
3457
    def var(self, name):
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3471
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3472 3473 3474
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3475 3476
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3477
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3478
        return v
Q
Qiao Longfei 已提交
3479

X
Xin Pan 已提交
3480
    def _find_var_recursive(self, name):
3481 3482 3483 3484 3485 3486 3487
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3488
            Variable: the Variable with the giving name. Or None if not found.
3489
        """
Y
Yu Yang 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3514
        return None
Y
Yu Yang 已提交
3515

X
Xin Pan 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3535

Q
Qiao Longfei 已提交
3536
    def all_parameters(self):
3537
        return list(self.iter_parameters())
3538

3539
    def iter_parameters(self):
M
minqiyang 已提交
3540
        return (item[1] for item in six.iteritems(self.vars)
3541
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3542

Y
Yu Yang 已提交
3543
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3544
        if _non_static_mode():
L
Leo Chen 已提交
3545 3546
            var = _varbase_creator(*args, **kwargs)
        else:
3547 3548 3549
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3550
        return var
Y
Yu Yang 已提交
3551

Q
Qiao Longfei 已提交
3552 3553 3554
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3555
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3556 3557
        """
        Rename variable in vars and ops' inputs and outputs
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3570
        """
M
minqiyang 已提交
3571 3572
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3573

T
typhoonzero 已提交
3574
        if not self.has_var(name):
3575
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3576 3577
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3578
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3579 3580 3581 3582 3583 3584
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3585
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3586 3587 3588 3589
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3590
        orig_var_type = v.type
M
minqiyang 已提交
3591
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3592
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3593
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3594
        if var_type == "Parameter":
L
Leo Chen 已提交
3595
            if in_dygraph_mode():
3596 3597 3598 3599 3600 3601 3602 3603 3604
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3605
            else:
J
Jiabin Yang 已提交
3606
                if _in_legacy_dygraph():
3607 3608 3609 3610 3611 3612 3613 3614 3615
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3616
                else:
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3627
        elif var_type == "Variable":
3628 3629 3630 3631 3632
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3633

W
Wu Yi 已提交
3634
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3635 3636 3637
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3638
        self._sync_with_cpp()
3639
        return var
T
typhoonzero 已提交
3640

3641 3642 3643
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3644
        self.desc._remove_var(cpt.to_bytes(name))
3645 3646
        del self.vars[name]

Y
Yu Yang 已提交
3647 3648
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3649
        param = None
L
Leo Chen 已提交
3650
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3651
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3652
        else:
J
Jiabin Yang 已提交
3653 3654 3655 3656
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3657

3658
        if 'initializer' in kwargs:
3659 3660 3661 3662 3663

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3664
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3665
                        # are treated as initialization ops that cause error.
3666
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3667 3668 3669 3670 3671
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3672
                            continue
3673 3674 3675 3676 3677 3678 3679 3680
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3681 3682
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3683
            elif init_ops_len == 1:
3684
                # TODO already inited, do nothing, should log a warning
3685 3686 3687
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3688
        return param
Y
Yu Yang 已提交
3689

Y
Yu Yang 已提交
3690
    def append_op(self, *args, **kwargs):
3691 3692 3693 3694 3695 3696
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3697
        if _non_static_mode():
3698
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3699
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3700
            type = kwargs.get("type", None)
3701 3702 3703 3704
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3705 3706 3707 3708 3709 3710
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3711

M
minqiyang 已提交
3712 3713 3714
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3715
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3716

3717 3718 3719
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3720 3721
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3722
        else:
3723 3724
            from paddle.fluid.dygraph.base import param_guard

3725
            op_desc = self.desc.append_op()
3726 3727 3728 3729 3730 3731
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3732 3733 3734 3735 3736 3737
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3738

M
minqiyang 已提交
3739
            self.ops.append(op)
M
minqiyang 已提交
3740

3741 3742
        return op

W
Wu Yi 已提交
3743
    def _insert_op(self, index, *args, **kwargs):
3744 3745 3746 3747 3748 3749 3750 3751 3752
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3753
        self._sync_with_cpp()
F
fangshuixun007 已提交
3754
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3755

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3773 3774 3775 3776 3777 3778 3779 3780 3781
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3782 3783
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3784
        self.desc._remove_op(index, index + 1)
3785 3786
        del self.ops[index]

W
Wu Yi 已提交
3787
    def _slice_ops(self, start, end):
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3798
        return self.ops[start:end]
Y
Yancey1989 已提交
3799

W
Wu Yi 已提交
3800
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3801
        if _non_static_mode():
J
Jiabin Yang 已提交
3802 3803
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3814
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3815
        else:
3816
            op_desc = self.desc._prepend_op()
3817 3818 3819 3820 3821 3822
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3823
            self.ops.insert(0, op)
3824

Y
Yu Yang 已提交
3825 3826
        return op

W
Wu Yi 已提交
3827
    def _sync_with_cpp(self):
3828
        """
3829 3830
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3831
        """
Q
Qiao Longfei 已提交
3832 3833 3834
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3835 3836 3837 3838
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3839 3840 3841 3842 3843 3844
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3845
                else:
3846 3847 3848 3849
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3850

3851
        # sync variables removed from c++ end
3852
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3853
            if not self.desc.find_var(cpt.to_bytes(var)):
3854 3855
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3856
        # sync operators from cpp
3857 3858 3859 3860
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3877 3878 3879 3880 3881

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3882
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3883 3884 3885 3886 3887 3888 3889

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3903 3904 3905 3906
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3907
    def _copy_param_info_from(self, other):
3908
        """
3909 3910
        Copy the information of parameters from the other block.

3911
        Args:
3912 3913 3914 3915 3916
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3917 3918 3919 3920 3921

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3922 3923
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3924
        for p in other.iter_parameters():
3925 3926 3927
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3928 3929
                # if the Parameter is pruned, v may be None
                continue
3930
            assert isinstance(v, Variable)
3931
            new_p = None
L
Leo Chen 已提交
3932
            if in_dygraph_mode():
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
3943
            else:
J
Jiabin Yang 已提交
3944
                if _in_legacy_dygraph():
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3969 3970
            self.vars[new_p.name] = new_p

3971
    def _clone_variable(self, var, force_persistable=True):
3972 3973
        """
        Clone a variable into current block.
3974

3975 3976
        Args:
            var: the variable to be cloned.
3977 3978 3979
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3980 3981

        Returns:
3982
            Variable: the new  variable cloned from 'var' in current block.
3983 3984
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3985 3986 3987
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
3988 3989 3990
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
3991
        elif var.type == core.VarDesc.VarType.RAW:
3992 3993 3994
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
3995 3996 3997 3998 3999 4000
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4001
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4002 4003
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4004 4005 4006 4007 4008 4009 4010
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4011
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4012 4013
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4014
        return ret_var
4015

Y
Yu Yang 已提交
4016

4017 4018 4019 4020
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4021
# of some old Python Variables(all old Python Operators) may have
4022
# been destructed.
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4134
    def remove_input_by_id(self, node_id):
4135 4136 4137 4138 4139 4140
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4141
        self.node.remove_input(node_id)
4142

4143
    def remove_input(self, node):
4144 4145 4146 4147
        """
        Remove a node from inputs.

        Args:
4148
            node(IrNode): the node being removed.
4149
        """
4150
        self.node.remove_input(node.node)
4151

4152
    def append_input(self, node):
4153 4154 4155 4156
        """
        Append a node in inputs.

        Args:
4157
            node(IrNode): the node being appended.
4158
        """
4159
        self.node.append_input(node.node)
4160 4161 4162 4163 4164 4165 4166 4167

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4168
    def remove_output_by_id(self, node_id):
4169 4170 4171 4172 4173 4174
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4175
        self.node.remove_output(node_id)
4176

4177
    def remove_output(self, node):
4178 4179 4180 4181
        """
        Remove a node from outputs.

        Args:
4182
            node(IrNode): the node being removed.
4183
        """
4184
        self.node.remove_output(node.node)
4185

4186
    def append_output(self, node):
4187 4188 4189 4190
        """
        Append a node in outputs.

        Args:
4191
            node(IrNode): the node being appended.
4192
        """
4193
        self.node.append_output(node.node)
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4241
            "The node variable description can not be None."
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4252
            "The node variable description can not be None."
4253 4254
        return self.node.var().persistable()

4255 4256 4257 4258 4259 4260 4261 4262
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4263
            "The node variable description can not be None."
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4274
            "The node variable description can not be None."
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4285
            "The node variable description can not be None."
4286 4287
        return self.node.var().shape()

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4335
            "The node operator description can not be None."
4336 4337
        self.node.op()._rename_input(old_input_name, new_input_name)

4338 4339 4340 4341 4342 4343 4344 4345 4346
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4347
            "The node operator description can not be None."
4348 4349
        self.node.op()._rename_output(old_output_name, new_output_name)

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4361
            "The node operator description can not be None."
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4375
            "The node operator description can not be None."
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4386
            "The node operator description can not be None."
4387 4388
        return self.node.op().set_type(new_type)

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4404
            "The node operator description can not be None."
4405
        desc = self.node.op()
4406 4407 4408 4409 4410
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4411
            desc.set_block_attr(name, val.desc)
4412
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4413 4414
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4415
                isinstance(val, core.ProgramDesc):
4416 4417 4418 4419
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4420 4421 4422 4423 4424 4425 4426 4427
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4428
            "The node operator description can not be None."
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4439
            "The node operator description can not be None."
4440 4441
        return self.node.op().output_arg_names()

4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4463 4464
class IrGraph(object):
    """
4465
    Python IrGraph. Beneath it is a core.Graph, which is used for
4466
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4467 4468
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4469 4470 4471 4472
    """

    def __init__(self, graph, for_test=False):
        """
4473 4474
        Construct an IrGraph using core.Graph.

4475 4476 4477 4478 4479 4480 4481 4482 4483
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4484 4485 4486 4487
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4488 4489 4490
        Warns:
            The method only clones the graph structure, not its attributes.

4491 4492 4493
        Returns:
            IrGraph: A new and duplicated graph.
        """
4494
        g = self.graph.clone()
4495 4496
        return IrGraph(g, self._for_test)

4497
    def is_test(self):
4498 4499 4500
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4501 4502
        return self._for_test

W
WangZhen 已提交
4503
    def all_nodes(self):
4504 4505 4506
        """
        Return all nodes included in the graph as a set.
        """
4507
        return {IrNode(node) for node in self.graph.nodes()}
4508

4509
    def all_var_nodes(self):
4510 4511 4512
        """
        Return all variable nodes included in the graph as a set.
        """
4513
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4514

4515
    def all_persistable_nodes(self):
4516 4517 4518
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4519 4520 4521 4522 4523
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4524
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4525

4526
    def all_op_nodes(self):
4527 4528 4529
        """
        Return all operator nodes included in the graph as a set.
        """
4530
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4531

4532 4533 4534 4535 4536 4537
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4538
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4539 4540 4541 4542 4543 4544 4545 4546 4547
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4548
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4560
            IrVarNode: the created persistable variable node.
4561
        """
4562 4563 4564 4565 4566
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4567
        return IrVarNode(self.graph.create_var_node(var_desc))
4568 4569

    def create_var_node(self, name, var_type, shape, var_dtype):
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4581
            IrVarNode: the created variable node.
4582 4583
        """

4584 4585 4586 4587
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4588
        return IrVarNode(self.graph.create_var_node(var_desc))
4589

4590 4591 4592 4593 4594 4595
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4596
    def create_var_node_from_desc(self, var_desc):
4597 4598 4599 4600 4601 4602 4603 4604
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4605
            IrVarNode: the created variable node.
4606
        """
4607
        return IrVarNode(self.graph.create_var_node(var_desc))
4608 4609

    def create_op_node(self, op_type, attrs, inputs, outputs):
4610 4611 4612 4613 4614 4615 4616
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4617
            outputs(dict): the outputs of the operator node.
4618 4619

        Returns:
4620
            IrOpNode: the created operator node.
4621
        """
4622 4623
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4624
        for attr, value in six.iteritems(attrs):
4625
            self._update_desc_attr(op_desc, attr, value)
4626
        for input_name, var_nodes in six.iteritems(inputs):
4627 4628 4629 4630
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4631
        for output_name, var_nodes in six.iteritems(outputs):
4632 4633 4634 4635
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4636
        return IrOpNode(self.graph.create_op_node(op_desc))
4637 4638

    def create_op_node_from_desc(self, op_desc):
4639 4640 4641 4642 4643 4644 4645
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4646
            IrOpNode: the created operator node.
4647
        """
4648
        return IrOpNode(self.graph.create_op_node(op_desc))
4649 4650

    def update_input_link(self, old_input_node, new_input_node, op_node):
4651 4652 4653 4654
        """
        Update the input's link of a operator node.

        Args:
4655 4656 4657
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4658
        """
4659
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4660
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4661
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4662 4663 4664 4665
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4666
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4667

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4678
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4679
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4680 4681 4682 4683 4684 4685
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4686
    def link_to(self, node_in, node_out):
4687 4688 4689 4690
        """
        Connect two nodes.

        Args:
4691 4692
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4693
        """
4694 4695 4696 4697
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4698 4699
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4700 4701

    def safe_remove_nodes(self, remove_nodes):
4702 4703 4704 4705 4706 4707 4708
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4709
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4710 4711 4712 4713
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4714 4715
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4716

Z
Zhen Wang 已提交
4717 4718 4719 4720 4721 4722 4723 4724
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4725
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4726 4727 4728 4729
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4730
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4731 4732 4733
                        ]
                    else:
                        var_nodes[each_var_name].append(
4734 4735
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4736 4737
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4738
    def has_circle(self):
4739 4740 4741 4742 4743 4744
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4745 4746 4747
        return core.has_circle(self.graph)

    def graph_num(self):
4748 4749 4750 4751 4752 4753
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4754 4755 4756
        return core.graph_num(self.graph)

    def topology_sort(self):
4757 4758 4759
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4760
        Notes: the `graph` can not contain a circle.
4761 4762

        Returns:
Z
Zhen Wang 已提交
4763
            list(IrNode): nodes in topology order.
4764
        """
4765
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4766
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4767 4768

    def build_adjacency_list(self):
4769 4770 4771 4772
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4773
            dict{IrNode: set(IrNode)}: the adjacency list.
4774
        """
4775 4776 4777 4778 4779
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4780

4781 4782 4783 4784 4785 4786 4787 4788
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4789
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4790 4791 4792 4793 4794
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4795 4796
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4797 4798 4799
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4800 4801 4802 4803 4804
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4805
        remove_ctr_vars = set()
4806
        if remove_ctr_var:
4807
            for node in self.all_var_nodes():
4808 4809 4810
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4811 4812
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4813 4814
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4815 4816 4817 4818 4819 4820
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4821 4822 4823 4824
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4825 4826
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4827 4828 4829 4830 4831 4832 4833
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4834 4835 4836
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4837
        WARN: When the graph includes backward operator nodes, the
4838 4839 4840 4841 4842 4843
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4844
        convert_pass = core.get_pass('graph_to_program_pass')
4845 4846
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4847 4848 4849 4850
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4851 4852 4853 4854 4855 4856 4857 4858
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4859 4860
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4861 4862
        return target_node

4863 4864 4865 4866
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4867 4868 4869 4870 4871
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4872
            desc.set_block_attr(name, val.desc)
4873
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4874 4875 4876 4877 4878 4879 4880 4881
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4882
class Program(object):
D
dzhwinter 已提交
4883
    """
4884
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4885
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4886
    it will contain nested block.
4887

J
Jiabin Yang 已提交
4888 4889 4890
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4891

J
Jiabin Yang 已提交
4892
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4893
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4894 4895 4896 4897 4898 4899 4900
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4901
    **Notes**:
4902 4903 4904
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4905 4906

    Returns:
J
Jiabin Yang 已提交
4907
        Program: An empty Program.
D
dzhwinter 已提交
4908 4909

    Examples:
4910 4911
        .. code-block:: python

4912 4913 4914 4915
            import paddle
            import paddle.static as static

            paddle.enable_static()
4916

4917 4918 4919 4920 4921
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4922
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4923 4924 4925

