framework.py 256.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
78
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Leo Chen 已提交
87 88
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148 149 150 151 152 153
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
154 155


J
Jiabin Yang 已提交
156 157 158
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
159
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
160 161 162 163 164


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
165
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
166 167 168 169 170 171 172


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


173 174 175 176 177 178 179 180 181 182 183
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
    is_not_support = core.is_compiled_with_xpu() or core.is_compiled_with_npu(
J
Jiabin Yang 已提交
184
    ) or core.is_compiled_with_ipu() or core.is_compiled_with_mlu()
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
242 243 244


@signature_safe_contextmanager
J
Jiabin Yang 已提交
245
def _test_eager_guard(place=None):
246 247 248 249 250
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
251
    try:
J
Jiabin Yang 已提交
252
        yield
253
    finally:
254 255
        if not already_fallback:
            _enable_legacy_dygraph()
256 257


258 259
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
260 261 262 263
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
264 265 266 267 268 269 270 271 272 273 274
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
275
@signature_safe_contextmanager
276
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
277 278 279 280
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
281
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
282
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
283
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
284
            The sharded model will be computed from small to large. The default value is -1, 
J
jianghaicheng 已提交
285 286 287
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
288
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
289
    to :code:`paddle.static.IpuStrategy` . 
290
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer 
J
jianghaicheng 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is -1, 
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
470 471
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
472 473 474

    if max_version is not None:
        max_version_split = max_version.split('.')
475 476
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


492
def _dygraph_not_support_(func):
493

494
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
495 496
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
497 498 499 500 501 502
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
503

504
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
505
        assert _non_static_mode(
506 507 508 509 510 511 512
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
513

514
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
515
        assert not _non_static_mode(
516
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
517 518 519 520 521
        return func(*args, **kwargs)

    return __impl__


522 523 524 525 526
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


527 528 529 530 531 532
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
533
# same base class.
534
def _fake_interface_only_(func):
535

536 537
    def __impl__(*args, **kwargs):
        raise AssertionError(
538 539 540 541 542
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
543 544 545 546

    return __impl__


T
tangwei12 已提交
547 548
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
549 550 551 552
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
553

554 555 556 557 558 559 560 561 562 563 564 565 566
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


567 568
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
569
static_only = wrap_decorator(_static_only_)
570
fake_interface_only = wrap_decorator(_fake_interface_only_)
571 572


L
lujun 已提交
573 574
def _dygraph_tracer():
    return _dygraph_tracer_
575

W
Wu Yi 已提交
576

577 578 579 580
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
581
def _current_expected_place():
582 583 584
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
585 586 587 588 589
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
590
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
591 592 593 594 595
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
596 597 598 599 600 601
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
602
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
603 604 605 606 607
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
608 609 610 611 612 613
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
614
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
615 616 617 618 619
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
635
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
636 637


L
Leo Chen 已提交
638 639 640 641
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
642

L
Leo Chen 已提交
643 644 645 646 647 648 649 650 651 652 653 654
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
655
def _cpu_num():
656
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
657 658 659 660 661 662 663 664
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
665
        os.environ['CPU_NUM'] = str(1)
666
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
667 668 669 670 671 672 673 674 675 676
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
677 678


679 680 681 682 683 684 685 686 687
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


688 689 690 691 692 693 694 695 696
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


697 698 699 700 701 702 703 704 705
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
776 777 778 779
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

780
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
781 782 783 784

    Examples:
        .. code-block:: python

785
            import paddle
786
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
787 788 789 790
    """
    return core.is_compiled_with_cuda()


791 792 793 794 795 796 797 798 799 800
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
801
            support_gpu = paddle.device.is_compiled_with_rocm()
802 803 804 805
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
806
def cuda_places(device_ids=None):
L
lujun 已提交
807
    """
808
    Note:
809 810 811
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
812
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
813 814

    If :code:`device_ids` is None, environment variable of
815
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
816
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
817
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
818
    If :code:`FLAGS_selected_gpus` is not set, all visible
819
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
820 821

    If :code:`device_ids` is not None, it should be the device
822
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
823
    the returned list would be 
C
Chen Weihang 已提交
824
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
825

826
    Parameters:
827
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
828 829

    Returns:
C
Chen Weihang 已提交
830
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
831 832

    Examples:
833
    
L
lujun 已提交
834 835
        .. code-block:: python

C
Chen Weihang 已提交
836 837
            import paddle
            import paddle.static as static
T
tangwei12 已提交
838

839 840
            # required: gpu
            
C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
844 845

    """
S
sneaxiy 已提交
846 847 848
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
849
        device_ids = _cuda_ids()
S
sneaxiy 已提交
850 851 852 853 854
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


855 856 857 858
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
859 860 861 862 863 864 865 866 867 868 869
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
870 871 872 873 874 875 876
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
877

878 879
            # required: xpu

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
936
def cpu_places(device_count=None):
L
lujun 已提交
937
    """
C
Chen Weihang 已提交
938
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
939

S
add doc  
sneaxiy 已提交
940 941
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
942 943
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
944 945
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
946

947 948
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
949 950

    Returns:
C
Chen Weihang 已提交
951
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
952 953

    Examples:
954
    
L
lujun 已提交
955 956
        .. code-block:: python

C
Chen Weihang 已提交
957 958
            import paddle
            import paddle.static as static
T
tangwei12 已提交
959

C
Chen Weihang 已提交
960 961 962
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
963 964
    """

S
sneaxiy 已提交
965 966 967 968 969 970
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
971
    """
972
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
973 974 975

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
976 977 978 979
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
980

981 982
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
983 984

    Returns:
985
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
986 987 988 989

    Examples:
        .. code-block:: python

990
            import paddle.fluid as fluid
L
lujun 已提交
991 992 993 994 995
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
996 997 998
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
999 1000
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1001 1002


1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1045
class NameScope(object):
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1072
@signature_safe_contextmanager
1073 1074
def name_scope(prefix=None):
    """
1075

1076
    Generate hierarchical name prefix for the operators in Static Graph.
1077

T
Tao Luo 已提交
1078 1079 1080
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1081
        Don't use it in dygraph, since it will cause memory leak.
1082 1083

    Args:
T
Tao Luo 已提交
1084
        prefix(str, optional): prefix. Default is none.
1085 1086

    Examples:
1087
    
1088
        .. code-block:: python
T
Tink_Y 已提交
1089

1090 1091 1092
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1093
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1094
             b = a + 1
1095
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1096
                c = b * 1
1097
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1098
                d = c / 1
1099 1100 1101
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1102 1103 1104
                g = f - 1

          # Op are created in the default main program.  
1105
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1121 1122
    """
    # TODO(panyx0718): Only [0-9a-z].
1123
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1124
    if _non_static_mode():
L
Leo Chen 已提交
1125 1126
        yield
    else:
T
tianshuo78520a 已提交
1127
        assert prefix, "namescope prefix can not be empty."
1128 1129
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1130 1131 1132 1133
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1146 1147 1148
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1149 1150 1151 1152


def grad_var_name(var_name):
    """
1153 1154
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1155 1156 1157
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1158

1159
def convert_np_dtype_to_dtype_(np_dtype):
1160 1161
    """
    Convert the data type in numpy to the data type in Paddle
1162

1163
    Args:
1164
        np_dtype(np.dtype): the data type in numpy.
1165

1166 1167
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1168 1169

    """
1170 1171
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1172
        return core.VarDesc.VarType.FP32
1173
    elif dtype == np.float64:
1174
        return core.VarDesc.VarType.FP64
1175
    elif dtype == np.float16:
1176
        return core.VarDesc.VarType.FP16
1177
    elif dtype == np.int32:
1178
        return core.VarDesc.VarType.INT32
1179
    elif dtype == np.int16:
1180
        return core.VarDesc.VarType.INT16
1181
    elif dtype == np.int64:
1182
        return core.VarDesc.VarType.INT64
1183
    elif dtype == np.bool_:
1184
        return core.VarDesc.VarType.BOOL
1185
    elif dtype == np.uint16:
1186 1187 1188
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1189 1190
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1191 1192
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1193 1194 1195 1196
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1197
    else:
M
minqiyang 已提交
1198
        raise ValueError("Not supported numpy dtype %s" % dtype)
1199 1200 1201


def dtype_is_floating(dtype):
1202 1203 1204
    """
    Check the data type is floating or not.
    Args:
1205
        dtype(np.dtype|core.VarDesc.VarType): data type.
1206 1207 1208 1209 1210
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1211
    if not isinstance(dtype, core.VarDesc.VarType):
1212 1213
        dtype = convert_np_dtype_to_dtype_(dtype)

1214 1215 1216 1217
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1218 1219


Y
Yang Yang(Tony) 已提交
1220
def _debug_string_(proto, throw_on_error=True):
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1232
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1233
    if not proto.IsInitialized(error_fields) and throw_on_error:
1234 1235 1236
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1237 1238 1239
    return proto.__str__()


1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1250
    if _in_eager_mode_:
1251
        eager_tensor = core.eager.Tensor(
1252
            dtype if dtype else core.VarDesc.VarType.FP32,
1253 1254 1255
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1256 1257
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1258 1259
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1260 1261 1262
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1263 1264


1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1276
class VariableMetaClass(type):
1277

