framework.py 259.3 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
J
jianghaicheng 已提交
48
    'ipu_shard_guard',
49
    'set_ipu_shard',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
53
    'mlu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
75
_dygraph_tracer_ = None
76
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
77
_global_expected_place_ = None
78
_current_device = None
79
global_prog_seed = 0
80
_current_pipeline_stage = None
81
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
82
_already_patch_varbase = False
83
_current_cuda_graph_mode = None
84
_global_flags_ = core.globals()
L
Leo Chen 已提交
85 86
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
87
_dy2st_enable_standalone_executor_ = (os.environ.get(
88
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1))
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148 149 150 151 152 153
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
154 155


J
Jiabin Yang 已提交
156 157 158
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
159
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
160 161 162 163 164


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
165
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
166 167 168 169 170 171 172


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


173 174 175 176 177 178 179 180 181
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
182 183 184
    # Only enable eager on CPU/GPU/XPU
    is_not_support = core.is_compiled_with_npu() or core.is_compiled_with_ipu(
    ) or core.is_compiled_with_mlu()
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
242 243 244


@signature_safe_contextmanager
J
Jiabin Yang 已提交
245
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
246 247
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
248 249 250
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
251
    try:
J
Jiabin Yang 已提交
252
        yield
253
    finally:
254 255
        if not already_fallback:
            _enable_legacy_dygraph()
256 257


258 259
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
260 261 262 263
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
264 265 266 267 268 269 270 271 272 273 274
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
275
@signature_safe_contextmanager
276
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
277 278 279 280
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
281
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
282
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
283
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
284
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
285
            which means no pipelining computation order and run Ops in terms of graph.
286

G
gouzil 已提交
287 288 289 290 291 292 293
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


328 329 330 331
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
332 333 334 335 336
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

337 338 339 340 341
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
342
            The sharded model will be computed from small to large. The default value is -1,
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
474 475
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
476 477 478

    if max_version is not None:
        max_version_split = max_version.split('.')
479 480
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


496
def _dygraph_not_support_(func):
497

498
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
499 500
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
501 502 503 504 505 506
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
507

508
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
509
        assert _non_static_mode(
510 511 512 513 514 515
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


516 517 518 519 520 521 522 523 524 525 526
def _non_static_only_(func):

    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
        assert _non_static_mode() or in_declarative_mode(
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


527
def _static_only_(func):
528

529
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
530
        assert not _non_static_mode(
531
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
532 533 534 535 536
        return func(*args, **kwargs)

    return __impl__


537 538 539 540 541
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


542 543 544 545 546 547
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
548
# same base class.
549
def _fake_interface_only_(func):
550

551 552
    def __impl__(*args, **kwargs):
        raise AssertionError(
553 554 555 556 557
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
558 559 560 561

    return __impl__


T
tangwei12 已提交
562 563
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
564 565 566 567
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
568

569 570 571 572 573 574 575 576 577 578 579 580 581
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


582 583
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
584
static_only = wrap_decorator(_static_only_)
585
fake_interface_only = wrap_decorator(_fake_interface_only_)
586
non_static_only = wrap_decorator(_non_static_only_)
587 588


L
lujun 已提交
589 590
def _dygraph_tracer():
    return _dygraph_tracer_
591

W
Wu Yi 已提交
592

593 594 595 596
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
597
def _current_expected_place():
598 599 600
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
601 602 603 604 605
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
606
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
607 608 609 610 611
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
612 613 614 615 616 617
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
618
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
619 620 621 622 623
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
624 625 626 627 628 629
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
630
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
631 632 633 634 635
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
651
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
652 653


L
Leo Chen 已提交
654 655
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
656 657
    """
    convert VarBase tp numpy
T
tangwei12 已提交
658

659 660 661
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
662 663 664 665 666 667 668 669 670
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
671
def _cpu_num():
672
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
673 674 675 676 677 678 679 680
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
681
        os.environ['CPU_NUM'] = str(1)
682
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
683 684 685 686 687 688 689 690 691 692
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
693 694


695 696 697 698 699 700 701 702 703
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


704 705 706 707 708 709 710 711 712
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


713 714 715 716 717 718 719 720 721
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


752 753 754 755 756 757 758
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
759

760 761 762 763 764 765
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

766
    Returns: None
767 768 769 770 771 772 773 774 775 776

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
792 793 794 795
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

796
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
797 798 799 800

    Examples:
        .. code-block:: python

801
            import paddle
802
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
803 804 805 806
    """
    return core.is_compiled_with_cuda()


807 808 809 810 811 812 813 814 815 816
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
817
            support_gpu = paddle.device.is_compiled_with_rocm()
818 819 820 821
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
822
def cuda_places(device_ids=None):
L
lujun 已提交
823
    """
824
    Note:
825 826 827
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
828
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
829 830

    If :code:`device_ids` is None, environment variable of
831
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
832
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
833
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
834
    If :code:`FLAGS_selected_gpus` is not set, all visible
835
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
836 837

    If :code:`device_ids` is not None, it should be the device
838
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
839
    the returned list would be
C
Chen Weihang 已提交
840
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
841

842
    Parameters:
843
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
844 845

    Returns:
C
Chen Weihang 已提交
846
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
847 848

    Examples:
849

L
lujun 已提交
850 851
        .. code-block:: python

C
Chen Weihang 已提交
852 853
            import paddle
            import paddle.static as static
T
tangwei12 已提交
854

855
            # required: gpu
856

C
Chen Weihang 已提交
857 858 859
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
860 861

    """
S
sneaxiy 已提交
862 863 864
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
865
        device_ids = _cuda_ids()
S
sneaxiy 已提交
866 867 868 869 870
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


871 872 873 874
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
875 876 877 878 879 880 881 882 883
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
884
        the returned list would be
S
sunzhongkai588 已提交
885
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
886

887 888 889 890 891 892
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
893

894 895
            # required: xpu

896 897
            import paddle
            import paddle.static as static
898

899 900 901 902 903 904 905 906 907 908 909 910
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


911 912 913 914
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
915

916 917 918 919 920 921 922 923 924
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
925
    the returned list would be
926
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
927

928 929 930 931 932 933 934 935 936 937 938
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
939

940 941 942 943 944 945 946 947 948 949 950 951
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
952
def cpu_places(device_count=None):
L
lujun 已提交
953
    """
C
Chen Weihang 已提交
954
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
955

S
add doc  
sneaxiy 已提交
956
    If :code:`device_count` is None, the device count would
957
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
958 959
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
960 961
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
962

963 964
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
965 966

    Returns:
C
Chen Weihang 已提交
967
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
968 969

    Examples:
970

L
lujun 已提交
971 972
        .. code-block:: python

C
Chen Weihang 已提交
973 974
            import paddle
            import paddle.static as static
T
tangwei12 已提交
975

C
Chen Weihang 已提交
976 977 978
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
979 980
    """

S
sneaxiy 已提交
981 982 983 984 985 986
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
987
    """
988
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
989 990

    If :code:`device_count` is None, the device count would
991
    be determined by environment variable :code:`CPU_NUM`.
992 993 994 995
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
996

997 998
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
999 1000

    Returns:
1001
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1002 1003 1004 1005

    Examples:
        .. code-block:: python

1006
            import paddle.fluid as fluid
L
lujun 已提交
1007 1008 1009 1010 1011
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
1012 1013 1014
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
1015 1016
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1017 1018


1019 1020
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1062
class NameScope(object):
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1089
@signature_safe_contextmanager
1090 1091
def name_scope(prefix=None):
    """
1092

1093
    Generate hierarchical name prefix for the operators in Static Graph.
1094

1095
    Note:
T
Tao Luo 已提交
1096 1097
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1098
        Don't use it in dygraph, since it will cause memory leak.
1099 1100

    Args:
T
Tao Luo 已提交
1101
        prefix(str, optional): prefix. Default is none.
1102 1103

    Examples:
1104

1105
        .. code-block:: python
T
Tink_Y 已提交
1106

1107 1108 1109
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1110
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1111
             b = a + 1
1112
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1113
                c = b * 1
1114
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1115
                d = c / 1
1116 1117 1118
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1119 1120
                g = f - 1

1121
          # Op are created in the default main program.
1122
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1138 1139
    """
    # TODO(panyx0718): Only [0-9a-z].
1140
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1141
    if _non_static_mode():
L
Leo Chen 已提交
1142 1143
        yield
    else:
T
tianshuo78520a 已提交
1144
        assert prefix, "namescope prefix can not be empty."
1145 1146
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1147 1148 1149 1150
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1163 1164 1165
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1166 1167 1168 1169


def grad_var_name(var_name):
    """
1170 1171
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1172 1173 1174
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1175

1176
def convert_np_dtype_to_dtype_(np_dtype):
1177
    """
1178
    Convert the data type in numpy to the data type in Paddle.
1179

1180
    Args:
1181 1182
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1183

1184
    Returns:
1185
        core.VarDesc.VarType: The data type in Paddle.
1186 1187

    """
1188 1189
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1190 1191 1192
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1193

1194
    if dtype == np.float32:
1195
        return core.VarDesc.VarType.FP32
1196
    elif dtype == np.float64:
1197
        return core.VarDesc.VarType.FP64
1198
    elif dtype == np.float16:
1199
        return core.VarDesc.VarType.FP16
1200
    elif dtype == np.int32:
1201
        return core.VarDesc.VarType.INT32
1202
    elif dtype == np.int16:
1203
        return core.VarDesc.VarType.INT16
1204
    elif dtype == np.int64:
1205
        return core.VarDesc.VarType.INT64
1206
    elif dtype == np.bool_:
1207
        return core.VarDesc.VarType.BOOL
1208
    elif dtype == np.uint16:
1209 1210 1211
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1212 1213
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1214 1215
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1216 1217 1218 1219
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1220
    else:
M
minqiyang 已提交
1221
        raise ValueError("Not supported numpy dtype %s" % dtype)
1222 1223 1224


def dtype_is_floating(dtype):
1225 1226 1227
    """
    Check the data type is floating or not.
    Args:
1228
        dtype(np.dtype|core.VarDesc.VarType): data type.
1229 1230 1231 1232 1233
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1234
    if not isinstance(dtype, core.VarDesc.VarType):
1235 1236
        dtype = convert_np_dtype_to_dtype_(dtype)

1237 1238 1239 1240
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1241 1242


Y
Yang Yang(Tony) 已提交
1243
def _debug_string_(proto, throw_on_error=True):
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1255
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1256
    if not proto.IsInitialized(error_fields) and throw_on_error:
1257 1258 1259
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1260 1261 1262
    return proto.__str__()


1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1273
    if _in_eager_mode_:
1274
        eager_tensor = core.eager.Tensor(
1275
            dtype if dtype else core.VarDesc.VarType.FP32,
1276 1277 1278
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1279 1280
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1281 1282
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1283 1284 1285
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1286 1287


1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1299
class VariableMetaClass(type):
1300

1301 1302 1303 1304
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1305
            return issubclass(t, core.eager.Tensor)
1306
        else:
J
Jiabin Yang 已提交
1307 1308
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1309 1310 1311 1312
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1313

1314 1315 1316 1317
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1318
            return issubclass(t, EagerParamBase)
1319
        else:
J
Jiabin Yang 已提交
1320 1321
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1322 1323 1324 1325
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1326
class Variable(object):
1327
    """
J
Jiabin Yang 已提交
1328
    **Notes**:
1329
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1330

1331 1332
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1333 1334 1335
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1336
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1337 1338
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1339

1340
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1341
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1342

T
tianshuo78520a 已提交
1343
    Most of a Variable's member variables can be set to be None. It mean
1344
    it is not available or will be specified later.
1345

1346
    Examples:
1347 1348
        In Static Graph Mode:

1349 1350
        .. code-block:: python

1351
            import paddle.fluid as fluid
1352
            cur_program = fluid.Program()
1353 1354 1355 1356
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1357

J
Jiabin Yang 已提交
1358
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1359 1360 1361 1362 1363 1364 1365 1366 1367

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1368 1369
    """

Y
Yu Yang 已提交
1370 1371
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1372
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1373 1374 1375 1376
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1377
                 capacity=None,
Q
QI JUN 已提交
1378
                 persistable=None,
F
fengjiayi 已提交
1379
                 error_clip=None,
Y
Yu Yang 已提交
1380
                 stop_gradient=False,
F
fengjiayi 已提交
1381
                 is_data=False,
H
Huihuang Zheng 已提交
1382
                 need_check_feed=False,
H
hong 已提交
1383
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1384
                 **kwargs):
Y
Yu Yang 已提交
1385 1386
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1387
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1388

Y
Yu Yang 已提交
1389
        if dtype is not None:
1390
            if not isinstance(dtype, core.VarDesc.VarType):
1391
                dtype = convert_np_dtype_to_dtype_(dtype)
1392

S
Steffy-zxf 已提交
1393 1394 1395 1396
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1397 1398 1399
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1400 1401
        self.belong_to_optimizer = belong_to_optimizer

1402 1403 1404
        self.error_clip = error_clip

        is_new_var = False
1405
        self.desc = self.block.desc.find_var(name.encode())
1406

1407
        if self.desc is None:
1408
            self.desc = self.block.desc.var(name.encode())
1409
            is_new_var = True
1410

1411 1412 1413
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1414 1415
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1416 1417
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1418

1419
        if shape is not None:
1420
            if is_new_var:
1421 1422 1423 1424 1425 1426
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1427 1428
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1429 1430 1431 1432 1433 1434 1435
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1436 1437
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1438 1439 1440 1441 1442 1443 1444 1445 1446
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1447 1448
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1449 1450 1451 1452 1453 1454 1455 1456 1457
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1458 1459
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1460 1461
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1462

1463 1464
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1465

1466 1467 1468 1469 1470 1471 1472
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1473

1474 1475
        self.block.vars[name] = self
        self.op = None
1476
        self.stop_gradient = stop_gradient
1477
        self.is_data = is_data
Y
Yu Yang 已提交
1478

1479 1480 1481
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1482 1483
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1484

1485
        Returns:
J
Jiabin Yang 已提交
1486
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1487 1488 1489 1490

        Examples:
            .. code-block:: python

1491
                import paddle
1492

1493 1494 1495 1496
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1497

1498 1499
                # create a detached Variable
                y = x.detach()
1500
        """
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1513 1514 1515
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1516
        return output
1517

1518
    @fake_interface_only
1519
    def numpy(self):
1520
        """
J
Jiabin Yang 已提交
1521
        **Notes**:
T
tianshuo78520a 已提交
1522
            **This API is ONLY available in Dygraph mode**
1523

J
Jiabin Yang 已提交
1524
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1525 1526 1527 1528 1529

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1530
            ndarray: dtype is same as current Variable
1531 1532 1533 1534 1535 1536

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1537
                from paddle.fluid.dygraph import Linear
1538 1539 1540 1541
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1542
                    linear = Linear(32, 64)
1543
                    data = to_variable(data)
1544
                    x = linear(data)
1545 1546 1547
                    print(x.numpy())

        """
1548
        pass
1549

1550
    @fake_interface_only
1551
    def backward(self, retain_graph=False):
1552
        """
J
Jiabin Yang 已提交
1553
        **Notes**:
T
tianshuo78520a 已提交
1554
            **This API is ONLY available in Dygraph mode**
1555

1556
        Run backward of current Graph which starts from current Tensor.
1557

J
Jiabin Yang 已提交
1558
        Args:
1559 1560 1561 1562
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1563

J
Jiabin Yang 已提交
1564 1565
        Returns:
            NoneType: None
1566 1567 1568 1569 1570

        Examples:
            .. code-block:: python

                import numpy as np
1571 1572
                import paddle
                paddle.disable_static()
1573 1574

                x = np.ones([2, 2], np.float32)
1575 1576 1577 1578 1579 1580 1581
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1582 1583
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1584
                loss.backward()
1585 1586

        """
1587
        pass
1588

1589
    @fake_interface_only
1590
    def gradient(self):
1591
        """
J
Jiabin Yang 已提交
1592
        **Notes**:
T
tianshuo78520a 已提交
1593
            **This API is ONLY available in Dygraph mode**
1594 1595 1596

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1597
        Returns:
1598
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1599 1600 1601 1602 1603 1604 1605

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1606
                # example1: return ndarray
1607 1608 1609 1610 1611 1612 1613 1614 1615
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1616
                    loss2.backward()
1617 1618
                    print(loss2.gradient())

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1632
        """
1633
        pass
1634

1635
    @fake_interface_only
1636
    def clear_gradient(self):
1637
        """
J
Jiabin Yang 已提交
1638
        **Notes**:
T
tianshuo78520a 已提交
1639
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1640 1641

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1642

J
Jiabin Yang 已提交
1643
        Clear  (set to ``0`` ) the Gradient of Current Variable
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1662
                    loss2.backward()
1663 1664 1665 1666 1667
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1668
        pass
X
Xin Pan 已提交
1669

1670 1671 1672 1673
    @fake_interface_only
    def register_hook(self, hook):
        pass

1674
    def __str__(self):
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1691 1692
                import paddle
                import paddle.static as static
1693

1694 1695 1696
                paddle.enable_static()

                cur_program = static.Program()
1697 1698 1699 1700 1701 1702
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1703 1704
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1705
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1706 1707
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1708 1709
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1710
        else:
1711 1712
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1713

1714
        if self.is_parameter:
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1725
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1726
        dist_context = get_default_distributed_context()
1727 1728
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1729 1730
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1731

1732
        return var_str
Y
Yang Yang(Tony) 已提交
1733

F
update  
fengjiayi 已提交
1734
    def to_string(self, throw_on_error, with_details=False):
1735 1736 1737
        """
        Get debug string.

J
Jiabin Yang 已提交
1738 1739 1740 1741 1742
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1743

1744 1745
        Returns:
            str: The debug string.
1746 1747 1748 1749 1750

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1751
                import paddle
1752

1753
                paddle.enable_static()
1754 1755 1756 1757 1758
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1759
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1760
                print("=============with detail===============")
1761
                print(new_variable.to_string(True, True))
1762
        """
1763 1764
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1765
        protostr = self.desc.serialize_to_string()
1766
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1767 1768
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1769
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1770
            for attr_name in additional_attr:
1771
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1772

F
update  
fengjiayi 已提交
1773
        return res_str
1774 1775 1776

    __repr__ = __str__

1777 1778 1779
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1804
    @property
1805
    def stop_gradient(self):
J
Jiabin Yang 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1821 1822
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1823 1824 1825
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1826 1827
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1828 1829 1830 1831
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1832
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1833 1834
                assert (out1.gradient() == 0).all()
        """
1835
        return self.desc.stop_gradient()
1836

1837 1838
    @stop_gradient.setter
    def stop_gradient(self, s):
1839
        self.desc.set_stop_gradient(s)
1840

1841 1842
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1864
        return self.desc.persistable()
1865

Y
Yu Yang 已提交
1866 1867
    @persistable.setter
    def persistable(self, p):
1868
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1895 1896
    @property
    def name(self):
J
Jiabin Yang 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1913
        return self.desc.name()
Y
Yu Yang 已提交
1914

1915 1916 1917 1918 1919 1920
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1921 1922
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1935 1936
    @name.setter
    def name(self, new_name):
1937
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1938

Y
Yu Yang 已提交
1939 1940
    @property
    def shape(self):
J
Jiabin Yang 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1958
        # convert to tuple, make it as same as numpy API.
1959
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1960 1961

    @property
F
fengjiayi 已提交
1962
    def dtype(self):
J
Jiabin Yang 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1979
        return self.desc.dtype()
Y
Yu Yang 已提交
1980 1981 1982

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1996
            import paddle
J
Jiabin Yang 已提交
1997
            import paddle.fluid as fluid
1998 1999

            paddle.enable_static()
J
Jiabin Yang 已提交
2000 2001 2002 2003 2004 2005 2006
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2007 2008
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2009 2010
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2011
        return self.desc.lod_level()
Y
Yu Yang 已提交
2012

Y
Yu Yang 已提交
2013 2014
    @property
    def type(self):
J
Jiabin Yang 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2031
        return self.desc.type()
Y
Yu Yang 已提交
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2074 2075 2076 2077 2078 2079 2080
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2081 2082
        return out

2083 2084 2085
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2086
        Variable. It remains in the current graph, that is, the cloned Variable
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2113 2114 2115
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2116 2117
        return output

W
Wu Yi 已提交
2118
    def _set_error_clip(self, error_clip):
2119 2120 2121 2122 2123 2124 2125 2126 2127
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2128 2129
        self.error_clip = error_clip

2130 2131 2132 2133 2134 2135 2136 2137
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2138
        Returns:
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2152
        Returns:
2153 2154 2155 2156 2157 2158
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2170
            raise ValueError("slice step can not be zero")
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2181 2182
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2246
    def _cloneVar(self, copy=False):
2247 2248
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2249 2250
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2251 2252 2253 2254
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2255
        new_var = self._cloneVar()
2256 2257 2258 2259 2260 2261 2262 2263
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2264 2265 2266
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2267
        new_var = self._cloneVar()
2268 2269 2270 2271 2272 2273
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2274 2275 2276 2277 2278
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2279
                return self._cloneVar(True)
2280 2281 2282 2283 2284 2285 2286
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2287 2288
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2289 2290 2291
                        start += step
                else:
                    while start > stop:
2292 2293
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2294 2295 2296 2297
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2298
                return self._cloneVar(True)
2299
            index = int(item)
2300
            if (index > 0 and index >= self.shape[axis]) \
2301 2302 2303 2304 2305 2306 2307
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2308
        return _getitem_impl_(self, item)
2309

2310
    def __setitem__(self, item, value):
2311
        return _setitem_impl_(self, item, value)
2312

2313 2314
    def get_value(self, scope=None):
        """
2315
        Get the value of variable in given scope.
2316 2317

        Args:
2318
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
2329
                import paddle.static as static
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2354 2355
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2356 2357 2358 2359
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2360 2361
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
2374
        Set the value to the tensor in given scope.
2375 2376 2377

        Args:
            value(Tensor/ndarray) : The value to be set.
2378
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2379 2380 2381 2382 2383
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2384

2385 2386 2387 2388
        Examples:
            .. code-block:: python

                import paddle
2389
                import paddle.static as static
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2416
        # can not be imported at the begainning of this file.
2417 2418 2419 2420 2421
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2422 2423
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2424 2425 2426

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2427 2428
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2459 2460 2461 2462
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2463 2464 2465 2466
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2467 2468 2469 2470 2471 2472 2473
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2499 2500 2501
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2502 2503
        return output

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2558
    def dist_attr(self):
2559
        """
2560
        Get distributed attribute of this Variable.
2561
        """
2562
        return self.desc.dist_attr
2563

2564 2565
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2566
        """
2567
        Set distributed attribute of this Variable.
2568
        """
2569
        self.desc.dist_attr = dist_attr
2570

Y
Yu Yang 已提交
2571

F
fengjiayi 已提交
2572 2573 2574
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2575

2576 2577
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2578 2579 2580 2581
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2582
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2583 2584 2585 2586 2587
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2588 2589 2590 2591
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2601
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2602 2603 2604 2605 2606 2607
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2608 2609 2610 2611 2612 2613 2614 2615
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2616 2617
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2618 2619
        return self.op_proto_map[type]

2620 2621
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2622
        custom_op_names = []
2623 2624 2625
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2626 2627 2628
                custom_op_names.append(proto.type)

        return custom_op_names
2629

2630 2631 2632 2633
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2634
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2635
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2636 2637
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2638 2639
        }

F
fengjiayi 已提交
2640

X
Xin Pan 已提交
2641
class Operator(object):
2642
    """
2643 2644 2645 2646 2647 2648 2649
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2650
        type(str): The type of operator. Default None.
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2671
        Block.append_op or Block._prepend_op instead.
2672 2673 2674 2675

    Examples:
        .. code-block:: python

2676
            import paddle.fluid as fluid
2677
            cur_program = fluid.Program()
2678 2679 2680 2681 2682
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2683
    """
2684
    OP_WITHOUT_KERNEL_SET = {
2685 2686
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2687
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2688 2689
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2690
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2691
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2692
        'copy_cross_scope', 'c_gen_cncl_id'
2693
    }
2694

Y
Yu Yang 已提交
2695 2696
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2697
                 desc,
Y
Yu Yang 已提交
2698 2699 2700
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2701
                 attrs=None):
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2712
        if _non_static_mode():
2713 2714
            if type is None:
                raise ValueError(
2715
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2716
            self._type = type
M
minqiyang 已提交
2717
            self.attrs = attrs if attrs else {}
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2728 2729 2730
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2731 2732 2733
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2734 2735
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2736 2737

            role_var_name = op_maker.kOpRoleVarAttrName()
2738 2739
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2740
                op_attrs[role_var_name] = self.block.program._op_role_var
2741 2742 2743 2744 2745

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2746 2747 2748 2749 2750
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2751 2752 2753
                return
            if type is None:
                raise ValueError(
2754
                    "`type` to initialized an Operator can not be None.")
2755 2756
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2757 2758 2759
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2760 2761 2762 2763
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2764 2765 2766 2767 2768 2769 2770

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2782
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2783 2784 2785 2786 2787
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2788 2789 2790 2791 2792
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2807
                        if not isinstance(in_args, (list, tuple)):
2808 2809 2810 2811 2812 2813
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2814
                        for index, arg in enumerate(in_args):
2815 2816 2817 2818
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2819
                            elif isinstance(arg, (Variable, core.VarBase)):
2820
                                in_arg_names.append(arg.name)
2821
                            else:
2822 2823 2824 2825
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2826 2827
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2828 2829 2830 2831 2832 2833 2834 2835 2836
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2837 2838 2839 2840
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2853 2854 2855
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
2856
                            out_arg_names.append(arg.name)
2857
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2858
                        if not _non_static_mode():
2859 2860 2861 2862
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2863 2864
                    self.desc.set_output(out_proto.name, out_arg_names)

2865
            extra_attrs_map = core.get_op_extra_attrs(type)
2866 2867 2868 2869 2870
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2871 2872
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2873 2874 2875
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2876 2877 2878 2879 2880 2881 2882
                for attr_name in extra_attrs_map.keys():
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
                        self._update_desc_attr(attr_name,
                                               extra_attrs_map[attr_name])
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2883

J
jianghaicheng 已提交
2884 2885
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2886
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2887 2888
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2889
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2890 2891 2892
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2893 2894 2895 2896 2897
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2898
    def _has_kernel(self, op_type):
2899 2900
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2901
    def to_string(self, throw_on_error):
2902
        """
2903 2904
        Get debug string.

2905
        Args:
2906 2907
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2908

2909 2910
        Returns:
            str: The debug string.
2911 2912

        """
2913
        protostr = self.desc.serialize_to_string()
2914
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2915 2916
        return _debug_string_(proto, throw_on_error)

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2949
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3017
            # it is bytes of serialized protobuf
3018 3019 3020 3021
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3022 3023 3024 3025 3026 3027 3028 3029 3030
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3031 3032 3033
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
3034

3035 3036 3037 3038
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3039
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
3040
        dist_context = get_default_distributed_context()
3041 3042
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3043 3044
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3045

3046 3047
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3048 3049
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3050 3051 3052 3053 3054
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3055
    def __str__(self):
3056
        return self._to_readable_code()
3057 3058 3059

    __repr__ = __str__

F
fengjiayi 已提交
3060 3061
    @property
    def type(self):
3062
        return self.desc.type()
F
fengjiayi 已提交
3063 3064

    def input(self, name):
3065
        r"""
3066
        Get the input arguments according to the input parameter name.
3067

3068 3069
        Args:
            name(str): The input parameter name.
3070

3071 3072 3073
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3074
        """
F
fengjiayi 已提交
3075 3076
        return self.desc.input(name)

W
Wu Yi 已提交
3077
    def _rename_input(self, old_name, new_name):
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3088
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3089

W
Wu Yi 已提交
3090
    def _rename_output(self, old_name, new_name):
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3101
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3102

F
fengjiayi 已提交
3103 3104 3105 3106
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3107 3108 3109 3110 3111 3112 3113 3114
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3115
    def output(self, name):
3116
        r"""
3117
        Get output arguments by the output parameter name.
3118

3119 3120
        Args:
            name(str): The output parameter name.
3121

3122 3123 3124
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3125
        """
F
fengjiayi 已提交
3126 3127 3128 3129 3130 3131
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3132 3133 3134 3135 3136 3137 3138 3139
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3140
    def has_attr(self, name):
3141
        """
3142 3143
        Whether this Operator has the attribute with name or not.

3144
        Args:
3145
            name(str): the attribute name.
3146

3147 3148
        Returns:
            bool: True if has this attribute.
3149 3150

        """
F
fengjiayi 已提交
3151 3152 3153
        return self.desc.has_attr(name)

    def attr_type(self, name):
3154
        """
3155
        Get the type of attribute by attribute's name.
3156

3157 3158
        Args:
            name(str): the attribute name.
3159

3160 3161
        Returns:
            core.AttrType: the attribute type.
3162
        """
3163
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3164

W
Wu Yi 已提交
3165
    def _set_attr(self, name, val):
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3176 3177
        self._update_desc_attr(name, val)

3178 3179 3180
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3192 3193 3194 3195 3196
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3197
            self.desc.set_block_attr(name, val.desc)
3198
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3199
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3200 3201 3202 3203
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3240

F
fengjiayi 已提交
3241 3242
    @property
    def attr_names(self):
3243
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3244 3245

    def attr(self, name):
3246
        """
3247 3248
        Get the attribute by name.

3249
        Args:
3250
            name(str): the attribute name.
3251

3252 3253
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3254 3255
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3256
        return self.desc.attr(name)
Y
Yu Yang 已提交
3257

W
Wu Yi 已提交
3258
    def _block_attr_id(self, name):
3259
        """
G
gongweibao 已提交
3260
        Get the block attribute's id by name.
3261

3262 3263
        Args:
            name(str): the attribute name.
3264

3265 3266
        Returns:
            int: the block index.
3267
        """
W
Wu Yi 已提交
3268
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3269

W
Wu Yi 已提交
3270
    def _block_attr(self, name):
G
gongweibao 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3281
        id = self._block_attr_id(name)
G
gongweibao 已提交
3282 3283 3284
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3285
    def _blocks_attr(self, name):
G
gongweibao 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3296
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3297 3298 3299 3300 3301
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3302
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3313
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3314

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VAR, "Required type attr({}) is Variable, but received {}".format(
            name, attr_type)
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VARS, "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type)
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3350
    def all_attrs(self):
F
fengjiayi 已提交
3351
        """
3352 3353 3354
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3355
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3356 3357 3358 3359
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3360
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3361
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3362
                attr_map[n] = self._block_attr(n)
3363
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3364
                attr_map[n] = self._blocks_attr(n)
3365 3366 3367 3368 3369 3370
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3371

F
fengjiayi 已提交
3372 3373
        return attr_map

3374 3375 3376
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3377 3378 3379 3380

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3381 3382 3383
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3384 3385 3386 3387 3388 3389 3390 3391

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3392 3393
            return False

3394 3395 3396 3397 3398 3399
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3400
    @property
3401
    def dist_attr(self):
3402
        """
3403
        Get distributed attribute of this Variable.
3404
        """
3405
        return self.desc.dist_attr
3406

3407 3408
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3409
        """
3410
        Set distributed attribute of this Variable.
3411
        """
3412
        self.desc.dist_attr = dist_attr
3413

Y
Yu Yang 已提交
3414

Y
Yu Yang 已提交
3415
class Block(object):
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3430
        use `Program._create_block()` to create a block.
3431 3432 3433 3434

    Examples:
        .. code-block:: python

3435 3436 3437
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3438 3439 3440 3441 3442 3443 3444 3445 3446
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3447
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3448
        self.desc = program.desc.block(idx)
3449
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3450
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3451
        self.program = program
3452
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3453

3454
    def __str__(self):
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3489
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3501

F
fengjiayi 已提交
3502 3503
    def to_string(self, throw_on_error, with_details=False):
        """
3504 3505
        Get debug string.

F
fengjiayi 已提交
3506 3507
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3508
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3509
            with_details(bool): more details about variables and parameters
3510 3511
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3512

3513 3514
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3515
        """
3516 3517
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3518
        if with_details:
F
fengjiayi 已提交
3519
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3520 3521
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3522
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3523
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3524
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3525
            for op in self.ops:
F
fengjiayi 已提交
3526 3527
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3528 3529 3530
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3531 3532
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3533 3534
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3535 3536 3537

    __repr__ = __str__

Y
Yu Yang 已提交
3538 3539
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3540
        return self.desc.parent
Y
Yu Yang 已提交
3541

Y
Yu Yang 已提交
3542 3543 3544 3545
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3546
    def _set_forward_block_idx(self, idx):
3547 3548 3549 3550 3551 3552 3553 3554 3555
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3556
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3557

3558 3559 3560 3561 3562 3563 3564 3565
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3566 3567
    @property
    def idx(self):
Y
Yu Yang 已提交
3568
        return self.desc.id
Y
Yu Yang 已提交
3569

Q
Qiao Longfei 已提交
3570
    def var(self, name):
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3584
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3585 3586 3587
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3588 3589
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3590
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3591
        return v
Q
Qiao Longfei 已提交
3592

X
Xin Pan 已提交
3593
    def _find_var_recursive(self, name):
3594 3595 3596 3597 3598 3599 3600
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3601
            Variable: the Variable with the giving name. Or None if not found.
3602
        """
Y
Yu Yang 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3627
        return None
Y
Yu Yang 已提交
3628

X
Xin Pan 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3648

Q
Qiao Longfei 已提交
3649
    def all_parameters(self):
3650
        return list(self.iter_parameters())
3651

3652
    def iter_parameters(self):
M
minqiyang 已提交
3653
        return (item[1] for item in six.iteritems(self.vars)
3654
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3655

Y
Yu Yang 已提交
3656
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3657
        if _non_static_mode():
L
Leo Chen 已提交
3658 3659
            var = _varbase_creator(*args, **kwargs)
        else:
3660 3661 3662
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3663
        return var
Y
Yu Yang 已提交
3664

Q
Qiao Longfei 已提交
3665 3666 3667
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3668
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3669 3670
        """
        Rename variable in vars and ops' inputs and outputs
3671 3672

        Args:
3673 3674
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3675 3676 3677 3678 3679 3680 3681 3682

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3683
        """
3684 3685 3686 3687
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
        new_name = new_name.decode() if isinstance(new_name,
                                                   bytes) else new_name
M
minqiyang 已提交
3688

T
typhoonzero 已提交
3689
        if not self.has_var(name):
3690
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3691 3692
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3693
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3694 3695 3696 3697 3698 3699
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3700
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3701 3702 3703 3704
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3705
        orig_var_type = v.type
3706
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3707
        # NOTE: v is destroyed by C++ after calling _rename_var.
3708
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3709
        if var_type == "Parameter":
L
Leo Chen 已提交
3710
            if in_dygraph_mode():
3711 3712 3713 3714 3715 3716 3717 3718 3719
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3720
            else:
J
Jiabin Yang 已提交
3721
                if _in_legacy_dygraph():
3722 3723 3724 3725 3726 3727 3728 3729 3730
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3731
                else:
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3742
        elif var_type == "Variable":
3743 3744 3745 3746 3747
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3748

W
Wu Yi 已提交
3749
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3750 3751 3752
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3753
        self._sync_with_cpp()
3754
        return var
T
typhoonzero 已提交
3755

3756 3757 3758
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3759
        self.desc._remove_var(name.encode())
3760 3761
        del self.vars[name]

Y
Yu Yang 已提交
3762 3763
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3764
        param = None
L
Leo Chen 已提交
3765
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3766
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3767
        else:
J
Jiabin Yang 已提交
3768 3769 3770 3771
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3772

3773
        if 'initializer' in kwargs:
3774 3775 3776 3777 3778

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3779
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3780
                        # are treated as initialization ops that cause error.
3781
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3782 3783 3784 3785 3786
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3787
                            continue
3788 3789 3790 3791 3792 3793 3794 3795
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3796 3797
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3798
            elif init_ops_len == 1:
3799
                # TODO already inited, do nothing, should log a warning
3800 3801 3802
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3803
        return param
Y
Yu Yang 已提交
3804

Y
Yu Yang 已提交
3805
    def append_op(self, *args, **kwargs):
3806 3807 3808 3809 3810 3811
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3812
        if _non_static_mode():
3813
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3814
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3815
            type = kwargs.get("type", None)
3816 3817 3818 3819
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3820 3821 3822 3823 3824 3825
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3826

M
minqiyang 已提交
3827 3828 3829
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3830
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3831

3832 3833 3834
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3835 3836
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3837
        else:
3838 3839
            from paddle.fluid.dygraph.base import param_guard

3840
            op_desc = self.desc.append_op()
3841 3842 3843 3844 3845 3846
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3847 3848 3849 3850 3851 3852
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3853

M
minqiyang 已提交
3854
            self.ops.append(op)
M
minqiyang 已提交
3855

3856 3857
        return op

W
Wu Yi 已提交
3858
    def _insert_op(self, index, *args, **kwargs):
3859 3860 3861 3862 3863 3864 3865 3866 3867
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3868
        self._sync_with_cpp()
F
fangshuixun007 已提交
3869
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3870

3871 3872
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
3873
        Insert an Operator according to the giving arguments,
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3888 3889 3890 3891 3892 3893 3894 3895 3896
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3897 3898
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3899
        self.desc._remove_op(index, index + 1)
3900 3901
        del self.ops[index]

W
Wu Yi 已提交
3902
    def _slice_ops(self, start, end):
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3913
        return self.ops[start:end]
Y
Yancey1989 已提交
3914

W
Wu Yi 已提交
3915
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3916
        if _non_static_mode():
J
Jiabin Yang 已提交
3917 3918
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3929
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3930
        else:
3931
            op_desc = self.desc._prepend_op()
3932 3933 3934 3935 3936 3937
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3938
            self.ops.insert(0, op)
3939

Y
Yu Yang 已提交
3940 3941
        return op

W
Wu Yi 已提交
3942
    def _sync_with_cpp(self):
3943
        """
3944 3945
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3946
        """
Q
Qiao Longfei 已提交
3947 3948 3949
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3950 3951 3952 3953
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3954 3955 3956 3957 3958 3959
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3960
                else:
3961 3962 3963 3964
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3965

3966
        # sync variables removed from c++ end
3967
        for var in list(self.vars.keys()):
3968
            if not self.desc.find_var(var.encode()):
3969 3970
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3971
        # sync operators from cpp
3972 3973 3974 3975
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3992 3993 3994 3995 3996

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3997
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3998 3999 4000 4001 4002 4003 4004

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4018 4019 4020 4021
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4022
    def _copy_param_info_from(self, other):
4023
        """
4024 4025
        Copy the information of parameters from the other block.

4026
        Args:
4027 4028 4029 4030 4031
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4032 4033 4034 4035 4036

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4037 4038
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
4039
        for p in other.iter_parameters():
4040 4041 4042
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4043 4044
                # if the Parameter is pruned, v may be None
                continue
4045
            assert isinstance(v, Variable)
4046
            new_p = None
L
Leo Chen 已提交
4047
            if in_dygraph_mode():
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
4058
            else:
J
Jiabin Yang 已提交
4059
                if _in_legacy_dygraph():
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
4084 4085
            self.vars[new_p.name] = new_p

4086
    def _clone_variable(self, var, force_persistable=True):
4087 4088
        """
        Clone a variable into current block.
4089

4090 4091
        Args:
            var: the variable to be cloned.
4092 4093 4094
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4095 4096

        Returns:
4097
            Variable: the new  variable cloned from 'var' in current block.
4098 4099
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4100 4101 4102
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4103 4104 4105
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
4106
        elif var.type == core.VarDesc.VarType.RAW:
4107 4108 4109
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
4110 4111 4112 4113 4114 4115
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4116
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4117 4118
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4119 4120 4121 4122 4123 4124 4125
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4126
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4127 4128
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4129
        return ret_var
4130

Y
Yu Yang 已提交
4131

4132 4133 4134 4135
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4136
# of some old Python Variables(all old Python Operators) may have
4137
# been destructed.
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4249
    def remove_input_by_id(self, node_id):
4250 4251 4252 4253 4254 4255
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4256
        self.node.remove_input(node_id)
4257

4258
    def remove_input(self, node):
4259 4260 4261 4262
        """
        Remove a node from inputs.

        Args:
4263
            node(IrNode): the node being removed.
4264
        """
4265
        self.node.remove_input(node.node)
4266

4267
    def append_input(self, node):
4268 4269 4270 4271
        """
        Append a node in inputs.

        Args:
4272
            node(IrNode): the node being appended.
4273
        """
4274
        self.node.append_input(node.node)
4275 4276 4277 4278 4279 4280 4281 4282

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4283
    def remove_output_by_id(self, node_id):
4284 4285 4286 4287 4288 4289
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4290
        self.node.remove_output(node_id)
4291

4292
    def remove_output(self, node):
4293 4294 4295 4296
        """
        Remove a node from outputs.

        Args:
4297
            node(IrNode): the node being removed.
4298
        """
4299
        self.node.remove_output(node.node)
4300

4301
    def append_output(self, node):
4302 4303 4304 4305
        """
        Append a node in outputs.

        Args:
4306
            node(IrNode): the node being appended.
4307
        """
4308
        self.node.append_output(node.node)
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4356
            "The node variable description can not be None."
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4367
            "The node variable description can not be None."
4368 4369
        return self.node.var().persistable()

4370 4371 4372 4373 4374 4375 4376 4377
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4378
            "The node variable description can not be None."
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4389
            "The node variable description can not be None."
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4400
            "The node variable description can not be None."
4401 4402
        return self.node.var().shape()

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4450
            "The node operator description can not be None."
4451 4452
        self.node.op()._rename_input(old_input_name, new_input_name)

4453 4454 4455 4456 4457 4458 4459 4460 4461
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4462
            "The node operator description can not be None."
4463 4464
        self.node.op()._rename_output(old_output_name, new_output_name)

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4476
            "The node operator description can not be None."
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4490
            "The node operator description can not be None."
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4501
            "The node operator description can not be None."
4502 4503
        return self.node.op().set_type(new_type)

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4519
            "The node operator description can not be None."
4520
        desc = self.node.op()
4521 4522 4523 4524 4525
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4526
            desc.set_block_attr(name, val.desc)
4527
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4528 4529
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4530
                isinstance(val, core.ProgramDesc):
4531 4532 4533 4534
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4535 4536 4537 4538 4539 4540 4541 4542
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4543
            "The node operator description can not be None."
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4554
            "The node operator description can not be None."
4555 4556
        return self.node.op().output_arg_names()

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4578 4579
class IrGraph(object):
    """
4580
    Python IrGraph. Beneath it is a core.Graph, which is used for
4581
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4582 4583
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4584 4585 4586 4587
    """

    def __init__(self, graph, for_test=False):
        """
4588 4589
        Construct an IrGraph using core.Graph.

4590 4591 4592 4593 4594 4595 4596 4597 4598
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4599 4600 4601 4602
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4603 4604 4605
        Warns:
            The method only clones the graph structure, not its attributes.

4606 4607 4608
        Returns:
            IrGraph: A new and duplicated graph.
        """
4609
        g = self.graph.clone()
4610 4611
        return IrGraph(g, self._for_test)

4612
    def is_test(self):
4613 4614 4615
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4616 4617
        return self._for_test

W
WangZhen 已提交
4618
    def all_nodes(self):
4619 4620 4621
        """
        Return all nodes included in the graph as a set.
        """
4622
        return {IrNode(node) for node in self.graph.nodes()}
4623

4624
    def all_var_nodes(self):
4625 4626 4627
        """
        Return all variable nodes included in the graph as a set.
        """
4628
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4629

4630
    def all_persistable_nodes(self):
4631 4632 4633
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4634 4635 4636 4637 4638
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4639
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4640

4641
    def all_op_nodes(self):
4642 4643 4644
        """
        Return all operator nodes included in the graph as a set.
        """
4645
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4646

4647 4648 4649 4650 4651 4652
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4653
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4654 4655 4656 4657 4658 4659 4660 4661 4662
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4663
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4675
            IrVarNode: the created persistable variable node.
4676
        """
4677 4678 4679 4680 4681
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4682
        return IrVarNode(self.graph.create_var_node(var_desc))
4683 4684

    def create_var_node(self, name, var_type, shape, var_dtype):
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4696
            IrVarNode: the created variable node.
4697 4698
        """

4699 4700 4701 4702
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4703
        return IrVarNode(self.graph.create_var_node(var_desc))
4704

4705 4706 4707 4708 4709 4710
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4711
    def create_var_node_from_desc(self, var_desc):
4712 4713 4714 4715 4716 4717 4718 4719
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4720
            IrVarNode: the created variable node.
4721
        """
4722
        return IrVarNode(self.graph.create_var_node(var_desc))
4723 4724

    def create_op_node(self, op_type, attrs, inputs, outputs):
4725 4726 4727 4728 4729 4730 4731
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4732
            outputs(dict): the outputs of the operator node.
4733 4734

        Returns:
4735
            IrOpNode: the created operator node.
4736
        """
4737 4738
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4739
        for attr, value in six.iteritems(attrs):
4740
            self._update_desc_attr(op_desc, attr, value)
4741
        for input_name, var_nodes in six.iteritems(inputs):
4742 4743 4744 4745
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4746
        for output_name, var_nodes in six.iteritems(outputs):
4747 4748 4749 4750
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4751
        return IrOpNode(self.graph.create_op_node(op_desc))
4752 4753

    def create_op_node_from_desc(self, op_desc):
4754 4755 4756 4757 4758 4759 4760
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4761
            IrOpNode: the created operator node.
4762
        """
4763
        return IrOpNode(self.graph.create_op_node(op_desc))
4764 4765

    def update_input_link(self, old_input_node, new_input_node, op_node):
4766 4767 4768 4769
        """
        Update the input's link of a operator node.

        Args:
4770 4771 4772
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4773
        """
4774
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4775
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4776
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4777 4778 4779 4780
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4781
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4782

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4793
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4794
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4795 4796 4797 4798 4799 4800
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4801
    def link_to(self, node_in, node_out):
4802 4803 4804 4805
        """
        Connect two nodes.

        Args:
4806 4807
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4808
        """
4809 4810 4811 4812
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4813 4814
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4815 4816

    def safe_remove_nodes(self, remove_nodes):
4817 4818 4819 4820 4821 4822 4823
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4824
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4825 4826 4827 4828
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4829 4830
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4831

Z
Zhen Wang 已提交
4832 4833 4834 4835 4836 4837 4838 4839
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4840
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4841 4842 4843 4844
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4845
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4846 4847 4848
                        ]
                    else:
                        var_nodes[each_var_name].append(
4849 4850
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4851 4852
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4853
    def has_circle(self):
4854 4855 4856 4857 4858 4859
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4860 4861 4862
        return core.has_circle(self.graph)

    def graph_num(self):
4863 4864 4865 4866 4867 4868
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4869 4870 4871
        return core.graph_num(self.graph)

    def topology_sort(self):
4872 4873 4874
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4875
        Notes: the `graph` can not contain a circle.
4876 4877

        Returns:
Z
Zhen Wang 已提交
4878
            list(IrNode): nodes in topology order.
4879
        """
4880
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4881
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4882 4883

    def build_adjacency_list(self):
4884 4885 4886 4887
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4888
            dict{IrNode: set(IrNode)}: the adjacency list.
4889
        """
4890 4891 4892 4893 4894
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4895

4896 4897 4898 4899 4900 4901 4902 4903
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4904
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4905 4906 4907 4908 4909
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4910 4911
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4912 4913 4914
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4915 4916 4917 4918 4919
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4920
        remove_ctr_vars = set()
4921
        if remove_ctr_var:
4922
            for node in self.all_var_nodes():
4923 4924 4925
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4926 4927
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4928 4929
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4930 4931 4932 4933 4934 4935
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4936 4937 4938 4939
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4940 4941
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4942 4943 4944 4945 4946 4947 4948
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4949 4950 4951
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4952
        WARN: When the graph includes backward operator nodes, the
4953 4954 4955 4956 4957 4958
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4959
        convert_pass = core.get_pass('graph_to_program_pass')
4960 4961
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4962 4963 4964 4965
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4966 4967 4968 4969 4970 4971 4972 4973
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4974 4975
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4976 4977
        return target_node

4978 4979 4980 4981
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4982 4983 4984 4985 4986
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4987
            desc.set_block_attr(name, val.desc)
4988
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4989 4990 4991 4992 4993 4994 4995 4996
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4997
class Program(object):
D
dzhwinter 已提交
4998
    """
4999
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5000
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5001
    it will contain nested block.
5002

J
Jiabin Yang 已提交
5003 5004 5005
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5006

J
Jiabin Yang 已提交
5007
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5008
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5009 5010 5011 5012 5013 5014 5015
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5016
    **Notes**:
5017 5018 5019
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5020 5021

    Returns:
J
Jiabin Yang 已提交
5022
        Program: An empty Program.
D
dzhwinter 已提交
5023 5024

    Examples:
5025 5026
        .. code-block:: python

5027 5028 5029 5030
            import paddle
            import paddle.static as static

            paddle.enable_static()
5031

5032 5033 5034 5035 5036
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5037
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5038 5039 5040

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5041 5042 5043

    """

5044 5045
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5046 5047
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5048 5049
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5050
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5051
        self.__op_role_var = []
T
tangwei12 已提交
5052

5053 5054
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5055
        self._is_distributed = False
5056
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5057
        self._is_chief = False
5058 5059 5060
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5061
        self._endpoints = []
5062 5063 5064
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5065
        self._trainers_endpoints = []
5066
        # the distributed lookup table names
T
tangwei12 已提交
5067
        self._distributed_lookup_table = None
5068 5069 5070

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5071 5072
        self._use_lamb = False

5073 5074 5075
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5076

5077 5078 5079
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5080
        self._program_config = None
5081

H
hutuxian 已提交
5082 5083 5084
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5085 5086 5087
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5088 5089 5090
        # appending gradients times
        self._appending_grad_times = 0

5091 5092 5093 5094
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

5095 5096
        # compiled program, i.e. Graph
        self._graph = None
5097 5098
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5099

5100
    def _find_var_class_kwargs(self, new_desc):
5101 5102 5103 5104 5105 5106 5107 5108
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5109 5110 5111 5112
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5113 5114
            if (idx > (len(self.blocks) - 1)):
                self._create_block()
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5125 5126 5127 5128 5129 5130
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5131 5132 5133 5134
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5135 5136
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5137 5138 5139 5140 5141 5142 5143 5144 5145
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5186
        assert block_num == self.desc.num_blocks()
5187 5188

        # clear old blocks and desc
5189 5190 5191 5192 5193 5194 5195 5196 5197
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5198

5199
        del desc
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5229 5230
                import paddle
                import paddle.static as static
5231

5232 5233 5234
                paddle.enable_static()

                prog = static.default_main_program()
5235 5236 5237 5238 5239
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5240
                prog1 = static.default_main_program()
5241 5242 5243 5244 5245 5246 5247 5248
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5249
    @property
5250
    def _op_role(self):
Y
yuyang18 已提交
5251 5252 5253 5254 5255 5256 5257 5258
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5259
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5260 5261 5262 5263
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5264 5265
        return self._current_role

5266 5267
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5268 5269 5270
        self._current_role = role

    @property
5271
    def _op_role_var(self):
Y
yuyang18 已提交
5272
        """
5273
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5274

5275
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5276 5277 5278

        Notes: This is a very low-level API. Users should not use it directly.
        """
5279
        return self.__op_role_var
Y
yuyang18 已提交
5280

5281
    @signature_safe_contextmanager
5282 5283 5284 5285 5286
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5287 5288 5289 5290
        try:
            yield
        finally:
            self._current_role = tmp_role
5291

S
rename  
sneaxiy 已提交
5292
    @signature_safe_contextmanager
W
Wu Yi 已提交
5293
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5294 5295 5296 5297 5298 5299 5300
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5301
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5302 5303 5304

        Examples:

5305
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5306
            >>> p, g = backward(...)
W
Wu Yi 已提交
5307
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5308 5309
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5310
        tmp_role = self._current_role
5311
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5312

Y
yuyang18 已提交
5313 5314
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5315
        self.__op_role_var = [
5316 5317 5318
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5319 5320 5321 5322 5323
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5324

S
rename  
sneaxiy 已提交
5325
    @signature_safe_contextmanager
X
Xin Pan 已提交
5326
    def _lr_schedule_guard(self, is_with_opt=False):
5327 5328 5329 5330 5331 5332 5333
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5334 5335 5336 5337
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5338 5339 5340

        Examples:

5341
            >>> import paddle.fluid as fluid
5342 5343 5344 5345
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5346 5347

        tmp_role = self._current_role
5348
        tmp_var = self.__op_role_var
5349

5350 5351
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5352 5353
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5354
        # TODO(typhoonzero): how to set target learning rate var
5355
        self.__op_role_var = []
5356 5357 5358 5359 5360
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5361

5362
    def __str__(self):
Y
yuyang18 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5392 5393
            import paddle
            import paddle.static as static
5394

5395 5396 5397
            paddle.enable_static()

            cur_program = static.Program()
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5409
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5410 5411 5412 5413
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5414
            program_str += '\n'
5415
        return program_str
Y
Yang Yang(Tony) 已提交
5416

F
fengjiayi 已提交
5417 5418 5419
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5420

J
Jiabin Yang 已提交
5421 5422 5423
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5424

J
Jiabin Yang 已提交
5425
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5426

H
haowang101779990 已提交
5427
        Returns:
J
Jiabin Yang 已提交
5428
            str: The debug string describe current Program.
Y
yuyang18 已提交
5429 5430

        Raises:
J
Jiabin Yang 已提交
5431
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5432

5433 5434 5435
        Examples:
            .. code-block:: python

5436 5437 5438 5439
                import paddle
                import paddle.static as static

                paddle.enable_static()
5440

5441 5442 5443
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5444
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5445
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5446
                print("program string without detail: {}".format(prog_string))
5447
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5448
        """
5449 5450 5451 5452 5453 5454 5455 5456 5457
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5458 5459 5460 5461 5462 5463
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5464 5465
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5466 5467
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5468

W
Wu Yi 已提交
5469
    def _get_desc(self):
Y
yuyang18 已提交
5470 5471 5472 5473 5474 5475 5476
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5477 5478
        return self.desc

X
version  
Xin Pan 已提交
5479 5480 5481
    def _version(self):
        return self.desc._version()

5482
    def clone(self, for_test=False):
Y
yuyang18 已提交
5483
        """
5484
        .. note:::
5485 5486
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5487
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5488

5489
        Create a new Program with forward content of original one when ``for_test=True``.
5490
        Create a new Program as same as the original one when ``for_test=False``.
5491

5492
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5493 5494 5495
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5496

5497 5498
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5499 5500
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5501
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5502

J
Jiabin Yang 已提交
5503
        For Example:
5504
          ::
L
Luo Tao 已提交
5505

5506 5507 5508 5509 5510 5511
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5512
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5513
            loss = paddle.mean(pred)
5514
            # Here we use clone before Momentum
5515 5516
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5517
            optimizer.minimize(loss)
5518

J
Jiabin Yang 已提交
5519
        Args:
5520

5521 5522
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5523

J
Jiabin Yang 已提交
5524
        Returns:
5525
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5526

Y
yuyang18 已提交
5527 5528 5529

        Examples:

5530 5531 5532 5533 5534 5535 5536
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5553
            1. To clone a test program, the sample code is:
5554 5555 5556
                .. code-block:: python

                    import six
5557 5558 5559 5560 5561 5562
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5575 5576
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5577 5578 5579

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5580 5581 5582
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5583
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5584 5585
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5586
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5587 5588
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5589
                            test_program = train_program.clone(for_test=True)
5590
                    print_prog(test_program)
J
Jiabin Yang 已提交
5591 5592 5593 5594

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5595
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5596 5597 5598 5599
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5600 5601 5602
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5603 5604 5605
                            sgd.minimize(avg_loss)


5606
            2. The clone method can be avoid if you create program for training and program for testing individually.
5607 5608 5609
                .. code-block:: python

                    import six
5610 5611 5612 5613 5614 5615
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5627

5628
                    def network():
5629
                        img = static.data(name='image', shape=[None, 784])
5630
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5631 5632
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5633
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5634 5635
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5636 5637
                        return avg_loss

5638 5639 5640 5641 5642
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5643
                            avg_loss = network()
5644
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5645
                            sgd.minimize(avg_loss)
5646
                    # the test startup program is not used.
5647 5648
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5649 5650
                            avg_loss = network()
                    print_prog(test_program_2)
5651

5652
            The two code snippets above will generate and print same programs.
5653
        """
5654

T
tangwei12 已提交
5655
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5656 5657 5658
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5659
        pruned_origin_block_id_map = None
5660
        if for_test:
5661 5662 5663 5664 5665 5666 5667 5668 5669
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5670
        else:
5671
            p = Program()
G
gongweibao 已提交
5672 5673
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5674
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5675 5676 5677
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5678 5679

            p._current_role = self._current_role
5680
            p.__op_role_var = self.__op_role_var
5681
            p._appending_grad_times = self._appending_grad_times
5682 5683
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5684

T
tangwei12 已提交
5685
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5686
            # its desc.
W
Wu Yi 已提交
5687
            p._sync_with_cpp()
5688

W
Wu Yi 已提交
5689
        p._copy_param_info_from(self)
5690
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5691
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5692
        return p
5693

5694
    def _prune(self, targets):
Y
yuyang18 已提交
5695 5696 5697 5698 5699 5700 5701 5702
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5703
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5704 5705 5706 5707
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5708
        """
5709
        return self._prune_with_input([], targets)
5710 5711

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5712
        """
5713
        Prune operators and variables which are not needed to generate
5714 5715
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5716 5717 5718 5719 5720 5721 5722

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5723
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5724 5725 5726 5727 5728 5729
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5730
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5731 5732 5733
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5734 5735
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5736 5737
        if not isinstance(targets, list):
            targets = [targets]
5738 5739 5740

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5741 5742 5743
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5744

5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5761 5762 5763 5764
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5765 5766 5767
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5768
                else:
5769 5770 5771
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5772 5773 5774 5775 5776 5777

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5778 5779 5780
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5781

5782 5783 5784 5785 5786 5787 5788 5789 5790
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5791
                        # Skip optimize op except for optimize op in targets,
5792 5793 5794 5795 5796
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5797

5798
                if target_op is not None:
5799 5800 5801
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5802

5803
        res = Program()
5804 5805
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5806 5807 5808
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5809
        res._sync_with_cpp()
5810 5811 5812 5813 5814

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5815 5816
        return res

X
Xin Pan 已提交
5817
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5818
        """
F
fengjiayi 已提交
5819 5820 5821 5822 5823
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5824
        3. change the :code:`is_test`
Y
yuyang18 已提交
5825 5826 5827
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5828
        Args:
X
Xin Pan 已提交
5829 5830
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5831

Y
yuyang18 已提交
5832 5833 5834 5835 5836 5837
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5838
        res = Program()
5839
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5840 5841 5842 5843

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5844
        if prune_read_op:
5845 5846 5847 5848 5849 5850 5851 5852 5853
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
5854
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
5855 5856

        # change all `is_test` attributes to True
M
minqiyang 已提交
5857
        for i in six.moves.range(res.desc.num_blocks()):
5858
            block = res.desc.block(i)
M
minqiyang 已提交
5859
            for j in six.moves.range(block.op_size()):
5860 5861
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5862
                    op._set_attr('is_test', True)
5863 5864 5865
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5866 5867 5868
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5869
        res._sync_with_cpp()
5870 5871
        return res

5872
    def _remove_training_info(self, clip_extra=True):
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

5892 5893
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
5894
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
5895

5896 5897 5898 5899 5900
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5901 5902
            if not clip_extra:
                continue
5903 5904 5905 5906
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
5907 5908 5909

                extra_attrs_map = core.get_op_extra_attrs(op.type())

5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
5923 5924 5925
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
5939 5940 5941
                # The extra output of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951

                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
5952 5953
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
5954
                remove_attr_list = []
5955 5956 5957 5958 5959 5960
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
5961
                    if len(extra_attrs_map) > 0:
5962
                        if name in common_clipped_attrs_list:
5963
                            op.remove_attr(name)
5964
                        continue
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5975 5976
        return res

5977 5978
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5979
        """
5980
        .. note::
5981
            1. All information about parameters will be lost after serialization;
5982
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5983

5984 5985
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5986

J
Jiabin Yang 已提交
5987
        Args:
Y
yuyang18 已提交
5988

J
Jiabin Yang 已提交
5989
            binary_str_type (str): the binary prootbuf string.
5990

J
Jiabin Yang 已提交
5991 5992
        Returns:
            Program: A deserialized Program.
5993 5994 5995 5996

        Examples:
            .. code-block:: python

5997 5998 5999 6000
                import paddle
                import paddle.static as static

                paddle.enable_static()
6001

6002 6003 6004 6005
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6006

6007
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6008

6009
                    z = paddle.matmul(x=x, y=y)
6010

6011 6012
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6013

6014
                    print(static.default_main_program())
6015
                    print(prog_restored)
Y
yuyang18 已提交
6016
        """
6017 6018
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
6019
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
6020
        p._sync_with_cpp()
6021
        return p
Y
Yu Yang 已提交
6022

6023
    @staticmethod
6024
    def _construct_from_desc(desc):
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6040 6041
    @property
    def random_seed(self):
Y
yuyang18 已提交
6042
        """
J
Jiabin Yang 已提交
6043
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6044 6045
        the random seed from random device.

6046
        .. note::
6047
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6048 6049 6050

        Returns:
            int64: Random seed in current Program
6051

6052 6053 6054 6055

        Examples:
            .. code-block:: python

6056 6057 6058
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6059

6060 6061 6062
                paddle.enable_static()

                prog = static.default_main_program()
6063
                random_seed = prog.random_seed
6064
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6065 6066 6067
                print(random_seed)
                ## 0
                ## the default random seed is 0
6068

6069
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6070
                prog.random_seed = 1
6071
                z_var = F.dropout(x_var, 0.7)
6072

6073
                print(prog.random_seed)
6074 6075
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6076
        """
D
dzhwinter 已提交
6077 6078
        return self._seed

Q
qiaolongfei 已提交
6079 6080
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6081
        """
6082 6083
        The number of :ref:`api_guide_Block_en`  in this Program.

6084
        .. note::
6085
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6086 6087 6088

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6089

6090 6091 6092 6093

        Examples:
            .. code-block:: python

6094 6095 6096 6097
                import paddle
                import paddle.static as static

                paddle.enable_static()
6098

6099
                prog = static.default_main_program()
6100 6101
                num_blocks = prog.num_blocks
                print(num_blocks)
6102

6103 6104
                # print result:
                # 1
Y
yuyang18 已提交
6105
        """
Q
qiaolongfei 已提交
6106 6107
        return self.desc.num_blocks()

D
dzhwinter 已提交
6108 6109 6110
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6111 6112 6113
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
6114 6115
        self._seed = seed

Y
Yu Yang 已提交
6116
    def __repr__(self):
6117
        return self.__str__()
6118

Y
Yu Yang 已提交
6119
    def global_block(self):
Y
yuyang18 已提交
6120
        """
6121 6122
        .. note::
            This API has no effect in Dygraph mode.
6123 6124 6125

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6126 6127
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6128

6129 6130 6131 6132

        Examples:
            .. code-block:: python

6133 6134 6135 6136
                import paddle
                import paddle.static as static

                paddle.enable_static()
6137

6138
                prog = static.default_main_program()
6139 6140
                gb_block = prog.global_block()
                print(gb_block)
6141

Y
yuyang18 已提交
6142
        """
Y
Yu Yang 已提交
6143 6144
        return self.blocks[0]

Q
Qiao Longfei 已提交
6145
    def block(self, index):
Y
yuyang18 已提交
6146
        """
6147 6148
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6149

6150 6151
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6152 6153
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6154

J
Jiabin Yang 已提交
6155 6156
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6157 6158 6159 6160

        Examples:
            .. code-block:: python

6161 6162 6163 6164
                import paddle
                import paddle.static as static

                paddle.enable_static()
6165

6166
                prog = static.default_main_program()
6167 6168
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6169
        """
Q
Qiao Longfei 已提交
6170 6171
        return self.blocks[index]

Y
Yu Yang 已提交
6172
    def current_block(self):
Y
yuyang18 已提交
6173
        """
6174 6175
        .. note::
            This API has no effect in Dygraph mode.
6176

J
Jiabin Yang 已提交
6177 6178
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6179

J
Jiabin Yang 已提交
6180 6181
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6182

6183 6184 6185
        Examples:
            .. code-block:: python

6186 6187 6188 6189
                import paddle
                import paddle.static as static

                paddle.enable_static()
6190

6191
                prog = static.default_main_program()
6192 6193
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6194
        """
Y
Yu Yang 已提交
6195 6196
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6197
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6198 6199 6200 6201 6202
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6203

Y
yuyang18 已提交
6204 6205 6206 6207 6208
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6209
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6210 6211 6212
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6213 6214 6215 6216
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6217
    def _rollback(self):
Y
yuyang18 已提交
6218 6219 6220 6221 6222
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6223 6224
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6225
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6236 6237 6238
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6239
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6240

W
Wu Yi 已提交
6241
    def _copy_param_info_from(self, other):
6242
        """
6243
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6244

Y
yuyang18 已提交
6245 6246 6247
        Notes: This is a very low level API. Users should not invoke it
        directly.

6248 6249 6250 6251 6252 6253 6254
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6255 6256 6257
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6258

W
Wu Yi 已提交
6259
        self.global_block()._copy_param_info_from(other.global_block())
6260

6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6272 6273 6274
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6275 6276
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6277
        self._parameters_on_pservers = other._parameters_on_pservers
6278
        self._endpoints = other._endpoints
6279
        self._ps_endpoint = other._ps_endpoint
6280 6281
        self._distributed_lookup_table = other._distributed_lookup_table

6282
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6283 6284
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6285

Y
yuyang18 已提交
6286 6287 6288
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6289 6290
        Args:
            other(Program): Other program
6291
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6292 6293
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6294
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6295 6296 6297 6298 6299

        Returns:
            None
        """
        if not isinstance(other, Program):
6300 6301 6302
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6303

6304 6305 6306 6307 6308
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6309 6310 6311

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6312 6313
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6314
            for var in list(block.vars.values()):
6315 6316 6317 6318 6319 6320 6321
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6322

6323
    def list_vars(self):
Y
yuyang18 已提交
6324
        """
6325
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6326

J
Jiabin Yang 已提交
6327
        Returns:
6328
            iterable Tensors: The Generator will yield every Tensor in this program.
6329 6330 6331 6332

        Examples:
            .. code-block:: python

6333 6334
                import paddle
                import paddle.static as static
6335

6336 6337 6338 6339 6340
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6341 6342
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6343

6344 6345
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6346
        """
6347
        for each_block in self.blocks:
6348
            for each_var in list(each_block.vars.values()):
6349 6350
                yield each_var

6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6361 6362 6363 6364
                import paddle
                import paddle.static as static

                paddle.enable_static()
6365

6366 6367
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6368
                hidden = static.nn.fc(x=data, size=10)
6369 6370
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6371 6372 6373 6374 6375 6376 6377

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6378 6379
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6390 6391 6392 6393 6394 6395 6396 6397 6398
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6399 6400 6401
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6402 6403
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6404
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6432
        # can not be imported at the begainning of this file.
6433 6434 6435 6436
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6437 6438
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6439 6440 6441 6442 6443

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6444 6445 6446
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6473 6474
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6475 6476 6477 6478 6479 6480 6481 6482

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6483 6484
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6485 6486 6487 6488 6489 6490
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6491
        Set parameters and persistable buffers in state_dict to program.
6492
        An exception will throw if shape or dtype of the parameters is not match.
6493

6494 6495 6496 6497
        .. note::
            This function MUST called after run start_up_program

        Args:
6498
            state_dict(dict): the dict store parameters and persistable buffers.
6499 6500
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6501
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6502 6503
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6504

6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6554 6555 6556
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6557

Y
Yu Yang 已提交
6558

6559
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6560
class Parameter(Variable):
6561
    """
6562
    Parameter is derived from Variable. A parameter is a persistable
6563
    Variable, and will be updated by optimizers after each iteration.
6564
    The training of a neural network is essentially the updating of
6565 6566
    its parameters.

6567
    Relative to a general Variable, a Parameter has several its own
6568 6569
    member variables:

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6580
        need_clip (bool): Whether the parameter gradient need to be cliped
6581
            in optimizer. Default is True.
6582 6583
    """

6584 6585 6586 6587 6588 6589
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6590 6591 6592 6593 6594
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6595 6596
        for each in shape:
            if each < 0:
6597 6598 6599
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6600

6601 6602 6603 6604 6605 6606 6607
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6608 6609 6610 6611
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6612 6613
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6614
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6615

6616 6617
        self.need_clip = kwargs.get('need_clip', True)

6618 6619
        self.is_distributed = False

6620 6621
        self.is_parameter = True

F
fengjiayi 已提交
6622
    def __str__(self):
6623
        return self._to_readable_code()
F
fengjiayi 已提交
6624

F
update  
fengjiayi 已提交
6625 6626 6627
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6628

F
update  
fengjiayi 已提交
6629 6630 6631 6632 6633 6634 6635 6636
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6637 6638 6639 6640 6641 6642 6643 6644 6645
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6646
        """
6647 6648
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6649 6650 6651
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6652
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6653
            for attr_name in additional_attr:
6654
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6655 6656
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6657 6658 6659 6660
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6661

6662 6663
class ParamBase(core.VarBase):
    """
6664 6665
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6666
    after each iteration.
6667 6668 6669
    The training of a neural network is essentially the updating of
    its ParamBase.

6670
    Relative to a general Tensor, a ParamBase has several its own
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6683
        need_clip (bool): Whether the parameter gradient need to be cliped
6684
            in optimizer. Default is True.
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6706 6707 6708 6709
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6710

6711 6712
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6713 6714 6715 6716 6717 6718 6719

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6720 6721
        self.need_clip = kwargs.get('need_clip', True)

6722
        self.is_distributed = kwargs.get('is_distributed', False)
6723
        # self.block = default_main_program().global_block()
6724

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6738
    def __str__(self):
6739
        """
6740
        Convert a ParamBase object to a readable string.
6741

6742
        Returns(str): A readable string.
6743 6744 6745 6746

        Examples:
            .. code-block:: python

6747
                import paddle
6748 6749 6750 6751 6752 6753 6754
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6755
        """
6756 6757
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6758

6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6770

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6789 6790 6791 6792
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6793 6794 6795 6796 6797 6798
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6799
    _core_eager_eagertensor = core.eager.Tensor
6800 6801 6802 6803 6804 6805
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
6806 6807
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6825
        need_clip (bool): Whether the parameter gradient need to be cliped
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6848 6849 6850
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6851 6852 6853 6854
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
6869 6870 6871
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
6872 6873

    def set_init_func(self, obj):
6874
        self._init_func = obj
6875 6876 6877

    @dygraph_only
    def initialize(self):
6878 6879
        assert self._init_func is not None, "Required self._init_func is not None, but received None."
        self._init_func()
6880
        # clear function handle to release resource
6881
        self._init_func = None
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6896 6897 6898 6899 6900 6901 6902
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
        assert self._init_op_creator is not None, "Required self._init_op_creator is not None, but received None."
        self._init_op_creator(block)

6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6958 6959
        return new_param

6960 6961 6962
    __repr__ = __str__


Y
Yu Yang 已提交
6963
# program is a global instance.
Y
Yu Yang 已提交
6964 6965
_main_program_ = Program()
_startup_program_ = Program()
6966
_startup_program_._is_start_up_program_ = True
6967

6968

6969
def default_startup_program():
Y
Yu Yang 已提交
6970
    """
Y
yuyang18 已提交
6971 6972
    Get default/global startup program.

6973
    The :code:`paddle.nn` function will append the initialization operators into startup program.
6974
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
6975

6976 6977
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6978

6979 6980
    Returns:
        Program: current default startup program.
6981

6982
    Returns type:
6983 6984 6985 6986

    Examples:
        .. code-block:: python

6987
            import paddle
6988

6989
            paddle.enable_static()
6990 6991 6992 6993
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6994
    """
Y
Yu Yang 已提交
6995
    return _startup_program_
6996

6997

6998
def default_main_program():
Y
Yu Yang 已提交
6999
    """
7000
    This API can be used to get ``default main program`` which store the
7001
    descriptions of Ops and tensors.
T
tangwei12 已提交
7002

7003 7004
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7005

7006
    The ``default main program`` is the default value for ``Program`` parameter in
7007
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7008
    :code:`default_main_program` when the program is not specified.
7009

7010
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7011

Y
Yu Yang 已提交
7012
    Returns:
7013
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7014 7015 7016 7017

    Examples:
        ..  code-block:: python

7018
            import paddle
7019

7020
            paddle.enable_static()
7021
            # Sample Network:
7022 7023 7024
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7025

7026 7027 7028
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7029
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7030
    """
Y
Yu Yang 已提交
7031
    return _main_program_
Y
Yu Yang 已提交
7032 7033 7034 7035 7036


def switch_main_program(program):
    """
    Switch the main program to a new program.
7037

Y
Yu Yang 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7052
    Switch the startup program to a new program
Y
Yu Yang 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7065
@signature_safe_contextmanager
Y
Yu Yang 已提交
7066 7067
def program_guard(main_program, startup_program=None):
    """
7068 7069
    :api_attr: Static Graph

7070 7071 7072
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7073

G
guofei 已提交
7074
    Args:
7075
        main_program(Program): New main program inside ``with`` statement.
7076 7077
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7078 7079 7080
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7081
    Examples:
7082
       .. code-block:: python
T
tangwei12 已提交
7083

7084
          import paddle
Y
yuyang18 已提交
7085

7086 7087 7088 7089 7090
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7091
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7092 7093 7094

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7095

Y
Yu Yang 已提交
7096
    Examples:
7097
       .. code-block:: python
Y
yuyang18 已提交
7098

7099
          import paddle
7100

7101 7102 7103 7104 7105
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7106

Y
Yu Yang 已提交
7107
    """
7108
    from .data_feeder import check_type
7109 7110
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
7111 7112
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7113
        check_type(startup_program, 'startup_program', Program,
7114
                   'paddle.static.program_guard')
7115 7116
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7117
        startup_program = switch_startup_program(startup_program)
7118 7119 7120 7121 7122 7123
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7124 7125


W
Wu Yi 已提交
7126
def _get_var(name, program=None):
X
xuwei06 已提交
7127
    """
Y
yuyang18 已提交
7128
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7129

X
xuwei06 已提交
7130 7131 7132
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7133
        If None, default_global_program() will be used.
X
xuwei06 已提交
7134 7135 7136 7137 7138 7139 7140

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7141
    assert isinstance(program, Program)
X
xuwei06 已提交
7142 7143

    return program.global_block().var(name)
7144 7145


S
rename  
sneaxiy 已提交
7146
@signature_safe_contextmanager
L
lujun 已提交
7147 7148
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7149
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7150
    _dygraph_tracer_ = tracer
7151
    core._switch_tracer(tracer)
M
minqiyang 已提交
7152

7153 7154 7155
    try:
        yield
    finally:
7156 7157
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7158 7159


S
rename  
sneaxiy 已提交
7160
@signature_safe_contextmanager
L
lujun 已提交
7161
def _dygraph_place_guard(place):
7162 7163 7164
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7165 7166
    _set_dygraph_tracer_expected_place(place)

7167 7168 7169
    try:
        yield
    finally:
7170
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7171
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7172 7173


7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7184

7185 7186
    Note:
        The API only supports static mode.
7187 7188 7189 7190

    A context manager that specifies the device on which the OP will be placed.

    Args:
7191
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7192
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7193 7194 7195 7196 7197 7198 7199
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7200

7201
        .. code-block:: python
7202

7203
            # required: gpu
Z
Zhang Ting 已提交
7204
            import paddle
7205

Z
Zhang Ting 已提交
7206 7207 7208
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7209
            if support_gpu:
Z
Zhang Ting 已提交
7210
                place = paddle.CUDAPlace(0)
7211 7212

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7213 7214 7215
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7216

Z
Zhang Ting 已提交
7217
            with paddle.static.device_guard("cpu"):
7218
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7219 7220
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7221
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7222
                out = paddle.reshape(data1, shape=shape)
7223

Z
Zhang Ting 已提交
7224 7225
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7226 7227 7228
            result = exe.run(fetch_list=[out])
    """

7229 7230 7231 7232 7233
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7234
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7235
        raise ValueError(
7236
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7237
            "when there is no need to specify device. But received %s" % device)
7238 7239
    if index:
        device = ":".join([device, index])
7240
    pre_device = switch_device(device)
7241 7242 7243 7244
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7245 7246


7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7278 7279 7280
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7281
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7282 7283 7284 7285 7286 7287 7288

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7289 7290
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7291 7292 7293 7294
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7295 7296
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7297 7298 7299 7300 7301 7302 7303 7304
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7305
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7306 7307 7308 7309 7310 7311 7312 7313 7314 7315

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7316
            import paddle
G
guofei 已提交
7317 7318

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7319
            res = paddle.get_flags(flags)
G
guofei 已提交
7320 7321 7322 7323 7324 7325
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7326 7327
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7328 7329 7330 7331 7332 7333 7334
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7335 7336
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7337 7338 7339 7340 7341 7342 7343 7344
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7345 7346 7347 7348 7349 7350 7351


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7352
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7353
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7354 7355 7356 7357 7358 7359 7360 7361 7362
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7363

7364 7365 7366
    if (place == "device"):
        return core.Place()

7367
    # GPU
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7383 7384

    # XPU
7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7432
    raise ValueError(
7433 7434
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret