framework.py 128.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

70
            import paddle.fluid as fluid
L
lujun 已提交
71 72 73 74
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
75
    return _dygraph_tracer_ is not None
76 77


L
lujun 已提交
78 79
def _dygraph_tracer():
    return _dygraph_tracer_
80

W
Wu Yi 已提交
81

M
minqiyang 已提交
82
def _current_expected_place():
L
lujun 已提交
83
    return _dygraph_current_expected_place_
M
minqiyang 已提交
84 85


S
sneaxiy 已提交
86
def _cpu_num():
87
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
88 89 90 91 92 93 94 95
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
96
        os.environ['CPU_NUM'] = str(1)
97
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
98 99 100 101 102 103 104 105 106 107
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
108 109


C
chengduo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
125
def cuda_places(device_ids=None):
L
lujun 已提交
126
    """
S
add doc  
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
146 147 148 149

    Examples:
        .. code-block:: python

150
            import paddle.fluid as fluid
L
lujun 已提交
151 152 153
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
154 155 156
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
157
        device_ids = _cuda_ids()
S
sneaxiy 已提交
158 159 160 161 162 163
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
164
    """
S
add doc  
sneaxiy 已提交
165 166 167 168
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
169 170
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
171 172 173 174 175 176

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181
            import paddle.fluid as fluid
L
lujun 已提交
182 183 184
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
185 186 187 188 189 190
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
191
    """
S
add doc  
sneaxiy 已提交
192 193 194 195 196 197 198 199 200 201 202 203
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
204 205 206 207

    Examples:
        .. code-block:: python

208
            import paddle.fluid as fluid
L
lujun 已提交
209 210 211 212 213
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
214 215 216 217 218 219 220
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
247
@signature_safe_contextmanager
248 249 250 251 252 253 254 255 256 257 258 259
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
260

261
          import paddle.fluid as fluid
262 263 264 265 266 267 268 269 270 271 272
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
292 293 294
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
295 296 297 298


def grad_var_name(var_name):
    """
299 300
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
301 302 303
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
304

305
def convert_np_dtype_to_dtype_(np_dtype):
306 307
    """
    Convert the data type in numpy to the data type in Paddle
308

309
    Args:
310
        np_dtype(np.dtype): the data type in numpy.
311

312 313
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
314 315

    """
316 317
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
318
        return core.VarDesc.VarType.FP32
319
    elif dtype == np.float64:
320
        return core.VarDesc.VarType.FP64
321
    elif dtype == np.float16:
322
        return core.VarDesc.VarType.FP16
323
    elif dtype == np.int32:
324
        return core.VarDesc.VarType.INT32
325
    elif dtype == np.int16:
326
        return core.VarDesc.VarType.INT16
327
    elif dtype == np.int64:
328
        return core.VarDesc.VarType.INT64
329
    elif dtype == np.bool:
330
        return core.VarDesc.VarType.BOOL
331 332
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
333 334
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
335 336
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
337
    else:
M
minqiyang 已提交
338
        raise ValueError("Not supported numpy dtype %s" % dtype)
339 340 341


def dtype_is_floating(dtype):
342 343 344
    """
    Check the data type is floating or not.
    Args:
345
        dtype(np.dtype|core.VarDesc.VarType): data type.
346 347 348 349 350
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
351
    if not isinstance(dtype, core.VarDesc.VarType):
352 353
        dtype = convert_np_dtype_to_dtype_(dtype)

354 355 356 357
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
358 359


Y
Yang Yang(Tony) 已提交
360
def _debug_string_(proto, throw_on_error=True):
361 362 363 364 365 366 367 368 369 370 371
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
372
    error_fields = list()
Y
Yang Yang(Tony) 已提交
373
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
374 375
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
376 377 378
    return proto.__str__()


X
Xin Pan 已提交
379
class Variable(object):
380
    """
381 382 383
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
384
    two variables in different blocks could have the same name.
385

386
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
387
    and usages. Please refer to the framework.proto for details.
388

389
    Most of a Variable's member variables can be setted to be None. It mean
390
    it is not available or will be specified later.
391 392

    Args:
393
        block(Block): The block that the variable belongs to.
394 395
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
396 397
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
398
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
399
            Some kinds of variable do not contain shape, just set it to None.
400 401 402
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
403
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
404
            series data.
405
            Default: None
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

423
            import paddle.fluid as fluid
424 425 426 427 428
            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
429 430
    """

Y
Yu Yang 已提交
431 432
    def __init__(self,
                 block,
Y
Yu Yang 已提交
433
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
434 435 436 437
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
438
                 capacity=None,
Q
QI JUN 已提交
439
                 persistable=None,
F
fengjiayi 已提交
440
                 error_clip=None,
Y
Yu Yang 已提交
441
                 stop_gradient=False,
F
fengjiayi 已提交
442
                 is_data=False,
Y
Yu Yang 已提交
443
                 **kwargs):
Y
Yu Yang 已提交
444 445
        self.block = block
        if name is None:
Y
Yu Yang 已提交
446
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
447

Y
Yu Yang 已提交
448
        if dtype is not None:
449
            if not isinstance(dtype, core.VarDesc.VarType):
450
                dtype = convert_np_dtype_to_dtype_(dtype)
451

L
lujun 已提交
452
        if in_dygraph_mode():
M
minqiyang 已提交
453
            # record vars in tracer rather than blocks
M
minqiyang 已提交
454 455
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
456 457 458
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
459 460
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
461
            if persistable:
L
lujun 已提交
462
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
463
            self.op = None
M
minqiyang 已提交
464
        else:
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
537
            self.block.vars[name] = self
538
            self.op = None
539
            self._stop_gradient = stop_gradient
540
            self.is_data = is_data
Y
Yu Yang 已提交
541

542
    def numpy(self):
M
minqiyang 已提交
543
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
544
        return np.array(new_ivar.value().get_tensor())
545

546 547
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
548
        if backward_strategy is None:
549 550
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
551 552 553

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
554

555
    def gradient(self):
556 557
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
558

559
    def clear_gradient(self):
X
Xin Pan 已提交
560
        self._ivar._clear_gradient()
X
Xin Pan 已提交
561

562
    def __str__(self):
Y
Yang Yang(Tony) 已提交
563 564
        return self.to_string(True)

F
update  
fengjiayi 已提交
565
    def to_string(self, throw_on_error, with_details=False):
566 567 568 569
        """
        Get debug string.

        Args:
570 571
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
572
            with_details(bool): more details about variables and parameters
573 574
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
575

576 577
        Returns:
            str: The debug string.
578
        """
L
lujun 已提交
579
        if in_dygraph_mode():
L
lujun 已提交
580
            # TODO(panyx0718): add more dygraph debug info.
581 582 583
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
584

F
update  
fengjiayi 已提交
585 586
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
587
        protostr = self.desc.serialize_to_string()
588
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
589 590 591 592
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
593 594
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
595
        return res_str
596 597 598

    __repr__ = __str__

599
    def set_desc(self, input):
600 601 602 603 604 605 606 607 608
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
609 610
        self.desc = input

611
    @property
612
    def stop_gradient(self):
L
lujun 已提交
613
        if in_dygraph_mode():
M
minqiyang 已提交
614 615
            return self._ivar.stop_gradient
        else:
616
            return self._stop_gradient
617

618 619
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
620
        if in_dygraph_mode():
M
minqiyang 已提交
621
            self._ivar.stop_gradient = s
622
        else:
623
            self._stop_gradient = s
624

625 626
    @property
    def persistable(self):
L
lujun 已提交
627
        if in_dygraph_mode():
628 629 630
            return self._ivar.persistable
        else:
            return self.desc.persistable()
631

Y
Yu Yang 已提交
632 633
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
634
        if in_dygraph_mode():
635 636 637
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
638

Y
Yu Yang 已提交
639 640
    @property
    def name(self):
L
lujun 已提交
641
        if in_dygraph_mode():
642 643 644
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
645

T
typhoonzero 已提交
646 647
    @name.setter
    def name(self, new_name):
L
lujun 已提交
648
        if in_dygraph_mode():
649 650 651
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
652

Y
Yu Yang 已提交
653 654 655
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
656
        if in_dygraph_mode():
657 658 659
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
660 661

    @property
F
fengjiayi 已提交
662
    def dtype(self):
L
lujun 已提交
663
        if in_dygraph_mode():
664 665 666
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
667 668 669

    @property
    def lod_level(self):
L
lujun 已提交
670
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
671 672
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
673
        return self.desc.lod_level()
Y
Yu Yang 已提交
674

Y
Yu Yang 已提交
675 676
    @property
    def type(self):
L
lujun 已提交
677
        if in_dygraph_mode():
678 679 680
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
681

W
Wu Yi 已提交
682
    def _set_error_clip(self, error_clip):
683 684 685 686 687 688 689 690 691
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
692 693
        self.error_clip = error_clip

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
781
    def _cloneVar(self, copy=False):
782 783
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
784 785
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
786 787 788 789
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
790
        new_var = self._cloneVar()
791 792 793 794 795 796 797 798 799 800
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
801
        new_var = self._cloneVar()
802 803 804 805 806 807 808 809 810 811
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
812
                return self._cloneVar(True)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
831
                return self._cloneVar(True)
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
884
            else:
H
Hongyu Liu 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
928

Y
Yu Yang 已提交
929

F
fengjiayi 已提交
930 931 932
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
933

934 935
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
936 937 938 939
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
940
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
941 942 943 944 945
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
946 947 948 949
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
950 951 952 953 954 955 956 957 958
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
959
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
960 961 962 963 964 965
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
966 967 968 969 970 971 972 973
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
974 975
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
976 977
        return self.op_proto_map[type]

978 979 980 981
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
982
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
983 984
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
985 986
        }

F
fengjiayi 已提交
987

X
Xin Pan 已提交
988
class Operator(object):
989
    """
990 991 992 993 994 995 996
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
997
        type(str): The type of operator. Default None.
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1018
        Block.append_op or Block._prepend_op instead.
1019 1020 1021 1022

    Examples:
        .. code-block:: python

1023
            import paddle.fluid as fluid
1024 1025 1026 1027 1028 1029
            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1030
    """
1031
    OP_WITHOUT_KERNEL_SET = {
1032 1033
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1034 1035 1036
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id',
        'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
        'c_sync_comm_stream'
1037
    }
1038

Y
Yu Yang 已提交
1039 1040
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1041
                 desc,
Y
Yu Yang 已提交
1042 1043 1044
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1045
                 attrs=None):
L
lujun 已提交
1046
        if in_dygraph_mode():
1047 1048
            if type is None:
                raise ValueError(
1049
                    "`type` to initialized an Operator can not be None.")
1050
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1051
            self.previous_ops = []
M
minqiyang 已提交
1052

M
minqiyang 已提交
1053
            self.attrs = attrs if attrs else {}
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1068
                )] = self.block.program._op_role
1069 1070 1071

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1072 1073
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1074 1075 1076 1077 1078 1079 1080 1081

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1082
                    "`type` to initialized an Operator can not be None.")
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1114
                        for index, arg in enumerate(in_args):
1115 1116 1117 1118
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1119
                            elif isinstance(arg, Variable):
1120
                                in_arg_names.append(cpt.to_text(arg.name))
1121 1122 1123 1124
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1151
                        if not in_dygraph_mode():
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1171
    def _has_kernel(self, op_type):
1172 1173
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1174
    def to_string(self, throw_on_error):
1175
        """
1176 1177
        Get debug string.

1178
        Args:
1179 1180
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1181

1182 1183
        Returns:
            str: The debug string.
1184 1185

        """
1186
        protostr = self.desc.serialize_to_string()
1187
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1188 1189 1190 1191
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1192 1193 1194

    __repr__ = __str__

F
fengjiayi 已提交
1195 1196
    @property
    def type(self):
L
lujun 已提交
1197
        if in_dygraph_mode():
1198 1199 1200
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1201 1202

    def input(self, name):
1203
        """
1204
        Get the input arguments according to the input parameter name.
1205

1206 1207
        Args:
            name(str): The input parameter name.
1208

1209 1210 1211
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1212
        """
F
fengjiayi 已提交
1213 1214
        return self.desc.input(name)

W
Wu Yi 已提交
1215
    def _rename_input(self, old_name, new_name):
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1226
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1227

W
Wu Yi 已提交
1228
    def _rename_output(self, old_name, new_name):
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1239
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1240

F
fengjiayi 已提交
1241 1242 1243 1244
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1245 1246 1247 1248 1249 1250 1251 1252
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1253
    def output(self, name):
1254
        """
1255
        Get output arguments by the output parameter name.
1256

1257 1258
        Args:
            name(str): The output parameter name.
1259

1260 1261 1262
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1263
        """
F
fengjiayi 已提交
1264 1265 1266 1267 1268 1269
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1270 1271 1272 1273 1274 1275 1276 1277
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1278
    def has_attr(self, name):
1279
        """
1280 1281
        Whether this Operator has the attribute with name or not.

1282
        Args:
1283
            name(str): the attribute name.
1284

1285 1286
        Returns:
            bool: True if has this attribute.
1287 1288

        """
F
fengjiayi 已提交
1289 1290 1291
        return self.desc.has_attr(name)

    def attr_type(self, name):
1292
        """
1293
        Get the type of attribute by attribute's name.
1294

1295 1296
        Args:
            name(str): the attribute name.
1297

1298 1299
        Returns:
            core.AttrType: the attribute type.
1300
        """
F
fengjiayi 已提交
1301 1302
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1303
    def _set_attr(self, name, val):
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1314 1315
        self._update_desc_attr(name, val)

1316 1317 1318
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1330 1331
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1332 1333
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1334
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1335 1336 1337 1338
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1339
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1340

F
fengjiayi 已提交
1341 1342 1343 1344 1345
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1346
        """
1347 1348
        Get the attribute by name.

1349
        Args:
1350
            name(str): the attribute name.
1351

1352 1353
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1354 1355
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1356
        return self.desc.attr(name)
Y
Yu Yang 已提交
1357

W
Wu Yi 已提交
1358
    def _block_attr_id(self, name):
1359
        """
G
gongweibao 已提交
1360
        Get the block attribute's id by name.
1361

1362 1363
        Args:
            name(str): the attribute name.
1364

1365 1366
        Returns:
            int: the block index.
1367
        """
W
Wu Yi 已提交
1368
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1369

W
Wu Yi 已提交
1370
    def _block_attr(self, name):
G
gongweibao 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1381
        id = self._block_attr_id(name)
G
gongweibao 已提交
1382 1383 1384
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1385
    def _blocks_attr(self, name):
G
gongweibao 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1396
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1397 1398 1399 1400 1401
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1402
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1413
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1414

J
JiayiFeng 已提交
1415
    def all_attrs(self):
F
fengjiayi 已提交
1416
        """
1417 1418 1419
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1420
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1421 1422 1423 1424
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1425 1426
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1427
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1428 1429 1430
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1431
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1432 1433 1434 1435
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1436 1437
        return attr_map

Y
Yu Yang 已提交
1438

Y
Yu Yang 已提交
1439
class Block(object):
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1454
        use `Program._create_block()` to create a block.
1455 1456 1457 1458

    Examples:
        .. code-block:: python

1459 1460 1461
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1462 1463 1464 1465 1466 1467 1468 1469 1470
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1471
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1472
        self.desc = program.desc.block(idx)
1473
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1474
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1475
        self.program = program
1476
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1477

1478
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1479 1480
        return self.to_string(True)

F
fengjiayi 已提交
1481 1482
    def to_string(self, throw_on_error, with_details=False):
        """
1483 1484
        Get debug string.

F
fengjiayi 已提交
1485 1486
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1487
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1488
            with_details(bool): more details about variables and parameters
1489 1490
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1491

1492 1493
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1494 1495 1496 1497
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1498
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1499 1500
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1501
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1502
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1503
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1504
            for op in self.ops:
F
fengjiayi 已提交
1505 1506
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1507 1508 1509
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1510 1511
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1512 1513
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1514 1515 1516

    __repr__ = __str__

Y
Yu Yang 已提交
1517 1518
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1519
        return self.desc.parent
Y
Yu Yang 已提交
1520

Y
Yu Yang 已提交
1521 1522 1523 1524
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1525
    def _set_forward_block_idx(self, idx):
1526 1527 1528 1529 1530 1531 1532 1533 1534
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1535
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1536

Y
Yu Yang 已提交
1537 1538
    @property
    def idx(self):
Y
Yu Yang 已提交
1539
        return self.desc.id
Y
Yu Yang 已提交
1540

Q
Qiao Longfei 已提交
1541
    def var(self, name):
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1555
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1556 1557 1558
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1559 1560
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1561
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1562
        return v
Q
Qiao Longfei 已提交
1563

X
Xin Pan 已提交
1564
    def _find_var_recursive(self, name):
1565 1566 1567 1568 1569 1570 1571
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1572
            Variable: the Variable with the giving name. Or None if not found.
1573
        """
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1598
        return None
Y
Yu Yang 已提交
1599

X
Xin Pan 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1619

Q
Qiao Longfei 已提交
1620
    def all_parameters(self):
1621
        return list(self.iter_parameters())
1622

1623
    def iter_parameters(self):
M
minqiyang 已提交
1624
        return (item[1] for item in six.iteritems(self.vars)
1625
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1626

Y
Yu Yang 已提交
1627
    def create_var(self, *args, **kwargs):
1628
        var = Variable(block=self, *args, **kwargs)
1629 1630
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1631
        return var
Y
Yu Yang 已提交
1632

Q
Qiao Longfei 已提交
1633 1634 1635
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1636
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1637 1638
        """
        Rename variable in vars and ops' inputs and outputs
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1651
        """
M
minqiyang 已提交
1652 1653
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1654

T
typhoonzero 已提交
1655
        if not self.has_var(name):
1656
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1657 1658
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1659
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1660 1661 1662 1663 1664 1665 1666
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1667
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1668 1669 1670 1671
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1672
        orig_var_type = v.type
M
minqiyang 已提交
1673
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1674
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1675
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1676
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1677 1678 1679 1680
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1681
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1682 1683 1684 1685 1686 1687 1688
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1689
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1690 1691
            var = Variable(
                self,
T
typhoonzero 已提交
1692
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1693 1694 1695 1696
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1697
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1698 1699 1700
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1701
        self._sync_with_cpp()
1702
        return var
T
typhoonzero 已提交
1703

W
Wu Yi 已提交
1704 1705
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1706
        self.desc._remove_var(cpt.to_bytes(name))
1707 1708
        del self.vars[name]

Y
Yu Yang 已提交
1709 1710
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1711
        param = Parameter(global_block, *args, **kwargs)
1712
        if 'initializer' in kwargs:
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1733
        return param
Y
Yu Yang 已提交
1734

Y
Yu Yang 已提交
1735
    def append_op(self, *args, **kwargs):
1736 1737 1738 1739 1740 1741
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1742
        if in_dygraph_mode():
1743 1744 1745
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1746 1747 1748 1749 1750
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1751

1752 1753 1754 1755
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1756 1757
                inputs=None,
                outputs=None,
1758
                attrs=attrs)
1759

M
minqiyang 已提交
1760 1761 1762
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1763
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1764 1765 1766 1767
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1768
        else:
1769 1770 1771 1772 1773 1774 1775 1776 1777
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1778
            self.ops.append(op)
M
minqiyang 已提交
1779

1780 1781
        return op

W
Wu Yi 已提交
1782
    def _insert_op(self, index, *args, **kwargs):
1783 1784 1785 1786 1787 1788 1789 1790 1791
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1792 1793
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1794 1795 1796 1797
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1798
    def _remove_op(self, index):
1799 1800 1801 1802 1803 1804 1805 1806 1807
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1808 1809
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1810 1811
        del self.ops[index]

W
Wu Yi 已提交
1812
    def _slice_ops(self, start, end):
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1823
        return self.ops[start:end]
Y
Yancey1989 已提交
1824

W
Wu Yi 已提交
1825
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1826
        if in_dygraph_mode():
1827 1828 1829 1830
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1831 1832 1833 1834 1835 1836 1837 1838
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1839
        else:
1840 1841 1842 1843 1844 1845 1846 1847
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1848
            self.ops.insert(0, op)
1849

Y
Yu Yang 已提交
1850 1851
        return op

W
Wu Yi 已提交
1852
    def _sync_with_cpp(self):
1853
        """
1854 1855
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1856
        """
Q
Qiao Longfei 已提交
1857 1858 1859 1860 1861
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1862
        # sync variables removed from c++ end
1863
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1864
            if not self.desc.find_var(cpt.to_bytes(var)):
1865 1866
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1867
        # sync operators from cpp
1868 1869 1870 1871
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1888 1889 1890 1891 1892

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1893
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1894 1895 1896 1897 1898 1899 1900

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1914 1915 1916 1917
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1918
    def _copy_param_info_from(self, other):
1919
        """
1920 1921
        Copy the information of parameters from the other block.

1922
        Args:
1923 1924 1925 1926 1927
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1928 1929 1930 1931 1932

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1933 1934
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1935
        for p in other.iter_parameters():
1936 1937 1938
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1939
                raise ValueError("_copy_param_info_from should be invoked with "
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1952
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1953
                error_clip=p.error_clip,
1954 1955 1956
                name=v.name)
            self.vars[new_p.name] = new_p

1957
    def _clone_variable(self, var, force_persistable=True):
1958 1959
        """
        Clone a variable into current block.
1960

1961 1962
        Args:
            var: the variable to be cloned.
1963 1964 1965
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1966 1967

        Returns:
1968
            Variable: the new  variable cloned from 'var' in current block.
1969 1970
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1971 1972 1973 1974 1975
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1976 1977
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1978
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1979 1980 1981 1982 1983 1984
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1985
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1986
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1987 1988 1989 1990 1991 1992 1993
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1994
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1995
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1996
        return ret_var
1997

Y
Yu Yang 已提交
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2094
    def remove_input_by_id(self, node_id):
2095 2096 2097 2098 2099 2100
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2101
        self.node.remove_input(node_id)
2102

2103
    def remove_input(self, node):
2104 2105 2106 2107
        """
        Remove a node from inputs.

        Args:
2108
            node(IrNode): the node being removed.
2109
        """
2110
        self.node.remove_input(node.node)
2111

2112
    def append_input(self, node):
2113 2114 2115 2116
        """
        Append a node in inputs.

        Args:
2117
            node(IrNode): the node being appended.
2118
        """
2119
        self.node.append_input(node.node)
2120 2121 2122 2123 2124 2125 2126 2127

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2128
    def remove_output_by_id(self, node_id):
2129 2130 2131 2132 2133 2134
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2135
        self.node.remove_output(node_id)
2136

2137
    def remove_output(self, node):
2138 2139 2140 2141
        """
        Remove a node from outputs.

        Args:
2142
            node(IrNode): the node being removed.
2143
        """
2144
        self.node.remove_output(node.node)
2145

2146
    def append_output(self, node):
2147 2148 2149 2150
        """
        Append a node in outputs.

        Args:
2151
            node(IrNode): the node being appended.
2152
        """
2153
        self.node.append_output(node.node)
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2408 2409
class IrGraph(object):
    """
2410
    Python IrGraph. Beneath it is a core.Graph, which is used for
2411
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2412 2413
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2414 2415 2416 2417
    """

    def __init__(self, graph, for_test=False):
        """
2418 2419
        Construct an IrGraph using core.Graph.

2420 2421 2422 2423 2424 2425 2426 2427 2428
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2429 2430 2431 2432
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2433 2434 2435
        Warns:
            The method only clones the graph structure, not its attributes.

2436 2437 2438
        Returns:
            IrGraph: A new and duplicated graph.
        """
2439
        g = self.graph.clone()
2440 2441
        return IrGraph(g, self._for_test)

2442
    def is_test(self):
2443 2444 2445
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2446 2447
        return self._for_test

W
WangZhen 已提交
2448
    def all_nodes(self):
2449 2450 2451
        """
        Return all nodes included in the graph as a set.
        """
2452
        return {IrNode(node) for node in self.graph.nodes()}
2453

2454
    def all_var_nodes(self):
2455 2456 2457
        """
        Return all variable nodes included in the graph as a set.
        """
2458
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2459

2460
    def all_persistable_nodes(self):
2461 2462 2463
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2464 2465 2466 2467 2468
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2469
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2470

2471
    def all_op_nodes(self):
2472 2473 2474
        """
        Return all operator nodes included in the graph as a set.
        """
2475
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2476

2477
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2489
            IrVarNode: the created persistable variable node.
2490
        """
2491 2492 2493 2494 2495
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2496
        return IrVarNode(self.graph.create_var_node(var_desc))
2497 2498

    def create_var_node(self, name, var_type, shape, var_dtype):
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2510
            IrVarNode: the created variable node.
2511 2512
        """

2513 2514 2515 2516
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2517
        return IrVarNode(self.graph.create_var_node(var_desc))
2518 2519

    def create_var_node_from_desc(self, var_desc):
2520 2521 2522 2523 2524 2525 2526 2527
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2528
            IrVarNode: the created variable node.
2529
        """
2530
        return IrVarNode(self.graph.create_var_node(var_desc))
2531 2532

    def create_op_node(self, op_type, attrs, inputs, outputs):
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2543
            IrOpNode: the created operator node.
2544
        """
2545 2546
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2547
        for attr, value in six.iteritems(attrs):
2548
            self._update_desc_attr(op_desc, attr, value)
2549
        for input_name, var_nodes in six.iteritems(inputs):
2550 2551 2552 2553
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2554
        for output_name, var_nodes in six.iteritems(outputs):
2555 2556 2557 2558
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2559
        return IrOpNode(self.graph.create_op_node(op_desc))
2560 2561

    def create_op_node_from_desc(self, op_desc):
2562 2563 2564 2565 2566 2567 2568
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2569
            IrOpNode: the created operator node.
2570
        """
2571
        return IrOpNode(self.graph.create_op_node(op_desc))
2572 2573

    def update_input_link(self, old_input_node, new_input_node, op_node):
2574 2575 2576 2577
        """
        Update the input's link of a operator node.

        Args:
2578 2579 2580
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2581
        """
2582 2583
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2584
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2585 2586 2587 2588
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2589
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2590 2591

    def link_to(self, node_in, node_out):
2592 2593 2594 2595
        """
        Connect two nodes.

        Args:
2596 2597
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2598
        """
2599
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2600
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2601 2602
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2603 2604

    def safe_remove_nodes(self, remove_nodes):
2605 2606 2607 2608 2609 2610 2611
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2612
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2613 2614 2615 2616
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2617 2618
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2619

Z
Zhen Wang 已提交
2620 2621 2622 2623 2624 2625 2626 2627
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2628
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2629 2630 2631 2632
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2633
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2634 2635 2636
                        ]
                    else:
                        var_nodes[each_var_name].append(
2637 2638
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2639 2640
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2641
    def has_circle(self):
2642 2643 2644 2645 2646 2647
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2648 2649 2650
        return core.has_circle(self.graph)

    def graph_num(self):
2651 2652 2653 2654 2655 2656
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2657 2658 2659
        return core.graph_num(self.graph)

    def topology_sort(self):
2660 2661 2662 2663 2664 2665
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2666
            list(IrNode): nodes in topology order.
2667
        """
2668
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2669
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2670 2671

    def build_adjacency_list(self):
2672 2673 2674 2675
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2676
            dict{IrNode: set(IrNode)}: the adjacency list.
2677
        """
2678 2679 2680 2681 2682
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2683

2684 2685 2686 2687 2688 2689 2690 2691
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2692
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2693 2694 2695 2696 2697
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2698 2699 2700 2701 2702 2703 2704 2705 2706
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2707
        remove_ctr_vars = set()
2708
        if remove_ctr_var:
2709
            for node in self.all_var_nodes():
2710 2711 2712
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2713 2714
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2715 2716
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2717 2718 2719 2720 2721 2722
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2734 2735 2736
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2737
        WARN: When the graph includes backward operator nodes, the
2738 2739 2740 2741 2742 2743
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2744
        convert_pass = core.get_pass('graph_to_program_pass')
2745 2746
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2747 2748 2749 2750
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2778
class Program(object):
D
dzhwinter 已提交
2779 2780 2781 2782 2783
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
J
Jiabin Yang 已提交
2784
    it will contain nested block.
D
dzhwinter 已提交
2785 2786
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
2796 2797 2798
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2799
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2800 2801

    Returns:
Y
yuyang18 已提交
2802
        A empty program.
D
dzhwinter 已提交
2803 2804

    Examples:
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2818 2819 2820

    """

2821 2822
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2823 2824
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2825
        self._seed = 0
Y
yuyang18 已提交
2826
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2827
        self.__op_role_var = []
T
tangwei12 已提交
2828

2829 2830
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2831
        self._is_distributed = False
2832
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2833
        self._is_chief = False
2834 2835 2836
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2837
        self._endpoints = []
2838 2839 2840
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2841
        self._trainers_endpoints = []
2842
        # the distributed lookup table names
T
tangwei12 已提交
2843
        self._distributed_lookup_table = None
2844 2845 2846

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2847 2848 2849
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
2850

D
dzhwinter 已提交
2851
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2852
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2853
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2854

2855 2856 2857
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2858
        self._program_config = None
2859

H
hutuxian 已提交
2860 2861 2862
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2863 2864 2865
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2866
    @property
D
dzhwinter 已提交
2867
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2868 2869
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2870
        return self.__is_mem_optimized
D
dzhwinter 已提交
2871

D
dzhwinter 已提交
2872 2873 2874
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2875 2876

    @property
2877
    def _op_role(self):
Y
yuyang18 已提交
2878 2879 2880 2881 2882 2883 2884 2885
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2886
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2887 2888 2889 2890
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2891 2892
        return self._current_role

2893 2894
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2895 2896 2897
        self._current_role = role

    @property
2898
    def _op_role_var(self):
Y
yuyang18 已提交
2899
        """
2900
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2901

2902
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2903 2904 2905

        Notes: This is a very low-level API. Users should not use it directly.
        """
2906
        return self.__op_role_var
Y
yuyang18 已提交
2907

2908 2909 2910 2911 2912 2913 2914 2915 2916
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2917
    @signature_safe_contextmanager
W
Wu Yi 已提交
2918
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2919 2920 2921 2922 2923 2924 2925
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2926
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2927 2928 2929

        Examples:

2930
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
2931
            >>> p, g = backward(...)
W
Wu Yi 已提交
2932
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2933 2934
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2935
        tmp_role = self._current_role
2936
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2937

Y
yuyang18 已提交
2938 2939
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2940
        self.__op_role_var = [
2941 2942 2943
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2944
        yield
2945
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2946
        self._current_role = tmp_role
Y
Yu Yang 已提交
2947

S
rename  
sneaxiy 已提交
2948
    @signature_safe_contextmanager
X
Xin Pan 已提交
2949
    def _lr_schedule_guard(self, is_with_opt=False):
2950 2951 2952 2953 2954 2955 2956
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2957 2958 2959 2960
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2961 2962 2963

        Examples:

2964
            >>> import paddle.fluid as fluid
2965 2966 2967 2968
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2969 2970

        tmp_role = self._current_role
2971
        tmp_var = self.__op_role_var
2972

2973 2974
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2975 2976
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2977
        # TODO(typhoonzero): how to set target learning rate var
2978
        self.__op_role_var = []
2979
        yield
2980
        self.__op_role_var = tmp_var
2981
        self._current_role = tmp_role
2982

2983
    def __str__(self):
Y
yuyang18 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2993 2994
        return self.to_string(True)

F
fengjiayi 已提交
2995 2996 2997
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2998

F
fengjiayi 已提交
2999
        Args:
Y
yuyang18 已提交
3000 3001
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
3002

Y
yuyang18 已提交
3003 3004 3005 3006
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3007 3008
        Returns:
            str : The debug string.
Y
yuyang18 已提交
3009 3010 3011 3012

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3032 3033
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3034 3035
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3036

W
Wu Yi 已提交
3037
    def _get_desc(self):
Y
yuyang18 已提交
3038 3039 3040 3041 3042 3043 3044
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3045 3046
        return self.desc

X
version  
Xin Pan 已提交
3047 3048 3049
    def _version(self):
        return self.desc._version()

3050
    def clone(self, for_test=False):
Y
yuyang18 已提交
3051 3052 3053
        """
        Create a new, duplicated program.

3054

Y
yuyang18 已提交
3055 3056 3057 3058
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3059

Y
yuyang18 已提交
3060
        * Set for_test to False when we want to clone the program for training.
3061 3062 3063 3064
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3065

3066 3067 3068 3069
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3070

3071 3072 3073 3074 3075
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3076 3077

        Args:
Y
yuyang18 已提交
3078 3079
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3080

D
dzhwinter 已提交
3081
        Returns:
Y
yuyang18 已提交
3082 3083 3084 3085
            Program: The new, duplicated Program object.

        Examples:

3086 3087 3088 3089 3090 3091
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3129 3130 3131

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3199 3200
        """
        if for_test:
X
Xin Pan 已提交
3201
            p = self._inference_optimize(prune_read_op=False)
3202
        else:
3203
            p = Program()
G
gongweibao 已提交
3204 3205
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3206
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3207 3208 3209
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3210 3211

            p._current_role = self._current_role
3212
            p.__op_role_var = self.__op_role_var
3213
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3214

W
Wu Yi 已提交
3215
            p._sync_with_cpp()
3216

W
Wu Yi 已提交
3217
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3218
        p._copy_data_info_from(self)
3219
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3220
        return p
3221

W
Wu Yi 已提交
3222
    def _prune(self, targets):
Y
yuyang18 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3238 3239 3240 3241 3242 3243
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3244 3245
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3246
                    # and we need to find the current op that generate this
3247 3248 3249 3250 3251 3252 3253 3254
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3255
                    t = t.op
3256 3257 3258 3259
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3260
                else:
3261 3262
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3263 3264 3265 3266

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3267 3268 3269
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3270
        res._sync_with_cpp()
3271 3272
        return res

X
Xin Pan 已提交
3273
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3274
        """
F
fengjiayi 已提交
3275 3276 3277 3278 3279
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3280
        3. change the :code:`is_test`
Y
yuyang18 已提交
3281 3282 3283
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3284
        Args:
X
Xin Pan 已提交
3285 3286
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3287

Y
yuyang18 已提交
3288 3289 3290 3291 3292 3293
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3294
        res = Program()
3295
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3296 3297 3298 3299

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3300
        if prune_read_op:
3301 3302 3303 3304 3305 3306 3307 3308 3309
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3310
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3311 3312

        # change all `is_test` attributes to True
M
minqiyang 已提交
3313
        for i in six.moves.range(res.desc.num_blocks()):
3314
            block = res.desc.block(i)
M
minqiyang 已提交
3315
            for j in six.moves.range(block.op_size()):
3316 3317
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3318
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3319 3320 3321
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3322
        res._sync_with_cpp()
3323 3324
        return res

3325 3326
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3327 3328 3329 3330 3331 3332 3333
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3334
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3335 3336 3337 3338

        Returns:
            Program: A deserialized program desc.
        """
3339 3340
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3341
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3342
        p._sync_with_cpp()
3343
        return p
Y
Yu Yang 已提交
3344

3345
    @staticmethod
3346
    def _construct_from_desc(desc):
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3362 3363
    @property
    def random_seed(self):
Y
yuyang18 已提交
3364 3365 3366 3367 3368
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3380
        """
D
dzhwinter 已提交
3381 3382
        return self._seed

Q
qiaolongfei 已提交
3383 3384
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3385 3386
        """
        The number of blocks in this program.
3387 3388 3389 3390 3391 3392 3393 3394 3395

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3396
        """
Q
qiaolongfei 已提交
3397 3398
        return self.desc.num_blocks()

D
dzhwinter 已提交
3399 3400 3401 3402 3403 3404
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3405
    def __repr__(self):
3406
        return self.__str__()
3407

Y
Yu Yang 已提交
3408
    def global_block(self):
Y
yuyang18 已提交
3409 3410
        """
        Get the first block of this program.
3411 3412 3413 3414 3415 3416 3417 3418 3419

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3420
        """
Y
Yu Yang 已提交
3421 3422
        return self.blocks[0]

Q
Qiao Longfei 已提交
3423
    def block(self, index):
Y
yuyang18 已提交
3424 3425 3426 3427 3428 3429 3430
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3431 3432 3433 3434 3435 3436 3437 3438 3439

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3440
        """
Q
Qiao Longfei 已提交
3441 3442
        return self.blocks[index]

Y
Yu Yang 已提交
3443
    def current_block(self):
Y
yuyang18 已提交
3444 3445 3446
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3447 3448 3449 3450 3451 3452 3453 3454 3455

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3456
        """
Y
Yu Yang 已提交
3457 3458
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3459
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3470
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3471 3472 3473
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3474 3475 3476 3477
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3478
    def _rollback(self):
Y
yuyang18 已提交
3479 3480 3481 3482 3483
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3484 3485
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3486
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3497 3498 3499
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3500
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3501

W
Wu Yi 已提交
3502
    def _copy_param_info_from(self, other):
3503
        """
3504
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3505

Y
yuyang18 已提交
3506 3507 3508
        Notes: This is a very low level API. Users should not invoke it
        directly.

3509 3510 3511 3512 3513 3514 3515
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3516
            raise TypeError("_copy_param_info_from should be invoked with "
3517 3518 3519
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3520
            raise ValueError("_copy_param_info_from should be invoked with two "
3521
                             "program, with represent the same topology")
W
Wu Yi 已提交
3522
        self.global_block()._copy_param_info_from(other.global_block())
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3539
        self._parameters_on_pservers = other._parameters_on_pservers
3540
        self._endpoints = other._endpoints
3541
        self._ps_endpoint = other._ps_endpoint
3542 3543
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3544
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3545 3546
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3547

Y
yuyang18 已提交
3548 3549 3550
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3551 3552 3553 3554 3555 3556 3557
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3558
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3559 3560 3561
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3562
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3563
                             "program, with represent the same topology")
3564
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3565 3566 3567
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3568
    def list_vars(self):
Y
yuyang18 已提交
3569 3570 3571 3572 3573
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3585
        """
3586
        for each_block in self.blocks:
3587
            for each_var in list(each_block.vars.values()):
3588 3589
                yield each_var

Y
Yu Yang 已提交
3590

Y
Yu Yang 已提交
3591
class Parameter(Variable):
3592
    """
3593
    Parameter is derived from Variable. A parameter is a persistable
3594
    Variable, and will be updated by optimizers after each iteration.
3595
    The training of a neural network is essentially the updating of
3596 3597
    its parameters.

3598
    Relative to a general Variable, a Parameter has several its own
3599 3600
    member variables:

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3613 3614
    """

Y
Yu Yang 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3625 3626 3627

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3628 3629 3630 3631
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3632 3633
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3634
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3635

W
wanghaoshuang 已提交
3636
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3637

3638 3639
        self.is_distributed = False

F
fengjiayi 已提交
3640 3641 3642
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3643 3644 3645
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3646

F
update  
fengjiayi 已提交
3647 3648 3649 3650 3651 3652 3653 3654
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3655 3656 3657 3658 3659 3660 3661 3662 3663
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3664 3665 3666 3667 3668 3669
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3670
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3671
            for attr_name in additional_attr:
3672 3673
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3674 3675
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3676 3677 3678 3679
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3680

Y
Yu Yang 已提交
3681
# program is a global instance.
Y
Yu Yang 已提交
3682 3683
_main_program_ = Program()
_startup_program_ = Program()
3684

3685

3686
def default_startup_program():
Y
Yu Yang 已提交
3687
    """
Y
yuyang18 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3697

Y
Yu Yang 已提交
3698 3699
    Returns:
        Program: startup program
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3715
    """
Y
Yu Yang 已提交
3716
    return _startup_program_
3717

3718

3719
def default_main_program():
Y
Yu Yang 已提交
3720
    """
Y
yuyang18 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3730

Y
Yu Yang 已提交
3731 3732
    Returns:
        Program: main program
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
3761 3762
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
3763
    """
Y
Yu Yang 已提交
3764
    return _main_program_
Y
Yu Yang 已提交
3765 3766 3767 3768 3769


def switch_main_program(program):
    """
    Switch the main program to a new program.
3770

Y
Yu Yang 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3785
    Switch the startup program to a new program
Y
Yu Yang 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3798
@signature_safe_contextmanager
Y
Yu Yang 已提交
3799 3800
def program_guard(main_program, startup_program=None):
    """
3801 3802
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3803
    variables to the new main programs.
3804

Y
Yu Yang 已提交
3805
    Examples:
3806 3807 3808
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3809

3810 3811 3812 3813 3814
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3815 3816 3817

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3818

Y
Yu Yang 已提交
3819
    Examples:
3820
       .. code-block:: python
Y
yuyang18 已提交
3821

3822 3823 3824 3825 3826 3827
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3828

Y
Yu Yang 已提交
3829
    Args:
3830 3831 3832
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3845 3846


W
Wu Yi 已提交
3847
def _get_var(name, program=None):
X
xuwei06 已提交
3848
    """
Y
yuyang18 已提交
3849
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3850

X
xuwei06 已提交
3851 3852 3853
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3854
        If None, default_global_program() will be used.
X
xuwei06 已提交
3855 3856 3857 3858 3859 3860 3861

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3862
    assert isinstance(program, Program)
X
xuwei06 已提交
3863 3864

    return program.global_block().var(name)
3865 3866


S
rename  
sneaxiy 已提交
3867
@signature_safe_contextmanager
L
lujun 已提交
3868 3869 3870 3871
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3872

3873
    yield
P
Paddle CI 已提交
3874

L
lujun 已提交
3875
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3876 3877


S
rename  
sneaxiy 已提交
3878
@signature_safe_contextmanager
L
lujun 已提交
3879 3880 3881 3882
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3883

3884
    yield
M
minqiyang 已提交
3885

L
lujun 已提交
3886
    _dygraph_current_expected_place_ = tmp_place