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4926 4927 4928

    """

4929 4930
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4931 4932
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4933 4934
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4935
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4936
        self.__op_role_var = []
T
tangwei12 已提交
4937

4938 4939
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4940
        self._is_distributed = False
4941
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4942
        self._is_chief = False
4943 4944 4945
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4946
        self._endpoints = []
4947 4948 4949
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4950
        self._trainers_endpoints = []
4951
        # the distributed lookup table names
T
tangwei12 已提交
4952
        self._distributed_lookup_table = None
4953 4954 4955

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4956 4957
        self._use_lamb = False

4958 4959 4960
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4961

4962 4963 4964
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4965
        self._program_config = None
4966

H
hutuxian 已提交
4967 4968 4969
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4970 4971 4972
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4973 4974 4975
        # appending gradients times
        self._appending_grad_times = 0

4976 4977 4978 4979
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4980 4981
        # compiled program, i.e. Graph
        self._graph = None
4982 4983
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4984

4985
    def _find_var_class_kwargs(self, new_desc):
4986 4987 4988 4989 4990 4991 4992 4993
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5008 5009 5010 5011 5012 5013
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5014 5015 5016 5017
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5018 5019
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5020 5021 5022 5023 5024 5025 5026 5027 5028
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5069
        assert block_num == self.desc.num_blocks()
5070 5071

        # clear old blocks and desc
5072 5073 5074 5075 5076 5077 5078 5079 5080
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5081

5082
        del desc
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5112 5113
                import paddle
                import paddle.static as static
5114

5115 5116 5117
                paddle.enable_static()

                prog = static.default_main_program()
5118 5119 5120 5121 5122
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5123
                prog1 = static.default_main_program()
5124 5125 5126 5127 5128 5129 5130 5131
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5132
    @property
5133
    def _op_role(self):
Y
yuyang18 已提交
5134 5135 5136 5137 5138 5139 5140 5141
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5142
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5143 5144 5145 5146
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5147 5148
        return self._current_role

5149 5150
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5151 5152 5153
        self._current_role = role

    @property
5154
    def _op_role_var(self):
Y
yuyang18 已提交
5155
        """
5156
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5157

5158
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5159 5160 5161

        Notes: This is a very low-level API. Users should not use it directly.
        """
5162
        return self.__op_role_var
Y
yuyang18 已提交
5163

5164
    @signature_safe_contextmanager
5165 5166 5167 5168 5169
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5170 5171 5172 5173
        try:
            yield
        finally:
            self._current_role = tmp_role
5174

S
rename  
sneaxiy 已提交
5175
    @signature_safe_contextmanager
W
Wu Yi 已提交
5176
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5177 5178 5179 5180 5181 5182 5183
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5184
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5185 5186 5187

        Examples:

5188
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5189
            >>> p, g = backward(...)
W
Wu Yi 已提交
5190
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5191 5192
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5193
        tmp_role = self._current_role
5194
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5195

Y
yuyang18 已提交
5196 5197
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5198
        self.__op_role_var = [
5199 5200 5201
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5202 5203 5204 5205 5206
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5207

S
rename  
sneaxiy 已提交
5208
    @signature_safe_contextmanager
X
Xin Pan 已提交
5209
    def _lr_schedule_guard(self, is_with_opt=False):
5210 5211 5212 5213 5214 5215 5216
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5217 5218 5219 5220
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5221 5222 5223

        Examples:

5224
            >>> import paddle.fluid as fluid
5225 5226 5227 5228
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5229 5230

        tmp_role = self._current_role
5231
        tmp_var = self.__op_role_var
5232

5233 5234
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5235 5236
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5237
        # TODO(typhoonzero): how to set target learning rate var
5238
        self.__op_role_var = []
5239 5240 5241 5242 5243
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5244

5245
    def __str__(self):
Y
yuyang18 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5275 5276
            import paddle
            import paddle.static as static
5277

5278 5279 5280
            paddle.enable_static()

            cur_program = static.Program()
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5292
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5293 5294 5295 5296
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5297
            program_str += '\n'
5298
        return program_str
Y
Yang Yang(Tony) 已提交
5299

F
fengjiayi 已提交
5300 5301 5302
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5303

J
Jiabin Yang 已提交
5304 5305 5306
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5307

J
Jiabin Yang 已提交
5308
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5309

H
haowang101779990 已提交
5310
        Returns:
J
Jiabin Yang 已提交
5311
            str: The debug string describe current Program.
Y
yuyang18 已提交
5312 5313

        Raises:
J
Jiabin Yang 已提交
5314
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5315

5316 5317 5318
        Examples:
            .. code-block:: python

5319 5320 5321 5322
                import paddle
                import paddle.static as static

                paddle.enable_static()
5323

5324 5325 5326
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5327
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5328
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5329
                print("program string without detail: {}".format(prog_string))
5330
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5331
        """
5332 5333 5334 5335 5336 5337 5338 5339 5340
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5341 5342 5343 5344 5345 5346
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5347 5348
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5349 5350
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5351

W
Wu Yi 已提交
5352
    def _get_desc(self):
Y
yuyang18 已提交
5353 5354 5355 5356 5357 5358 5359
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5360 5361
        return self.desc

X
version  
Xin Pan 已提交
5362 5363 5364
    def _version(self):
        return self.desc._version()

5365
    def clone(self, for_test=False):
Y
yuyang18 已提交
5366
        """
5367 5368 5369 5370
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5371

5372
        Create a new Program with forward content of original one when ``for_test=True``.
5373
        Create a new Program as same as the original one when ``for_test=False``.
5374

5375
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5376 5377 5378
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5379

5380 5381
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5382 5383
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5384
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5385

J
Jiabin Yang 已提交
5386
        For Example:
5387
          ::
L
Luo Tao 已提交
5388

5389 5390 5391 5392 5393 5394
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5395
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5396
            loss = paddle.mean(pred)
5397
            # Here we use clone before Momentum
5398 5399
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5400
            optimizer.minimize(loss)
5401

J
Jiabin Yang 已提交
5402
        Args:
5403

5404 5405
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5406

J
Jiabin Yang 已提交
5407
        Returns:
5408
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5409

Y
yuyang18 已提交
5410 5411 5412

        Examples:

5413 5414 5415 5416 5417 5418 5419
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5436
            1. To clone a test program, the sample code is:
5437 5438 5439
                .. code-block:: python

                    import six
5440 5441 5442 5443 5444 5445
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5458 5459
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5460 5461 5462

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5463 5464 5465
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5466
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5467 5468
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5469
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5470 5471
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5472
                            test_program = train_program.clone(for_test=True)
5473
                    print_prog(test_program)
J
Jiabin Yang 已提交
5474 5475 5476 5477

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5478
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5479 5480 5481 5482
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5483 5484 5485
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5486 5487 5488
                            sgd.minimize(avg_loss)


5489
            2. The clone method can be avoid if you create program for training and program for testing individually.
5490 5491 5492
                .. code-block:: python

                    import six
5493 5494 5495 5496 5497 5498
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5510

5511
                    def network():
5512
                        img = static.data(name='image', shape=[None, 784])
5513
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5514 5515
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5516
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5517 5518
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5519 5520
                        return avg_loss

5521 5522 5523 5524 5525
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5526
                            avg_loss = network()
5527
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5528
                            sgd.minimize(avg_loss)
5529
                    # the test startup program is not used.
5530 5531
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5532 5533
                            avg_loss = network()
                    print_prog(test_program_2)
5534

5535
            The two code snippets above will generate and print same programs.
5536
        """
5537

T
tangwei12 已提交
5538
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5539 5540 5541
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5542
        pruned_origin_block_id_map = None
5543
        if for_test:
5544 5545 5546 5547 5548 5549 5550 5551 5552
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5553
        else:
5554
            p = Program()
G
gongweibao 已提交
5555 5556
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5557
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5558 5559 5560
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5561 5562

            p._current_role = self._current_role
5563
            p.__op_role_var = self.__op_role_var
5564
            p._appending_grad_times = self._appending_grad_times
5565 5566
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5567

T
tangwei12 已提交
5568
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5569
            # its desc.
W
Wu Yi 已提交
5570
            p._sync_with_cpp()
5571

W
Wu Yi 已提交
5572
        p._copy_param_info_from(self)
5573
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5574
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5575
        return p
5576

5577
    def _prune(self, targets):
Y
yuyang18 已提交
5578 5579 5580 5581 5582 5583 5584 5585
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5586
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5587 5588 5589 5590
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5591
        """
5592
        return self._prune_with_input([], targets)
5593 5594

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5595
        """
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5606
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5607 5608 5609 5610 5611 5612
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5613
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5614 5615 5616
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5617 5618
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5619 5620
        if not isinstance(targets, list):
            targets = [targets]
5621 5622 5623

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5624 5625 5626
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5627

5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5644 5645 5646 5647
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5648 5649 5650
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5651
                else:
5652 5653 5654
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5655 5656 5657 5658 5659 5660

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5661 5662 5663
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5664

5665 5666 5667 5668 5669 5670 5671 5672 5673
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5674
                        # Skip optimize op except for optimize op in targets,
5675 5676 5677 5678 5679
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5680

5681
                if target_op is not None:
5682 5683 5684
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5685

5686
        res = Program()
5687 5688
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5689 5690 5691
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5692
        res._sync_with_cpp()
5693 5694 5695 5696 5697

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5698 5699
        return res

X
Xin Pan 已提交
5700
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5701
        """
F
fengjiayi 已提交
5702 5703 5704 5705 5706
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5707
        3. change the :code:`is_test`
Y
yuyang18 已提交
5708 5709 5710
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5711
        Args:
X
Xin Pan 已提交
5712 5713
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5714

Y
yuyang18 已提交
5715 5716 5717 5718 5719 5720
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5721
        res = Program()
5722
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5723 5724 5725 5726

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5727
        if prune_read_op:
5728 5729 5730 5731 5732 5733 5734 5735 5736
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5737
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5738 5739

        # change all `is_test` attributes to True
M
minqiyang 已提交
5740
        for i in six.moves.range(res.desc.num_blocks()):
5741
            block = res.desc.block(i)
M
minqiyang 已提交
5742
            for j in six.moves.range(block.op_size()):
5743 5744
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5745
                    op._set_attr('is_test', True)
5746 5747 5748
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5749 5750 5751
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5752
        res._sync_with_cpp()
5753 5754
        return res

5755
    def _remove_training_info(self, clip_extra=True):
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5845 5846
        return res

5847 5848
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5849
        """
5850 5851 5852
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5853

5854 5855
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5856

J
Jiabin Yang 已提交
5857
        Args:
Y
yuyang18 已提交
5858

J
Jiabin Yang 已提交
5859
            binary_str_type (str): the binary prootbuf string.
5860

J
Jiabin Yang 已提交
5861 5862
        Returns:
            Program: A deserialized Program.
5863 5864 5865 5866

        Examples:
            .. code-block:: python

5867 5868 5869 5870
                import paddle
                import paddle.static as static

                paddle.enable_static()
5871

5872 5873 5874 5875
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5876

5877
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5878

5879
                    z = paddle.matmul(x=x, y=y)
5880

5881 5882
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5883

5884
                    print(static.default_main_program())
5885
                    print(prog_restored)
Y
yuyang18 已提交
5886
        """
5887 5888
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5889
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5890
        p._sync_with_cpp()
5891
        return p
Y
Yu Yang 已提交
5892

5893
    @staticmethod
5894
    def _construct_from_desc(desc):
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5910 5911
    @property
    def random_seed(self):
Y
yuyang18 已提交
5912
        """
J
Jiabin Yang 已提交
5913
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5914 5915
        the random seed from random device.

5916 5917
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5918 5919 5920

        Returns:
            int64: Random seed in current Program
5921

5922 5923 5924 5925

        Examples:
            .. code-block:: python

5926 5927 5928
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5929

5930 5931 5932
                paddle.enable_static()

                prog = static.default_main_program()
5933
                random_seed = prog.random_seed
5934
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5935 5936 5937
                print(random_seed)
                ## 0
                ## the default random seed is 0
5938

5939
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5940
                prog.random_seed = 1
5941
                z_var = F.dropout(x_var, 0.7)
5942

5943
                print(prog.random_seed)
5944 5945
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5946
        """
D
dzhwinter 已提交
5947 5948
        return self._seed

Q
qiaolongfei 已提交
5949 5950
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5951
        """
5952 5953
        The number of :ref:`api_guide_Block_en`  in this Program.

5954 5955
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5956 5957 5958

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5959

5960 5961 5962 5963

        Examples:
            .. code-block:: python

5964 5965 5966 5967
                import paddle
                import paddle.static as static

                paddle.enable_static()
5968

5969
                prog = static.default_main_program()
5970 5971
                num_blocks = prog.num_blocks
                print(num_blocks)
5972

5973 5974
                # print result:
                # 1
Y
yuyang18 已提交
5975
        """
Q
qiaolongfei 已提交
5976 5977
        return self.desc.num_blocks()

D
dzhwinter 已提交
5978 5979 5980
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5981 5982 5983
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5984 5985
        self._seed = seed

Y
Yu Yang 已提交
5986
    def __repr__(self):
5987
        return self.__str__()
5988

Y
Yu Yang 已提交
5989
    def global_block(self):
Y
yuyang18 已提交
5990
        """
5991 5992
        .. note::
            This API has no effect in Dygraph mode.
5993 5994 5995

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5996 5997
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5998

5999 6000 6001 6002

        Examples:
            .. code-block:: python

6003 6004 6005 6006
                import paddle
                import paddle.static as static

                paddle.enable_static()
6007

6008
                prog = static.default_main_program()
6009 6010
                gb_block = prog.global_block()
                print(gb_block)
6011

Y
yuyang18 已提交
6012
        """
Y
Yu Yang 已提交
6013 6014
        return self.blocks[0]

Q
Qiao Longfei 已提交
6015
    def block(self, index):
Y
yuyang18 已提交
6016
        """
6017 6018
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6019

6020 6021
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6022 6023
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6024

J
Jiabin Yang 已提交
6025 6026
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6027 6028 6029 6030

        Examples:
            .. code-block:: python

6031 6032 6033 6034
                import paddle
                import paddle.static as static

                paddle.enable_static()
6035

6036
                prog = static.default_main_program()
6037 6038
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6039
        """
Q
Qiao Longfei 已提交
6040 6041
        return self.blocks[index]

Y
Yu Yang 已提交
6042
    def current_block(self):
Y
yuyang18 已提交
6043
        """
6044 6045
        .. note::
            This API has no effect in Dygraph mode.
6046

J
Jiabin Yang 已提交
6047 6048
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6049

J
Jiabin Yang 已提交
6050 6051
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6052

6053 6054 6055
        Examples:
            .. code-block:: python

6056 6057 6058 6059
                import paddle
                import paddle.static as static

                paddle.enable_static()
6060

6061
                prog = static.default_main_program()
6062 6063
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6064
        """
Y
Yu Yang 已提交
6065 6066
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6067
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6068 6069 6070 6071 6072
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6073

Y
yuyang18 已提交
6074 6075 6076 6077 6078
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6079
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6080 6081 6082
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6083 6084 6085 6086
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6087
    def _rollback(self):
Y
yuyang18 已提交
6088 6089 6090 6091 6092
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6093 6094
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6095
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6106 6107 6108
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6109
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6110

W
Wu Yi 已提交
6111
    def _copy_param_info_from(self, other):
6112
        """
6113
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6114

Y
yuyang18 已提交
6115 6116 6117
        Notes: This is a very low level API. Users should not invoke it
        directly.

6118 6119 6120 6121 6122 6123 6124
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6125 6126 6127
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6128

W
Wu Yi 已提交
6129
        self.global_block()._copy_param_info_from(other.global_block())
6130

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6142 6143 6144
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6145 6146
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6147
        self._parameters_on_pservers = other._parameters_on_pservers
6148
        self._endpoints = other._endpoints
6149
        self._ps_endpoint = other._ps_endpoint
6150 6151
        self._distributed_lookup_table = other._distributed_lookup_table

6152
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6153 6154
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6155

Y
yuyang18 已提交
6156 6157 6158
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6159 6160
        Args:
            other(Program): Other program
6161 6162 6163 6164
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6165 6166 6167 6168 6169

        Returns:
            None
        """
        if not isinstance(other, Program):
6170 6171 6172
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6173

6174 6175 6176 6177 6178
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6179 6180 6181

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6182 6183
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6184
            for var in list(block.vars.values()):
6185 6186 6187 6188 6189 6190 6191
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6192

6193
    def list_vars(self):
Y
yuyang18 已提交
6194
        """
6195
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6196

J
Jiabin Yang 已提交
6197
        Returns:
6198
            iterable Tensors: The Generator will yield every Tensor in this program.
6199 6200 6201 6202

        Examples:
            .. code-block:: python

6203 6204
                import paddle
                import paddle.static as static
6205

6206 6207 6208 6209 6210
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6211 6212
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6213

6214 6215
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6216
        """
6217
        for each_block in self.blocks:
6218
            for each_var in list(each_block.vars.values()):
6219 6220
                yield each_var

6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6231 6232 6233 6234
                import paddle
                import paddle.static as static

                paddle.enable_static()
6235

6236 6237
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6238
                hidden = static.nn.fc(x=data, size=10)
6239 6240
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6241 6242 6243 6244 6245 6246 6247

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6248 6249
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6302
        # can not be imported at the begainning of this file.
6303 6304 6305 6306
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6307 6308
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6309 6310 6311 6312 6313

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6314 6315 6316
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6343 6344
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6345 6346 6347 6348 6349 6350 6351 6352

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6353 6354
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6424 6425 6426
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6427

Y
Yu Yang 已提交
6428

6429
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6430
class Parameter(Variable):
6431
    """
6432
    Parameter is derived from Variable. A parameter is a persistable
6433
    Variable, and will be updated by optimizers after each iteration.
6434
    The training of a neural network is essentially the updating of
6435 6436
    its parameters.

6437
    Relative to a general Variable, a Parameter has several its own
6438 6439
    member variables:

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6450 6451
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6452 6453
    """

6454 6455 6456 6457 6458 6459
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6460 6461 6462 6463 6464
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6465
        if len(shape) == 0:
6466 6467
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6468 6469 6470

        for each in shape:
            if each < 0:
6471 6472 6473
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6474

6475 6476 6477 6478 6479 6480 6481
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6482 6483 6484 6485
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6486 6487
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6488
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6489

6490 6491
        self.need_clip = kwargs.get('need_clip', True)

6492 6493
        self.is_distributed = False

6494 6495
        self.is_parameter = True

F
fengjiayi 已提交
6496
    def __str__(self):
6497
        return self._to_readable_code()
F
fengjiayi 已提交
6498

F
update  
fengjiayi 已提交
6499 6500 6501
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6502

F
update  
fengjiayi 已提交
6503 6504 6505 6506 6507 6508 6509 6510
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6511 6512 6513 6514 6515 6516 6517 6518 6519
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6520
        """
6521 6522
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6523 6524 6525
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6526
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6527
            for attr_name in additional_attr:
6528 6529
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6530 6531
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6532 6533 6534 6535
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6536

6537 6538
class ParamBase(core.VarBase):
    """
6539 6540 6541
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6542 6543 6544
    The training of a neural network is essentially the updating of
    its ParamBase.

6545
    Relative to a general Tensor, a ParamBase has several its own
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6558 6559
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6585 6586 6587 6588
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6589

6590 6591
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6592 6593 6594 6595 6596 6597 6598

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6599 6600
        self.need_clip = kwargs.get('need_clip', True)

6601
        self.is_distributed = kwargs.get('is_distributed', False)
6602
        # self.block = default_main_program().global_block()
6603

6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6617
    def __str__(self):
6618
        """
6619
        Convert a ParamBase object to a readable string.
6620

6621
        Returns(str): A readable string.
6622 6623 6624 6625

        Examples:
            .. code-block:: python

6626
                import paddle
6627 6628 6629 6630 6631 6632 6633
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6634
        """
6635 6636
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6637

6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6649

6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6668 6669 6670 6671
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6672 6673 6674 6675 6676 6677
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6678
    _core_eager_eagertensor = core.eager.Tensor
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6731 6732 6733
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6734 6735 6736 6737
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6822 6823
        return new_param

6824 6825 6826
    __repr__ = __str__


Y
Yu Yang 已提交
6827
# program is a global instance.
Y
Yu Yang 已提交
6828 6829
_main_program_ = Program()
_startup_program_ = Program()
6830
_startup_program_._is_start_up_program_ = True
6831

6832

6833
def default_startup_program():
Y
Yu Yang 已提交
6834
    """
Y
yuyang18 已提交
6835 6836
    Get default/global startup program.

6837 6838
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6839

6840 6841
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6842

6843 6844
    Returns:
        Program: current default startup program.
6845

6846
    Returns type: 
6847 6848 6849 6850

    Examples:
        .. code-block:: python

6851
            import paddle
6852

6853
            paddle.enable_static()
6854 6855 6856 6857
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6858
    """
Y
Yu Yang 已提交
6859
    return _startup_program_
6860

6861

6862
def default_main_program():
Y
Yu Yang 已提交
6863
    """
6864
    This API can be used to get ``default main program`` which store the 
6865
    descriptions of Ops and tensors.
T
tangwei12 已提交
6866

6867
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6868
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6869

6870 6871
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6872
    :code:`default_main_program` when the program is not specified.
6873

6874
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6875

Y
Yu Yang 已提交
6876
    Returns:
6877
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6878 6879 6880 6881

    Examples:
        ..  code-block:: python

6882
            import paddle
6883

6884
            paddle.enable_static()
6885
            # Sample Network:
6886 6887 6888
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6889

6890 6891 6892
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6893
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6894
    """
Y
Yu Yang 已提交
6895
    return _main_program_
Y
Yu Yang 已提交
6896 6897 6898 6899 6900


def switch_main_program(program):
    """
    Switch the main program to a new program.
6901

Y
Yu Yang 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6916
    Switch the startup program to a new program
Y
Yu Yang 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6929
@signature_safe_contextmanager
Y
Yu Yang 已提交
6930 6931
def program_guard(main_program, startup_program=None):
    """
6932 6933
    :api_attr: Static Graph

6934 6935 6936
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6937

G
guofei 已提交
6938
    Args:
6939 6940
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6941 6942 6943 6944
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6945
    Examples:
6946
       .. code-block:: python
T
tangwei12 已提交
6947

6948
          import paddle
Y
yuyang18 已提交
6949

6950 6951 6952 6953 6954
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6955
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6956 6957 6958

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6959

Y
Yu Yang 已提交
6960
    Examples:
6961
       .. code-block:: python
Y
yuyang18 已提交
6962

6963
          import paddle
6964

6965 6966 6967 6968 6969
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6970

Y
Yu Yang 已提交
6971
    """
6972
    from .data_feeder import check_type
6973 6974
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6975 6976
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6977
        check_type(startup_program, 'startup_program', Program,
6978
                   'paddle.static.program_guard')
6979 6980
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6981
        startup_program = switch_startup_program(startup_program)
6982 6983 6984 6985 6986 6987
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6988 6989


W
Wu Yi 已提交
6990
def _get_var(name, program=None):
X
xuwei06 已提交
6991
    """
Y
yuyang18 已提交
6992
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6993

X
xuwei06 已提交
6994 6995 6996
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6997
        If None, default_global_program() will be used.
X
xuwei06 已提交
6998 6999 7000 7001 7002 7003 7004

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7005
    assert isinstance(program, Program)
X
xuwei06 已提交
7006 7007

    return program.global_block().var(name)
7008 7009


S
rename  
sneaxiy 已提交
7010
@signature_safe_contextmanager
L
lujun 已提交
7011 7012
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7013
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7014
    _dygraph_tracer_ = tracer
7015
    core._switch_tracer(tracer)
M
minqiyang 已提交
7016

7017 7018 7019
    try:
        yield
    finally:
7020 7021
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7022 7023


S
rename  
sneaxiy 已提交
7024
@signature_safe_contextmanager
L
lujun 已提交
7025
def _dygraph_place_guard(place):
7026 7027 7028
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7029 7030
    _set_dygraph_tracer_expected_place(place)

7031 7032 7033
    try:
        yield
    finally:
7034
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7035
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7036 7037


7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7048 7049 7050
    
    Note:
        The API only supports static mode.
7051 7052 7053 7054

    A context manager that specifies the device on which the OP will be placed.

    Args:
7055 7056
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
7057 7058 7059 7060 7061 7062 7063
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7064
    
7065
        .. code-block:: python
7066 7067
            
            # required: gpu
Z
Zhang Ting 已提交
7068
            import paddle
7069

Z
Zhang Ting 已提交
7070 7071 7072
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7073
            if support_gpu:
Z
Zhang Ting 已提交
7074
                place = paddle.CUDAPlace(0)
7075 7076

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7077 7078 7079
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7080

Z
Zhang Ting 已提交
7081
            with paddle.static.device_guard("cpu"):
7082
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7083 7084
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7085
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7086
                out = paddle.reshape(data1, shape=shape)
7087

Z
Zhang Ting 已提交
7088 7089
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7090 7091 7092
            result = exe.run(fetch_list=[out])
    """

7093 7094 7095 7096 7097
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7098
    if device not in ['cpu', 'gpu', 'npu', 'xpu', '', None]:
7099
        raise ValueError(
7100
            "The Attr(device) should be 'cpu' 'npu' 'xpu' or 'gpu', and it can also be empty string or None "
7101
            "when there is no need to specify device. But received %s" % device)
7102 7103
    if index:
        device = ":".join([device, index])
7104
    pre_device = switch_device(device)
7105 7106 7107 7108
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7109 7110


7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7142 7143 7144
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7145
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7146 7147 7148 7149 7150 7151 7152

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7153 7154
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7155 7156 7157 7158
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7159 7160
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7161 7162 7163 7164 7165 7166 7167 7168
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7169
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7180
            import paddle
G
guofei 已提交
7181 7182

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7183
            res = paddle.get_flags(flags)
G
guofei 已提交
7184 7185 7186 7187 7188 7189
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7190 7191
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7192 7193 7194 7195 7196 7197 7198
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7199 7200
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7201 7202 7203 7204 7205 7206 7207 7208
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7209 7210 7211 7212 7213 7214 7215


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7216
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7217
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7218 7219 7220 7221 7222 7223 7224 7225 7226
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7227

7228 7229 7230
    if (place == "device"):
        return core.Place()

7231
    # GPU
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7247 7248

    # XPU
7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7296
    raise ValueError(
7297 7298
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret