Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b913463e
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b913463e
编写于
1月 22, 2019
作者:
W
WangZhen
提交者:
root
1月 22, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update according to the reviewers' suggestion. test=develop
上级
3ce61720
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
228 addition
and
271 deletion
+228
-271
paddle/fluid/pybind/ir.cc
paddle/fluid/pybind/ir.cc
+2
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+4
-4
python/paddle/fluid/contrib/slim/graph/graph.py
python/paddle/fluid/contrib/slim/graph/graph.py
+1
-134
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+66
-102
python/paddle/fluid/contrib/slim/unitest/test_quantization_pass.py
...ddle/fluid/contrib/slim/unitest/test_quantization_pass.py
+5
-5
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+150
-24
未找到文件。
paddle/fluid/pybind/ir.cc
浏览文件 @
b913463e
...
...
@@ -148,8 +148,8 @@ void BindNode(py::module *m) {
})
.
def
(
"outputs_append"
,
[](
Node
&
self
,
Node
&
node
)
{
self
.
outputs
.
push_back
(
&
node
);
})
.
def_read
only
(
"inputs"
,
&
Node
::
inputs
)
.
def_read
only
(
"outputs"
,
&
Node
::
outputs
);
.
def_read
write
(
"inputs"
,
&
Node
::
inputs
)
.
def_read
write
(
"outputs"
,
&
Node
::
outputs
);
py
::
enum_
<
Node
::
Type
>
(
node
,
"Type"
)
.
value
(
"Operation"
,
Node
::
Type
::
kOperation
)
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
b913463e
...
...
@@ -797,18 +797,18 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
ir
::
Pass
,
std
::
shared_ptr
<
ir
::
Pass
>>
pass
(
m
,
"Pass"
);
pass
.
def
(
py
::
init
())
.
def
(
"has"
,
&
ir
::
Pass
::
Has
)
.
def
(
"set
_program
"
,
.
def
(
"set"
,
[](
ir
::
Pass
&
self
,
const
std
::
string
&
attr_name
,
const
ProgramDesc
&
attr
)
{
return
self
.
Set
(
attr_name
,
new
ProgramDesc
(
attr
));
})
.
def
(
"set
_str
"
,
"set"
,
[](
ir
::
Pass
&
self
,
const
std
::
string
&
name
,
const
std
::
string
&
attr
)
{
self
.
Set
<
std
::
string
>
(
name
,
new
std
::
string
(
attr
));
})
.
def
(
"set
_int
"
,
[](
ir
::
Pass
&
self
,
const
std
::
string
&
name
,
int
val
)
{
self
.
Set
<
const
int
>
(
name
,
new
int
(
val
));
})
.
def
(
"set"
,
[](
ir
::
Pass
&
self
,
const
std
::
string
&
name
,
int
val
)
{
self
.
Set
<
const
int
>
(
name
,
new
int
(
val
));
})
.
def
(
"get_program"
,
&
ir
::
Pass
::
Get
<
ProgramDesc
>
)
.
def
(
"type"
,
&
ir
::
Pass
::
Type
)
.
def
(
"apply"
,
[](
ir
::
Pass
&
self
,
std
::
shared_ptr
<
ir
::
Graph
>
graph
)
{
...
...
python/paddle/fluid/contrib/slim/graph/graph.py
浏览文件 @
b913463e
...
...
@@ -18,140 +18,7 @@ from ....framework import Program
from
....framework
import
Block
from
....
import
core
__all__
=
[
'Graph'
,
'ImitationGraph'
,
'IRGraph'
,
'PyGraph'
]
class
PyGraph
(
object
):
"""
PyGraph uses core.Graph as the delegation to accomplish the manipulation.
"""
def
__init__
(
self
,
graph
,
for_test
=
False
):
"""
Construct the PyGraph using core.Graph.
Args:
graph(core.Graph): C++ Graph.
for_test(bool): True for the test graph and false for the train graph.
"""
assert
isinstance
(
graph
,
core
.
Graph
),
'graph must be the instance of core.Graph.'
self
.
graph
=
graph
self
.
for_test
=
for_test
def
is_test
(
self
):
return
self
.
for_test
def
all_parameters
(
self
):
param_nodes
=
set
()
for
node
in
self
.
graph
.
nodes
():
if
node
.
is_var
()
and
node
.
var
()
is
not
None
and
node
.
var
(
).
persistable
():
param_nodes
.
add
(
node
)
return
param_nodes
def
all_vars
(
self
):
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_var
()}
def
all_ops
(
self
):
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_op
()}
def
create_param_node
(
self
,
name
,
var_type
,
shape
,
var_dtype
):
var_desc
=
core
.
VarDesc
(
name
)
var_desc
.
set_type
(
var_type
)
var_desc
.
set_shape
(
shape
)
var_desc
.
set_dtype
(
var_dtype
)
var_desc
.
set_persistable
(
True
)
return
self
.
graph
.
create_var_node
(
var_desc
)
def
create_var_node
(
self
,
name
,
var_type
,
shape
,
var_dtype
):
var_desc
=
core
.
VarDesc
(
name
)
var_desc
.
set_type
(
var_type
)
var_desc
.
set_shape
(
shape
)
var_desc
.
set_dtype
(
var_dtype
)
return
self
.
graph
.
create_var_node
(
var_desc
)
def
create_var_node_from_desc
(
self
,
var_desc
):
return
self
.
graph
.
create_var_node
(
var_desc
)
def
create_op_node
(
self
,
op_type
,
attrs
,
inputs
,
outputs
):
op_desc
=
core
.
OpDesc
()
op_desc
.
set_type
(
op_type
)
for
attr
,
value
in
attrs
.
iteritems
():
self
.
_update_desc_attr
(
op_desc
,
attr
,
value
)
for
input_name
,
var_nodes
in
inputs
.
iteritems
():
if
not
isinstance
(
var_nodes
,
list
):
var_nodes
=
[
var_nodes
]
op_desc
.
set_input
(
input_name
,
[
var_node
.
name
()
for
var_node
in
var_nodes
])
for
output_name
,
var_nodes
in
outputs
.
iteritems
():
if
not
isinstance
(
var_nodes
,
list
):
var_nodes
=
[
var_nodes
]
op_desc
.
set_output
(
output_name
,
[
var_node
.
name
()
for
var_node
in
var_nodes
])
return
self
.
graph
.
create_op_node
(
op_desc
)
def
create_op_node_from_desc
(
self
,
op_desc
):
return
self
.
graph
.
create_op_node
(
op_desc
)
def
_update_desc_attr
(
self
,
desc
,
name
,
val
):
"""
Update the value of desc's attribute by attribute's name.
"""
if
isinstance
(
val
,
Block
):
desc
.
set_block_attr
(
name
,
val
.
desc
)
elif
isinstance
(
val
,
list
)
and
val
and
all
(
isinstance
(
v
,
Block
)
for
v
in
val
):
desc
.
set_blocks_attr
(
name
,
[
v
.
desc
for
v
in
val
])
elif
isinstance
(
val
,
core
.
BlockDesc
)
or
\
isinstance
(
val
,
core
.
ProgramDesc
):
desc
.
set_serialized_attr
(
name
,
val
.
serialize_to_string
())
else
:
desc
.
_set_attr
(
name
,
val
)
def
safe_remove_nodes
(
self
,
remove_nodes
):
if
not
isinstance
(
remove_nodes
,
set
):
remove_nodes
=
set
(
remove_nodes
)
core
.
graph_safe_remove_nodes
(
self
.
graph
,
remove_nodes
)
def
draw
(
self
,
save_path
,
name
,
marked_nodes
=
None
):
def
_convert_to_pdf
(
dot_file_path
):
pdf_save_path
=
os
.
path
.
splitext
(
dot_file_path
)[
0
]
+
'.pdf'
exited_code
=
subprocess
.
call
(
'dot -Tpdf '
+
dot_file_path
\
+
' -o '
+
pdf_save_path
,
shell
=
True
)
if
exited_code
!=
0
:
print
(
'The dot command is needed for creating pdf files.'
)
print
(
'The {} is saved as the dot filetype.'
.
format
(
dot_file_path
))
remove_ctr_vars
=
set
()
ops_num
=
0
for
node
in
self
.
graph
.
nodes
():
if
node
.
is_ctrl_var
():
remove_ctr_vars
.
add
(
node
)
elif
node
.
is_op
():
ops_num
+=
1
print
(
'Total ops num = {}.'
.
format
(
ops_num
))
self
.
safe_remove_nodes
(
remove_ctr_vars
)
if
marked_nodes
is
not
None
:
if
not
isinstance
(
marked_nodes
,
set
):
marked_nodes
=
set
(
marked_nodes
)
marked_nodes
=
marked_nodes
-
remove_ctr_vars
if
self
.
graph
.
has
(
'__graphviz__marked_node__'
):
self
.
graph
.
erase
(
'__graphviz__marked_node__'
)
self
.
graph
.
set
(
'__graphviz__marked_node__'
,
marked_nodes
)
viz_dot_path
=
os
.
path
.
join
(
save_path
,
name
)
+
'.dot'
viz_pass
=
core
.
get_pass
(
'graph_viz_pass'
)
viz_pass
.
set_str
(
'graph_viz_path'
,
viz_dot_path
)
viz_pass
.
apply
(
self
.
graph
)
_convert_to_pdf
(
viz_dot_path
)
def
to_program
(
self
):
convert_pass
=
core
.
get_pass
(
'graph_to_program_pass'
)
convert_pass
.
set_program
(
'program'
,
Program
().
desc
)
convert_pass
.
apply
(
self
.
graph
)
desc
=
convert_pass
.
get_program
(
'program'
)
program
=
Program
.
construct_from_desc
(
desc
)
return
program
__all__
=
[
'Graph'
,
'ImitationGraph'
,
'IRGraph'
]
class
Graph
(
object
):
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
b913463e
...
...
@@ -13,13 +13,12 @@
# limitations under the License.
import
collections
import
numpy
as
np
from
....
import
core
from
....framework
import
IrGraph
from
....framework
import
Program
from
....framework
import
Variable
from
....initializer
import
Constant
from
....
import
unique_name
from
..graph
import
PyGraph
__all__
=
[
'QuantizationTransformPass'
]
...
...
@@ -34,7 +33,7 @@ class QuantizationTransformPass(object):
weight_quantize_type
=
'abs_max'
,
window_size
=
10000
):
"""
Convert and rewrite the
Py
Graph according to weight and
Convert and rewrite the
Ir
Graph according to weight and
activation quantization type.
Args:
weight_bits (int): quantization bit number for weights,
...
...
@@ -56,19 +55,19 @@ class QuantizationTransformPass(object):
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization
\
import QuantizationTransformPass
from paddle.fluid.contrib.slim.graph import
Py
Graph
from paddle.fluid.contrib.slim.graph import
Ir
Graph
from paddle.fluid import core
graph =
Py
Graph(core.Graph(program.desc), for_test=False)
graph =
Ir
Graph(core.Graph(program.desc), for_test=False)
exe = fluid.Executor(fluid.CPUPlace())
transform_pass = QuantizationTransformPass(fluid.global_scope(),
exe)
transform_pass.apply(graph)
"""
self
.
scope
=
scope
self
.
program_exe
=
program_exe
self
.
weight_bits
=
weight_bits
self
.
activation_bits
=
activation_bits
self
.
_
scope
=
scope
self
.
_
program_exe
=
program_exe
self
.
_
weight_bits
=
weight_bits
self
.
_
activation_bits
=
activation_bits
quant_type
=
[
'abs_max'
,
'range_abs_max'
]
if
activation_quantize_type
not
in
quant_type
:
...
...
@@ -80,27 +79,27 @@ class QuantizationTransformPass(object):
"Unknown weight_quantize_type: '%s'. It can only be "
,
"'abs_max' or 'range_abs_max'."
,
str
(
weight_quantize_type
))
self
.
activation_quantize_type
=
activation_quantize_type
self
.
weight_quantize_type
=
weight_quantize_type
self
.
window_size
=
window_size
self
.
_
activation_quantize_type
=
activation_quantize_type
self
.
_
weight_quantize_type
=
weight_quantize_type
self
.
_
window_size
=
window_size
self
.
need_initialized
=
collections
.
OrderedDict
()
self
.
quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
quantizable_ops
self
.
_
need_initialized
=
collections
.
OrderedDict
()
self
.
_
quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
_
quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_
quantizable_ops
]
self
.
fake_quant_op_types
=
[
self
.
_
fake_quant_op_types
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
]
self
.
fake_dequant_op_types
=
[
'fake_dequantize_max_abs'
]
self
.
is_test
=
None
self
.
global_step
=
None
self
.
_
fake_dequant_op_types
=
[
'fake_dequantize_max_abs'
]
self
.
_
is_test
=
None
self
.
_
global_step
=
None
def
apply
(
self
,
graph
):
assert
isinstance
(
graph
,
PyGraph
),
'graph must be the instance of Py
Graph.'
self
.
need_initialized
.
clear
()
self
.
is_test
=
graph
.
is_test
()
IrGraph
),
'graph must be the instance of Ir
Graph.'
self
.
_
need_initialized
.
clear
()
self
.
_
is_test
=
graph
.
is_test
()
# marked the variable which has been dequantized.
dequantized_vars
=
collections
.
OrderedDict
()
params
=
[
p
.
name
()
for
p
in
graph
.
all_parameters
()]
...
...
@@ -110,72 +109,69 @@ class QuantizationTransformPass(object):
if
var_node
.
name
()
in
dequantized_vars
:
dequant_var_node
=
dequantized_vars
[
var_node
.
name
()]
else
:
quant_bits
=
self
.
weight_bits
if
var_node
.
name
()
in
params
\
else
self
.
activation_bits
quant_type
=
self
.
weight_quantize_type
if
var_node
.
name
()
\
in
params
else
self
.
activation_quantize_type
quant_bits
=
self
.
_
weight_bits
if
var_node
.
name
()
in
params
\
else
self
.
_
activation_bits
quant_type
=
self
.
_
weight_quantize_type
if
var_node
.
name
()
\
in
params
else
self
.
_
activation_quantize_type
quant_var_node
,
scale_var_node
=
self
.
_insert_quant_op
(
graph
,
var_node
,
quant_bits
,
quant_type
)
dequant_var_node
=
self
.
_insert_dequant_op
(
graph
,
quant_var_node
,
scale_var_node
,
quant_bits
)
dequantized_vars
[
var_node
.
name
()]
=
dequant_var_node
self
.
_update_input
(
var_node
,
dequant_var_node
,
op
)
op
.
op
().
_rename_input
(
var_node
.
name
(),
dequant_var_node
.
name
())
graph
.
update_input_link
(
var_node
,
dequant_var_node
,
op
)
def
_transform_backward
(
graph
,
op
):
no_dequanted_input_vars
=
True
for
var_node
in
op
.
inputs
:
if
var_node
.
name
()
in
dequantized_vars
:
dequant_var_node
=
dequantized_vars
[
var_node
.
name
()]
self
.
_update_input
(
var_node
,
dequant_var_node
,
op
)
op
.
op
().
_rename_input
(
var_node
.
name
(),
dequant_var_node
.
name
())
graph
.
update_input_link
(
var_node
,
dequant_var_node
,
op
)
no_dequanted_input_vars
=
False
if
no_dequanted_input_vars
:
raise
ValueError
(
"There is no dequanted inputs for op %s."
%
(
op
.
name
()))
if
not
self
.
is_test
:
if
not
self
.
_
is_test
:
self
.
_create_global_step
(
graph
)
ops
=
graph
.
all_ops
()
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
for
op
in
ops
:
if
op
.
name
()
in
self
.
quantizable_ops
:
if
op
.
name
()
in
self
.
_
quantizable_ops
:
_transform_forward
(
graph
,
op
)
# The loop for renaming the inputs of backward op.
for
op
in
ops
:
if
op
.
name
()
in
self
.
quantizable_grad_ops
:
if
op
.
name
()
in
self
.
_
quantizable_grad_ops
:
_transform_backward
(
graph
,
op
)
if
len
(
self
.
need_initialized
)
>
0
:
assert
self
.
scope
is
not
None
,
\
if
len
(
self
.
_
need_initialized
)
>
0
:
assert
self
.
_
scope
is
not
None
,
\
'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
assert
self
.
program_exe
is
not
None
,
\
assert
self
.
_
program_exe
is
not
None
,
\
'The program_exe cannot be set None when activation_quantize_type equals to range_abs_max.'
init_program
=
Program
()
for
var_desc
,
initializer
in
self
.
need_initialized
.
iteritems
():
var
=
Variable
.
construct_from_desc
(
init_program
.
global_block
(),
var_desc
)
for
var_desc
,
initializer
in
self
.
_
need_initialized
.
iteritems
():
var
=
Variable
(
init_program
.
global_block
())
var
.
_set_desc
(
var_desc
)
initializer
(
var
,
init_program
.
global_block
())
self
.
program_exe
.
run
(
program
=
init_program
,
scope
=
self
.
scope
)
self
.
_program_exe
.
run
(
program
=
init_program
,
scope
=
self
.
_
scope
)
return
graph
def
_create_global_step
(
self
,
graph
):
if
self
.
weight_quantize_type
==
'range_abs_max'
or
\
self
.
activation_quantize_type
==
'range_abs_max'
:
if
self
.
_
weight_quantize_type
==
'range_abs_max'
or
\
self
.
_
activation_quantize_type
==
'range_abs_max'
:
counter_name
=
'@STEP_COUNTER@'
for
node
in
graph
.
all_vars
():
if
node
.
name
()
==
counter_name
:
self
.
global_step
=
node
if
self
.
global_step
is
None
:
self
.
_
global_step
=
node
if
self
.
_
global_step
is
None
:
global_step_in
=
graph
.
create_param_node
(
name
=
counter_name
,
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
core
.
VarDesc
.
VarType
.
INT64
)
self
.
need_initialized
[
global_step_in
.
var
()]
=
\
self
.
_
need_initialized
[
global_step_in
.
var
()]
=
\
Constant
(
value
=
0
,
force_cpu
=
True
)
global_step_out
=
graph
.
create_var_node_from_desc
(
global_step_in
.
var
())
...
...
@@ -184,9 +180,9 @@ class QuantizationTransformPass(object):
attrs
=
{
'step'
:
1.0
},
inputs
=
{
'X'
:
global_step_in
},
outputs
=
{
'Out'
:
global_step_out
})
self
.
_
link_to
(
global_step_in
,
increment_op
)
self
.
_
link_to
(
increment_op
,
global_step_out
)
self
.
global_step
=
global_step_out
graph
.
link_to
(
global_step_in
,
increment_op
)
graph
.
link_to
(
increment_op
,
global_step_out
)
self
.
_
global_step
=
global_step_out
def
_insert_quant_op
(
self
,
graph
,
var_node
,
quant_bits
,
quant_type
):
"""
...
...
@@ -220,9 +216,9 @@ class QuantizationTransformPass(object):
inputs
=
{
'X'
:
var_node
},
outputs
=
{
'Out'
:
quant_var_node
,
'OutScale'
:
scale_var_node
})
self
.
_
link_to
(
var_node
,
quant_op_node
)
self
.
_
link_to
(
quant_op_node
,
quant_var_node
)
self
.
_
link_to
(
quant_op_node
,
scale_var_node
)
graph
.
link_to
(
var_node
,
quant_op_node
)
graph
.
link_to
(
quant_op_node
,
quant_var_node
)
graph
.
link_to
(
quant_op_node
,
scale_var_node
)
return
quant_var_node
,
scale_var_node
def
_insert_quant_range_abs_max_op
(
self
,
graph
,
var_node
,
quant_bits
):
...
...
@@ -242,26 +238,26 @@ class QuantizationTransformPass(object):
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
var_node
.
var
().
dtype
())
self
.
need_initialized
[
scale_in_node
.
var
()]
=
Constant
(
value
=
0.001
)
self
.
_
need_initialized
[
scale_in_node
.
var
()]
=
Constant
(
value
=
0.001
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
inputs
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
outputs
=
{
'Out'
:
quant_var_node
,
'OutScale'
:
scale_out_node
}
if
not
self
.
is_test
:
if
not
self
.
_
is_test
:
# The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
scales_node
=
graph
.
create_param_node
(
name
=
unique_name
.
generate
(
'scales'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
self
.
window_size
],
shape
=
[
self
.
_
window_size
],
var_dtype
=
var_node
.
var
().
dtype
())
self
.
need_initialized
[
scales_node
.
var
()]
=
Constant
(
value
=
0
)
inputs
[
'Iter'
]
=
self
.
global_step
self
.
_
need_initialized
[
scales_node
.
var
()]
=
Constant
(
value
=
0
)
inputs
[
'Iter'
]
=
self
.
_
global_step
outputs
[
'OutScales'
]
=
scales_node
attrs
=
{
'window_size'
:
self
.
window_size
,
'window_size'
:
self
.
_
window_size
,
'bit_length'
:
quant_bits
,
'is_test'
:
self
.
is_test
'is_test'
:
self
.
_
is_test
}
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_range_abs_max'
,
...
...
@@ -269,14 +265,14 @@ class QuantizationTransformPass(object):
inputs
=
inputs
,
outputs
=
outputs
)
self
.
_
link_to
(
var_node
,
quant_op_node
)
self
.
_
link_to
(
scale_in_node
,
quant_op_node
)
self
.
_
link_to
(
quant_op_node
,
quant_var_node
)
self
.
_
link_to
(
quant_op_node
,
scale_out_node
)
graph
.
link_to
(
var_node
,
quant_op_node
)
graph
.
link_to
(
scale_in_node
,
quant_op_node
)
graph
.
link_to
(
quant_op_node
,
quant_var_node
)
graph
.
link_to
(
quant_op_node
,
scale_out_node
)
if
not
self
.
is_test
:
self
.
_link_to
(
self
.
global_step
,
quant_op_node
)
self
.
_
link_to
(
quant_op_node
,
scales_node
)
if
not
self
.
_
is_test
:
graph
.
link_to
(
self
.
_
global_step
,
quant_op_node
)
graph
.
link_to
(
quant_op_node
,
scales_node
)
return
quant_var_node
,
scale_out_node
...
...
@@ -298,21 +294,11 @@ class QuantizationTransformPass(object):
inputs
=
{
'X'
:
var_node
,
'Scale'
:
scale_var_node
},
outputs
=
{
'Out'
:
dequant_var_node
})
self
.
_
link_to
(
var_node
,
dequant_op_node
)
self
.
_
link_to
(
scale_var_node
,
dequant_op_node
)
self
.
_
link_to
(
dequant_op_node
,
dequant_var_node
)
graph
.
link_to
(
var_node
,
dequant_op_node
)
graph
.
link_to
(
scale_var_node
,
dequant_op_node
)
graph
.
link_to
(
dequant_op_node
,
dequant_var_node
)
return
dequant_var_node
def
_update_input
(
self
,
old_input_node
,
new_input_node
,
op_node
):
old_input_node
.
outputs_remove
(
op_node
)
op_node
.
inputs_remove
(
old_input_node
)
new_input_node
.
outputs_append
(
op_node
)
op_node
.
inputs_append
(
new_input_node
)
def
_link_to
(
self
,
node_in
,
node_out
):
node_in
.
outputs_append
(
node_out
)
node_out
.
inputs_append
(
node_in
)
def
_quantized_var_name
(
self
,
var_name
):
"""
Return quantized variable name for the input `var_name`.
...
...
@@ -330,25 +316,3 @@ class QuantizationTransformPass(object):
Return quantized variable name for the input `var_name`.
"""
return
"%s.scale"
%
(
var_name
)
def
_original_var_name
(
self
,
var_name
):
"""
Return the original variable name.
"""
if
var_name
.
endswith
(
'.quantized.dequantized'
):
return
var_name
[:
-
len
(
'.quantized.dequantized'
)]
if
var_name
.
endswith
(
'.quantized'
):
return
var_name
[:
-
len
(
'.quantized'
)]
if
var_name
.
endswith
(
'.dequantized'
):
return
var_name
[:
-
len
(
'.dequantized'
)]
if
var_name
.
endswith
(
'.scale'
):
return
var_name
[:
-
len
(
'.scale'
)]
else
:
return
var_name
def
_is_float
(
self
,
v
):
return
isinstance
(
v
,
float
)
or
isinstance
(
v
,
np
.
float32
)
def
_quant
(
self
,
x
,
scale
,
num_bits
):
y
=
np
.
round
(
x
/
scale
*
((
1
<<
(
num_bits
-
1
))
-
1
))
return
y
python/paddle/fluid/contrib/slim/unitest/test_quantization_pass.py
浏览文件 @
b913463e
...
...
@@ -18,8 +18,8 @@ import numpy as np
import
paddle.fluid
as
fluid
import
six
from
paddle.fluid.framework
import
Program
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.contrib.slim.quantization
import
QuantizationTransformPass
from
paddle.fluid.contrib.slim.graph
import
PyGraph
from
paddle.fluid
import
core
...
...
@@ -106,7 +106,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
graph
=
Py
Graph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
graph
=
Ir
Graph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
program_exe
=
exe
,
...
...
@@ -119,7 +119,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
graph
.
draw
(
'.'
,
'quantize_fc_'
+
quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
Py
Graph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_graph
=
Ir
Graph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_marked_nodes
=
set
()
for
op
in
val_graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
...
...
@@ -142,7 +142,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
graph
=
Py
Graph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
graph
=
Ir
Graph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
program_exe
=
exe
,
...
...
@@ -155,7 +155,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
graph
.
draw
(
'.'
,
'quantize_residual_'
+
quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
Py
Graph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_graph
=
Ir
Graph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_marked_nodes
=
set
()
for
op
in
val_graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
...
...
python/paddle/fluid/framework.py
浏览文件 @
b913463e
...
...
@@ -23,6 +23,7 @@ import traceback
import
six
import
numpy
as
np
import
subprocess
from
..
import
compat
as
cpt
from
.proto
import
framework_pb2
...
...
@@ -381,27 +382,6 @@ class Variable(object):
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
stop_gradient
=
stop_gradient
@
staticmethod
def
construct_from_desc
(
block
,
desc
):
"""
Construct a Variable from variable desc.
Args:
desc(core.VarDesc): The variable desc for constructing.
Returns:
Variable: A variable.
"""
v
=
Variable
(
block
=
block
,
type
=
desc
.
type
(),
name
=
desc
.
name
(),
shape
=
desc
.
shape
(),
dtype
=
desc
.
dtype
(),
lod_level
=
desc
.
lod_level
(),
persistable
=
desc
.
persistable
())
v
.
desc
=
desc
return
v
def
_numpy
(
self
):
tensor
=
self
.
_ivar
.
value
().
get_tensor
()
return
np
.
array
(
tensor
)
...
...
@@ -1533,6 +1513,154 @@ class Block(object):
return
ret_var
class
IrGraph
(
object
):
"""
IrGraph uses core.Graph as the delegation to accomplish the manipulation.
"""
def
__init__
(
self
,
graph
,
for_test
=
False
):
"""
Construct the IrGraph using core.Graph.
Args:
graph(core.Graph): C++ Graph.
for_test(bool): True for the test graph and false for the train graph.
"""
assert
isinstance
(
graph
,
core
.
Graph
),
'graph must be the instance of core.Graph.'
self
.
graph
=
graph
self
.
_for_test
=
for_test
def
is_test
(
self
):
return
self
.
_for_test
def
all_parameters
(
self
):
param_nodes
=
set
()
for
node
in
self
.
graph
.
nodes
():
if
node
.
is_var
()
and
node
.
var
()
is
not
None
and
node
.
var
(
).
persistable
():
param_nodes
.
add
(
node
)
return
param_nodes
def
all_vars
(
self
):
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_var
()}
def
all_ops
(
self
):
return
{
node
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_op
()}
def
create_param_node
(
self
,
name
,
var_type
,
shape
,
var_dtype
):
var_desc
=
core
.
VarDesc
(
name
)
var_desc
.
set_type
(
var_type
)
var_desc
.
set_shape
(
shape
)
var_desc
.
set_dtype
(
var_dtype
)
var_desc
.
set_persistable
(
True
)
return
self
.
graph
.
create_var_node
(
var_desc
)
def
create_var_node
(
self
,
name
,
var_type
,
shape
,
var_dtype
):
var_desc
=
core
.
VarDesc
(
name
)
var_desc
.
set_type
(
var_type
)
var_desc
.
set_shape
(
shape
)
var_desc
.
set_dtype
(
var_dtype
)
return
self
.
graph
.
create_var_node
(
var_desc
)
def
create_var_node_from_desc
(
self
,
var_desc
):
return
self
.
graph
.
create_var_node
(
var_desc
)
def
create_op_node
(
self
,
op_type
,
attrs
,
inputs
,
outputs
):
op_desc
=
core
.
OpDesc
()
op_desc
.
set_type
(
op_type
)
for
attr
,
value
in
attrs
.
iteritems
():
self
.
_update_desc_attr
(
op_desc
,
attr
,
value
)
for
input_name
,
var_nodes
in
inputs
.
iteritems
():
if
not
isinstance
(
var_nodes
,
list
):
var_nodes
=
[
var_nodes
]
op_desc
.
set_input
(
input_name
,
[
var_node
.
name
()
for
var_node
in
var_nodes
])
for
output_name
,
var_nodes
in
outputs
.
iteritems
():
if
not
isinstance
(
var_nodes
,
list
):
var_nodes
=
[
var_nodes
]
op_desc
.
set_output
(
output_name
,
[
var_node
.
name
()
for
var_node
in
var_nodes
])
return
self
.
graph
.
create_op_node
(
op_desc
)
def
create_op_node_from_desc
(
self
,
op_desc
):
return
self
.
graph
.
create_op_node
(
op_desc
)
def
update_input_link
(
self
,
old_input_node
,
new_input_node
,
op_node
):
assert
old_input_node
in
self
.
graph
.
nodes
()
and
new_input_node
in
self
.
graph
.
nodes
()
and
\
op_node
in
self
.
graph
.
nodes
(),
'Th three arguments must be in the graph nodes.'
old_input_node
.
outputs_remove
(
op_node
)
op_node
.
inputs_remove
(
old_input_node
)
new_input_node
.
outputs_append
(
op_node
)
op_node
.
inputs_append
(
new_input_node
)
op_node
.
op
().
_rename_input
(
old_input_node
.
name
(),
new_input_node
.
name
())
def
link_to
(
self
,
node_in
,
node_out
):
assert
node_in
in
self
.
graph
.
nodes
()
and
node_out
in
self
.
graph
.
nodes
(),
\
'Th two arguments must be in the graph nodes.'
node_in
.
outputs_append
(
node_out
)
node_out
.
inputs_append
(
node_in
)
def
safe_remove_nodes
(
self
,
remove_nodes
):
if
not
isinstance
(
remove_nodes
,
set
):
remove_nodes
=
set
(
remove_nodes
)
core
.
graph_safe_remove_nodes
(
self
.
graph
,
remove_nodes
)
def
draw
(
self
,
save_path
,
name
,
marked_nodes
=
None
):
def
_convert_to_pdf
(
dot_file_path
):
pdf_save_path
=
os
.
path
.
splitext
(
dot_file_path
)[
0
]
+
'.pdf'
exited_code
=
subprocess
.
call
(
'dot -Tpdf '
+
dot_file_path
\
+
' -o '
+
pdf_save_path
,
shell
=
True
)
if
exited_code
!=
0
:
print
(
'The dot command is needed for creating pdf files.'
)
print
(
'The {} is saved as the dot filetype.'
.
format
(
dot_file_path
))
remove_ctr_vars
=
set
()
ops_num
=
0
for
node
in
self
.
graph
.
nodes
():
if
node
.
is_ctrl_var
():
remove_ctr_vars
.
add
(
node
)
elif
node
.
is_op
():
ops_num
+=
1
print
(
'Total ops num = {}.'
.
format
(
ops_num
))
self
.
safe_remove_nodes
(
remove_ctr_vars
)
if
marked_nodes
is
not
None
:
if
not
isinstance
(
marked_nodes
,
set
):
marked_nodes
=
set
(
marked_nodes
)
marked_nodes
=
marked_nodes
-
remove_ctr_vars
if
self
.
graph
.
has
(
'__graphviz__marked_node__'
):
self
.
graph
.
erase
(
'__graphviz__marked_node__'
)
self
.
graph
.
set
(
'__graphviz__marked_node__'
,
marked_nodes
)
viz_dot_path
=
os
.
path
.
join
(
save_path
,
name
)
+
'.dot'
viz_pass
=
core
.
get_pass
(
'graph_viz_pass'
)
viz_pass
.
set
(
'graph_viz_path'
,
viz_dot_path
)
viz_pass
.
apply
(
self
.
graph
)
_convert_to_pdf
(
viz_dot_path
)
def
to_program
(
self
):
convert_pass
=
core
.
get_pass
(
'graph_to_program_pass'
)
convert_pass
.
set
(
'program'
,
Program
().
desc
)
convert_pass
.
apply
(
self
.
graph
)
desc
=
convert_pass
.
get_program
(
'program'
)
program
=
Program
.
_construct_from_desc
(
desc
)
return
program
def
_update_desc_attr
(
self
,
desc
,
name
,
val
):
"""
Update the value of desc's attribute by attribute's name.
"""
if
isinstance
(
val
,
Block
):
desc
.
set_block_attr
(
name
,
val
.
desc
)
elif
isinstance
(
val
,
list
)
and
val
and
all
(
isinstance
(
v
,
Block
)
for
v
in
val
):
desc
.
set_blocks_attr
(
name
,
[
v
.
desc
for
v
in
val
])
elif
isinstance
(
val
,
core
.
BlockDesc
)
or
\
isinstance
(
val
,
core
.
ProgramDesc
):
desc
.
set_serialized_attr
(
name
,
val
.
serialize_to_string
())
else
:
desc
.
_set_attr
(
name
,
val
)
class
Program
(
object
):
"""
Python Program. Beneath it is a ProgramDesc, which is used for
...
...
@@ -1958,12 +2086,10 @@ class Program(object):
return
p
@
staticmethod
def
construct_from_desc
(
desc
):
def
_
construct_from_desc
(
desc
):
"""
Construct a program from program desc.
Notes: All information about parameters will be lost.
Args:
desc(core.ProgramDesc): The program desc for constructing.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录