1278 1279 1280 1281
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1282
            return issubclass(t, core.eager.Tensor)
1283
        else:
J
Jiabin Yang 已提交
1284 1285
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1286 1287 1288 1289
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1290

1291 1292 1293 1294
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1295
            return issubclass(t, EagerParamBase)
1296
        else:
J
Jiabin Yang 已提交
1297 1298
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1299 1300 1301 1302
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1303
class Variable(object):
1304
    """
J
Jiabin Yang 已提交
1305
    **Notes**:
1306
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1307

1308 1309
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1310 1311 1312
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1313
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1314 1315
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1316

1317
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1318
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1319

T
tianshuo78520a 已提交
1320
    Most of a Variable's member variables can be set to be None. It mean
1321
    it is not available or will be specified later.
1322

1323
    Examples:
1324 1325
        In Static Graph Mode:

1326 1327
        .. code-block:: python

1328
            import paddle.fluid as fluid
1329
            cur_program = fluid.Program()
1330 1331 1332 1333
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1334

J
Jiabin Yang 已提交
1335
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1336 1337 1338 1339 1340 1341 1342 1343 1344

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1345 1346
    """

Y
Yu Yang 已提交
1347 1348
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1349
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1350 1351 1352 1353
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1354
                 capacity=None,
Q
QI JUN 已提交
1355
                 persistable=None,
F
fengjiayi 已提交
1356
                 error_clip=None,
Y
Yu Yang 已提交
1357
                 stop_gradient=False,
F
fengjiayi 已提交
1358
                 is_data=False,
H
Huihuang Zheng 已提交
1359
                 need_check_feed=False,
H
hong 已提交
1360
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1361
                 **kwargs):
Y
Yu Yang 已提交
1362 1363
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1364
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1365

Y
Yu Yang 已提交
1366
        if dtype is not None:
1367
            if not isinstance(dtype, core.VarDesc.VarType):
1368
                dtype = convert_np_dtype_to_dtype_(dtype)
1369

S
Steffy-zxf 已提交
1370 1371 1372 1373
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1374 1375
        self.belong_to_optimizer = belong_to_optimizer

1376 1377 1378 1379 1380
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1381

1382 1383 1384
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1385

1386 1387 1388
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1389 1390
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1391 1392
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1393

1394
        if shape is not None:
1395
            if is_new_var:
1396 1397 1398 1399 1400 1401
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1402 1403
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1404 1405 1406 1407 1408 1409 1410
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1411 1412
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1413 1414 1415 1416 1417 1418 1419 1420 1421
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1422 1423
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1424 1425 1426 1427 1428 1429 1430 1431 1432
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1433 1434
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1435 1436
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1437

1438 1439
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1440

1441 1442 1443 1444 1445 1446 1447
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1448

1449 1450
        self.block.vars[name] = self
        self.op = None
1451
        self.stop_gradient = stop_gradient
1452
        self.is_data = is_data
Y
Yu Yang 已提交
1453

1454 1455 1456
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1457 1458
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1459

1460
        Returns:
J
Jiabin Yang 已提交
1461
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1462 1463 1464 1465

        Examples:
            .. code-block:: python

1466
                import paddle
1467

1468 1469 1470 1471
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1472

1473 1474
                # create a detached Variable
                y = x.detach()
1475
        """
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1488 1489 1490
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1491
        return output
1492

1493
    @fake_interface_only
1494
    def numpy(self):
1495
        """
J
Jiabin Yang 已提交
1496
        **Notes**:
T
tianshuo78520a 已提交
1497
            **This API is ONLY available in Dygraph mode**
1498

J
Jiabin Yang 已提交
1499
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1500 1501 1502 1503 1504

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1505
            ndarray: dtype is same as current Variable
1506 1507 1508 1509 1510 1511

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1512
                from paddle.fluid.dygraph import Linear
1513 1514 1515 1516
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1517
                    linear = Linear(32, 64)
1518
                    data = to_variable(data)
1519
                    x = linear(data)
1520 1521 1522
                    print(x.numpy())

        """
1523
        pass
1524

1525
    @fake_interface_only
1526
    def backward(self, retain_graph=False):
1527
        """
J
Jiabin Yang 已提交
1528
        **Notes**:
T
tianshuo78520a 已提交
1529
            **This API is ONLY available in Dygraph mode**
1530

1531
        Run backward of current Graph which starts from current Tensor.
1532

J
Jiabin Yang 已提交
1533
        Args:
1534 1535 1536 1537
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1538

J
Jiabin Yang 已提交
1539 1540
        Returns:
            NoneType: None
1541 1542 1543 1544 1545

        Examples:
            .. code-block:: python

                import numpy as np
1546 1547
                import paddle
                paddle.disable_static()
1548 1549

                x = np.ones([2, 2], np.float32)
1550 1551 1552 1553 1554 1555 1556
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1557 1558
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1559
                loss.backward()
1560 1561

        """
1562
        pass
1563

1564
    @fake_interface_only
1565
    def gradient(self):
1566
        """
J
Jiabin Yang 已提交
1567
        **Notes**:
T
tianshuo78520a 已提交
1568
            **This API is ONLY available in Dygraph mode**
1569 1570 1571

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1572
        Returns:
1573
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1574 1575 1576 1577 1578 1579 1580

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1581
                # example1: return ndarray
1582 1583 1584 1585 1586 1587 1588 1589 1590
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1591
                    loss2.backward()
1592 1593
                    print(loss2.gradient())

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1607
        """
1608
        pass
1609

1610
    @fake_interface_only
1611
    def clear_gradient(self):
1612
        """
J
Jiabin Yang 已提交
1613
        **Notes**:
T
tianshuo78520a 已提交
1614
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1615 1616

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1617

J
Jiabin Yang 已提交
1618
        Clear  (set to ``0`` ) the Gradient of Current Variable
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1637
                    loss2.backward()
1638 1639 1640 1641 1642
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1643
        pass
X
Xin Pan 已提交
1644

1645 1646 1647 1648
    @fake_interface_only
    def register_hook(self, hook):
        pass

1649
    def __str__(self):
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1666 1667
                import paddle
                import paddle.static as static
1668

1669 1670 1671
                paddle.enable_static()

                cur_program = static.Program()
1672 1673 1674 1675 1676 1677
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1678 1679
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1680
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1681 1682
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1683 1684
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1685
        else:
1686 1687
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1688

1689
        if self.is_parameter:
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1700
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1701
        dist_context = get_default_distributed_context()
1702 1703
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1704 1705
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1706

1707
        return var_str
Y
Yang Yang(Tony) 已提交
1708

F
update  
fengjiayi 已提交
1709
    def to_string(self, throw_on_error, with_details=False):
1710 1711 1712
        """
        Get debug string.

J
Jiabin Yang 已提交
1713 1714 1715 1716 1717
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1718

1719 1720
        Returns:
            str: The debug string.
1721 1722 1723 1724 1725

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1726
                import paddle
1727

1728
                paddle.enable_static()
1729 1730 1731 1732 1733
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1734
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1735
                print("=============with detail===============")
1736
                print(new_variable.to_string(True, True))
1737
        """
1738 1739
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1740
        protostr = self.desc.serialize_to_string()
1741
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1742 1743
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1744
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1745
            for attr_name in additional_attr:
1746 1747 1748
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1749
        return res_str
1750 1751 1752

    __repr__ = __str__

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1780
    @property
1781
    def stop_gradient(self):
J
Jiabin Yang 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1797 1798
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1799 1800 1801
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1802 1803
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1804 1805 1806 1807
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1808
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1809 1810
                assert (out1.gradient() == 0).all()
        """
1811
        return self.desc.stop_gradient()
1812

1813 1814
    @stop_gradient.setter
    def stop_gradient(self, s):
1815
        self.desc.set_stop_gradient(s)
1816

1817 1818
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1840
        return self.desc.persistable()
1841

Y
Yu Yang 已提交
1842 1843
    @persistable.setter
    def persistable(self, p):
1844
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1871 1872
    @property
    def name(self):
J
Jiabin Yang 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1889
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1890

1891 1892 1893 1894 1895 1896
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1897 1898
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1911 1912
    @name.setter
    def name(self, new_name):
1913
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1914

Y
Yu Yang 已提交
1915 1916
    @property
    def shape(self):
J
Jiabin Yang 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1934
        # convert to tuple, make it as same as numpy API.
1935
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1936 1937

    @property
F
fengjiayi 已提交
1938
    def dtype(self):
J
Jiabin Yang 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1955
        return self.desc.dtype()
Y
Yu Yang 已提交
1956 1957 1958

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1972
            import paddle
J
Jiabin Yang 已提交
1973
            import paddle.fluid as fluid
1974 1975

            paddle.enable_static()
J
Jiabin Yang 已提交
1976 1977 1978 1979 1980 1981 1982
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1983 1984
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1985 1986
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1987
        return self.desc.lod_level()
Y
Yu Yang 已提交
1988

Y
Yu Yang 已提交
1989 1990
    @property
    def type(self):
J
Jiabin Yang 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2007
        return self.desc.type()
Y
Yu Yang 已提交
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2050 2051 2052 2053 2054 2055 2056
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2057 2058
        return out

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2089 2090 2091
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2092 2093
        return output

W
Wu Yi 已提交
2094
    def _set_error_clip(self, error_clip):
2095 2096 2097 2098 2099 2100 2101 2102 2103
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2104 2105
        self.error_clip = error_clip

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2146
            raise ValueError("slice step can not be zero")
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2157 2158
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2222
    def _cloneVar(self, copy=False):
2223 2224
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2225 2226
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2227 2228 2229 2230
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2231
        new_var = self._cloneVar()
2232 2233 2234 2235 2236 2237 2238 2239
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2240 2241 2242
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2243
        new_var = self._cloneVar()
2244 2245 2246 2247 2248 2249
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2250 2251 2252 2253 2254
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2255
                return self._cloneVar(True)
2256 2257 2258 2259 2260 2261 2262
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2263 2264
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2265 2266 2267
                        start += step
                else:
                    while start > stop:
2268 2269
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2270 2271 2272 2273
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2274
                return self._cloneVar(True)
2275
            index = int(item)
2276
            if (index > 0 and index >= self.shape[axis]) \
2277 2278 2279 2280 2281 2282 2283
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2284
        return _getitem_impl_(self, item)
2285

2286
    def __setitem__(self, item, value):
2287
        return _setitem_impl_(self, item, value)
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2330 2331
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2332 2333 2334 2335
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2336 2337
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2392
        # can not be imported at the begainning of this file.
2393 2394 2395 2396 2397
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2398 2399
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2400 2401 2402

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2403 2404
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2435 2436 2437 2438
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2439 2440 2441 2442
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2443 2444 2445 2446 2447 2448 2449
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2475 2476 2477
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2478 2479
        return output

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2534
    def dist_attr(self):
2535
        """
2536
        Get distributed attribute of this Variable.
2537
        """
2538
        return self.desc.dist_attr
2539

2540 2541
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2542
        """
2543
        Set distributed attribute of this Variable.
2544
        """
2545
        self.desc.dist_attr = dist_attr
2546

Y
Yu Yang 已提交
2547

F
fengjiayi 已提交
2548 2549 2550
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2551

2552 2553
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2554 2555 2556 2557
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2558
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2559 2560 2561 2562 2563
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2564 2565 2566 2567
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2577
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2578 2579 2580 2581 2582 2583
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2584 2585 2586 2587 2588 2589 2590 2591
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2592 2593
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2594 2595
        return self.op_proto_map[type]

2596 2597
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2598
        custom_op_names = []
2599 2600 2601
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2602 2603 2604
                custom_op_names.append(proto.type)

        return custom_op_names
2605

2606 2607 2608 2609
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2610
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2611
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2612 2613
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2614 2615
        }

F
fengjiayi 已提交
2616

X
Xin Pan 已提交
2617
class Operator(object):
2618
    """
2619 2620 2621 2622 2623 2624 2625
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2626
        type(str): The type of operator. Default None.
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2647
        Block.append_op or Block._prepend_op instead.
2648 2649 2650 2651

    Examples:
        .. code-block:: python

2652
            import paddle.fluid as fluid
2653
            cur_program = fluid.Program()
2654 2655 2656 2657 2658
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2659
    """
2660
    OP_WITHOUT_KERNEL_SET = {
2661 2662
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2663
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2664 2665
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2666
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2667
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2668
        'copy_cross_scope', 'c_gen_cncl_id'
2669
    }
2670

Y
Yu Yang 已提交
2671 2672
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2673
                 desc,
Y
Yu Yang 已提交
2674 2675 2676
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2677
                 attrs=None):
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2688
        if _non_static_mode():
2689 2690
            if type is None:
                raise ValueError(
2691
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2692
            self._type = type
M
minqiyang 已提交
2693
            self.attrs = attrs if attrs else {}
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2704 2705 2706
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2707 2708 2709
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2710 2711
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2712 2713

            role_var_name = op_maker.kOpRoleVarAttrName()
2714 2715
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2716
                op_attrs[role_var_name] = self.block.program._op_role_var
2717 2718 2719 2720 2721

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2722 2723 2724 2725 2726
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2727 2728 2729
                return
            if type is None:
                raise ValueError(
2730
                    "`type` to initialized an Operator can not be None.")
2731 2732
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2733 2734 2735
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2736 2737 2738 2739
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2740 2741 2742 2743 2744 2745 2746

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2758
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2759 2760 2761 2762 2763
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2764 2765 2766 2767 2768
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2783
                        if not isinstance(in_args, (list, tuple)):
2784 2785 2786 2787 2788 2789
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2790
                        for index, arg in enumerate(in_args):
2791 2792 2793 2794
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2795
                            elif isinstance(arg, (Variable, core.VarBase)):
2796
                                in_arg_names.append(cpt.to_text(arg.name))
2797
                            else:
2798 2799 2800 2801
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2802 2803
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2804 2805 2806 2807 2808 2809 2810 2811 2812
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2813 2814 2815 2816
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2829 2830 2831 2832
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2833
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2834
                        if not _non_static_mode():
2835 2836 2837 2838
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2839 2840 2841 2842 2843 2844 2845
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2846 2847
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2848 2849 2850 2851
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2852 2853
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2854
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2855 2856
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2857
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2858 2859 2860
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2861 2862 2863 2864 2865
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2866
    def _has_kernel(self, op_type):
2867 2868
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2869
    def to_string(self, throw_on_error):
2870
        """
2871 2872
        Get debug string.

2873
        Args:
2874 2875
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2876

2877 2878
        Returns:
            str: The debug string.
2879 2880

        """
2881
        protostr = self.desc.serialize_to_string()
2882
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2883 2884
        return _debug_string_(proto, throw_on_error)

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2917
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2985
            # it is bytes of serialized protobuf
2986 2987 2988 2989
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
2990 2991 2992 2993 2994 2995 2996 2997 2998
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

2999 3000 3001
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
3002

3003 3004 3005 3006
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3007
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
3008
        dist_context = get_default_distributed_context()
3009 3010
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3011 3012
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3013

3014 3015
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3016 3017
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3018 3019 3020 3021 3022
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3023
    def __str__(self):
3024
        return self._to_readable_code()
3025 3026 3027

    __repr__ = __str__

F
fengjiayi 已提交
3028 3029
    @property
    def type(self):
3030
        return self.desc.type()
F
fengjiayi 已提交
3031 3032

    def input(self, name):
3033
        r"""
3034
        Get the input arguments according to the input parameter name.
3035

3036 3037
        Args:
            name(str): The input parameter name.
3038

3039 3040 3041
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3042
        """
F
fengjiayi 已提交
3043 3044
        return self.desc.input(name)

W
Wu Yi 已提交
3045
    def _rename_input(self, old_name, new_name):
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3056
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3057

W
Wu Yi 已提交
3058
    def _rename_output(self, old_name, new_name):
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3069
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3070

F
fengjiayi 已提交
3071 3072 3073 3074
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3075 3076 3077 3078 3079 3080 3081 3082
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3083
    def output(self, name):
3084
        r"""
3085
        Get output arguments by the output parameter name.
3086

3087 3088
        Args:
            name(str): The output parameter name.
3089

3090 3091 3092
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3093
        """
F
fengjiayi 已提交
3094 3095 3096 3097 3098 3099
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3100 3101 3102 3103 3104 3105 3106 3107
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3108
    def has_attr(self, name):
3109
        """
3110 3111
        Whether this Operator has the attribute with name or not.

3112
        Args:
3113
            name(str): the attribute name.
3114

3115 3116
        Returns:
            bool: True if has this attribute.
3117 3118

        """
F
fengjiayi 已提交
3119 3120 3121
        return self.desc.has_attr(name)

    def attr_type(self, name):
3122
        """
3123
        Get the type of attribute by attribute's name.
3124

3125 3126
        Args:
            name(str): the attribute name.
3127

3128 3129
        Returns:
            core.AttrType: the attribute type.
3130
        """
F
fengjiayi 已提交
3131 3132
        return self.desc.attr_type(name)

W
Wu Yi 已提交
3133
    def _set_attr(self, name, val):
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3144 3145
        self._update_desc_attr(name, val)

3146 3147 3148
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3160 3161 3162 3163 3164
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3165
            self.desc.set_block_attr(name, val.desc)
3166
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3167
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3168 3169 3170 3171
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3208

F
fengjiayi 已提交
3209 3210
    @property
    def attr_names(self):
3211
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3212 3213

    def attr(self, name):
3214
        """
3215 3216
        Get the attribute by name.

3217
        Args:
3218
            name(str): the attribute name.
3219

3220 3221
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3222 3223
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3224
        return self.desc.attr(name)
Y
Yu Yang 已提交
3225

W
Wu Yi 已提交
3226
    def _block_attr_id(self, name):
3227
        """
G
gongweibao 已提交
3228
        Get the block attribute's id by name.
3229

3230 3231
        Args:
            name(str): the attribute name.
3232

3233 3234
        Returns:
            int: the block index.
3235
        """
W
Wu Yi 已提交
3236
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3237

W
Wu Yi 已提交
3238
    def _block_attr(self, name):
G
gongweibao 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3249
        id = self._block_attr_id(name)
G
gongweibao 已提交
3250 3251 3252
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3253
    def _blocks_attr(self, name):
G
gongweibao 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3264
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3265 3266 3267 3268 3269
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3270
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3281
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3282

J
JiayiFeng 已提交
3283
    def all_attrs(self):
F
fengjiayi 已提交
3284
        """
3285 3286 3287
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3288
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3289 3290 3291 3292
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3293 3294
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3295
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3296 3297 3298
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3299
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3300 3301 3302 3303
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3304 3305
        return attr_map

3306 3307 3308
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3309 3310 3311 3312

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3313 3314 3315
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3316 3317 3318 3319 3320 3321 3322 3323

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3324 3325
            return False

3326 3327 3328 3329 3330 3331
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3332
    @property
3333
    def dist_attr(self):
3334
        """
3335
        Get distributed attribute of this Variable.
3336
        """
3337
        return self.desc.dist_attr
3338

3339 3340
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3341
        """
3342
        Set distributed attribute of this Variable.
3343
        """
3344
        self.desc.dist_attr = dist_attr
3345

Y
Yu Yang 已提交
3346

Y
Yu Yang 已提交
3347
class Block(object):
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3362
        use `Program._create_block()` to create a block.
3363 3364 3365 3366

    Examples:
        .. code-block:: python

3367 3368 3369
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3370 3371 3372 3373 3374 3375 3376 3377 3378
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3379
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3380
        self.desc = program.desc.block(idx)
3381
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3382
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3383
        self.program = program
3384
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3385

3386
    def __str__(self):
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3421
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3433

F
fengjiayi 已提交
3434 3435
    def to_string(self, throw_on_error, with_details=False):
        """
3436 3437
        Get debug string.

F
fengjiayi 已提交
3438 3439
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3440
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3441
            with_details(bool): more details about variables and parameters
3442 3443
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3444

3445 3446
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3447
        """
3448 3449
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3450
        if with_details:
F
fengjiayi 已提交
3451
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3452 3453
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3454
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3455
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3456
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3457
            for op in self.ops:
F
fengjiayi 已提交
3458 3459
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3460 3461 3462
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3463 3464
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3465 3466
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3467 3468 3469

    __repr__ = __str__

Y
Yu Yang 已提交
3470 3471
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3472
        return self.desc.parent
Y
Yu Yang 已提交
3473

Y
Yu Yang 已提交
3474 3475 3476 3477
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3478
    def _set_forward_block_idx(self, idx):
3479 3480 3481 3482 3483 3484 3485 3486 3487
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3488
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3489

3490 3491 3492 3493 3494 3495 3496 3497
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3498 3499
    @property
    def idx(self):
Y
Yu Yang 已提交
3500
        return self.desc.id
Y
Yu Yang 已提交
3501

Q
Qiao Longfei 已提交
3502
    def var(self, name):
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3516
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3517 3518 3519
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3520 3521
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3522
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3523
        return v
Q
Qiao Longfei 已提交
3524

X
Xin Pan 已提交
3525
    def _find_var_recursive(self, name):
3526 3527 3528 3529 3530 3531 3532
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3533
            Variable: the Variable with the giving name. Or None if not found.
3534
        """
Y
Yu Yang 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3559
        return None
Y
Yu Yang 已提交
3560

X
Xin Pan 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3580

Q
Qiao Longfei 已提交
3581
    def all_parameters(self):
3582
        return list(self.iter_parameters())
3583

3584
    def iter_parameters(self):
M
minqiyang 已提交
3585
        return (item[1] for item in six.iteritems(self.vars)
3586
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3587

Y
Yu Yang 已提交
3588
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3589
        if _non_static_mode():
L
Leo Chen 已提交
3590 3591
            var = _varbase_creator(*args, **kwargs)
        else:
3592 3593 3594
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3595
        return var
Y
Yu Yang 已提交
3596

Q
Qiao Longfei 已提交
3597 3598 3599
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3600
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3601 3602
        """
        Rename variable in vars and ops' inputs and outputs
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3615
        """
M
minqiyang 已提交
3616 3617
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3618

T
typhoonzero 已提交
3619
        if not self.has_var(name):
3620
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3621 3622
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3623
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3624 3625 3626 3627 3628 3629
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3630
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3631 3632 3633 3634
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3635
        orig_var_type = v.type
M
minqiyang 已提交
3636
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3637
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3638
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3639
        if var_type == "Parameter":
L
Leo Chen 已提交
3640
            if in_dygraph_mode():
3641 3642 3643 3644 3645 3646 3647 3648 3649
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3650
            else:
J
Jiabin Yang 已提交
3651
                if _in_legacy_dygraph():
3652 3653 3654 3655 3656 3657 3658 3659 3660
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3661
                else:
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3672
        elif var_type == "Variable":
3673 3674 3675 3676 3677
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3678

W
Wu Yi 已提交
3679
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3680 3681 3682
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3683
        self._sync_with_cpp()
3684
        return var
T
typhoonzero 已提交
3685

3686 3687 3688
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3689
        self.desc._remove_var(cpt.to_bytes(name))
3690 3691
        del self.vars[name]

Y
Yu Yang 已提交
3692 3693
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3694
        param = None
L
Leo Chen 已提交
3695
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3696
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3697
        else:
J
Jiabin Yang 已提交
3698 3699 3700 3701
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3702

3703
        if 'initializer' in kwargs:
3704 3705 3706 3707 3708

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3709
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3710
                        # are treated as initialization ops that cause error.
3711
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3712 3713 3714 3715 3716
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3717
                            continue
3718 3719 3720 3721 3722 3723 3724 3725
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3726 3727
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3728
            elif init_ops_len == 1:
3729
                # TODO already inited, do nothing, should log a warning
3730 3731 3732
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3733
        return param
Y
Yu Yang 已提交
3734

Y
Yu Yang 已提交
3735
    def append_op(self, *args, **kwargs):
3736 3737 3738 3739 3740 3741
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3742
        if _non_static_mode():
3743
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3744
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3745
            type = kwargs.get("type", None)
3746 3747 3748 3749
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3750 3751 3752 3753 3754 3755
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3756

M
minqiyang 已提交
3757 3758 3759
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3760
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3761

3762 3763 3764
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3765 3766
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3767
        else:
3768 3769
            from paddle.fluid.dygraph.base import param_guard

3770
            op_desc = self.desc.append_op()
3771 3772 3773 3774 3775 3776
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3777 3778 3779 3780 3781 3782
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3783

M
minqiyang 已提交
3784
            self.ops.append(op)
M
minqiyang 已提交
3785

3786 3787
        return op

W
Wu Yi 已提交
3788
    def _insert_op(self, index, *args, **kwargs):
3789 3790 3791 3792 3793 3794 3795 3796 3797
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3798
        self._sync_with_cpp()
F
fangshuixun007 已提交
3799
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3800

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3818 3819 3820 3821 3822 3823 3824 3825 3826
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3827 3828
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3829
        self.desc._remove_op(index, index + 1)
3830 3831
        del self.ops[index]

W
Wu Yi 已提交
3832
    def _slice_ops(self, start, end):
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3843
        return self.ops[start:end]
Y
Yancey1989 已提交
3844

W
Wu Yi 已提交
3845
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3846
        if _non_static_mode():
J
Jiabin Yang 已提交
3847 3848
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3859
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3860
        else:
3861
            op_desc = self.desc._prepend_op()
3862 3863 3864 3865 3866 3867
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3868
            self.ops.insert(0, op)
3869

Y
Yu Yang 已提交
3870 3871
        return op

W
Wu Yi 已提交
3872
    def _sync_with_cpp(self):
3873
        """
3874 3875
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3876
        """
Q
Qiao Longfei 已提交
3877 3878 3879
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3880 3881 3882 3883
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3884 3885 3886 3887 3888 3889
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3890
                else:
3891 3892 3893 3894
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3895

3896
        # sync variables removed from c++ end
3897
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3898
            if not self.desc.find_var(cpt.to_bytes(var)):
3899 3900
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3901
        # sync operators from cpp
3902 3903 3904 3905
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3922 3923 3924 3925 3926

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3927
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3928 3929 3930 3931 3932 3933 3934

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3948 3949 3950 3951
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3952
    def _copy_param_info_from(self, other):
3953
        """
3954 3955
        Copy the information of parameters from the other block.

3956
        Args:
3957 3958 3959 3960 3961
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3962 3963 3964 3965 3966

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3967 3968
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3969
        for p in other.iter_parameters():
3970 3971 3972
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3973 3974
                # if the Parameter is pruned, v may be None
                continue
3975
            assert isinstance(v, Variable)
3976
            new_p = None
L
Leo Chen 已提交
3977
            if in_dygraph_mode():
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
3988
            else:
J
Jiabin Yang 已提交
3989
                if _in_legacy_dygraph():
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
4014 4015
            self.vars[new_p.name] = new_p

4016
    def _clone_variable(self, var, force_persistable=True):
4017 4018
        """
        Clone a variable into current block.
4019

4020 4021
        Args:
            var: the variable to be cloned.
4022 4023 4024
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4025 4026

        Returns:
4027
            Variable: the new  variable cloned from 'var' in current block.
4028 4029
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4030 4031 4032
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4033 4034 4035
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
4036
        elif var.type == core.VarDesc.VarType.RAW:
4037 4038 4039
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
4040 4041 4042 4043 4044 4045
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4046
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4047 4048
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4049 4050 4051 4052 4053 4054 4055
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4056
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4057 4058
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4059
        return ret_var
4060

Y
Yu Yang 已提交
4061

4062 4063 4064 4065
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4066
# of some old Python Variables(all old Python Operators) may have
4067
# been destructed.
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4179
    def remove_input_by_id(self, node_id):
4180 4181 4182 4183 4184 4185
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4186
        self.node.remove_input(node_id)
4187

4188
    def remove_input(self, node):
4189 4190 4191 4192
        """
        Remove a node from inputs.

        Args:
4193
            node(IrNode): the node being removed.
4194
        """
4195
        self.node.remove_input(node.node)
4196

4197
    def append_input(self, node):
4198 4199 4200 4201
        """
        Append a node in inputs.

        Args:
4202
            node(IrNode): the node being appended.
4203
        """
4204
        self.node.append_input(node.node)
4205 4206 4207 4208 4209 4210 4211 4212

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4213
    def remove_output_by_id(self, node_id):
4214 4215 4216 4217 4218 4219
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4220
        self.node.remove_output(node_id)
4221

4222
    def remove_output(self, node):
4223 4224 4225 4226
        """
        Remove a node from outputs.

        Args:
4227
            node(IrNode): the node being removed.
4228
        """
4229
        self.node.remove_output(node.node)
4230

4231
    def append_output(self, node):
4232 4233 4234 4235
        """
        Append a node in outputs.

        Args:
4236
            node(IrNode): the node being appended.
4237
        """
4238
        self.node.append_output(node.node)
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4286
            "The node variable description can not be None."
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4297
            "The node variable description can not be None."
4298 4299
        return self.node.var().persistable()

4300 4301 4302 4303 4304 4305 4306 4307
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4308
            "The node variable description can not be None."
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4319
            "The node variable description can not be None."
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4330
            "The node variable description can not be None."
4331 4332
        return self.node.var().shape()

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4380
            "The node operator description can not be None."
4381 4382
        self.node.op()._rename_input(old_input_name, new_input_name)

4383 4384 4385 4386 4387 4388 4389 4390 4391
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4392
            "The node operator description can not be None."
4393 4394
        self.node.op()._rename_output(old_output_name, new_output_name)

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4406
            "The node operator description can not be None."
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4420
            "The node operator description can not be None."
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4431
            "The node operator description can not be None."
4432 4433
        return self.node.op().set_type(new_type)

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4449
            "The node operator description can not be None."
4450
        desc = self.node.op()
4451 4452 4453 4454 4455
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4456
            desc.set_block_attr(name, val.desc)
4457
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4458 4459
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4460
                isinstance(val, core.ProgramDesc):
4461 4462 4463 4464
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4465 4466 4467 4468 4469 4470 4471 4472
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4473
            "The node operator description can not be None."
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4484
            "The node operator description can not be None."
4485 4486
        return self.node.op().output_arg_names()

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4508 4509
class IrGraph(object):
    """
4510
    Python IrGraph. Beneath it is a core.Graph, which is used for
4511
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4512 4513
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4514 4515 4516 4517
    """

    def __init__(self, graph, for_test=False):
        """
4518 4519
        Construct an IrGraph using core.Graph.

4520 4521 4522 4523 4524 4525 4526 4527 4528
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4529 4530 4531 4532
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4533 4534 4535
        Warns:
            The method only clones the graph structure, not its attributes.

4536 4537 4538
        Returns:
            IrGraph: A new and duplicated graph.
        """
4539
        g = self.graph.clone()
4540 4541
        return IrGraph(g, self._for_test)

4542
    def is_test(self):
4543 4544 4545
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4546 4547
        return self._for_test

W
WangZhen 已提交
4548
    def all_nodes(self):
4549 4550 4551
        """
        Return all nodes included in the graph as a set.
        """
4552
        return {IrNode(node) for node in self.graph.nodes()}
4553

4554
    def all_var_nodes(self):
4555 4556 4557
        """
        Return all variable nodes included in the graph as a set.
        """
4558
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4559

4560
    def all_persistable_nodes(self):
4561 4562 4563
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4564 4565 4566 4567 4568
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4569
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4570

4571
    def all_op_nodes(self):
4572 4573 4574
        """
        Return all operator nodes included in the graph as a set.
        """
4575
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4576

4577 4578 4579 4580 4581 4582
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4583
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4584 4585 4586 4587 4588 4589 4590 4591 4592
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4593
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4605
            IrVarNode: the created persistable variable node.
4606
        """
4607 4608 4609 4610 4611
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4612
        return IrVarNode(self.graph.create_var_node(var_desc))
4613 4614

    def create_var_node(self, name, var_type, shape, var_dtype):
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4626
            IrVarNode: the created variable node.
4627 4628
        """

4629 4630 4631 4632
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4633
        return IrVarNode(self.graph.create_var_node(var_desc))
4634

4635 4636 4637 4638 4639 4640
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4641
    def create_var_node_from_desc(self, var_desc):
4642 4643 4644 4645 4646 4647 4648 4649
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4650
            IrVarNode: the created variable node.
4651
        """
4652
        return IrVarNode(self.graph.create_var_node(var_desc))
4653 4654

    def create_op_node(self, op_type, attrs, inputs, outputs):
4655 4656 4657 4658 4659 4660 4661
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4662
            outputs(dict): the outputs of the operator node.
4663 4664

        Returns:
4665
            IrOpNode: the created operator node.
4666
        """
4667 4668
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4669
        for attr, value in six.iteritems(attrs):
4670
            self._update_desc_attr(op_desc, attr, value)
4671
        for input_name, var_nodes in six.iteritems(inputs):
4672 4673 4674 4675
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4676
        for output_name, var_nodes in six.iteritems(outputs):
4677 4678 4679 4680
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4681
        return IrOpNode(self.graph.create_op_node(op_desc))
4682 4683

    def create_op_node_from_desc(self, op_desc):
4684 4685 4686 4687 4688 4689 4690
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4691
            IrOpNode: the created operator node.
4692
        """
4693
        return IrOpNode(self.graph.create_op_node(op_desc))
4694 4695

    def update_input_link(self, old_input_node, new_input_node, op_node):
4696 4697 4698 4699
        """
        Update the input's link of a operator node.

        Args:
4700 4701 4702
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4703
        """
4704
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4705
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4706
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4707 4708 4709 4710
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4711
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4712

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4723
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4724
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4725 4726 4727 4728 4729 4730
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4731
    def link_to(self, node_in, node_out):
4732 4733 4734 4735
        """
        Connect two nodes.

        Args:
4736 4737
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4738
        """
4739 4740 4741 4742
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4743 4744
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4745 4746

    def safe_remove_nodes(self, remove_nodes):
4747 4748 4749 4750 4751 4752 4753
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4754
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4755 4756 4757 4758
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4759 4760
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4761

Z
Zhen Wang 已提交
4762 4763 4764 4765 4766 4767 4768 4769
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4770
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4771 4772 4773 4774
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4775
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4776 4777 4778
                        ]
                    else:
                        var_nodes[each_var_name].append(
4779 4780
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4781 4782
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4783
    def has_circle(self):
4784 4785 4786 4787 4788 4789
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4790 4791 4792
        return core.has_circle(self.graph)

    def graph_num(self):
4793 4794 4795 4796 4797 4798
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4799 4800 4801
        return core.graph_num(self.graph)

    def topology_sort(self):
4802 4803 4804
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4805
        Notes: the `graph` can not contain a circle.
4806 4807

        Returns:
Z
Zhen Wang 已提交
4808
            list(IrNode): nodes in topology order.
4809
        """
4810
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4811
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4812 4813

    def build_adjacency_list(self):
4814 4815 4816 4817
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4818
            dict{IrNode: set(IrNode)}: the adjacency list.
4819
        """
4820 4821 4822 4823 4824
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4825

4826 4827 4828 4829 4830 4831 4832 4833
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4834
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4835 4836 4837 4838 4839
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4840 4841
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4842 4843 4844
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4845 4846 4847 4848 4849
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4850
        remove_ctr_vars = set()
4851
        if remove_ctr_var:
4852
            for node in self.all_var_nodes():
4853 4854 4855
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4856 4857
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4858 4859
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4860 4861 4862 4863 4864 4865
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4866 4867 4868 4869
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4870 4871
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4872 4873 4874 4875 4876 4877 4878
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4879 4880 4881
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4882
        WARN: When the graph includes backward operator nodes, the
4883 4884 4885 4886 4887 4888
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4889
        convert_pass = core.get_pass('graph_to_program_pass')
4890 4891
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4892 4893 4894 4895
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4896 4897 4898 4899 4900 4901 4902 4903
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4904 4905
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4906 4907
        return target_node

4908 4909 4910 4911
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4912 4913 4914 4915 4916
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4917
            desc.set_block_attr(name, val.desc)
4918
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4919 4920 4921 4922 4923 4924 4925 4926
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4927
class Program(object):
D
dzhwinter 已提交
4928
    """
4929
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4930
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4931
    it will contain nested block.
4932

J
Jiabin Yang 已提交
4933 4934 4935
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4936

J
Jiabin Yang 已提交
4937
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4938
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4939 4940 4941 4942 4943 4944 4945
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4946
    **Notes**:
4947 4948 4949
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4950 4951

    Returns:
J
Jiabin Yang 已提交
4952
        Program: An empty Program.
D
dzhwinter 已提交
4953 4954

    Examples:
4955 4956
        .. code-block:: python

4957 4958 4959 4960
            import paddle
            import paddle.static as static

            paddle.enable_static()
4961

4962 4963 4964 4965 4966
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4967
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4968 4969 4970

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4971 4972 4973

    """

4974 4975
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4976 4977
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4978 4979
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4980
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4981
        self.__op_role_var = []
T
tangwei12 已提交
4982

4983 4984
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4985
        self._is_distributed = False
4986
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4987
        self._is_chief = False
4988 4989 4990
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4991
        self._endpoints = []
4992 4993 4994
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4995
        self._trainers_endpoints = []
4996
        # the distributed lookup table names
T
tangwei12 已提交
4997
        self._distributed_lookup_table = None
4998 4999 5000

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5001 5002
        self._use_lamb = False

5003 5004 5005
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5006

5007 5008 5009
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5010
        self._program_config = None
5011

H
hutuxian 已提交
5012 5013 5014
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5015 5016 5017
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5018 5019 5020
        # appending gradients times
        self._appending_grad_times = 0

5021 5022 5023 5024
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

5025 5026
        # compiled program, i.e. Graph
        self._graph = None
5027 5028
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5029

5030
    def _find_var_class_kwargs(self, new_desc):
5031 5032 5033 5034 5035 5036 5037 5038
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5053 5054 5055 5056 5057 5058
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5059 5060 5061 5062
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5063 5064
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5065 5066 5067 5068 5069 5070 5071 5072 5073
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5114
        assert block_num == self.desc.num_blocks()
5115 5116

        # clear old blocks and desc
5117 5118 5119 5120 5121 5122 5123 5124 5125
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5126

5127
        del desc
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5157 5158
                import paddle
                import paddle.static as static
5159

5160 5161 5162
                paddle.enable_static()

                prog = static.default_main_program()
5163 5164 5165 5166 5167
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5168
                prog1 = static.default_main_program()
5169 5170 5171 5172 5173 5174 5175 5176
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5177
    @property
5178
    def _op_role(self):
Y
yuyang18 已提交
5179 5180 5181 5182 5183 5184 5185 5186
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5187
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5188 5189 5190 5191
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5192 5193
        return self._current_role

5194 5195
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5196 5197 5198
        self._current_role = role

    @property
5199
    def _op_role_var(self):
Y
yuyang18 已提交
5200
        """
5201
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5202

5203
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5204 5205 5206

        Notes: This is a very low-level API. Users should not use it directly.
        """
5207
        return self.__op_role_var
Y
yuyang18 已提交
5208

5209
    @signature_safe_contextmanager
5210 5211 5212 5213 5214
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5215 5216 5217 5218
        try:
            yield
        finally:
            self._current_role = tmp_role
5219

S
rename  
sneaxiy 已提交
5220
    @signature_safe_contextmanager
W
Wu Yi 已提交
5221
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5222 5223 5224 5225 5226 5227 5228
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5229
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5230 5231 5232

        Examples:

5233
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5234
            >>> p, g = backward(...)
W
Wu Yi 已提交
5235
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5236 5237
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5238
        tmp_role = self._current_role
5239
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5240

Y
yuyang18 已提交
5241 5242
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5243
        self.__op_role_var = [
5244 5245 5246
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5247 5248 5249 5250 5251
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5252

S
rename  
sneaxiy 已提交
5253
    @signature_safe_contextmanager
X
Xin Pan 已提交
5254
    def _lr_schedule_guard(self, is_with_opt=False):
5255 5256 5257 5258 5259 5260 5261
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5262 5263 5264 5265
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5266 5267 5268

        Examples:

5269
            >>> import paddle.fluid as fluid
5270 5271 5272 5273
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5274 5275

        tmp_role = self._current_role
5276
        tmp_var = self.__op_role_var
5277

5278 5279
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5280 5281
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5282
        # TODO(typhoonzero): how to set target learning rate var
5283
        self.__op_role_var = []
5284 5285 5286 5287 5288
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5289

5290
    def __str__(self):
Y
yuyang18 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5320 5321
            import paddle
            import paddle.static as static
5322

5323 5324 5325
            paddle.enable_static()

            cur_program = static.Program()
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5337
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5338 5339 5340 5341
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5342
            program_str += '\n'
5343
        return program_str
Y
Yang Yang(Tony) 已提交
5344

F
fengjiayi 已提交
5345 5346 5347
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5348

J
Jiabin Yang 已提交
5349 5350 5351
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5352

J
Jiabin Yang 已提交
5353
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5354

H
haowang101779990 已提交
5355
        Returns:
J
Jiabin Yang 已提交
5356
            str: The debug string describe current Program.
Y
yuyang18 已提交
5357 5358

        Raises:
J
Jiabin Yang 已提交
5359
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5360

5361 5362 5363
        Examples:
            .. code-block:: python

5364 5365 5366 5367
                import paddle
                import paddle.static as static

                paddle.enable_static()
5368

5369 5370 5371
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5372
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5373
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5374
                print("program string without detail: {}".format(prog_string))
5375
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5376
        """
5377 5378 5379 5380 5381 5382 5383 5384 5385
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5386 5387 5388 5389 5390 5391
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5392 5393
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5394 5395
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5396

W
Wu Yi 已提交
5397
    def _get_desc(self):
Y
yuyang18 已提交
5398 5399 5400 5401 5402 5403 5404
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5405 5406
        return self.desc

X
version  
Xin Pan 已提交
5407 5408 5409
    def _version(self):
        return self.desc._version()

5410
    def clone(self, for_test=False):
Y
yuyang18 已提交
5411
        """
5412 5413 5414 5415
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5416

5417
        Create a new Program with forward content of original one when ``for_test=True``.
5418
        Create a new Program as same as the original one when ``for_test=False``.
5419

5420
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5421 5422 5423
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5424

5425 5426
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5427 5428
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5429
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5430

J
Jiabin Yang 已提交
5431
        For Example:
5432
          ::
L
Luo Tao 已提交
5433

5434 5435 5436 5437 5438 5439
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5440
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5441
            loss = paddle.mean(pred)
5442
            # Here we use clone before Momentum
5443 5444
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5445
            optimizer.minimize(loss)
5446

J
Jiabin Yang 已提交
5447
        Args:
5448

5449 5450
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5451

J
Jiabin Yang 已提交
5452
        Returns:
5453
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5454

Y
yuyang18 已提交
5455 5456 5457

        Examples:

5458 5459 5460 5461 5462 5463 5464
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5481
            1. To clone a test program, the sample code is:
5482 5483 5484
                .. code-block:: python

                    import six
5485 5486 5487 5488 5489 5490
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5503 5504
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5505 5506 5507

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5508 5509 5510
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5511
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5512 5513
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5514
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5515 5516
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5517
                            test_program = train_program.clone(for_test=True)
5518
                    print_prog(test_program)
J
Jiabin Yang 已提交
5519 5520 5521 5522

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5523
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5524 5525 5526 5527
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5528 5529 5530
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5531 5532 5533
                            sgd.minimize(avg_loss)


5534
            2. The clone method can be avoid if you create program for training and program for testing individually.
5535 5536 5537
                .. code-block:: python

                    import six
5538 5539 5540 5541 5542 5543
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5555

5556
                    def network():
5557
                        img = static.data(name='image', shape=[None, 784])
5558
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5559 5560
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5561
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5562 5563
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5564 5565
                        return avg_loss

5566 5567 5568 5569 5570
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5571
                            avg_loss = network()
5572
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5573
                            sgd.minimize(avg_loss)
5574
                    # the test startup program is not used.
5575 5576
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5577 5578
                            avg_loss = network()
                    print_prog(test_program_2)
5579

5580
            The two code snippets above will generate and print same programs.
5581
        """
5582

T
tangwei12 已提交
5583
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5584 5585 5586
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5587
        pruned_origin_block_id_map = None
5588
        if for_test:
5589 5590 5591 5592 5593 5594 5595 5596 5597
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5598
        else:
5599
            p = Program()
G
gongweibao 已提交
5600 5601
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5602
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5603 5604 5605
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5606 5607

            p._current_role = self._current_role
5608
            p.__op_role_var = self.__op_role_var
5609
            p._appending_grad_times = self._appending_grad_times
5610 5611
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5612

T
tangwei12 已提交
5613
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5614
            # its desc.
W
Wu Yi 已提交
5615
            p._sync_with_cpp()
5616

W
Wu Yi 已提交
5617
        p._copy_param_info_from(self)
5618
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5619
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5620
        return p
5621

5622
    def _prune(self, targets):
Y
yuyang18 已提交
5623 5624 5625 5626 5627 5628 5629 5630
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5631
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5632 5633 5634 5635
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5636
        """
5637
        return self._prune_with_input([], targets)
5638 5639

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5640
        """
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5651
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5652 5653 5654 5655 5656 5657
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5658
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5659 5660 5661
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5662 5663
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5664 5665
        if not isinstance(targets, list):
            targets = [targets]
5666 5667 5668

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5669 5670 5671
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5672

5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5689 5690 5691 5692
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5693 5694 5695
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5696
                else:
5697 5698 5699
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5700 5701 5702 5703 5704 5705

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5706 5707 5708
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5709

5710 5711 5712 5713 5714 5715 5716 5717 5718
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5719
                        # Skip optimize op except for optimize op in targets,
5720 5721 5722 5723 5724
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5725

5726
                if target_op is not None:
5727 5728 5729
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5730

5731
        res = Program()
5732 5733
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5734 5735 5736
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5737
        res._sync_with_cpp()
5738 5739 5740 5741 5742

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5743 5744
        return res

X
Xin Pan 已提交
5745
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5746
        """
F
fengjiayi 已提交
5747 5748 5749 5750 5751
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5752
        3. change the :code:`is_test`
Y
yuyang18 已提交
5753 5754 5755
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5756
        Args:
X
Xin Pan 已提交
5757 5758
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5759

Y
yuyang18 已提交
5760 5761 5762 5763 5764 5765
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5766
        res = Program()
5767
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5768 5769 5770 5771

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5772
        if prune_read_op:
5773 5774 5775 5776 5777 5778 5779 5780 5781
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5782
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5783 5784

        # change all `is_test` attributes to True
M
minqiyang 已提交
5785
        for i in six.moves.range(res.desc.num_blocks()):
5786
            block = res.desc.block(i)
M
minqiyang 已提交
5787
            for j in six.moves.range(block.op_size()):
5788 5789
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5790
                    op._set_attr('is_test', True)
5791 5792 5793
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5794 5795 5796
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5797
        res._sync_with_cpp()
5798 5799
        return res

5800
    def _remove_training_info(self, clip_extra=True):
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5890 5891
        return res

5892 5893
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5894
        """
5895 5896 5897
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5898

5899 5900
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5901

J
Jiabin Yang 已提交
5902
        Args:
Y
yuyang18 已提交
5903

J
Jiabin Yang 已提交
5904
            binary_str_type (str): the binary prootbuf string.
5905

J
Jiabin Yang 已提交
5906 5907
        Returns:
            Program: A deserialized Program.
5908 5909 5910 5911

        Examples:
            .. code-block:: python

5912 5913 5914 5915
                import paddle
                import paddle.static as static

                paddle.enable_static()
5916

5917 5918 5919 5920
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5921

5922
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5923

5924
                    z = paddle.matmul(x=x, y=y)
5925

5926 5927
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5928

5929
                    print(static.default_main_program())
5930
                    print(prog_restored)
Y
yuyang18 已提交
5931
        """
5932 5933
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5934
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5935
        p._sync_with_cpp()
5936
        return p
Y
Yu Yang 已提交
5937

5938
    @staticmethod
5939
    def _construct_from_desc(desc):
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5955 5956
    @property
    def random_seed(self):
Y
yuyang18 已提交
5957
        """
J
Jiabin Yang 已提交
5958
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5959 5960
        the random seed from random device.

5961 5962
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5963 5964 5965

        Returns:
            int64: Random seed in current Program
5966

5967 5968 5969 5970

        Examples:
            .. code-block:: python

5971 5972 5973
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5974

5975 5976 5977
                paddle.enable_static()

                prog = static.default_main_program()
5978
                random_seed = prog.random_seed
5979
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5980 5981 5982
                print(random_seed)
                ## 0
                ## the default random seed is 0
5983

5984
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5985
                prog.random_seed = 1
5986
                z_var = F.dropout(x_var, 0.7)
5987

5988
                print(prog.random_seed)
5989 5990
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5991
        """
D
dzhwinter 已提交
5992 5993
        return self._seed

Q
qiaolongfei 已提交
5994 5995
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5996
        """
5997 5998
        The number of :ref:`api_guide_Block_en`  in this Program.

5999 6000
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6001 6002 6003

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6004

6005 6006 6007 6008

        Examples:
            .. code-block:: python

6009 6010 6011 6012
                import paddle
                import paddle.static as static

                paddle.enable_static()
6013

6014
                prog = static.default_main_program()
6015 6016
                num_blocks = prog.num_blocks
                print(num_blocks)
6017

6018 6019
                # print result:
                # 1
Y
yuyang18 已提交
6020
        """
Q
qiaolongfei 已提交
6021 6022
        return self.desc.num_blocks()

D
dzhwinter 已提交
6023 6024 6025
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6026 6027 6028
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
6029 6030
        self._seed = seed

Y
Yu Yang 已提交
6031
    def __repr__(self):
6032
        return self.__str__()
6033

Y
Yu Yang 已提交
6034
    def global_block(self):
Y
yuyang18 已提交
6035
        """
6036 6037
        .. note::
            This API has no effect in Dygraph mode.
6038 6039 6040

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6041 6042
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6043

6044 6045 6046 6047

        Examples:
            .. code-block:: python

6048 6049 6050 6051
                import paddle
                import paddle.static as static

                paddle.enable_static()
6052

6053
                prog = static.default_main_program()
6054 6055
                gb_block = prog.global_block()
                print(gb_block)
6056

Y
yuyang18 已提交
6057
        """
Y
Yu Yang 已提交
6058 6059
        return self.blocks[0]

Q
Qiao Longfei 已提交
6060
    def block(self, index):
Y
yuyang18 已提交
6061
        """
6062 6063
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6064

6065 6066
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6067 6068
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6069

J
Jiabin Yang 已提交
6070 6071
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6072 6073 6074 6075

        Examples:
            .. code-block:: python

6076 6077 6078 6079
                import paddle
                import paddle.static as static

                paddle.enable_static()
6080

6081
                prog = static.default_main_program()
6082 6083
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6084
        """
Q
Qiao Longfei 已提交
6085 6086
        return self.blocks[index]

Y
Yu Yang 已提交
6087
    def current_block(self):
Y
yuyang18 已提交
6088
        """
6089 6090
        .. note::
            This API has no effect in Dygraph mode.
6091

J
Jiabin Yang 已提交
6092 6093
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6094

J
Jiabin Yang 已提交
6095 6096
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6097

6098 6099 6100
        Examples:
            .. code-block:: python

6101 6102 6103 6104
                import paddle
                import paddle.static as static

                paddle.enable_static()
6105

6106
                prog = static.default_main_program()
6107 6108
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6109
        """
Y
Yu Yang 已提交
6110 6111
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6112
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6113 6114 6115 6116 6117
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6118

Y
yuyang18 已提交
6119 6120 6121 6122 6123
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6124
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6125 6126 6127
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6128 6129 6130 6131
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6132
    def _rollback(self):
Y
yuyang18 已提交
6133 6134 6135 6136 6137
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6138 6139
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6140
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6151 6152 6153
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6154
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6155

W
Wu Yi 已提交
6156
    def _copy_param_info_from(self, other):
6157
        """
6158
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6159

Y
yuyang18 已提交
6160 6161 6162
        Notes: This is a very low level API. Users should not invoke it
        directly.

6163 6164 6165 6166 6167 6168 6169
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6170 6171 6172
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6173

W
Wu Yi 已提交
6174
        self.global_block()._copy_param_info_from(other.global_block())
6175

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6187 6188 6189
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6190 6191
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6192
        self._parameters_on_pservers = other._parameters_on_pservers
6193
        self._endpoints = other._endpoints
6194
        self._ps_endpoint = other._ps_endpoint
6195 6196
        self._distributed_lookup_table = other._distributed_lookup_table

6197
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6198 6199
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6200

Y
yuyang18 已提交
6201 6202 6203
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6204 6205
        Args:
            other(Program): Other program
6206 6207 6208 6209
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6210 6211 6212 6213 6214

        Returns:
            None
        """
        if not isinstance(other, Program):
6215 6216 6217
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6218

6219 6220 6221 6222 6223
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6224 6225 6226

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6227 6228
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6229
            for var in list(block.vars.values()):
6230 6231 6232 6233 6234 6235 6236
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6237

6238
    def list_vars(self):
Y
yuyang18 已提交
6239
        """
6240
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6241

J
Jiabin Yang 已提交
6242
        Returns:
6243
            iterable Tensors: The Generator will yield every Tensor in this program.
6244 6245 6246 6247

        Examples:
            .. code-block:: python

6248 6249
                import paddle
                import paddle.static as static
6250

6251 6252 6253 6254 6255
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6256 6257
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6258

6259 6260
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6261
        """
6262
        for each_block in self.blocks:
6263
            for each_var in list(each_block.vars.values()):
6264 6265
                yield each_var

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6276 6277 6278 6279
                import paddle
                import paddle.static as static

                paddle.enable_static()
6280

6281 6282
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6283
                hidden = static.nn.fc(x=data, size=10)
6284 6285
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6286 6287 6288 6289 6290 6291 6292

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6293 6294
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6347
        # can not be imported at the begainning of this file.
6348 6349 6350 6351
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6352 6353
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6354 6355 6356 6357 6358

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6359 6360 6361
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6388 6389
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6390 6391 6392 6393 6394 6395 6396 6397

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6398 6399
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6469 6470 6471
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6472

Y
Yu Yang 已提交
6473

6474
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6475
class Parameter(Variable):
6476
    """
6477
    Parameter is derived from Variable. A parameter is a persistable
6478
    Variable, and will be updated by optimizers after each iteration.
6479
    The training of a neural network is essentially the updating of
6480 6481
    its parameters.

6482
    Relative to a general Variable, a Parameter has several its own
6483 6484
    member variables:

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6495 6496
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6497 6498
    """

6499 6500 6501 6502 6503 6504
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6505 6506 6507 6508 6509
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6510
        if len(shape) == 0:
6511 6512
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6513 6514 6515

        for each in shape:
            if each < 0:
6516 6517 6518
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6519

6520 6521 6522 6523 6524 6525 6526
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6527 6528 6529 6530
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6531 6532
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6533
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6534

6535 6536
        self.need_clip = kwargs.get('need_clip', True)

6537 6538
        self.is_distributed = False

6539 6540
        self.is_parameter = True

F
fengjiayi 已提交
6541
    def __str__(self):
6542
        return self._to_readable_code()
F
fengjiayi 已提交
6543

F
update  
fengjiayi 已提交
6544 6545 6546
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6547

F
update  
fengjiayi 已提交
6548 6549 6550 6551 6552 6553 6554 6555
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6556 6557 6558 6559 6560 6561 6562 6563 6564
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6565
        """
6566 6567
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6568 6569 6570
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6571
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6572
            for attr_name in additional_attr:
6573 6574
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6575 6576
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6577 6578 6579 6580
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6581

6582 6583
class ParamBase(core.VarBase):
    """
6584 6585 6586
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6587 6588 6589
    The training of a neural network is essentially the updating of
    its ParamBase.

6590
    Relative to a general Tensor, a ParamBase has several its own
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6603 6604
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6630 6631 6632 6633
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6634

6635 6636
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6637 6638 6639 6640 6641 6642 6643

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6644 6645
        self.need_clip = kwargs.get('need_clip', True)

6646
        self.is_distributed = kwargs.get('is_distributed', False)
6647
        # self.block = default_main_program().global_block()
6648

6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6662
    def __str__(self):
6663
        """
6664
        Convert a ParamBase object to a readable string.
6665

6666
        Returns(str): A readable string.
6667 6668 6669 6670

        Examples:
            .. code-block:: python

6671
                import paddle
6672 6673 6674 6675 6676 6677 6678
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6679
        """
6680 6681
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6682

6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6694

6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6713 6714 6715 6716
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6717 6718 6719 6720 6721 6722
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6723
    _core_eager_eagertensor = core.eager.Tensor
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6776 6777 6778
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6779 6780 6781 6782
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
        self.init_func = None

    def set_init_func(self, obj):
        self.init_func = obj

    @dygraph_only
    def initialize(self):
        assert self.init_func is not None, "Required self.init_func is not None, but received None."
        self.init_func()
        # clear function handle to release resource
        self.init_func = None
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6878 6879
        return new_param

6880 6881 6882
    __repr__ = __str__


Y
Yu Yang 已提交
6883
# program is a global instance.
Y
Yu Yang 已提交
6884 6885
_main_program_ = Program()
_startup_program_ = Program()
6886
_startup_program_._is_start_up_program_ = True
6887

6888

6889
def default_startup_program():
Y
Yu Yang 已提交
6890
    """
Y
yuyang18 已提交
6891 6892
    Get default/global startup program.

6893 6894
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6895

6896 6897
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6898

6899 6900
    Returns:
        Program: current default startup program.
6901

6902
    Returns type: 
6903 6904 6905 6906

    Examples:
        .. code-block:: python

6907
            import paddle
6908

6909
            paddle.enable_static()
6910 6911 6912 6913
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6914
    """
Y
Yu Yang 已提交
6915
    return _startup_program_
6916

6917

6918
def default_main_program():
Y
Yu Yang 已提交
6919
    """
6920
    This API can be used to get ``default main program`` which store the 
6921
    descriptions of Ops and tensors.
T
tangwei12 已提交
6922

6923
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6924
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6925

6926 6927
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6928
    :code:`default_main_program` when the program is not specified.
6929

6930
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6931

Y
Yu Yang 已提交
6932
    Returns:
6933
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6934 6935 6936 6937

    Examples:
        ..  code-block:: python

6938
            import paddle
6939

6940
            paddle.enable_static()
6941
            # Sample Network:
6942 6943 6944
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6945

6946 6947 6948
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6949
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6950
    """
Y
Yu Yang 已提交
6951
    return _main_program_
Y
Yu Yang 已提交
6952 6953 6954 6955 6956


def switch_main_program(program):
    """
    Switch the main program to a new program.
6957

Y
Yu Yang 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6972
    Switch the startup program to a new program
Y
Yu Yang 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6985
@signature_safe_contextmanager
Y
Yu Yang 已提交
6986 6987
def program_guard(main_program, startup_program=None):
    """
6988 6989
    :api_attr: Static Graph

6990 6991 6992
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6993

G
guofei 已提交
6994
    Args:
6995 6996
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6997 6998 6999 7000
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7001
    Examples:
7002
       .. code-block:: python
T
tangwei12 已提交
7003

7004
          import paddle
Y
yuyang18 已提交
7005

7006 7007 7008 7009 7010
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7011
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7012 7013 7014

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7015

Y
Yu Yang 已提交
7016
    Examples:
7017
       .. code-block:: python
Y
yuyang18 已提交
7018

7019
          import paddle
7020

7021 7022 7023 7024 7025
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7026

Y
Yu Yang 已提交
7027
    """
7028
    from .data_feeder import check_type
7029 7030
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
7031 7032
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7033
        check_type(startup_program, 'startup_program', Program,
7034
                   'paddle.static.program_guard')
7035 7036
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7037
        startup_program = switch_startup_program(startup_program)
7038 7039 7040 7041 7042 7043
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7044 7045


W
Wu Yi 已提交
7046
def _get_var(name, program=None):
X
xuwei06 已提交
7047
    """
Y
yuyang18 已提交
7048
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7049

X
xuwei06 已提交
7050 7051 7052
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7053
        If None, default_global_program() will be used.
X
xuwei06 已提交
7054 7055 7056 7057 7058 7059 7060

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7061
    assert isinstance(program, Program)
X
xuwei06 已提交
7062 7063

    return program.global_block().var(name)
7064 7065


S
rename  
sneaxiy 已提交
7066
@signature_safe_contextmanager
L
lujun 已提交
7067 7068
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7069
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7070
    _dygraph_tracer_ = tracer
7071
    core._switch_tracer(tracer)
M
minqiyang 已提交
7072

7073 7074 7075
    try:
        yield
    finally:
7076 7077
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7078 7079


S
rename  
sneaxiy 已提交
7080
@signature_safe_contextmanager
L
lujun 已提交
7081
def _dygraph_place_guard(place):
7082 7083 7084
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7085 7086
    _set_dygraph_tracer_expected_place(place)

7087 7088 7089
    try:
        yield
    finally:
7090
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7091
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7092 7093


7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7104 7105 7106
    
    Note:
        The API only supports static mode.
7107 7108 7109 7110

    A context manager that specifies the device on which the OP will be placed.

    Args:
7111 7112
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
7113 7114 7115 7116 7117 7118 7119
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7120
    
7121
        .. code-block:: python
7122 7123
            
            # required: gpu
Z
Zhang Ting 已提交
7124
            import paddle
7125

Z
Zhang Ting 已提交
7126 7127 7128
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7129
            if support_gpu:
Z
Zhang Ting 已提交
7130
                place = paddle.CUDAPlace(0)
7131 7132

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7133 7134 7135
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7136

Z
Zhang Ting 已提交
7137
            with paddle.static.device_guard("cpu"):
7138
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7139 7140
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7141
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7142
                out = paddle.reshape(data1, shape=shape)
7143

Z
Zhang Ting 已提交
7144 7145
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7146 7147 7148
            result = exe.run(fetch_list=[out])
    """

7149 7150 7151 7152 7153
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7154
    if device not in ['cpu', 'gpu', 'npu', 'xpu', '', None]:
7155
        raise ValueError(
7156
            "The Attr(device) should be 'cpu' 'npu' 'xpu' or 'gpu', and it can also be empty string or None "
7157
            "when there is no need to specify device. But received %s" % device)
7158 7159
    if index:
        device = ":".join([device, index])
7160
    pre_device = switch_device(device)
7161 7162 7163 7164
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7165 7166


7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7198 7199 7200
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7201
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7202 7203 7204 7205 7206 7207 7208

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7209 7210
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7211 7212 7213 7214
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7215 7216
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7217 7218 7219 7220 7221 7222 7223 7224
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7225
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7226 7227 7228 7229 7230 7231 7232 7233 7234 7235

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7236
            import paddle
G
guofei 已提交
7237 7238

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7239
            res = paddle.get_flags(flags)
G
guofei 已提交
7240 7241 7242 7243 7244 7245
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7246 7247
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7248 7249 7250 7251 7252 7253 7254
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7255 7256
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7257 7258 7259 7260 7261 7262 7263 7264
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7265 7266 7267 7268 7269 7270 7271


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7272
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7273
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7274 7275 7276 7277 7278 7279 7280 7281 7282
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7283

7284 7285 7286
    if (place == "device"):
        return core.Place()

7287
    # GPU
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7303 7304

    # XPU
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7352
    raise ValueError(
7353 7354
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret