framework.py 53.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29 30 31 32 33 34
    'Block',
    'Variable',
    'Program',
    'Operator',
    'default_startup_program',
    'default_main_program',
    'program_guard',
    'switch_startup_program',
    'switch_main_program',
X
xuwei06 已提交
35
    'get_var',
36
]
Y
Yu Yang 已提交
37

Q
qiaolongfei 已提交
38 39 40 41 42 43 44 45
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
46 47
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
48 49 50
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
51

52
def convert_np_dtype_to_dtype_(np_dtype):
53 54
    """
    Convert the data type in numpy to the data type in Paddle
55

56
    Args:
57
        np_dtype(np.dtype): the data type in numpy.
58

59 60
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
61 62

    """
63 64
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
65
        return core.VarDesc.VarType.FP32
66
    elif dtype == np.float64:
67
        return core.VarDesc.VarType.FP64
68
    elif dtype == np.float16:
69
        return core.VarDesc.VarType.FP16
70
    elif dtype == np.int32:
71
        return core.VarDesc.VarType.INT32
72
    elif dtype == np.int16:
73
        return core.VarDesc.VarType.INT16
74
    elif dtype == np.int64:
75
        return core.VarDesc.VarType.INT64
76
    elif dtype == np.bool:
77
        return core.VarDesc.VarType.BOOL
78 79
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
80 81
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
82 83 84 85 86
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
87 88 89
    """
    Check the data type is floating or not.
    Args:
90
        dtype(np.dtype|core.VarDesc.VarType): data type.
91 92 93 94 95
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
96
    if not isinstance(dtype, core.VarDesc.VarType):
97 98
        dtype = convert_np_dtype_to_dtype_(dtype)

99 100 101 102
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
103 104


Y
Yang Yang(Tony) 已提交
105
def _debug_string_(proto, throw_on_error=True):
106 107 108 109 110 111 112 113 114 115 116
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
117
    error_fields = list()
Y
Yang Yang(Tony) 已提交
118
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
119 120
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
121 122 123
    return proto.__str__()


Y
Yu Yang 已提交
124
class Variable(object):
125
    """
126 127 128 129
    In Fluid, every input and output of an operator is a variable. In most 
    cases, variables are used for holding different kinds of data or training 
    labels. A variable belongs to a block. All variable has its own name and 
    two variables in different blocks could have the same name.
130

131 132 133 134
    There are many kinds of variables. Each kind of them has its own attributes 
    and usages. Please reference the framework.proto for details. 

    Most of a Variable's member variables can be setted to be None. It mean 
135
    it is not available or will be specified later.
136

137
    Args:
138
        block(Block): The block that the variable belongs to.
139 140
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
141 142
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
143
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
144
            Some kinds of variable do not contain shape, just set it to None.
145 146 147
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
148
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
149
            series data.
150
            Default: None
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
173 174
    """

Y
Yu Yang 已提交
175 176
    def __init__(self,
                 block,
Y
Yu Yang 已提交
177
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
178 179 180 181
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
182
                 capacity=None,
Q
QI JUN 已提交
183
                 persistable=None,
F
fengjiayi 已提交
184
                 error_clip=None,
Y
Yu Yang 已提交
185
                 stop_gradient=False,
F
fengjiayi 已提交
186
                 is_data=False,
Y
Yu Yang 已提交
187
                 **kwargs):
Y
Yu Yang 已提交
188
        self.block = block
F
fengjiayi 已提交
189
        self.error_clip = error_clip
Y
Yu Yang 已提交
190 191

        if name is None:
Y
Yu Yang 已提交
192
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
193 194 195 196
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
197
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
198
            is_new_var = True
Y
Yu Yang 已提交
199

Y
Yu Yang 已提交
200 201 202 203 204 205 206 207
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
208
        if shape is not None:
Y
Yu Yang 已提交
209
            if is_new_var:
210
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
211 212 213 214 215 216 217 218
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
219
        if dtype is not None:
220
            if not isinstance(dtype, core.VarDesc.VarType):
221
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
222
            if is_new_var:
F
fengjiayi 已提交
223
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
224
            else:
F
fengjiayi 已提交
225
                old_dtype = self.dtype
Q
QI JUN 已提交
226
                if dtype != old_dtype:
Y
Yu Yang 已提交
227 228 229 230 231
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
232 233

        if lod_level is not None:
Y
Yu Yang 已提交
234
            if is_new_var:
235
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
236 237 238 239 240 241 242
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
243 244 245 246 247 248 249 250 251 252 253
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

254 255 256 257 258 259 260 261
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
262
        self.block.vars[name] = self
Y
Yu Yang 已提交
263
        self.op = None
Y
Yu Yang 已提交
264
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
265
        self.is_data = is_data
Y
Yu Yang 已提交
266

267
    def __str__(self):
Y
Yang Yang(Tony) 已提交
268 269
        return self.to_string(True)

F
update  
fengjiayi 已提交
270
    def to_string(self, throw_on_error, with_details=False):
271 272 273 274
        """
        Get debug string.

        Args:
275 276
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
277
            with_details(bool): more details about variables and parameters
278 279
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
280

281 282
        Returns:
            str: The debug string.
283
        """
F
update  
fengjiayi 已提交
284 285
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
286 287
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
288 289 290 291 292 293 294
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
295 296 297

    __repr__ = __str__

298
    def set_desc(self, input):
299 300 301 302 303 304 305 306 307
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
308 309
        self.desc = input

310 311 312 313
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
314 315 316 317
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
318 319
    @property
    def name(self):
320
        return self.desc.name()
Y
Yu Yang 已提交
321

T
typhoonzero 已提交
322 323 324 325
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
326 327 328
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
329
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
330 331

    @property
F
fengjiayi 已提交
332 333
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
334 335 336

    @property
    def lod_level(self):
337
        return self.desc.lod_level()
Y
Yu Yang 已提交
338

Y
Yu Yang 已提交
339 340 341 342
    @property
    def type(self):
        return self.desc.type()

343
    def set_error_clip(self, error_clip):
344 345 346 347 348 349 350 351 352
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
353 354
        self.error_clip = error_clip

Y
Yu Yang 已提交
355

F
fengjiayi 已提交
356 357 358
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
359

360 361
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
362 363 364 365 366 367 368 369 370 371
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
372 373 374 375
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
376 377 378 379 380 381 382 383 384
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
385
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
386 387 388 389 390 391
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
392 393 394 395 396 397 398 399
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
400 401
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
402 403
        return self.op_proto_map[type]

404 405 406 407 408 409 410
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
411

Y
Yu Yang 已提交
412
class Operator(object):
413
    """
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
        type(str): The type of operator.
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
453
    """
454 455 456 457 458
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
typhoonzero 已提交
459
        'channel_recv', 'select', 'gen_nccl_id'
460
    }
461

462
    def __init__(self, block, desc, type, inputs=None, outputs=None,
Y
Yu Yang 已提交
463
                 attrs=None):
464

Y
Yu Yang 已提交
465
        self.block = block
Y
Yu Yang 已提交
466
        self.desc = desc
T
typhoonzero 已提交
467
        self.attrs = attrs
Y
yuyang18 已提交
468 469 470 471 472 473 474 475
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
476 477 478 479 480 481 482 483

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
484

F
fengjiayi 已提交
485 486
        if len(self.desc.type()) != 0:
            return
487

F
Update  
fengjiayi 已提交
488
        self.desc.set_type(type)
F
fengjiayi 已提交
489
        proto = OpProtoHolder.instance().get_op_proto(type)
490

Y
Yang Yang(Tony) 已提交
491 492
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
493
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
494 495
                    return True
            return False
Q
QI JUN 已提交
496

Y
Yang Yang(Tony) 已提交
497 498 499 500 501 502 503
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
504 505 506 507
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
508 509
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
510 511 512
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
513 514 515 516
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
517
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
518 519
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
520

Y
Yu Yang 已提交
521
        if outputs is not None:
522 523 524 525 526 527 528
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
529 530
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
531 532
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
533

F
fengjiayi 已提交
534
            for out_proto in proto.outputs:
535 536 537 538
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
539 540
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
541 542 543 544 545 546
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
547

Y
yuyang18 已提交
548 549
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
550
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
551
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
552
                attr_name = attr.name
Y
yuyang18 已提交
553 554
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
555
                    continue
Y
yuyang18 已提交
556 557 558 559 560
                if isinstance(self.attrs[attr_name], Block):
                    self.desc.set_block_attr(attr_name,
                                             self.attrs[attr_name].desc)
                elif isinstance(self.attrs[attr_name], core.BlockDesc) or \
                        isinstance(self.attrs[attr_name], core.ProgramDesc):
T
typhoonzero 已提交
561
                    self.desc.set_serialized_attr(
Y
yuyang18 已提交
562
                        attr_name, self.attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
563
                else:
Y
yuyang18 已提交
564
                    self.desc.set_attr(attr_name, self.attrs[attr_name])
565
        self.desc.check_attrs()
566
        if self.has_kernel(type):
Q
QI JUN 已提交
567
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
568
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
569

570 571 572
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
573
    def to_string(self, throw_on_error):
574
        """
575 576
        Get debug string.

577
        Args:
578 579
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
580

581 582
        Returns:
            str: The debug string.
583 584

        """
585 586
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
587 588 589 590
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
591 592 593

    __repr__ = __str__

F
fengjiayi 已提交
594 595 596 597 598
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
599
        """
600
        Get the input arguments according to the input parameter name.
601

602 603
        Args:
            name(str): The input parameter name.
604

605 606 607
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
608
        """
F
fengjiayi 已提交
609 610
        return self.desc.input(name)

T
typhoonzero 已提交
611
    def rename_input(self, old_name, new_name):
612 613 614 615 616 617 618 619 620 621
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
622 623 624
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
625 626 627 628 629 630 631 632 633 634
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
635 636
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
637 638 639 640
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
641 642 643 644 645 646 647 648
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
649
    def output(self, name):
650
        """
651
        Get output arguments by the output parameter name.
652

653 654
        Args:
            name(str): The output parameter name.
655

656 657 658
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
659
        """
F
fengjiayi 已提交
660 661 662 663 664 665
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

666 667 668 669 670 671 672 673
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
674
    def has_attr(self, name):
675
        """
676 677
        Whether this Operator has the attribute with name or not.

678
        Args:
679
            name(str): the attribute name.
680

681 682
        Returns:
            bool: True if has this attribute.
683 684

        """
F
fengjiayi 已提交
685 686 687
        return self.desc.has_attr(name)

    def attr_type(self, name):
688
        """
689
        Get the type of attribute by attribute's name.
690

691 692
        Args:
            name(str): the attribute name.
693

694 695
        Returns:
            core.AttrType: the attribute type.
696
        """
F
fengjiayi 已提交
697 698
        return self.desc.attr_type(name)

Y
yuyang18 已提交
699
    def set_attr(self, name, val):
700 701 702 703 704 705 706 707 708 709
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
710 711 712
        self.attrs[name] = val
        self.desc.set_attr(name, val)

F
fengjiayi 已提交
713 714 715 716 717
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
718
        """
719 720
        Get the attribute by name.

721
        Args:
722
            name(str): the attribute name.
723

724 725
        Returns:
            bool|int|str|float|list: The attribute value. The return value
726 727
            can be any valid attribute type.
        """
F
fengjiayi 已提交
728
        return self.desc.attr(name)
Y
Yu Yang 已提交
729

F
fengjiayi 已提交
730
    def block_attr(self, name):
731
        """
732
        Get the block attribute by name.
733

734 735
        Args:
            name(str): the attribute name.
736

737 738
        Returns:
            int: the block index.
739
        """
F
fengjiayi 已提交
740
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
741

J
JiayiFeng 已提交
742
    def all_attrs(self):
F
fengjiayi 已提交
743
        """
744 745 746 747
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
748 749 750 751 752 753 754 755 756 757
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
758

Y
Yu Yang 已提交
759
class Block(object):
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
789
    def __init__(self, program, idx):
Y
Yu Yang 已提交
790
        self.desc = program.desc.block(idx)
791
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
792
        self.ops = list()  # operator list
Y
Yu Yang 已提交
793
        self.program = program
794
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
795

796
    def __str__(self):
Y
Yang Yang(Tony) 已提交
797 798
        return self.to_string(True)

F
fengjiayi 已提交
799 800
    def to_string(self, throw_on_error, with_details=False):
        """
801 802
        Get debug string.

F
fengjiayi 已提交
803 804
        Args:
            throw_on_error(bool): raise exception when self is not initialized
805
                when throw_on_error is True.
F
update  
fengjiayi 已提交
806
            with_details(bool): more details about variables and parameters
807 808
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
809

810 811
        Returns:
            str: The debug string.
F
fengjiayi 已提交
812 813 814 815
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
816
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
817 818 819
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
820
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
821
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
822
            for op in self.ops:
F
fengjiayi 已提交
823 824
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
825 826 827 828 829 830
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
831 832 833

    __repr__ = __str__

Y
Yu Yang 已提交
834 835
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
836
        return self.desc.parent
Y
Yu Yang 已提交
837

Y
Yu Yang 已提交
838 839 840 841 842
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
843 844 845 846 847 848 849 850 851
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
Y
Yu Yang 已提交
852 853
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
854 855
    @property
    def idx(self):
Y
Yu Yang 已提交
856
        return self.desc.id
Y
Yu Yang 已提交
857

Q
Qiao Longfei 已提交
858
    def var(self, name):
859 860 861 862 863 864 865 866 867 868 869 870 871
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
872
        if not isinstance(name, basestring):
873 874 875
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
876 877
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
878
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
879
        return v
Q
Qiao Longfei 已提交
880

F
fengjiayi 已提交
881
    def var_recursive(self, name):
882 883 884 885 886 887 888 889 890 891 892 893 894
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
921

Q
Qiao Longfei 已提交
922
    def all_parameters(self):
923 924 925 926 927
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
928

Y
Yu Yang 已提交
929
    def create_var(self, *args, **kwargs):
930
        var = Variable(block=self, *args, **kwargs)
931 932
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
933
        return var
Y
Yu Yang 已提交
934

Q
Qiao Longfei 已提交
935 936 937
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
938 939 940
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
941 942 943 944 945 946 947 948 949 950 951 952

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
953 954
        """
        if not self.has_var(name):
955
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
956 957
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
958
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
959 960 961 962 963 964 965
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
966
            var_type = "Variable"
T
wip  
typhoonzero 已提交
967 968 969 970
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
971
        orig_var_type = v.type
T
typhoonzero 已提交
972
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
973
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
974
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
975
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
976 977 978 979
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
980
                type=orig_var_type,
T
wip  
typhoonzero 已提交
981 982 983 984 985 986 987
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
988
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
989 990
            var = Variable(
                self,
T
typhoonzero 已提交
991
                type=orig_var_type,
T
wip  
typhoonzero 已提交
992 993 994 995 996 997 998 999
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
1000
        self.sync_with_cpp()
1001
        return var
T
typhoonzero 已提交
1002

1003 1004 1005 1006 1007
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
1008 1009
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1010
        param = Parameter(global_block, *args, **kwargs)
1011 1012
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1013
        return param
Y
Yu Yang 已提交
1014

Y
Yu Yang 已提交
1015
    def append_op(self, *args, **kwargs):
1016 1017 1018 1019 1020 1021
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1022
        op_desc = self.desc.append_op()
1023
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1024 1025 1026
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
1027
    def insert_op(self, index, *args, **kwargs):
1028 1029 1030 1031 1032 1033 1034 1035 1036
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
Q
qiaolongfei 已提交
1037 1038 1039 1040 1041 1042
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

1043
    def remove_op(self, index):
1044 1045 1046 1047 1048 1049 1050 1051 1052
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
1053 1054 1055 1056
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
1057
    def slice_ops(self, start, end):
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1068
        return self.ops[start:end]
Y
Yancey1989 已提交
1069

Y
Yu Yang 已提交
1070
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
1071 1072
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1073
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1074 1075
        return op

Q
Qiao Longfei 已提交
1076
    def sync_with_cpp(self):
1077
        """
1078 1079
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1080
        """
Q
Qiao Longfei 已提交
1081 1082 1083 1084 1085
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1086 1087 1088 1089 1090
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1091
        # sync operators from cpp
1092 1093 1094 1095
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1112 1113 1114 1115 1116

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1117
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1118 1119 1120 1121 1122 1123 1124

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1138 1139 1140 1141
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

1142 1143
    def copy_param_info_from(self, other):
        """
1144 1145
        Copy the information of parameters from the other block.

1146
        Args:
1147 1148 1149 1150 1151
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1175
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1176
                error_clip=p.error_clip,
1177 1178 1179
                name=v.name)
            self.vars[new_p.name] = new_p

1180 1181 1182
    def clone_variable(self, var):
        """
        Clone a variable into current block.
1183

1184 1185 1186 1187
        Args:
            var: the variable to be cloned.

        Returns:
1188
            Variable: the new  variable cloned from 'var' in current block.
1189 1190
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1191 1192 1193 1194 1195
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1196 1197 1198 1199 1200 1201
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1202 1203
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1204 1205 1206 1207 1208 1209 1210
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1211 1212
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1213
        return ret_var
1214

Y
Yu Yang 已提交
1215 1216

class Program(object):
D
dzhwinter 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
    default_main_program run in every minibatch and adjust the weights.

    Args:
        None

    Returns:
        Python Program

    Examples:
       .. code-block:: python

         main_program = Program()
         startup_program = Program()
         with fluid.program_guard(main_program=main_program, startup_program=startup_program):
            fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
            fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
            fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")

    """

1248 1249
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1250 1251
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1252
        self._seed = 0
Y
yuyang18 已提交
1253
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1254
        self._op_role_var = []
Y
yuyang18 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

    @property
    def op_role(self):
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1270
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1271 1272 1273 1274 1275

    @contextlib.contextmanager
    def optimized_guard(self, var):
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1276
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1277
        yield
Y
yuyang18 已提交
1278
        self._op_role_var = []
Y
yuyang18 已提交
1279
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1280

1281
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1282 1283
        return self.to_string(True)

F
fengjiayi 已提交
1284 1285 1286 1287 1288 1289
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
F
update  
fengjiayi 已提交
1290 1291
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True
F
fengjiayi 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1307

1308 1309 1310
    def get_desc(self):
        return self.desc

1311 1312
    def clone(self, for_test=False):
        """Clone the Program object
D
dzhwinter 已提交
1313 1314
        Args:
           for_test(bool): indicate whether clone for test.
1315 1316

        Set for_test to False when we want to clone the program for training.
1317
        Set for_test to True when we want to clone the program for testing.
1318 1319 1320 1321 1322

        Args:
            for_test(bool): Some operators, such as batch_norm and drop_out ops,
                behave differently in training and testing. If for_test is True,
                the is_test attributes in these operators will be set to True for
1323 1324
                testing purposes, otherwise, they remain unchanged.

D
dzhwinter 已提交
1325 1326 1327
        Returns:
            Program: The cloned Program object.

1328 1329
        """
        if for_test:
1330
            p = self.inference_optimize()
1331
        else:
1332
            p = Program()
1333
            p.desc = core.ProgramDesc(self.desc)
1334 1335 1336
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1337
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1338
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1339
        return p
1340

1341 1342 1343 1344 1345 1346 1347
    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1348 1349
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1350
                    # and we need to find the current op that generate this
1351 1352 1353 1354 1355 1356 1357 1358
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1359
                    t = t.op
1360 1361 1362 1363
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1364
                else:
1365 1366
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1367 1368 1369 1370 1371 1372 1373 1374

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1375
    def inference_optimize(self):
1376 1377
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1378
        res = Program()
1379 1380 1381 1382 1383 1384 1385
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1386 1387 1388 1389
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1390 1391 1392 1393
    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1394
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1395 1396
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1397

D
dzhwinter 已提交
1398 1399 1400 1401
    @property
    def random_seed(self):
        return self._seed

Q
qiaolongfei 已提交
1402 1403 1404 1405
    @property
    def num_blocks(self):
        return self.desc.num_blocks()

D
dzhwinter 已提交
1406 1407 1408 1409 1410 1411
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1412 1413
    def __repr__(self):
        return str(self)
1414

Y
Yu Yang 已提交
1415 1416 1417
    def global_block(self):
        return self.blocks[0]

Q
Qiao Longfei 已提交
1418 1419 1420
    def block(self, index):
        return self.blocks[index]

Y
Yu Yang 已提交
1421 1422 1423
    def current_block(self):
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1424
    def create_block(self, parent_idx=None):
Y
Yu Yang 已提交
1425
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1426 1427 1428
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1429 1430 1431 1432 1433 1434 1435
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1436 1437 1438 1439 1440 1441
    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1442 1443
    def copy_param_info_from(self, other):
        """
1444
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1461 1462 1463
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1464

F
fengjiayi 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1482 1483 1484 1485 1486
    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1487

Y
Yu Yang 已提交
1488
class Parameter(Variable):
1489 1490 1491 1492 1493 1494
    """
    Parameter is derived from Variable. A parameter is a persistable 
    Variable, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of 
    its parameters.

1495
    Relative to a general Variable, a Parameter has several its own
1496 1497
    member variables:

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1510 1511
    """

Y
Yu Yang 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1522 1523 1524

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1525 1526 1527 1528
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1529 1530
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1531
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1532

W
wanghaoshuang 已提交
1533
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1534

F
fengjiayi 已提交
1535 1536 1537
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1538 1539 1540
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1541

F
update  
fengjiayi 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1556
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1557 1558 1559 1560 1561
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1562 1563 1564 1565
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1566

Y
Yu Yang 已提交
1567
# program is a global instance.
Y
Yu Yang 已提交
1568 1569
_main_program_ = Program()
_startup_program_ = Program()
1570

1571

1572
def default_startup_program():
Y
Yu Yang 已提交
1573 1574 1575
    """
    Get default startup program. In startup program, Paddle will initialize
    parameters, initialize nccl handle, etc.
1576

Y
Yu Yang 已提交
1577 1578 1579
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1580
    return _startup_program_
1581

1582

1583
def default_main_program():
Y
Yu Yang 已提交
1584 1585
    """
    Get default main program. The main program is used for training or testing.
1586

Y
Yu Yang 已提交
1587 1588 1589
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1590
    return _main_program_
Y
Yu Yang 已提交
1591 1592 1593 1594 1595


def switch_main_program(program):
    """
    Switch the main program to a new program.
1596

Y
Yu Yang 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1611
    Switch the startup program to a new program
Y
Yu Yang 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
    Switch program with `with` statement
1628

Y
Yu Yang 已提交
1629 1630 1631 1632
    Examples:
        >>> with program_guard(Program()):
        >>>   data = fluid.layers.data(...)
        >>>   hidden = fluid.layers.fc(...)
1633

Y
Yu Yang 已提交
1634 1635
    Args:
        main_program(Program): New main program inside `with` statement
1636
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
            None means do not change startup program.

    Returns:
        None
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668


def get_var(name, program=None):
    """
    Get a variable by name from the global block of a program
    Args:
        name(str): name of the variable
        program(Program|None): program object.
             If None, default_global_program() will be used.

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1669
    assert isinstance(program, Program)
X
xuwei06 已提交
1670 1671

    return program.global_block().var(name)