framework.py 123.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
47
]
Y
Yu Yang 已提交
48

Q
qiaolongfei 已提交
49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
53 54
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
55 56
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
57 58


L
lujun 已提交
59
def in_dygraph_mode():
L
lujun 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
73
    return _dygraph_tracer_ is not None
74 75


L
lujun 已提交
76 77
def _dygraph_tracer():
    return _dygraph_tracer_
78

W
Wu Yi 已提交
79

M
minqiyang 已提交
80
def _current_expected_place():
L
lujun 已提交
81
    return _dygraph_current_expected_place_
M
minqiyang 已提交
82 83


S
sneaxiy 已提交
84 85 86 87 88
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
L
lujun 已提交
89
    """
S
add doc  
sneaxiy 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
109 110 111 112 113 114 115

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
130
    """
S
add doc  
sneaxiy 已提交
131 132 133 134 135 136 137 138 139 140 141 142
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
143 144 145 146 147 148 149

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
150 151 152 153 154 155
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
156
    """
S
add doc  
sneaxiy 已提交
157 158 159 160 161 162 163 164 165 166 167 168
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
169 170 171 172 173 174 175 176 177

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
178 179 180 181 182 183 184
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
211
@signature_safe_contextmanager
212 213 214 215 216 217 218 219 220 221 222 223
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
224

225 226 227 228 229 230 231 232 233 234 235
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
255 256 257
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
258 259 260 261


def grad_var_name(var_name):
    """
262 263
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
264 265 266
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
267

268
def convert_np_dtype_to_dtype_(np_dtype):
269 270
    """
    Convert the data type in numpy to the data type in Paddle
271

272
    Args:
273
        np_dtype(np.dtype): the data type in numpy.
274

275 276
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
277 278

    """
279 280
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
281
        return core.VarDesc.VarType.FP32
282
    elif dtype == np.float64:
283
        return core.VarDesc.VarType.FP64
284
    elif dtype == np.float16:
285
        return core.VarDesc.VarType.FP16
286
    elif dtype == np.int32:
287
        return core.VarDesc.VarType.INT32
288
    elif dtype == np.int16:
289
        return core.VarDesc.VarType.INT16
290
    elif dtype == np.int64:
291
        return core.VarDesc.VarType.INT64
292
    elif dtype == np.bool:
293
        return core.VarDesc.VarType.BOOL
294 295
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
296 297
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
298 299
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
300
    else:
M
minqiyang 已提交
301
        raise ValueError("Not supported numpy dtype %s" % dtype)
302 303 304


def dtype_is_floating(dtype):
305 306 307
    """
    Check the data type is floating or not.
    Args:
308
        dtype(np.dtype|core.VarDesc.VarType): data type.
309 310 311 312 313
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
314
    if not isinstance(dtype, core.VarDesc.VarType):
315 316
        dtype = convert_np_dtype_to_dtype_(dtype)

317 318 319 320
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
321 322


Y
Yang Yang(Tony) 已提交
323
def _debug_string_(proto, throw_on_error=True):
324 325 326 327 328 329 330 331 332 333 334
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
335
    error_fields = list()
Y
Yang Yang(Tony) 已提交
336
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
337 338
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
339 340 341
    return proto.__str__()


X
Xin Pan 已提交
342
class Variable(object):
343
    """
344 345 346
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
347
    two variables in different blocks could have the same name.
348

349 350
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
351

352
    Most of a Variable's member variables can be setted to be None. It mean
353
    it is not available or will be specified later.
354 355

    Args:
356
        block(Block): The block that the variable belongs to.
357 358
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
359 360
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
361
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
362
            Some kinds of variable do not contain shape, just set it to None.
363 364 365
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
366
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
367
            series data.
368
            Default: None
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
391 392
    """

Y
Yu Yang 已提交
393 394
    def __init__(self,
                 block,
Y
Yu Yang 已提交
395
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
396 397 398 399
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
400
                 capacity=None,
Q
QI JUN 已提交
401
                 persistable=None,
F
fengjiayi 已提交
402
                 error_clip=None,
Y
Yu Yang 已提交
403
                 stop_gradient=False,
F
fengjiayi 已提交
404
                 is_data=False,
Y
Yu Yang 已提交
405
                 **kwargs):
Y
Yu Yang 已提交
406 407
        self.block = block
        if name is None:
Y
Yu Yang 已提交
408
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
409

Y
Yu Yang 已提交
410
        if dtype is not None:
411
            if not isinstance(dtype, core.VarDesc.VarType):
412
                dtype = convert_np_dtype_to_dtype_(dtype)
413

L
lujun 已提交
414
        if in_dygraph_mode():
M
minqiyang 已提交
415
            # record vars in tracer rather than blocks
M
minqiyang 已提交
416 417
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
418 419 420
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
421 422
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
423
            if persistable:
L
lujun 已提交
424
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
425
            self.op = None
M
minqiyang 已提交
426
        else:
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
499
            self.block.vars[name] = self
500
            self.op = None
501
            self._stop_gradient = stop_gradient
502
            self.is_data = is_data
Y
Yu Yang 已提交
503

504
    def numpy(self):
M
minqiyang 已提交
505
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
506
        return np.array(new_ivar.value().get_tensor())
507

508 509
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
510
        if backward_strategy is None:
511 512
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
513 514 515

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
516

517
    def gradient(self):
518 519
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
520

521
    def clear_gradient(self):
X
Xin Pan 已提交
522
        self._ivar._clear_gradient()
X
Xin Pan 已提交
523

524
    def __str__(self):
Y
Yang Yang(Tony) 已提交
525 526
        return self.to_string(True)

F
update  
fengjiayi 已提交
527
    def to_string(self, throw_on_error, with_details=False):
528 529 530 531
        """
        Get debug string.

        Args:
532 533
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
534
            with_details(bool): more details about variables and parameters
535 536
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
537

538 539
        Returns:
            str: The debug string.
540
        """
L
lujun 已提交
541
        if in_dygraph_mode():
L
lujun 已提交
542
            # TODO(panyx0718): add more dygraph debug info.
543 544 545
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
546

F
update  
fengjiayi 已提交
547 548
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
549
        protostr = self.desc.serialize_to_string()
550
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
551 552 553 554
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
555 556
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
557
        return res_str
558 559 560

    __repr__ = __str__

561
    def set_desc(self, input):
562 563 564 565 566 567 568 569 570
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
571 572
        self.desc = input

573
    @property
574
    def stop_gradient(self):
L
lujun 已提交
575
        if in_dygraph_mode():
M
minqiyang 已提交
576 577
            return self._ivar.stop_gradient
        else:
578
            return self._stop_gradient
579

580 581
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
582
        if in_dygraph_mode():
M
minqiyang 已提交
583
            self._ivar.stop_gradient = s
584
        else:
585
            self._stop_gradient = s
586

587 588
    @property
    def persistable(self):
L
lujun 已提交
589
        if in_dygraph_mode():
590 591 592
            return self._ivar.persistable
        else:
            return self.desc.persistable()
593

Y
Yu Yang 已提交
594 595
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
596
        if in_dygraph_mode():
597 598 599
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
600

Y
Yu Yang 已提交
601 602
    @property
    def name(self):
L
lujun 已提交
603
        if in_dygraph_mode():
604 605 606
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
607

T
typhoonzero 已提交
608 609
    @name.setter
    def name(self, new_name):
L
lujun 已提交
610
        if in_dygraph_mode():
611 612 613
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
614

Y
Yu Yang 已提交
615 616 617
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
618
        if in_dygraph_mode():
619 620 621
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
622 623

    @property
F
fengjiayi 已提交
624
    def dtype(self):
L
lujun 已提交
625
        if in_dygraph_mode():
626 627 628
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
629 630 631

    @property
    def lod_level(self):
L
lujun 已提交
632
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
633 634
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
635
        return self.desc.lod_level()
Y
Yu Yang 已提交
636

Y
Yu Yang 已提交
637 638
    @property
    def type(self):
L
lujun 已提交
639
        if in_dygraph_mode():
640 641 642
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
643

W
Wu Yi 已提交
644
    def _set_error_clip(self, error_clip):
645 646 647 648 649 650 651 652 653
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
654 655
        self.error_clip = error_clip

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
743
    def _cloneVar(self, copy=False):
744 745 746 747 748
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
749
                stop_gradient=self.stop_gradient, )
750 751 752 753
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
754
        new_var = self._cloneVar()
755 756 757 758 759 760 761 762 763 764
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
765
        new_var = self._cloneVar()
766 767 768 769 770 771 772 773 774 775
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
776
                return self._cloneVar(True)
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
795
                return self._cloneVar(True)
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
818 819 820 821 822 823
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

824
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
825 826
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
827
                if check:
W
wopeizl 已提交
828 829 830 831 832 833 834 835
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
836 837 838 839 840 841 842 843
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
844

F
fengjiayi 已提交
845 846 847
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
848

849 850
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
851 852 853 854
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
855
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
856 857 858 859 860
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
861 862 863 864
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
865 866 867 868 869 870 871 872 873
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
874
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
875 876 877 878 879 880
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
881 882 883 884 885 886 887 888
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
889 890
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
891 892
        return self.op_proto_map[type]

893 894 895 896
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
897
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
898 899
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
900 901
        }

F
fengjiayi 已提交
902

X
Xin Pan 已提交
903
class Operator(object):
904
    """
905 906 907 908 909 910 911
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
912
        type(str): The type of operator. Default None.
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
933
        Block.append_op or Block._prepend_op instead.
934 935 936 937 938 939 940 941 942 943

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
944
    """
945
    OP_WITHOUT_KERNEL_SET = {
946 947 948
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
949
    }
950

Y
Yu Yang 已提交
951 952
    def __init__(self,
                 block,
Y
Yu Yang 已提交
953
                 desc,
Y
Yu Yang 已提交
954 955 956
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
957
                 attrs=None):
L
lujun 已提交
958
        if in_dygraph_mode():
959 960
            if type is None:
                raise ValueError(
961
                    "`type` to initialized an Operator can not be None.")
962
            self.iop = core.OpBase(type)
M
minqiyang 已提交
963
            self.previous_ops = []
M
minqiyang 已提交
964

M
minqiyang 已提交
965
            self.attrs = attrs if attrs else {}
966 967 968 969 970 971 972 973 974 975 976 977 978 979
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
980
                )] = self.block.program._op_role
981 982 983

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
984 985
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
986 987 988 989 990 991 992 993

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
994
                    "`type` to initialized an Operator can not be None.")
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1026
                        for index, arg in enumerate(in_args):
1027 1028 1029 1030
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1031
                            elif isinstance(arg, Variable):
1032
                                in_arg_names.append(cpt.to_text(arg.name))
1033 1034 1035 1036
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1063
                        if not in_dygraph_mode():
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1083
    def _has_kernel(self, op_type):
1084 1085
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1086
    def to_string(self, throw_on_error):
1087
        """
1088 1089
        Get debug string.

1090
        Args:
1091 1092
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1093

1094 1095
        Returns:
            str: The debug string.
1096 1097

        """
1098
        protostr = self.desc.serialize_to_string()
1099
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1100 1101 1102 1103
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1104 1105 1106

    __repr__ = __str__

F
fengjiayi 已提交
1107 1108
    @property
    def type(self):
L
lujun 已提交
1109
        if in_dygraph_mode():
1110 1111 1112
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1113 1114

    def input(self, name):
1115
        """
1116
        Get the input arguments according to the input parameter name.
1117

1118 1119
        Args:
            name(str): The input parameter name.
1120

1121 1122 1123
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1124
        """
F
fengjiayi 已提交
1125 1126
        return self.desc.input(name)

W
Wu Yi 已提交
1127
    def _rename_input(self, old_name, new_name):
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1138
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1139

W
Wu Yi 已提交
1140
    def _rename_output(self, old_name, new_name):
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1151
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1152

F
fengjiayi 已提交
1153 1154 1155 1156
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1157 1158 1159 1160 1161 1162 1163 1164
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1165
    def output(self, name):
1166
        """
1167
        Get output arguments by the output parameter name.
1168

1169 1170
        Args:
            name(str): The output parameter name.
1171

1172 1173 1174
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1175
        """
F
fengjiayi 已提交
1176 1177 1178 1179 1180 1181
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1182 1183 1184 1185 1186 1187 1188 1189
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1190
    def has_attr(self, name):
1191
        """
1192 1193
        Whether this Operator has the attribute with name or not.

1194
        Args:
1195
            name(str): the attribute name.
1196

1197 1198
        Returns:
            bool: True if has this attribute.
1199 1200

        """
F
fengjiayi 已提交
1201 1202 1203
        return self.desc.has_attr(name)

    def attr_type(self, name):
1204
        """
1205
        Get the type of attribute by attribute's name.
1206

1207 1208
        Args:
            name(str): the attribute name.
1209

1210 1211
        Returns:
            core.AttrType: the attribute type.
1212
        """
F
fengjiayi 已提交
1213 1214
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1215
    def _set_attr(self, name, val):
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1226 1227
        self._update_desc_attr(name, val)

1228 1229 1230
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1242 1243
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1244 1245
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1246
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1247 1248 1249 1250
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1251
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1252

F
fengjiayi 已提交
1253 1254 1255 1256 1257
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1258
        """
1259 1260
        Get the attribute by name.

1261
        Args:
1262
            name(str): the attribute name.
1263

1264 1265
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1266 1267
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1268
        return self.desc.attr(name)
Y
Yu Yang 已提交
1269

W
Wu Yi 已提交
1270
    def _block_attr_id(self, name):
1271
        """
G
gongweibao 已提交
1272
        Get the block attribute's id by name.
1273

1274 1275
        Args:
            name(str): the attribute name.
1276

1277 1278
        Returns:
            int: the block index.
1279
        """
W
Wu Yi 已提交
1280
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1281

W
Wu Yi 已提交
1282
    def _block_attr(self, name):
G
gongweibao 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1293
        id = self._block_attr_id(name)
G
gongweibao 已提交
1294 1295 1296
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1297
    def _blocks_attr(self, name):
G
gongweibao 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1308
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1309 1310 1311 1312 1313
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1314
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1325
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1326

J
JiayiFeng 已提交
1327
    def all_attrs(self):
F
fengjiayi 已提交
1328
        """
1329 1330 1331
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1332
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1333 1334 1335 1336
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1337 1338
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1339
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1340 1341 1342
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1343
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1344 1345 1346 1347
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1348 1349
        return attr_map

Y
Yu Yang 已提交
1350

Y
Yu Yang 已提交
1351
class Block(object):
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1366
        use `Program._create_block()` to create a block.
1367 1368 1369 1370

    Examples:
        .. code-block:: python

1371 1372 1373
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1374 1375 1376 1377 1378 1379 1380 1381 1382
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1383
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1384
        self.desc = program.desc.block(idx)
1385
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1386
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1387
        self.program = program
1388
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1389

1390
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1391 1392
        return self.to_string(True)

F
fengjiayi 已提交
1393 1394
    def to_string(self, throw_on_error, with_details=False):
        """
1395 1396
        Get debug string.

F
fengjiayi 已提交
1397 1398
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1399
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1400
            with_details(bool): more details about variables and parameters
1401 1402
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1403

1404 1405
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1406 1407 1408 1409
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1410
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1411 1412
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1413
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1414
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1415
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1416
            for op in self.ops:
F
fengjiayi 已提交
1417 1418
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1419 1420 1421
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1422 1423
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1424 1425
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1426 1427 1428

    __repr__ = __str__

Y
Yu Yang 已提交
1429 1430
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1431
        return self.desc.parent
Y
Yu Yang 已提交
1432

Y
Yu Yang 已提交
1433 1434 1435 1436
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1437
    def _set_forward_block_idx(self, idx):
1438 1439 1440 1441 1442 1443 1444 1445 1446
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1447
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1448

Y
Yu Yang 已提交
1449 1450
    @property
    def idx(self):
Y
Yu Yang 已提交
1451
        return self.desc.id
Y
Yu Yang 已提交
1452

Q
Qiao Longfei 已提交
1453
    def var(self, name):
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1467
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1468 1469 1470
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1471 1472
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1473
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1474
        return v
Q
Qiao Longfei 已提交
1475

X
Xin Pan 已提交
1476
    def _find_var_recursive(self, name):
1477 1478 1479 1480 1481 1482 1483
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1484
            Variable: the Variable with the giving name. Or None if not found.
1485
        """
Y
Yu Yang 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1510
        return None
Y
Yu Yang 已提交
1511

X
Xin Pan 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1531

Q
Qiao Longfei 已提交
1532
    def all_parameters(self):
1533
        return list(self.iter_parameters())
1534

1535
    def iter_parameters(self):
M
minqiyang 已提交
1536
        return (item[1] for item in six.iteritems(self.vars)
1537
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1538

Y
Yu Yang 已提交
1539
    def create_var(self, *args, **kwargs):
1540
        var = Variable(block=self, *args, **kwargs)
1541 1542
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1543
        return var
Y
Yu Yang 已提交
1544

Q
Qiao Longfei 已提交
1545 1546 1547
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1548
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1549 1550
        """
        Rename variable in vars and ops' inputs and outputs
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1563
        """
M
minqiyang 已提交
1564 1565
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1566

T
typhoonzero 已提交
1567
        if not self.has_var(name):
1568
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1569 1570
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1571
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1572 1573 1574 1575 1576 1577 1578
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1579
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1580 1581 1582 1583
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1584
        orig_var_type = v.type
M
minqiyang 已提交
1585
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1586
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1587
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1588
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1589 1590 1591 1592
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1593
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1594 1595 1596 1597 1598 1599 1600
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1601
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1602 1603
            var = Variable(
                self,
T
typhoonzero 已提交
1604
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1605 1606 1607 1608
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1609
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1610 1611 1612
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1613
        self._sync_with_cpp()
1614
        return var
T
typhoonzero 已提交
1615

W
Wu Yi 已提交
1616 1617
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1618
        self.desc._remove_var(cpt.to_bytes(name))
1619 1620
        del self.vars[name]

Y
Yu Yang 已提交
1621 1622
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1623
        param = Parameter(global_block, *args, **kwargs)
1624
        if 'initializer' in kwargs:
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1645
        return param
Y
Yu Yang 已提交
1646

Y
Yu Yang 已提交
1647
    def append_op(self, *args, **kwargs):
1648 1649 1650 1651 1652 1653
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1654
        if in_dygraph_mode():
1655 1656 1657
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1658 1659 1660 1661 1662
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1663

1664 1665 1666 1667
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1668 1669
                inputs=None,
                outputs=None,
1670
                attrs=attrs)
1671

M
minqiyang 已提交
1672 1673 1674
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1675
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1676 1677 1678 1679
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1680
        else:
1681 1682 1683 1684 1685 1686 1687 1688 1689
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1690
            self.ops.append(op)
M
minqiyang 已提交
1691

1692 1693
        return op

W
Wu Yi 已提交
1694
    def _insert_op(self, index, *args, **kwargs):
1695 1696 1697 1698 1699 1700 1701 1702 1703
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1704 1705
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1706 1707 1708 1709
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1710
    def _remove_op(self, index):
1711 1712 1713 1714 1715 1716 1717 1718 1719
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1720 1721
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1722 1723
        del self.ops[index]

W
Wu Yi 已提交
1724
    def _slice_ops(self, start, end):
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1735
        return self.ops[start:end]
Y
Yancey1989 已提交
1736

W
Wu Yi 已提交
1737
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1738
        if in_dygraph_mode():
1739 1740 1741 1742
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1743 1744 1745 1746 1747 1748 1749 1750
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1751
        else:
1752 1753 1754 1755 1756 1757 1758 1759
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1760
            self.ops.insert(0, op)
1761

Y
Yu Yang 已提交
1762 1763
        return op

W
Wu Yi 已提交
1764
    def _sync_with_cpp(self):
1765
        """
1766 1767
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1768
        """
Q
Qiao Longfei 已提交
1769 1770 1771 1772 1773
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1774
        # sync variables removed from c++ end
1775
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1776
            if not self.desc.find_var(cpt.to_bytes(var)):
1777 1778
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1779
        # sync operators from cpp
1780 1781 1782 1783
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1800 1801 1802 1803 1804

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1805
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1806 1807 1808 1809 1810 1811 1812

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1826 1827 1828 1829
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1830
    def _copy_param_info_from(self, other):
1831
        """
1832 1833
        Copy the information of parameters from the other block.

1834
        Args:
1835 1836 1837 1838 1839
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1840 1841 1842 1843 1844

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1845 1846
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1847
        for p in other.iter_parameters():
1848 1849 1850
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1851
                raise ValueError("_copy_param_info_from should be invoked with "
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1864
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1865
                error_clip=p.error_clip,
1866 1867 1868
                name=v.name)
            self.vars[new_p.name] = new_p

1869
    def _clone_variable(self, var, force_persistable=True):
1870 1871
        """
        Clone a variable into current block.
1872

1873 1874
        Args:
            var: the variable to be cloned.
1875 1876 1877
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1878 1879

        Returns:
1880
            Variable: the new  variable cloned from 'var' in current block.
1881 1882
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1883 1884 1885 1886 1887
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1888 1889
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1890
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1891 1892 1893 1894 1895 1896
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1897
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1898
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1899 1900 1901 1902 1903 1904 1905
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1906
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1907
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1908
        return ret_var
1909

Y
Yu Yang 已提交
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2006
    def remove_input_by_id(self, node_id):
2007 2008 2009 2010 2011 2012
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2013
        self.node.remove_input(node_id)
2014

2015
    def remove_input(self, node):
2016 2017 2018 2019
        """
        Remove a node from inputs.

        Args:
2020
            node(IrNode): the node being removed.
2021
        """
2022
        self.node.remove_input(node.node)
2023

2024
    def append_input(self, node):
2025 2026 2027 2028
        """
        Append a node in inputs.

        Args:
2029
            node(IrNode): the node being appended.
2030
        """
2031
        self.node.append_input(node.node)
2032 2033 2034 2035 2036 2037 2038 2039

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2040
    def remove_output_by_id(self, node_id):
2041 2042 2043 2044 2045 2046
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2047
        self.node.remove_output(node_id)
2048

2049
    def remove_output(self, node):
2050 2051 2052 2053
        """
        Remove a node from outputs.

        Args:
2054
            node(IrNode): the node being removed.
2055
        """
2056
        self.node.remove_output(node.node)
2057

2058
    def append_output(self, node):
2059 2060 2061 2062
        """
        Append a node in outputs.

        Args:
2063
            node(IrNode): the node being appended.
2064
        """
2065
        self.node.append_output(node.node)
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2320 2321
class IrGraph(object):
    """
2322
    Python IrGraph. Beneath it is a core.Graph, which is used for
2323
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2324 2325
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2326 2327 2328 2329
    """

    def __init__(self, graph, for_test=False):
        """
2330 2331
        Construct an IrGraph using core.Graph.

2332 2333 2334 2335 2336 2337 2338 2339 2340
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2341 2342 2343 2344
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2345 2346 2347
        Warns:
            The method only clones the graph structure, not its attributes.

2348 2349 2350
        Returns:
            IrGraph: A new and duplicated graph.
        """
2351
        g = self.graph.clone()
2352 2353
        return IrGraph(g, self._for_test)

2354
    def is_test(self):
2355 2356 2357
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2358 2359
        return self._for_test

W
WangZhen 已提交
2360
    def all_nodes(self):
2361 2362 2363
        """
        Return all nodes included in the graph as a set.
        """
2364
        return {IrNode(node) for node in self.graph.nodes()}
2365

2366
    def all_var_nodes(self):
2367 2368 2369
        """
        Return all variable nodes included in the graph as a set.
        """
2370
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2371

2372
    def all_persistable_nodes(self):
2373 2374 2375
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2376 2377 2378 2379 2380
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2381
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2382

2383
    def all_op_nodes(self):
2384 2385 2386
        """
        Return all operator nodes included in the graph as a set.
        """
2387
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2388

2389
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2401
            IrVarNode: the created persistable variable node.
2402
        """
2403 2404 2405 2406 2407
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2408
        return IrVarNode(self.graph.create_var_node(var_desc))
2409 2410

    def create_var_node(self, name, var_type, shape, var_dtype):
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2422
            IrVarNode: the created variable node.
2423 2424
        """

2425 2426 2427 2428
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2429
        return IrVarNode(self.graph.create_var_node(var_desc))
2430 2431

    def create_var_node_from_desc(self, var_desc):
2432 2433 2434 2435 2436 2437 2438 2439
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2440
            IrVarNode: the created variable node.
2441
        """
2442
        return IrVarNode(self.graph.create_var_node(var_desc))
2443 2444

    def create_op_node(self, op_type, attrs, inputs, outputs):
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2455
            IrOpNode: the created operator node.
2456
        """
2457 2458
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2459
        for attr, value in six.iteritems(attrs):
2460
            self._update_desc_attr(op_desc, attr, value)
2461
        for input_name, var_nodes in six.iteritems(inputs):
2462 2463 2464 2465
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2466
        for output_name, var_nodes in six.iteritems(outputs):
2467 2468 2469 2470
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2471
        return IrOpNode(self.graph.create_op_node(op_desc))
2472 2473

    def create_op_node_from_desc(self, op_desc):
2474 2475 2476 2477 2478 2479 2480
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2481
            IrOpNode: the created operator node.
2482
        """
2483
        return IrOpNode(self.graph.create_op_node(op_desc))
2484 2485

    def update_input_link(self, old_input_node, new_input_node, op_node):
2486 2487 2488 2489
        """
        Update the input's link of a operator node.

        Args:
2490 2491 2492
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2493
        """
2494 2495
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2496
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2497 2498 2499 2500
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2501
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2502 2503

    def link_to(self, node_in, node_out):
2504 2505 2506 2507
        """
        Connect two nodes.

        Args:
2508 2509
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2510
        """
2511
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2512
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2513 2514
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2515 2516

    def safe_remove_nodes(self, remove_nodes):
2517 2518 2519 2520 2521 2522 2523
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2524
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2525 2526 2527 2528
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2529 2530
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2531

Z
Zhen Wang 已提交
2532 2533 2534 2535 2536 2537 2538 2539
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2540
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2541 2542 2543 2544
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2545
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2546 2547 2548
                        ]
                    else:
                        var_nodes[each_var_name].append(
2549 2550
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2551 2552
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2553
    def has_circle(self):
2554 2555 2556 2557 2558 2559
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2560 2561 2562
        return core.has_circle(self.graph)

    def graph_num(self):
2563 2564 2565 2566 2567 2568
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2569 2570 2571
        return core.graph_num(self.graph)

    def topology_sort(self):
2572 2573 2574 2575 2576 2577
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2578
            list(IrNode): nodes in topology order.
2579
        """
2580
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2581
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2582 2583

    def build_adjacency_list(self):
2584 2585 2586 2587
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2588
            dict{IrNode: set(IrNode)}: the adjacency list.
2589
        """
2590 2591 2592 2593 2594
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2595

2596 2597 2598 2599 2600 2601 2602 2603
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2604
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2605 2606 2607 2608 2609
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2610 2611 2612 2613 2614 2615 2616 2617 2618
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2619
        remove_ctr_vars = set()
2620
        if remove_ctr_var:
2621
            for node in self.all_var_nodes():
2622 2623 2624
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2625 2626
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2627 2628
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2629 2630 2631 2632 2633 2634
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2646 2647 2648
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2649
        WARN: When the graph includes backward operator nodes, the
2650 2651 2652 2653 2654 2655
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2656
        convert_pass = core.get_pass('graph_to_program_pass')
2657 2658
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2659 2660 2661 2662
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2690
class Program(object):
D
dzhwinter 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2702
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2703 2704

    Returns:
Y
yuyang18 已提交
2705
        A empty program.
D
dzhwinter 已提交
2706 2707

    Examples:
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2721 2722 2723

    """

2724 2725
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2726 2727
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2728
        self._seed = 0
Y
yuyang18 已提交
2729
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2730
        self.__op_role_var = []
T
tangwei12 已提交
2731

2732 2733
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2734
        self._is_distributed = False
2735
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2736
        self._is_chief = False
2737 2738 2739
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2740
        self._endpoints = []
2741 2742 2743
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2744
        self._trainers_endpoints = []
2745
        # the distributed lookup table names
T
tangwei12 已提交
2746
        self._distributed_lookup_table = None
2747 2748 2749

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2750 2751 2752 2753
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2754

D
dzhwinter 已提交
2755
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2756
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2757
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2758

2759 2760 2761
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2762
        self._program_config = None
2763

H
hutuxian 已提交
2764 2765 2766
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

D
dzhwinter 已提交
2767
    @property
D
dzhwinter 已提交
2768
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2769 2770
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2771
        return self.__is_mem_optimized
D
dzhwinter 已提交
2772

D
dzhwinter 已提交
2773 2774 2775
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2776 2777

    @property
2778
    def _op_role(self):
Y
yuyang18 已提交
2779 2780 2781 2782 2783 2784 2785 2786
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2787
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2788 2789 2790 2791
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2792 2793
        return self._current_role

2794 2795
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2796 2797 2798
        self._current_role = role

    @property
2799
    def _op_role_var(self):
Y
yuyang18 已提交
2800
        """
2801
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2802

2803
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2804 2805 2806

        Notes: This is a very low-level API. Users should not use it directly.
        """
2807
        return self.__op_role_var
Y
yuyang18 已提交
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2818
    @signature_safe_contextmanager
W
Wu Yi 已提交
2819
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2820 2821 2822 2823 2824 2825 2826
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2827
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2828 2829 2830 2831

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2832
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2833 2834
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2835
        tmp_role = self._current_role
2836
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2837

Y
yuyang18 已提交
2838 2839
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2840
        self.__op_role_var = [
2841 2842 2843
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2844
        yield
2845
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2846
        self._current_role = tmp_role
Y
Yu Yang 已提交
2847

S
rename  
sneaxiy 已提交
2848
    @signature_safe_contextmanager
X
Xin Pan 已提交
2849
    def _lr_schedule_guard(self, is_with_opt=False):
2850 2851 2852 2853 2854 2855 2856
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2857 2858 2859 2860
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2861 2862 2863 2864 2865 2866 2867

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2868 2869

        tmp_role = self._current_role
2870
        tmp_var = self.__op_role_var
2871

2872 2873
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2874 2875
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2876
        # TODO(typhoonzero): how to set target learning rate var
2877
        self.__op_role_var = []
2878
        yield
2879
        self.__op_role_var = tmp_var
2880
        self._current_role = tmp_role
2881

2882
    def __str__(self):
Y
yuyang18 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2892 2893
        return self.to_string(True)

F
fengjiayi 已提交
2894 2895 2896
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2897

F
fengjiayi 已提交
2898
        Args:
Y
yuyang18 已提交
2899 2900
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2901

Y
yuyang18 已提交
2902 2903 2904 2905
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2906 2907
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2908 2909 2910 2911

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2931 2932
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2933 2934
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2935

W
Wu Yi 已提交
2936
    def _get_desc(self):
Y
yuyang18 已提交
2937 2938 2939 2940 2941 2942 2943
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2944 2945
        return self.desc

X
version  
Xin Pan 已提交
2946 2947 2948
    def _version(self):
        return self.desc._version()

2949
    def clone(self, for_test=False):
Y
yuyang18 已提交
2950 2951 2952
        """
        Create a new, duplicated program.

2953

Y
yuyang18 已提交
2954 2955 2956 2957
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2958

Y
yuyang18 已提交
2959
        * Set for_test to False when we want to clone the program for training.
2960 2961 2962 2963
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
2964

2965 2966 2967 2968
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
2969

2970 2971 2972 2973 2974
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
2975 2976

        Args:
Y
yuyang18 已提交
2977 2978
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2979

D
dzhwinter 已提交
2980
        Returns:
Y
yuyang18 已提交
2981 2982 2983 2984
            Program: The new, duplicated Program object.

        Examples:

2985 2986 2987 2988 2989 2990
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3086 3087
        """
        if for_test:
X
Xin Pan 已提交
3088
            p = self._inference_optimize(prune_read_op=False)
3089
        else:
3090
            p = Program()
G
gongweibao 已提交
3091 3092
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3093
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3094 3095 3096
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3097 3098

            p._current_role = self._current_role
3099
            p.__op_role_var = self.__op_role_var
G
gongweibao 已提交
3100

W
Wu Yi 已提交
3101
            p._sync_with_cpp()
3102

W
Wu Yi 已提交
3103
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3104
        p._copy_data_info_from(self)
3105
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3106
        return p
3107

W
Wu Yi 已提交
3108
    def _prune(self, targets):
Y
yuyang18 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3124 3125 3126 3127 3128 3129
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3130 3131
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3132
                    # and we need to find the current op that generate this
3133 3134 3135 3136 3137 3138 3139 3140
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3141
                    t = t.op
3142 3143 3144 3145
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3146
                else:
3147 3148
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3149 3150 3151 3152

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3153 3154 3155
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3156
        res._sync_with_cpp()
3157 3158
        return res

X
Xin Pan 已提交
3159
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3160
        """
F
fengjiayi 已提交
3161 3162 3163 3164 3165
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3166
        3. change the :code:`is_test`
Y
yuyang18 已提交
3167 3168 3169
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3170
        Args:
X
Xin Pan 已提交
3171 3172
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3173

Y
yuyang18 已提交
3174 3175 3176 3177 3178 3179
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3180
        res = Program()
3181
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3182 3183 3184 3185

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3186
        if prune_read_op:
3187 3188 3189 3190 3191 3192 3193 3194 3195
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3196
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3197 3198

        # change all `is_test` attributes to True
M
minqiyang 已提交
3199
        for i in six.moves.range(res.desc.num_blocks()):
3200
            block = res.desc.block(i)
M
minqiyang 已提交
3201
            for j in six.moves.range(block.op_size()):
3202 3203
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3204
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3205 3206 3207
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3208
        res._sync_with_cpp()
3209 3210
        return res

3211 3212
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3213 3214 3215 3216 3217 3218 3219
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3220
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3221 3222 3223 3224

        Returns:
            Program: A deserialized program desc.
        """
3225 3226
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3227
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3228
        p._sync_with_cpp()
3229
        return p
Y
Yu Yang 已提交
3230

3231
    @staticmethod
3232
    def _construct_from_desc(desc):
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3248 3249
    @property
    def random_seed(self):
Y
yuyang18 已提交
3250 3251 3252 3253 3254
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3266
        """
D
dzhwinter 已提交
3267 3268
        return self._seed

Q
qiaolongfei 已提交
3269 3270
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3271 3272
        """
        The number of blocks in this program.
3273 3274 3275 3276 3277 3278 3279 3280 3281

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3282
        """
Q
qiaolongfei 已提交
3283 3284
        return self.desc.num_blocks()

D
dzhwinter 已提交
3285 3286 3287 3288 3289 3290
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3291
    def __repr__(self):
3292
        return self.__str__()
3293

Y
Yu Yang 已提交
3294
    def global_block(self):
Y
yuyang18 已提交
3295 3296
        """
        Get the first block of this program.
3297 3298 3299 3300 3301 3302 3303 3304 3305

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3306
        """
Y
Yu Yang 已提交
3307 3308
        return self.blocks[0]

Q
Qiao Longfei 已提交
3309
    def block(self, index):
Y
yuyang18 已提交
3310 3311 3312 3313 3314 3315 3316
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3317 3318 3319 3320 3321 3322 3323 3324 3325

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3326
        """
Q
Qiao Longfei 已提交
3327 3328
        return self.blocks[index]

Y
Yu Yang 已提交
3329
    def current_block(self):
Y
yuyang18 已提交
3330 3331 3332
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3333 3334 3335 3336 3337 3338 3339 3340 3341

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3342
        """
Y
Yu Yang 已提交
3343 3344
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3345
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3356
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3357 3358 3359
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3360 3361 3362 3363
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3364
    def _rollback(self):
Y
yuyang18 已提交
3365 3366 3367 3368 3369
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3370 3371
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3372
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3383 3384 3385
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3386
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3387

W
Wu Yi 已提交
3388
    def _copy_param_info_from(self, other):
3389
        """
3390
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3391

Y
yuyang18 已提交
3392 3393 3394
        Notes: This is a very low level API. Users should not invoke it
        directly.

3395 3396 3397 3398 3399 3400 3401
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3402
            raise TypeError("_copy_param_info_from should be invoked with "
3403 3404 3405
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3406
            raise ValueError("_copy_param_info_from should be invoked with two "
3407
                             "program, with represent the same topology")
W
Wu Yi 已提交
3408
        self.global_block()._copy_param_info_from(other.global_block())
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3425
        self._parameters_on_pservers = other._parameters_on_pservers
3426
        self._endpoints = other._endpoints
3427
        self._ps_endpoint = other._ps_endpoint
3428 3429
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3430
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3431 3432
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3433

Y
yuyang18 已提交
3434 3435 3436
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3437 3438 3439 3440 3441 3442 3443
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3444
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3445 3446 3447
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3448
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3449
                             "program, with represent the same topology")
3450
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3451 3452 3453
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3454
    def list_vars(self):
Y
yuyang18 已提交
3455 3456 3457 3458 3459
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3471
        """
3472
        for each_block in self.blocks:
3473
            for each_var in list(each_block.vars.values()):
3474 3475
                yield each_var

Y
Yu Yang 已提交
3476

Y
Yu Yang 已提交
3477
class Parameter(Variable):
3478
    """
3479
    Parameter is derived from Variable. A parameter is a persistable
3480
    Variable, and will be updated by optimizers after each iteration.
3481
    The training of a neural network is essentially the updating of
3482 3483
    its parameters.

3484
    Relative to a general Variable, a Parameter has several its own
3485 3486
    member variables:

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3499 3500
    """

Y
Yu Yang 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3511 3512 3513

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3514 3515 3516 3517
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3518 3519
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3520
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3521

W
wanghaoshuang 已提交
3522
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3523

F
fengjiayi 已提交
3524 3525 3526
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3527 3528 3529
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3530

F
update  
fengjiayi 已提交
3531 3532 3533 3534 3535 3536 3537 3538
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3539 3540 3541 3542 3543 3544 3545 3546 3547
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3548 3549 3550 3551 3552 3553
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3554
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3555
            for attr_name in additional_attr:
3556 3557
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3558 3559
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3560 3561 3562 3563
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3564

Y
Yu Yang 已提交
3565
# program is a global instance.
Y
Yu Yang 已提交
3566 3567
_main_program_ = Program()
_startup_program_ = Program()
3568

3569

3570
def default_startup_program():
Y
Yu Yang 已提交
3571
    """
Y
yuyang18 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3581

Y
Yu Yang 已提交
3582 3583
    Returns:
        Program: startup program
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3599
    """
Y
Yu Yang 已提交
3600
    return _startup_program_
3601

3602

3603
def default_main_program():
Y
Yu Yang 已提交
3604
    """
Y
yuyang18 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3614

Y
Yu Yang 已提交
3615 3616
    Returns:
        Program: main program
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3646
    """
Y
Yu Yang 已提交
3647
    return _main_program_
Y
Yu Yang 已提交
3648 3649 3650 3651 3652


def switch_main_program(program):
    """
    Switch the main program to a new program.
3653

Y
Yu Yang 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3668
    Switch the startup program to a new program
Y
Yu Yang 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3681
@signature_safe_contextmanager
Y
Yu Yang 已提交
3682 3683
def program_guard(main_program, startup_program=None):
    """
3684 3685
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3686
    variables to the new main programs.
3687

Y
Yu Yang 已提交
3688
    Examples:
3689 3690 3691
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3692

3693 3694 3695 3696 3697
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3698 3699 3700

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3701

Y
Yu Yang 已提交
3702
    Examples:
3703
       .. code-block:: python
Y
yuyang18 已提交
3704

3705 3706 3707 3708 3709 3710
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3711

Y
Yu Yang 已提交
3712
    Args:
3713 3714 3715
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3728 3729


W
Wu Yi 已提交
3730
def _get_var(name, program=None):
X
xuwei06 已提交
3731
    """
Y
yuyang18 已提交
3732
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3733

X
xuwei06 已提交
3734 3735 3736
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3737
        If None, default_global_program() will be used.
X
xuwei06 已提交
3738 3739 3740 3741 3742 3743 3744

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3745
    assert isinstance(program, Program)
X
xuwei06 已提交
3746 3747

    return program.global_block().var(name)
3748 3749


S
rename  
sneaxiy 已提交
3750
@signature_safe_contextmanager
L
lujun 已提交
3751 3752 3753 3754
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3755

3756
    yield
P
Paddle CI 已提交
3757

L
lujun 已提交
3758
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3759 3760


S
rename  
sneaxiy 已提交
3761
@signature_safe_contextmanager
L
lujun 已提交
3762 3763 3764 3765
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3766

3767
    yield
M
minqiyang 已提交
3768

L
lujun 已提交
3769
    _dygraph_current_expected_place_ = tmp_place