framework.py 214.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
S
sneaxiy 已提交
49 50
    'cuda_places',
    'cpu_places',
51
    'xpu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
L
lujun 已提交
53
    'in_dygraph_mode',
C
chengduo 已提交
54
    'is_compiled_with_cuda',
55
    'is_compiled_with_xpu',
56
    'Variable',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
245
# same base class.
246 247 248
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
249 250 251 252 253
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
254 255 256 257

    return __impl__


T
tangwei12 已提交
258 259
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


277 278
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
279
static_only = wrap_decorator(_static_only_)
280
fake_interface_only = wrap_decorator(_fake_interface_only_)
281 282


L
lujun 已提交
283 284
def _dygraph_tracer():
    return _dygraph_tracer_
285

W
Wu Yi 已提交
286

M
minqiyang 已提交
287
def _current_expected_place():
288 289 290
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
291 292 293 294 295 296 297 298 299 300 301
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
318 319


L
Leo Chen 已提交
320 321 322 323
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
324

L
Leo Chen 已提交
325 326 327 328 329 330 331 332 333 334 335 336
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
337
def _cpu_num():
338
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
339 340 341 342 343 344 345 346
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
347
        os.environ['CPU_NUM'] = str(1)
348
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
349 350 351 352 353 354 355 356 357 358
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
359 360


361 362 363 364 365 366 367 368 369
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
385 386 387 388
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

389
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
390 391 392 393

    Examples:
        .. code-block:: python

394 395
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
396 397 398 399
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
400
def cuda_places(device_ids=None):
L
lujun 已提交
401
    """
402 403 404 405
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
406
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
407 408

    If :code:`device_ids` is None, environment variable of
409
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
410
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
411
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
412
    If :code:`FLAGS_selected_gpus` is not set, all visible
413
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
414 415

    If :code:`device_ids` is not None, it should be the device
416
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
417
    the returned list would be 
C
Chen Weihang 已提交
418
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
419

420
    Parameters:
421
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
422 423

    Returns:
C
Chen Weihang 已提交
424
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
425 426 427 428

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
429 430
            import paddle
            import paddle.static as static
T
tangwei12 已提交
431

432 433
            # required: gpu
            
C
Chen Weihang 已提交
434 435 436
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
437 438

    """
S
sneaxiy 已提交
439 440 441
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
442
        device_ids = _cuda_ids()
S
sneaxiy 已提交
443 444 445 446 447
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
470
        
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
486
def cpu_places(device_count=None):
L
lujun 已提交
487
    """
C
Chen Weihang 已提交
488
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
489

S
add doc  
sneaxiy 已提交
490 491
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
492 493
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
494 495
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
496

497 498
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
499 500

    Returns:
C
Chen Weihang 已提交
501
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
502 503 504 505

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
506 507
            import paddle
            import paddle.static as static
T
tangwei12 已提交
508

C
Chen Weihang 已提交
509 510 511
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
512 513
    """

S
sneaxiy 已提交
514 515 516 517 518 519
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
520
    """
521
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
522 523 524

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
525 526 527 528
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
529

530 531
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
532 533

    Returns:
534
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
535 536 537 538

    Examples:
        .. code-block:: python

539
            import paddle.fluid as fluid
L
lujun 已提交
540 541 542 543 544
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
545 546 547
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
548 549
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
550 551


552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
578
@signature_safe_contextmanager
579 580
def name_scope(prefix=None):
    """
581 582
    :api_attr: Static Graph

583
    Generate hierarchical name prefix for the operators in Static Graph.
584

T
Tao Luo 已提交
585 586 587
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
588
        Don't use it in dygraph, since it will cause memory leak.
589 590

    Args:
T
Tao Luo 已提交
591
        prefix(str, optional): prefix. Default is none.
592 593 594

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
595

596 597 598
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
599
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
600
             b = a + 1
601
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
602
                c = b * 1
603
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
604
                d = c / 1
605 606 607
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
608 609 610
                g = f - 1

          # Op are created in the default main program.  
611
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
627 628
    """
    # TODO(panyx0718): Only [0-9a-z].
629
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
630 631 632
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
633
        assert prefix, "namescope prefix can not be empty."
634 635
        global _name_scope
        _name_scope = _name_scope.child(prefix)
636 637 638 639
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
640 641 642 643 644 645 646 647 648 649 650 651


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
652 653 654
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
655 656 657 658


def grad_var_name(var_name):
    """
659 660
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
661 662 663
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
664

665
def convert_np_dtype_to_dtype_(np_dtype):
666 667
    """
    Convert the data type in numpy to the data type in Paddle
668

669
    Args:
670
        np_dtype(np.dtype): the data type in numpy.
671

672 673
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
674 675

    """
676 677
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
678
        return core.VarDesc.VarType.FP32
679
    elif dtype == np.float64:
680
        return core.VarDesc.VarType.FP64
681
    elif dtype == np.float16:
682
        return core.VarDesc.VarType.FP16
683
    elif dtype == np.int32:
684
        return core.VarDesc.VarType.INT32
685
    elif dtype == np.int16:
686
        return core.VarDesc.VarType.INT16
687
    elif dtype == np.int64:
688
        return core.VarDesc.VarType.INT64
689
    elif dtype == np.bool:
690
        return core.VarDesc.VarType.BOOL
691
    elif dtype == np.uint16:
692 693 694
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
695 696
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
697 698
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
699 700 701 702
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
703
    else:
M
minqiyang 已提交
704
        raise ValueError("Not supported numpy dtype %s" % dtype)
705 706 707


def dtype_is_floating(dtype):
708 709 710
    """
    Check the data type is floating or not.
    Args:
711
        dtype(np.dtype|core.VarDesc.VarType): data type.
712 713 714 715 716
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
717
    if not isinstance(dtype, core.VarDesc.VarType):
718 719
        dtype = convert_np_dtype_to_dtype_(dtype)

720 721 722 723
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
724 725


Y
Yang Yang(Tony) 已提交
726
def _debug_string_(proto, throw_on_error=True):
727 728 729 730 731 732 733 734 735 736 737
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
738
    error_fields = list()
Y
Yang Yang(Tony) 已提交
739
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
740 741
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
742 743 744
    return proto.__str__()


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

L
liym27 已提交
795 796 797 798 799 800
    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

801 802 803
    use_strided_slice = False
    reverse_axis = []

L
liym27 已提交
804
    max_integer = 2**31 - 1
805 806 807 808 809 810 811 812 813
    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

L
liym27 已提交
814
            step = 1 if step is None else step
815 816 817 818 819 820 821 822 823 824

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
L
liym27 已提交
825
                end = max_integer
826 827

        else:
L
liym27 已提交
828 829 830 831 832 833 834 835 836 837
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else max_integer

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice
838 839 840

    inputs = {'Input': [var]}
    attrs = {
L
liym27 已提交
841
        'axes': axes,
842 843
        'starts': [],
        'ends': [],
L
liym27 已提交
844
        'decrease_axis': decrease_axes
845
    }
L
liym27 已提交
846
    if use_strided_slice == True:
847
        attrs['strides'] = []
L
Leo Chen 已提交
848

L
liym27 已提交
849 850 851 852 853 854 855 856
    infer_flags = list(1 for i in range(len(axes)))
    from .layers import utils

    def deal_attrs(attr, attr_name, tensor_attr_name, inputs, infer_flags):
        if utils._contain_var(attr):
            inputs[tensor_attr_name] = utils._convert_to_tensor_list(
                attr, dtype="int64")
            for i, dim in enumerate(attr):
857
                if isinstance(dim, Variable):
L
liym27 已提交
858
                    attrs[attr_name].append(-1)
859 860
                    infer_flags[i] = -1
                else:
L
liym27 已提交
861
                    attrs[attr_name].append(dim)
L
Leo Chen 已提交
862
        else:
L
liym27 已提交
863 864 865 866 867 868
            attrs[attr_name] = attr

    deal_attrs(starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(ends, "ends", "EndsTensorList", inputs, infer_flags)
    deal_attrs(steps, "strides", "StridesTensorList", inputs, infer_flags)

869 870 871 872
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
L
liym27 已提交
873 874
    target_block = default_main_program().current_block()
    if use_strided_slice == False and len(axes) > 0:
875
        # append slice_op here
876
        slice_out_var = target_block.create_var(
877 878 879
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

880
        target_block.append_op(
881 882 883 884 885 886
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
L
liym27 已提交
887
    elif use_strided_slice == True and len(axes) > 0:
888
        strided_slice_out_var = target_block.create_var(
889 890 891
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
892
        target_block.append_op(
893 894 895 896 897 898 899 900
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
901
        reverse_out_var = target_block.create_var(
902 903 904
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
905
        target_block.append_op(
906 907 908 909 910 911 912 913 914 915 916
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
917
class Variable(object):
918
    """
J
Jiabin Yang 已提交
919
    **Notes**:
920
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
921

922 923
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
924 925 926
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
927
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
928 929
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
930

931
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
932
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
933

T
tianshuo78520a 已提交
934
    Most of a Variable's member variables can be set to be None. It mean
935
    it is not available or will be specified later.
936

937
    Examples:
938 939
        In Static Graph Mode:

940 941
        .. code-block:: python

942
            import paddle.fluid as fluid
943
            cur_program = fluid.Program()
944 945 946 947
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
948
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
949 950 951 952 953 954 955 956 957

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

958 959
    """

Y
Yu Yang 已提交
960 961
    def __init__(self,
                 block,
Y
Yu Yang 已提交
962
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
963 964 965 966
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
967
                 capacity=None,
Q
QI JUN 已提交
968
                 persistable=None,
F
fengjiayi 已提交
969
                 error_clip=None,
Y
Yu Yang 已提交
970
                 stop_gradient=False,
F
fengjiayi 已提交
971
                 is_data=False,
H
Huihuang Zheng 已提交
972
                 need_check_feed=False,
H
hong 已提交
973
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
974
                 **kwargs):
Y
Yu Yang 已提交
975 976
        self.block = block
        if name is None:
Y
Yu Yang 已提交
977
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
978

Y
Yu Yang 已提交
979
        if dtype is not None:
980
            if not isinstance(dtype, core.VarDesc.VarType):
981
                dtype = convert_np_dtype_to_dtype_(dtype)
982

H
hong 已提交
983 984
        self.belong_to_optimizer = belong_to_optimizer

985 986 987 988 989
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
990

991 992 993
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
994

995 996 997
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
998 999
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1000 1001
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1002

1003
        if shape is not None:
1004
            if is_new_var:
1005 1006 1007 1008 1009 1010
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1011 1012
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1013 1014 1015 1016 1017 1018 1019
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1020 1021
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1022 1023 1024 1025 1026 1027 1028 1029 1030
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1031 1032
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1033 1034 1035 1036 1037 1038 1039 1040 1041
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1042 1043
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1044 1045
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1046

1047 1048
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1049

1050 1051 1052 1053 1054 1055 1056
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1057

1058 1059 1060 1061
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1062

1063
    @fake_interface_only
1064 1065
    def detach(self):
        """
J
Jiabin Yang 已提交
1066
        **Notes**:
T
tianshuo78520a 已提交
1067
            **This API is ONLY available in Dygraph mode**
1068

1069
        Returns a new Variable, detached from the current graph.
1070

1071
        Returns:
J
Jiabin Yang 已提交
1072
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1073

1074

1075 1076 1077 1078 1079
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1080
                from paddle.fluid.dygraph import Linear
1081 1082 1083 1084
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1085
                    linear = Linear(32, 64)
1086
                    data = to_variable(data)
1087
                    x = linear(data)
1088 1089 1090
                    y = x.detach()

        """
1091
        pass
1092

1093
    @fake_interface_only
1094
    def numpy(self):
1095
        """
J
Jiabin Yang 已提交
1096
        **Notes**:
T
tianshuo78520a 已提交
1097
            **This API is ONLY available in Dygraph mode**
1098

J
Jiabin Yang 已提交
1099
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1100 1101 1102 1103 1104

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1105
            ndarray: dtype is same as current Variable
1106 1107 1108 1109 1110 1111

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1112
                from paddle.fluid.dygraph import Linear
1113 1114 1115 1116
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1117
                    linear = Linear(32, 64)
1118
                    data = to_variable(data)
1119
                    x = linear(data)
1120 1121 1122
                    print(x.numpy())

        """
1123
        pass
1124

1125
    @fake_interface_only
1126
    def backward(self, retain_graph=False):
1127
        """
J
Jiabin Yang 已提交
1128
        **Notes**:
T
tianshuo78520a 已提交
1129
            **This API is ONLY available in Dygraph mode**
1130

1131
        Run backward of current Graph which starts from current Tensor.
1132

J
Jiabin Yang 已提交
1133
        Args:
1134 1135 1136 1137
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1138

J
Jiabin Yang 已提交
1139 1140
        Returns:
            NoneType: None
1141 1142 1143 1144 1145

        Examples:
            .. code-block:: python

                import numpy as np
1146 1147
                import paddle
                paddle.disable_static()
1148 1149

                x = np.ones([2, 2], np.float32)
1150 1151 1152 1153 1154 1155 1156
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1157 1158
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1159
                loss.backward()
1160 1161

        """
1162
        pass
1163

1164
    @fake_interface_only
1165
    def gradient(self):
1166
        """
J
Jiabin Yang 已提交
1167
        **Notes**:
T
tianshuo78520a 已提交
1168
            **This API is ONLY available in Dygraph mode**
1169 1170 1171

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1172
        Returns:
1173
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1174 1175 1176 1177 1178 1179 1180

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1181
                # example1: return ndarray
1182 1183 1184 1185 1186 1187 1188 1189 1190
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1191
                    loss2.backward()
1192 1193
                    print(loss2.gradient())

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1207
        """
1208
        pass
1209

1210
    @fake_interface_only
1211
    def clear_gradient(self):
1212
        """
J
Jiabin Yang 已提交
1213
        **Notes**:
T
tianshuo78520a 已提交
1214
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1215 1216

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1217

J
Jiabin Yang 已提交
1218
        Clear  (set to ``0`` ) the Gradient of Current Variable
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1237
                    loss2.backward()
1238 1239 1240 1241 1242
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1243
        pass
X
Xin Pan 已提交
1244

1245 1246 1247 1248
    @fake_interface_only
    def register_hook(self, hook):
        pass

1249
    def __str__(self):
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1266 1267
                import paddle
                import paddle.static as static
1268

1269 1270 1271
                paddle.enable_static()

                cur_program = static.Program()
1272 1273 1274 1275 1276 1277
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1278 1279
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1280
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1281 1282
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1283 1284
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1285
        else:
1286 1287
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1301

F
update  
fengjiayi 已提交
1302
    def to_string(self, throw_on_error, with_details=False):
1303 1304 1305
        """
        Get debug string.

J
Jiabin Yang 已提交
1306 1307 1308 1309 1310
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1311

1312 1313
        Returns:
            str: The debug string.
1314 1315 1316 1317 1318

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1319
                import paddle
1320

1321
                paddle.enable_static()
1322 1323 1324 1325 1326
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1327
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1328
                print("=============with detail===============")
1329
                print(new_variable.to_string(True, True))
1330
        """
F
update  
fengjiayi 已提交
1331 1332
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1333
        protostr = self.desc.serialize_to_string()
1334
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1335 1336 1337 1338
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1339 1340 1341
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1342
        return res_str
1343 1344 1345

    __repr__ = __str__

1346
    @property
1347
    def stop_gradient(self):
J
Jiabin Yang 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1363 1364
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1365 1366 1367
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1368 1369
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1370 1371 1372 1373
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1374
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1375 1376
                assert (out1.gradient() == 0).all()
        """
1377
        return self._stop_gradient
1378

1379 1380
    @stop_gradient.setter
    def stop_gradient(self, s):
1381
        self._stop_gradient = s
1382

1383 1384
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1406
        return self.desc.persistable()
1407

Y
Yu Yang 已提交
1408 1409
    @persistable.setter
    def persistable(self, p):
1410
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1411

Y
Yu Yang 已提交
1412 1413
    @property
    def name(self):
J
Jiabin Yang 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1430
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1431

1432 1433 1434 1435 1436 1437 1438 1439
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1452 1453
    @name.setter
    def name(self, new_name):
1454
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1455

Y
Yu Yang 已提交
1456 1457
    @property
    def shape(self):
J
Jiabin Yang 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1475
        # convert to tuple, make it as same as numpy API.
1476
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1477 1478

    @property
F
fengjiayi 已提交
1479
    def dtype(self):
J
Jiabin Yang 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1496
        return self.desc.dtype()
Y
Yu Yang 已提交
1497 1498 1499

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1521 1522 1523
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1524
        return self.desc.lod_level()
Y
Yu Yang 已提交
1525

Y
Yu Yang 已提交
1526 1527
    @property
    def type(self):
J
Jiabin Yang 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1544
        return self.desc.type()
Y
Yu Yang 已提交
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1580
    def _set_error_clip(self, error_clip):
1581 1582 1583 1584 1585 1586 1587 1588 1589
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1590 1591
        self.error_clip = error_clip

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1632
            raise ValueError("slice step can not be zero")
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1708
    def _cloneVar(self, copy=False):
1709 1710
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1711 1712
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1713 1714 1715 1716
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1717
        new_var = self._cloneVar()
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1728
        new_var = self._cloneVar()
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1739
                return self._cloneVar(True)
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1758
                return self._cloneVar(True)
1759
            index = int(item)
1760
            if (index > 0 and index >= self.shape[axis]) \
1761 1762 1763 1764 1765 1766 1767
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1768
        return _getitem_impl_(self, item)
1769

1770 1771 1772 1773 1774 1775 1776
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

1777
        decrease_axes = []
1778 1779 1780
        axes = []
        starts = []
        ends = []
1781 1782
        steps = []

1783
        max_integer = sys.maxsize
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

        def replace_ellipsis(item):
            # Use slice(None) to replace Ellipsis.
            # For var, var.shape = [3,4,5,6]
            #
            #   var[..., 1:2] -> var[:, :, :, 1:2]
            #   var[0, ...] -> var[0]
            #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

            item = list(item)
1794 1795 1796 1797 1798 1799

            # Remove Variable to skip bug when counting Ellipsis
            item_remove_var = [
                ele for ele in item if not isinstance(ele, Variable)
            ]
            ell_count = item_remove_var.count(Ellipsis)
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
            if ell_count == 0:
                return item
            elif ell_count > 1:
                raise IndexError(
                    "An index can only have a single ellipsis ('...')")

            ell_idx = item.index(Ellipsis)

            if ell_idx == len(item) - 1:
                return item[:-1]
            else:
                item[ell_idx:ell_idx + 1] = [slice(None)] * (
                    len(self.shape) - len(item) + 1)

            return item

        item = replace_ellipsis(item)

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                step = 1 if step is None else step

1829 1830
                # TODO: support cases when step < 1
                if not isinstance(step, Variable) and step == 0:
1831
                    raise ValueError(
1832
                        "When assign a value to a paddle.Tensor, step can not be 0, "
1833
                        "but received step is {}.".format(step))
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

                if isinstance(step, Variable) and (start is None or
                                                   end is None):
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, it's not supported that "
                        "the start or end is None when the type of step is paddle.Tensor."
                    )

                if start is None:
                    start = 0 if step > 0 else max_integer

                if end is None:
                    end = max_integer if step > 0 else (0 - max_integer)
1847
            else:
1848
                decrease_axes.append(dim)
1849 1850
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
1851
                step = 1
1852

1853 1854 1855
            axes.append(dim)
            starts.append(start)
            ends.append(end)
1856
            steps.append(step)
1857

1858 1859 1860 1861 1862 1863 1864
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'steps': steps,
            'decrease_axes': decrease_axes
        }
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

        from .layers import utils
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            del attrs['starts']
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            del attrs['ends']
        if utils._contain_var(steps):
            inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
            del attrs['steps']
1876 1877 1878 1879 1880

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

1881
        from .data_feeder import convert_dtype
1882 1883
        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
1884
            value = np.array([value]).astype(convert_dtype(dtype))
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
1895 1896 1897
            elif dtype == core.VarDesc.VarType.FP64:
                value_name = "fp64_values"
                values = [float(v) for v in value.flat]
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

1920 1921
        cur_block = default_main_program().current_block()
        cur_block.append_op(
1922
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
1923

1924 1925
        return self

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

Y
Yu Yang 已提交
2079

F
fengjiayi 已提交
2080 2081 2082
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2083

2084 2085
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2086 2087 2088 2089
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2090
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2091 2092 2093 2094 2095
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2096 2097 2098 2099
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2109
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2110 2111 2112 2113 2114 2115
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2116 2117 2118 2119 2120 2121 2122 2123
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2124 2125
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2126 2127
        return self.op_proto_map[type]

2128 2129
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2130
        custom_op_names = []
2131 2132 2133
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2134 2135 2136
                custom_op_names.append(proto.type)

        return custom_op_names
2137

2138 2139 2140 2141
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2142
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2143
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2144 2145
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2146 2147
        }

F
fengjiayi 已提交
2148

X
Xin Pan 已提交
2149
class Operator(object):
2150
    """
2151 2152 2153 2154 2155 2156 2157
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2158
        type(str): The type of operator. Default None.
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2179
        Block.append_op or Block._prepend_op instead.
2180 2181 2182 2183

    Examples:
        .. code-block:: python

2184
            import paddle.fluid as fluid
2185
            cur_program = fluid.Program()
2186 2187 2188 2189 2190
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2191
    """
2192
    OP_WITHOUT_KERNEL_SET = {
2193 2194
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2195
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2196 2197
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2198
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2199 2200
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2201
    }
2202

Y
Yu Yang 已提交
2203 2204
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2205
                 desc,
Y
Yu Yang 已提交
2206 2207 2208
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2209
                 attrs=None):
L
lujun 已提交
2210
        if in_dygraph_mode():
2211 2212
            if type is None:
                raise ValueError(
2213
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2214
            self._type = type
M
minqiyang 已提交
2215
            self.attrs = attrs if attrs else {}
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2230
                )] = self.block.program._op_role
2231 2232 2233

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2234 2235
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2236 2237 2238 2239 2240 2241 2242 2243

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2244
                    "`type` to initialized an Operator can not be None.")
2245 2246
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2247 2248 2249 2250 2251 2252 2253
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2254 2255 2256 2257 2258 2259 2260

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2292
                        if not isinstance(in_args, (list, tuple)):
2293 2294 2295 2296 2297 2298
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2299
                        for index, arg in enumerate(in_args):
2300 2301 2302 2303
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2304
                            elif isinstance(arg, (Variable, core.VarBase)):
2305
                                in_arg_names.append(cpt.to_text(arg.name))
2306
                            else:
2307 2308 2309 2310
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2311 2312
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2337 2338 2339 2340
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2341
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2342
                        if not in_dygraph_mode():
2343 2344 2345 2346
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2365
    def _has_kernel(self, op_type):
2366 2367
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2368
    def to_string(self, throw_on_error):
2369
        """
2370 2371
        Get debug string.

2372
        Args:
2373 2374
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2375

2376 2377
        Returns:
            str: The debug string.
2378 2379

        """
2380
        protostr = self.desc.serialize_to_string()
2381
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2382 2383
        return _debug_string_(proto, throw_on_error)

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2471 2472
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2473 2474 2475 2476 2477
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2478
    def __str__(self):
2479
        return self._to_readable_code()
2480 2481 2482

    __repr__ = __str__

F
fengjiayi 已提交
2483 2484
    @property
    def type(self):
2485
        return self.desc.type()
F
fengjiayi 已提交
2486 2487

    def input(self, name):
2488
        r"""
2489
        Get the input arguments according to the input parameter name.
2490

2491 2492
        Args:
            name(str): The input parameter name.
2493

2494 2495 2496
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2497
        """
F
fengjiayi 已提交
2498 2499
        return self.desc.input(name)

W
Wu Yi 已提交
2500
    def _rename_input(self, old_name, new_name):
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2511
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2512

W
Wu Yi 已提交
2513
    def _rename_output(self, old_name, new_name):
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2524
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2525

F
fengjiayi 已提交
2526 2527 2528 2529
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2530 2531 2532 2533 2534 2535 2536 2537
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2538
    def output(self, name):
2539
        r"""
2540
        Get output arguments by the output parameter name.
2541

2542 2543
        Args:
            name(str): The output parameter name.
2544

2545 2546 2547
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2548
        """
F
fengjiayi 已提交
2549 2550 2551 2552 2553 2554
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2555 2556 2557 2558 2559 2560 2561 2562
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2563
    def has_attr(self, name):
2564
        """
2565 2566
        Whether this Operator has the attribute with name or not.

2567
        Args:
2568
            name(str): the attribute name.
2569

2570 2571
        Returns:
            bool: True if has this attribute.
2572 2573

        """
F
fengjiayi 已提交
2574 2575 2576
        return self.desc.has_attr(name)

    def attr_type(self, name):
2577
        """
2578
        Get the type of attribute by attribute's name.
2579

2580 2581
        Args:
            name(str): the attribute name.
2582

2583 2584
        Returns:
            core.AttrType: the attribute type.
2585
        """
F
fengjiayi 已提交
2586 2587
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2588
    def _set_attr(self, name, val):
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2599 2600
        self._update_desc_attr(name, val)

2601 2602 2603
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2615 2616
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2617 2618
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2619
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2620 2621 2622 2623
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2624
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2625

F
fengjiayi 已提交
2626 2627 2628 2629 2630
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2631
        """
2632 2633
        Get the attribute by name.

2634
        Args:
2635
            name(str): the attribute name.
2636

2637 2638
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2639 2640
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2641
        return self.desc.attr(name)
Y
Yu Yang 已提交
2642

W
Wu Yi 已提交
2643
    def _block_attr_id(self, name):
2644
        """
G
gongweibao 已提交
2645
        Get the block attribute's id by name.
2646

2647 2648
        Args:
            name(str): the attribute name.
2649

2650 2651
        Returns:
            int: the block index.
2652
        """
W
Wu Yi 已提交
2653
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2654

W
Wu Yi 已提交
2655
    def _block_attr(self, name):
G
gongweibao 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2666
        id = self._block_attr_id(name)
G
gongweibao 已提交
2667 2668 2669
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2670
    def _blocks_attr(self, name):
G
gongweibao 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2681
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2682 2683 2684 2685 2686
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2687
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2698
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2699

J
JiayiFeng 已提交
2700
    def all_attrs(self):
F
fengjiayi 已提交
2701
        """
2702 2703 2704
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2705
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2706 2707 2708 2709
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2710 2711
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2712
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2713 2714 2715
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2716
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2717 2718 2719 2720
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2721 2722
        return attr_map

2723 2724 2725
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2726 2727 2728 2729

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2730 2731 2732
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2733 2734 2735 2736 2737 2738 2739 2740

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2741 2742
            return False

2743 2744 2745 2746 2747 2748
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2749

Y
Yu Yang 已提交
2750
class Block(object):
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2765
        use `Program._create_block()` to create a block.
2766 2767 2768 2769

    Examples:
        .. code-block:: python

2770 2771 2772
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2773 2774 2775 2776 2777 2778 2779 2780 2781
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2782
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2783
        self.desc = program.desc.block(idx)
2784
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2785
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2786
        self.program = program
2787
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2788

2789
    def __str__(self):
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2836

F
fengjiayi 已提交
2837 2838
    def to_string(self, throw_on_error, with_details=False):
        """
2839 2840
        Get debug string.

F
fengjiayi 已提交
2841 2842
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2843
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2844
            with_details(bool): more details about variables and parameters
2845 2846
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2847

2848 2849
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2850 2851 2852 2853
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2854
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2855 2856
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2857
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2858
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2859
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2860
            for op in self.ops:
F
fengjiayi 已提交
2861 2862
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2863 2864 2865
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2866 2867
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2868 2869
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2870 2871 2872

    __repr__ = __str__

Y
Yu Yang 已提交
2873 2874
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2875
        return self.desc.parent
Y
Yu Yang 已提交
2876

Y
Yu Yang 已提交
2877 2878 2879 2880
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2881
    def _set_forward_block_idx(self, idx):
2882 2883 2884 2885 2886 2887 2888 2889 2890
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2891
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2892

2893 2894 2895 2896 2897 2898 2899 2900
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2901 2902
    @property
    def idx(self):
Y
Yu Yang 已提交
2903
        return self.desc.id
Y
Yu Yang 已提交
2904

Q
Qiao Longfei 已提交
2905
    def var(self, name):
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2919
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2920 2921 2922
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2923 2924
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2925
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2926
        return v
Q
Qiao Longfei 已提交
2927

X
Xin Pan 已提交
2928
    def _find_var_recursive(self, name):
2929 2930 2931 2932 2933 2934 2935
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2936
            Variable: the Variable with the giving name. Or None if not found.
2937
        """
Y
Yu Yang 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2962
        return None
Y
Yu Yang 已提交
2963

X
Xin Pan 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2983

Q
Qiao Longfei 已提交
2984
    def all_parameters(self):
2985
        return list(self.iter_parameters())
2986

2987
    def iter_parameters(self):
M
minqiyang 已提交
2988
        return (item[1] for item in six.iteritems(self.vars)
2989
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2990

Y
Yu Yang 已提交
2991
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2992 2993 2994
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2995 2996 2997
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2998
        return var
Y
Yu Yang 已提交
2999

Q
Qiao Longfei 已提交
3000 3001 3002
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3003
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3004 3005
        """
        Rename variable in vars and ops' inputs and outputs
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3018
        """
M
minqiyang 已提交
3019 3020
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3021

T
typhoonzero 已提交
3022
        if not self.has_var(name):
3023
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3024 3025
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3026
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3027 3028 3029 3030 3031 3032
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3033
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3034 3035 3036 3037
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3038
        orig_var_type = v.type
M
minqiyang 已提交
3039
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3040
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3041
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3042
        if var_type == "Parameter":
L
Leo Chen 已提交
3043 3044
            if in_dygraph_mode():
                var = ParamBase(
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3055 3056
                var = Parameter(
                    self,
3057 3058 3059 3060 3061 3062 3063 3064 3065
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3066
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3067 3068
            var = Variable(
                self,
T
typhoonzero 已提交
3069
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3070 3071 3072 3073
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3074
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3075 3076 3077
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3078
        self._sync_with_cpp()
3079
        return var
T
typhoonzero 已提交
3080

3081 3082 3083
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3084
        self.desc._remove_var(cpt.to_bytes(name))
3085 3086
        del self.vars[name]

Y
Yu Yang 已提交
3087 3088
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3089
        param = None
L
Leo Chen 已提交
3090
        if in_dygraph_mode():
3091
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3092 3093
        else:
            param = Parameter(global_block, *args, **kwargs)
3094 3095 3096 3097 3098 3099
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
3100
        if 'initializer' in kwargs:
3101 3102 3103 3104 3105

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3106
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3107
                        # are treated as initialization ops that cause error.
3108
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3109 3110 3111 3112 3113
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3114
                            continue
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3126
                # TODO already inited, do nothing, should log a warning
3127 3128 3129
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3130
        return param
Y
Yu Yang 已提交
3131

Y
Yu Yang 已提交
3132
    def append_op(self, *args, **kwargs):
3133 3134 3135 3136 3137 3138
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3139
        if in_dygraph_mode():
3140
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3141
            type = kwargs.get("type", None)
3142 3143 3144
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3145
                type=type,
M
minqiyang 已提交
3146 3147
                inputs=None,
                outputs=None,
3148
                attrs=attrs)
3149

M
minqiyang 已提交
3150 3151 3152
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3153
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3154 3155

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3156
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3157 3158
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3159
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3160
        else:
3161 3162 3163 3164 3165 3166 3167 3168 3169
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
3170
            self.ops.append(op)
M
minqiyang 已提交
3171

3172 3173
        return op

W
Wu Yi 已提交
3174
    def _insert_op(self, index, *args, **kwargs):
3175 3176 3177 3178 3179 3180 3181 3182 3183
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3184
        self._sync_with_cpp()
F
fangshuixun007 已提交
3185
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3204 3205 3206 3207 3208 3209 3210 3211 3212
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3213 3214
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3215
        self.desc._remove_op(index, index + 1)
3216 3217
        del self.ops[index]

W
Wu Yi 已提交
3218
    def _slice_ops(self, start, end):
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3229
        return self.ops[start:end]
Y
Yancey1989 已提交
3230

W
Wu Yi 已提交
3231
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3232
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3233 3234
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3235
            op = Operator(
J
Jiabin Yang 已提交
3236
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3237

J
Jiabin Yang 已提交
3238
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3239
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3240 3241
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3242
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3243
        else:
3244 3245 3246 3247 3248 3249 3250 3251
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3252
            self.ops.insert(0, op)
3253

Y
Yu Yang 已提交
3254 3255
        return op

W
Wu Yi 已提交
3256
    def _sync_with_cpp(self):
3257
        """
3258 3259
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3260
        """
Q
Qiao Longfei 已提交
3261 3262 3263 3264 3265
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3266
        # sync variables removed from c++ end
3267
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3268
            if not self.desc.find_var(cpt.to_bytes(var)):
3269 3270
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3271
        # sync operators from cpp
3272 3273 3274 3275
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3292 3293 3294 3295 3296

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3297
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3298 3299 3300 3301 3302 3303 3304

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3318 3319 3320 3321
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3322
    def _copy_param_info_from(self, other):
3323
        """
3324 3325
        Copy the information of parameters from the other block.

3326
        Args:
3327 3328 3329 3330 3331
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3332 3333 3334 3335 3336

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3337 3338
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3339
        for p in other.iter_parameters():
3340 3341 3342
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3343 3344
                # if the Parameter is pruned, v may be None
                continue
3345
            assert isinstance(v, Variable)
3346
            new_p = None
L
Leo Chen 已提交
3347 3348
            if in_dygraph_mode():
                new_p = ParamBase(
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3360 3361
                new_p = Parameter(
                    block=self,
3362 3363 3364
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3365 3366
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3367 3368 3369 3370 3371 3372
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3373 3374
            self.vars[new_p.name] = new_p

3375
    def _clone_variable(self, var, force_persistable=True):
3376 3377
        """
        Clone a variable into current block.
3378

3379 3380
        Args:
            var: the variable to be cloned.
3381 3382 3383
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3384 3385

        Returns:
3386
            Variable: the new  variable cloned from 'var' in current block.
3387 3388
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3389 3390 3391 3392 3393
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3394 3395
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3396
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3397 3398 3399 3400 3401 3402
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3403
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3404 3405
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3406 3407 3408 3409 3410 3411 3412
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3413
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3414 3415
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3416
        return ret_var
3417

Y
Yu Yang 已提交
3418

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3514
    def remove_input_by_id(self, node_id):
3515 3516 3517 3518 3519 3520
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3521
        self.node.remove_input(node_id)
3522

3523
    def remove_input(self, node):
3524 3525 3526 3527
        """
        Remove a node from inputs.

        Args:
3528
            node(IrNode): the node being removed.
3529
        """
3530
        self.node.remove_input(node.node)
3531

3532
    def append_input(self, node):
3533 3534 3535 3536
        """
        Append a node in inputs.

        Args:
3537
            node(IrNode): the node being appended.
3538
        """
3539
        self.node.append_input(node.node)
3540 3541 3542 3543 3544 3545 3546 3547

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3548
    def remove_output_by_id(self, node_id):
3549 3550 3551 3552 3553 3554
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3555
        self.node.remove_output(node_id)
3556

3557
    def remove_output(self, node):
3558 3559 3560 3561
        """
        Remove a node from outputs.

        Args:
3562
            node(IrNode): the node being removed.
3563
        """
3564
        self.node.remove_output(node.node)
3565

3566
    def append_output(self, node):
3567 3568 3569 3570
        """
        Append a node in outputs.

        Args:
3571
            node(IrNode): the node being appended.
3572
        """
3573
        self.node.append_output(node.node)
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3621
            "The node variable description can not be None."
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3632
            "The node variable description can not be None."
3633 3634
        return self.node.var().persistable()

3635 3636 3637 3638 3639 3640 3641 3642
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3643
            "The node variable description can not be None."
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3654
            "The node variable description can not be None."
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3665
            "The node variable description can not be None."
3666 3667
        return self.node.var().shape()

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3715
            "The node operator description can not be None."
3716 3717
        self.node.op()._rename_input(old_input_name, new_input_name)

3718 3719 3720 3721 3722 3723 3724 3725 3726
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3727
            "The node operator description can not be None."
3728 3729
        self.node.op()._rename_output(old_output_name, new_output_name)

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3741
            "The node operator description can not be None."
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3755
            "The node operator description can not be None."
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3766
            "The node operator description can not be None."
3767 3768
        return self.node.op().set_type(new_type)

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3784
            "The node operator description can not be None."
3785 3786 3787 3788
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3789
                all(isinstance(v, Block) for v in val):
3790 3791
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3792
                isinstance(val, core.ProgramDesc):
3793 3794 3795 3796
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3797 3798 3799 3800 3801 3802 3803 3804
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3805
            "The node operator description can not be None."
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3816
            "The node operator description can not be None."
3817 3818
        return self.node.op().output_arg_names()

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3840 3841
class IrGraph(object):
    """
3842
    Python IrGraph. Beneath it is a core.Graph, which is used for
3843
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3844 3845
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3846 3847 3848 3849
    """

    def __init__(self, graph, for_test=False):
        """
3850 3851
        Construct an IrGraph using core.Graph.

3852 3853 3854 3855 3856 3857 3858 3859 3860
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3861 3862 3863 3864
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3865 3866 3867
        Warns:
            The method only clones the graph structure, not its attributes.

3868 3869 3870
        Returns:
            IrGraph: A new and duplicated graph.
        """
3871
        g = self.graph.clone()
3872 3873
        return IrGraph(g, self._for_test)

3874
    def is_test(self):
3875 3876 3877
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3878 3879
        return self._for_test

W
WangZhen 已提交
3880
    def all_nodes(self):
3881 3882 3883
        """
        Return all nodes included in the graph as a set.
        """
3884
        return {IrNode(node) for node in self.graph.nodes()}
3885

3886
    def all_var_nodes(self):
3887 3888 3889
        """
        Return all variable nodes included in the graph as a set.
        """
3890
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3891

3892
    def all_persistable_nodes(self):
3893 3894 3895
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3896 3897 3898 3899 3900
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3901
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3902

3903
    def all_op_nodes(self):
3904 3905 3906
        """
        Return all operator nodes included in the graph as a set.
        """
3907
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3908

3909
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3921
            IrVarNode: the created persistable variable node.
3922
        """
3923 3924 3925 3926 3927
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3928
        return IrVarNode(self.graph.create_var_node(var_desc))
3929 3930

    def create_var_node(self, name, var_type, shape, var_dtype):
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3942
            IrVarNode: the created variable node.
3943 3944
        """

3945 3946 3947 3948
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3949
        return IrVarNode(self.graph.create_var_node(var_desc))
3950

3951 3952 3953 3954 3955 3956
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3957
    def create_var_node_from_desc(self, var_desc):
3958 3959 3960 3961 3962 3963 3964 3965
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3966
            IrVarNode: the created variable node.
3967
        """
3968
        return IrVarNode(self.graph.create_var_node(var_desc))
3969 3970

    def create_op_node(self, op_type, attrs, inputs, outputs):
3971 3972 3973 3974 3975 3976 3977
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3978
            outputs(dict): the outputs of the operator node.
3979 3980

        Returns:
3981
            IrOpNode: the created operator node.
3982
        """
3983 3984
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3985
        for attr, value in six.iteritems(attrs):
3986
            self._update_desc_attr(op_desc, attr, value)
3987
        for input_name, var_nodes in six.iteritems(inputs):
3988 3989 3990 3991
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3992
        for output_name, var_nodes in six.iteritems(outputs):
3993 3994 3995 3996
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3997
        return IrOpNode(self.graph.create_op_node(op_desc))
3998 3999

    def create_op_node_from_desc(self, op_desc):
4000 4001 4002 4003 4004 4005 4006
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4007
            IrOpNode: the created operator node.
4008
        """
4009
        return IrOpNode(self.graph.create_op_node(op_desc))
4010 4011

    def update_input_link(self, old_input_node, new_input_node, op_node):
4012 4013 4014 4015
        """
        Update the input's link of a operator node.

        Args:
4016 4017 4018
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4019
        """
4020
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4021
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4022
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4023 4024 4025 4026
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4027
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4028

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4039
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4040
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4041 4042 4043 4044 4045 4046
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4047
    def link_to(self, node_in, node_out):
4048 4049 4050 4051
        """
        Connect two nodes.

        Args:
4052 4053
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4054
        """
4055
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
4056
            'The two arguments(node_in&node_out) must be in the graph nodes.'
4057 4058
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4059 4060

    def safe_remove_nodes(self, remove_nodes):
4061 4062 4063 4064 4065 4066 4067
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4068
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4069 4070 4071 4072
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4073 4074
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4075

Z
Zhen Wang 已提交
4076 4077 4078 4079 4080 4081 4082 4083
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4084
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4085 4086 4087 4088
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4089
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4090 4091 4092
                        ]
                    else:
                        var_nodes[each_var_name].append(
4093 4094
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4095 4096
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4097
    def has_circle(self):
4098 4099 4100 4101 4102 4103
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4104 4105 4106
        return core.has_circle(self.graph)

    def graph_num(self):
4107 4108 4109 4110 4111 4112
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4113 4114 4115
        return core.graph_num(self.graph)

    def topology_sort(self):
4116 4117 4118
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4119
        Notes: the `graph` can not contain a circle.
4120 4121

        Returns:
Z
Zhen Wang 已提交
4122
            list(IrNode): nodes in topology order.
4123
        """
4124
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4125
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4126 4127

    def build_adjacency_list(self):
4128 4129 4130 4131
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4132
            dict{IrNode: set(IrNode)}: the adjacency list.
4133
        """
4134 4135 4136 4137 4138
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4139

4140 4141 4142 4143 4144 4145 4146 4147
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4148
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4149 4150 4151 4152 4153
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4154 4155
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4156 4157 4158
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4159 4160 4161 4162 4163
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4164
        remove_ctr_vars = set()
4165
        if remove_ctr_var:
4166
            for node in self.all_var_nodes():
4167 4168 4169
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4170 4171
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4172 4173
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4174 4175 4176 4177 4178 4179
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4180 4181 4182 4183
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4184 4185
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4186 4187 4188 4189 4190 4191 4192
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4193 4194 4195
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4196
        WARN: When the graph includes backward operator nodes, the
4197 4198 4199 4200 4201 4202
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4203
        convert_pass = core.get_pass('graph_to_program_pass')
4204 4205
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4206 4207 4208 4209
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4237
class Program(object):
D
dzhwinter 已提交
4238
    """
4239
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4240
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4241
    it will contain nested block.
4242

J
Jiabin Yang 已提交
4243 4244 4245
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4246

J
Jiabin Yang 已提交
4247
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4248
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4249 4250 4251 4252 4253 4254 4255
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4256
    **Notes**:
4257 4258 4259
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4260 4261

    Returns:
J
Jiabin Yang 已提交
4262
        Program: An empty Program.
D
dzhwinter 已提交
4263 4264

    Examples:
4265 4266
        .. code-block:: python

4267 4268 4269 4270
            import paddle
            import paddle.static as static

            paddle.enable_static()
4271

4272 4273 4274 4275 4276
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4277
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4278 4279 4280

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4281 4282 4283

    """

4284 4285
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4286 4287
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4288 4289
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4290
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4291
        self.__op_role_var = []
T
tangwei12 已提交
4292

4293 4294
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4295
        self._is_distributed = False
4296
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4297
        self._is_chief = False
4298 4299 4300
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4301
        self._endpoints = []
4302 4303 4304
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4305
        self._trainers_endpoints = []
4306
        # the distributed lookup table names
T
tangwei12 已提交
4307
        self._distributed_lookup_table = None
4308 4309 4310

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4311 4312
        self._use_lamb = False

4313 4314 4315
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4316

4317 4318 4319
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4320
        self._program_config = None
4321

H
hutuxian 已提交
4322 4323 4324
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4325 4326 4327
        # appending gradients times
        self._appending_grad_times = 0

4328 4329 4330 4331
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4332 4333 4334
        # compiled program, i.e. Graph
        self._graph = None

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4345 4346
                import paddle
                import paddle.static as static
4347

4348 4349 4350
                paddle.enable_static()

                prog = static.default_main_program()
4351 4352 4353 4354 4355
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4356
                prog1 = static.default_main_program()
4357 4358 4359 4360 4361 4362 4363 4364
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4365
    @property
4366
    def _op_role(self):
Y
yuyang18 已提交
4367 4368 4369 4370 4371 4372 4373 4374
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4375
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4376 4377 4378 4379
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4380 4381
        return self._current_role

4382 4383
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4384 4385 4386
        self._current_role = role

    @property
4387
    def _op_role_var(self):
Y
yuyang18 已提交
4388
        """
4389
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4390

4391
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4392 4393 4394

        Notes: This is a very low-level API. Users should not use it directly.
        """
4395
        return self.__op_role_var
Y
yuyang18 已提交
4396

4397
    @signature_safe_contextmanager
4398 4399 4400 4401 4402
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4403 4404 4405 4406
        try:
            yield
        finally:
            self._current_role = tmp_role
4407

S
rename  
sneaxiy 已提交
4408
    @signature_safe_contextmanager
W
Wu Yi 已提交
4409
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4410 4411 4412 4413 4414 4415 4416
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4417
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4418 4419 4420

        Examples:

4421
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4422
            >>> p, g = backward(...)
W
Wu Yi 已提交
4423
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4424 4425
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4426
        tmp_role = self._current_role
4427
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4428

Y
yuyang18 已提交
4429 4430
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4431
        self.__op_role_var = [
4432 4433 4434
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4435 4436 4437 4438 4439
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4440

S
rename  
sneaxiy 已提交
4441
    @signature_safe_contextmanager
X
Xin Pan 已提交
4442
    def _lr_schedule_guard(self, is_with_opt=False):
4443 4444 4445 4446 4447 4448 4449
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4450 4451 4452 4453
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4454 4455 4456

        Examples:

4457
            >>> import paddle.fluid as fluid
4458 4459 4460 4461
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4462 4463

        tmp_role = self._current_role
4464
        tmp_var = self.__op_role_var
4465

4466 4467
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4468 4469
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4470
        # TODO(typhoonzero): how to set target learning rate var
4471
        self.__op_role_var = []
4472 4473 4474 4475 4476
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4477

4478
    def __str__(self):
Y
yuyang18 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4508 4509
            import paddle
            import paddle.static as static
4510

4511 4512 4513
            paddle.enable_static()

            cur_program = static.Program()
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4530
            program_str += '\n'
4531
        return program_str
Y
Yang Yang(Tony) 已提交
4532

F
fengjiayi 已提交
4533 4534 4535
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4536

J
Jiabin Yang 已提交
4537 4538 4539
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4540

J
Jiabin Yang 已提交
4541
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4542

H
haowang101779990 已提交
4543
        Returns:
J
Jiabin Yang 已提交
4544
            str: The debug string describe current Program.
Y
yuyang18 已提交
4545 4546

        Raises:
J
Jiabin Yang 已提交
4547
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4548

4549 4550 4551
        Examples:
            .. code-block:: python

4552 4553 4554 4555
                import paddle
                import paddle.static as static

                paddle.enable_static()
4556

4557 4558 4559
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4560
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4561
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4562
                print("program string without detail: {}".format(prog_string))
4563
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4564
        """
4565 4566 4567 4568 4569 4570 4571 4572 4573
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4574 4575 4576 4577 4578 4579
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4580 4581
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4582 4583
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4584

W
Wu Yi 已提交
4585
    def _get_desc(self):
Y
yuyang18 已提交
4586 4587 4588 4589 4590 4591 4592
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4593 4594
        return self.desc

X
version  
Xin Pan 已提交
4595 4596 4597
    def _version(self):
        return self.desc._version()

4598
    def clone(self, for_test=False):
Y
yuyang18 已提交
4599
        """
4600 4601 4602 4603
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4604

4605
        Create a new Program with forward content of original one when ``for_test=True``.
4606
        Create a new Program as same as the original one when ``for_test=False``.
4607

4608
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4609 4610 4611
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4612

4613 4614
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4615 4616
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4617
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4618

J
Jiabin Yang 已提交
4619
        For Example:
4620
          ::
L
Luo Tao 已提交
4621

4622 4623 4624 4625 4626 4627
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4628
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4629
            loss = paddle.mean(pred)
4630
            # Here we use clone before Momentum
4631 4632
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4633
            optimizer.minimize(loss)
4634

J
Jiabin Yang 已提交
4635
        Args:
4636

4637 4638
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4639

J
Jiabin Yang 已提交
4640
        Returns:
4641
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4642

Y
yuyang18 已提交
4643 4644 4645

        Examples:

4646 4647 4648 4649 4650 4651 4652
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4669
            1. To clone a test program, the sample code is:
4670 4671 4672
                .. code-block:: python

                    import six
4673 4674 4675 4676 4677 4678
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4691 4692
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4693 4694 4695

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4696 4697 4698
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4699
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4700 4701
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4702
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4703 4704
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4705
                            test_program = train_program.clone(for_test=True)
4706
                    print_prog(test_program)
J
Jiabin Yang 已提交
4707 4708 4709 4710

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4711
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4712 4713 4714 4715
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4716 4717 4718
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4719 4720 4721
                            sgd.minimize(avg_loss)


4722
            2. The clone method can be avoid if you create program for training and program for testing individually.
4723 4724 4725
                .. code-block:: python

                    import six
4726 4727 4728 4729 4730 4731
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4743

4744
                    def network():
4745
                        img = static.data(name='image', shape=[None, 784])
4746
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4747 4748
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4749
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4750 4751
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4752 4753
                        return avg_loss

4754 4755 4756 4757 4758
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4759
                            avg_loss = network()
4760
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4761
                            sgd.minimize(avg_loss)
4762
                    # the test startup program is not used.
4763 4764
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4765 4766
                            avg_loss = network()
                    print_prog(test_program_2)
4767

4768
            The two code snippets above will generate and print same programs.
4769
        """
4770

T
tangwei12 已提交
4771
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4772 4773 4774
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4775
        pruned_origin_block_id_map = None
4776
        if for_test:
4777 4778 4779 4780 4781 4782 4783 4784 4785
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4786
        else:
4787
            p = Program()
G
gongweibao 已提交
4788 4789
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4790
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4791 4792 4793
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4794 4795

            p._current_role = self._current_role
4796
            p.__op_role_var = self.__op_role_var
4797
            p._appending_grad_times = self._appending_grad_times
4798 4799
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4800

T
tangwei12 已提交
4801
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4802
            # its desc.
W
Wu Yi 已提交
4803
            p._sync_with_cpp()
4804

W
Wu Yi 已提交
4805
        p._copy_param_info_from(self)
4806
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4807
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4808
        return p
4809

4810
    def _prune(self, targets):
Y
yuyang18 已提交
4811 4812 4813 4814 4815 4816 4817 4818
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4819
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4820 4821 4822 4823
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4824
        """
4825
        return self._prune_with_input([], targets)
4826 4827

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4828
        """
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4839
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4840 4841 4842 4843 4844 4845
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4846
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4847 4848 4849
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4850 4851
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4852 4853
        if not isinstance(targets, list):
            targets = [targets]
4854 4855 4856

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4857 4858 4859
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4860

4861 4862 4863 4864
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4865 4866 4867
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4868
                else:
4869 4870 4871
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4872 4873 4874 4875 4876 4877 4878 4879

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4880 4881 4882 4883 4884 4885 4886 4887 4888
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4889
                        # Skip optimize op except for optimize op in targets,
4890 4891 4892 4893 4894 4895
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4896 4897 4898 4899 4900 4901 4902 4903
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4904

4905
        res = Program()
4906 4907 4908
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4909 4910 4911
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4912
        res._sync_with_cpp()
4913 4914 4915 4916 4917

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4918 4919
        return res

X
Xin Pan 已提交
4920
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4921
        """
F
fengjiayi 已提交
4922 4923 4924 4925 4926
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4927
        3. change the :code:`is_test`
Y
yuyang18 已提交
4928 4929 4930
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4931
        Args:
X
Xin Pan 已提交
4932 4933
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4934

Y
yuyang18 已提交
4935 4936 4937 4938 4939 4940
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4941
        res = Program()
4942
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4943 4944 4945 4946

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4947
        if prune_read_op:
4948 4949 4950 4951 4952 4953 4954 4955 4956
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4957
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4958 4959

        # change all `is_test` attributes to True
M
minqiyang 已提交
4960
        for i in six.moves.range(res.desc.num_blocks()):
4961
            block = res.desc.block(i)
M
minqiyang 已提交
4962
            for j in six.moves.range(block.op_size()):
4963 4964
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4965
                    op._set_attr('is_test', True)
4966 4967 4968
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
4969 4970 4971
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4972
        res._sync_with_cpp()
4973 4974
        return res

4975 4976
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4977
        """
4978 4979 4980
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4981

4982 4983
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4984

J
Jiabin Yang 已提交
4985
        Args:
Y
yuyang18 已提交
4986

J
Jiabin Yang 已提交
4987
            binary_str_type (str): the binary prootbuf string.
4988

J
Jiabin Yang 已提交
4989 4990
        Returns:
            Program: A deserialized Program.
4991 4992 4993 4994

        Examples:
            .. code-block:: python

4995 4996 4997 4998
                import paddle
                import paddle.static as static

                paddle.enable_static()
4999

5000 5001 5002 5003
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5004

5005
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5006

5007
                    z = paddle.matmul(x=x, y=y)
5008

5009 5010
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5011

5012
                    print(static.default_main_program())
5013
                    print(prog_restored)
Y
yuyang18 已提交
5014
        """
5015 5016
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5017
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5018
        p._sync_with_cpp()
5019
        return p
Y
Yu Yang 已提交
5020

5021
    @staticmethod
5022
    def _construct_from_desc(desc):
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5038 5039
    @property
    def random_seed(self):
Y
yuyang18 已提交
5040
        """
J
Jiabin Yang 已提交
5041
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5042 5043
        the random seed from random device.

5044 5045
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5046 5047 5048

        Returns:
            int64: Random seed in current Program
5049

5050 5051 5052 5053

        Examples:
            .. code-block:: python

5054 5055 5056
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5057

5058 5059 5060
                paddle.enable_static()

                prog = static.default_main_program()
5061
                random_seed = prog.random_seed
5062
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5063 5064 5065
                print(random_seed)
                ## 0
                ## the default random seed is 0
5066

5067
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5068
                prog.random_seed = 1
5069
                z_var = F.dropout(x_var, 0.7)
5070

5071
                print(prog.random_seed)
5072 5073
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5074
        """
D
dzhwinter 已提交
5075 5076
        return self._seed

Q
qiaolongfei 已提交
5077 5078
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5079
        """
5080 5081
        The number of :ref:`api_guide_Block_en`  in this Program.

5082 5083
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5084 5085 5086

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5087

5088 5089 5090 5091

        Examples:
            .. code-block:: python

5092 5093 5094 5095
                import paddle
                import paddle.static as static

                paddle.enable_static()
5096

5097
                prog = static.default_main_program()
5098 5099
                num_blocks = prog.num_blocks
                print(num_blocks)
5100

5101 5102
                # print result:
                # 1
Y
yuyang18 已提交
5103
        """
Q
qiaolongfei 已提交
5104 5105
        return self.desc.num_blocks()

D
dzhwinter 已提交
5106 5107 5108
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5109 5110 5111
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5112 5113
        self._seed = seed

Y
Yu Yang 已提交
5114
    def __repr__(self):
5115
        return self.__str__()
5116

Y
Yu Yang 已提交
5117
    def global_block(self):
Y
yuyang18 已提交
5118
        """
5119 5120
        .. note::
            This API has no effect in Dygraph mode.
5121 5122 5123

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5124 5125
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5126

5127 5128 5129 5130

        Examples:
            .. code-block:: python

5131 5132 5133 5134
                import paddle
                import paddle.static as static

                paddle.enable_static()
5135

5136
                prog = static.default_main_program()
5137 5138
                gb_block = prog.global_block()
                print(gb_block)
5139

Y
yuyang18 已提交
5140
        """
Y
Yu Yang 已提交
5141 5142
        return self.blocks[0]

Q
Qiao Longfei 已提交
5143
    def block(self, index):
Y
yuyang18 已提交
5144
        """
5145 5146
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5147

5148 5149
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5150 5151
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5152

J
Jiabin Yang 已提交
5153 5154
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5155 5156 5157 5158

        Examples:
            .. code-block:: python

5159 5160 5161 5162
                import paddle
                import paddle.static as static

                paddle.enable_static()
5163

5164
                prog = static.default_main_program()
5165 5166
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5167
        """
Q
Qiao Longfei 已提交
5168 5169
        return self.blocks[index]

Y
Yu Yang 已提交
5170
    def current_block(self):
Y
yuyang18 已提交
5171
        """
5172 5173
        .. note::
            This API has no effect in Dygraph mode.
5174

J
Jiabin Yang 已提交
5175 5176
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5177

J
Jiabin Yang 已提交
5178 5179
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5180

5181 5182 5183
        Examples:
            .. code-block:: python

5184 5185 5186 5187
                import paddle
                import paddle.static as static

                paddle.enable_static()
5188

5189
                prog = static.default_main_program()
5190 5191
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5192
        """
Y
Yu Yang 已提交
5193 5194
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5195
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5196 5197 5198 5199 5200
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5201

Y
yuyang18 已提交
5202 5203 5204 5205 5206
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5207
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5208 5209 5210
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5211 5212 5213 5214
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5215
    def _rollback(self):
Y
yuyang18 已提交
5216 5217 5218 5219 5220
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5221 5222
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5223
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5234 5235 5236
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5237
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5238

W
Wu Yi 已提交
5239
    def _copy_param_info_from(self, other):
5240
        """
5241
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5242

Y
yuyang18 已提交
5243 5244 5245
        Notes: This is a very low level API. Users should not invoke it
        directly.

5246 5247 5248 5249 5250 5251 5252
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5253 5254 5255
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5256

W
Wu Yi 已提交
5257
        self.global_block()._copy_param_info_from(other.global_block())
5258

5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5270 5271 5272
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5273 5274
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5275
        self._parameters_on_pservers = other._parameters_on_pservers
5276
        self._endpoints = other._endpoints
5277
        self._ps_endpoint = other._ps_endpoint
5278 5279
        self._distributed_lookup_table = other._distributed_lookup_table

5280
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5281 5282
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5283

Y
yuyang18 已提交
5284 5285 5286
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5287 5288
        Args:
            other(Program): Other program
5289 5290 5291 5292
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5293 5294 5295 5296 5297

        Returns:
            None
        """
        if not isinstance(other, Program):
5298 5299 5300
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5301

5302 5303 5304 5305 5306
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5307 5308 5309

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5310 5311
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5312
            for var in list(block.vars.values()):
5313 5314 5315 5316 5317 5318 5319
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5320

5321
    def list_vars(self):
Y
yuyang18 已提交
5322
        """
5323
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5324

J
Jiabin Yang 已提交
5325
        Returns:
5326
            iterable Tensors: The Generator will yield every Tensor in this program.
5327 5328 5329 5330

        Examples:
            .. code-block:: python

5331 5332
                import paddle
                import paddle.static as static
5333

5334 5335 5336 5337 5338
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5339 5340
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5341

5342 5343
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5344
        """
5345
        for each_block in self.blocks:
5346
            for each_var in list(each_block.vars.values()):
5347 5348
                yield each_var

5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5359 5360 5361 5362
                import paddle
                import paddle.static as static

                paddle.enable_static()
5363

5364 5365
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5366
                hidden = static.nn.fc(x=data, size=10)
5367 5368
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5369 5370 5371 5372 5373 5374 5375

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5376 5377
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5555

5556
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5557
class Parameter(Variable):
5558
    """
5559
    Parameter is derived from Variable. A parameter is a persistable
5560
    Variable, and will be updated by optimizers after each iteration.
5561
    The training of a neural network is essentially the updating of
5562 5563
    its parameters.

5564
    Relative to a general Variable, a Parameter has several its own
5565 5566
    member variables:

5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5577 5578
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5579 5580
    """

5581 5582 5583 5584 5585 5586
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5587 5588 5589 5590 5591
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5592
        if len(shape) == 0:
5593 5594
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5595 5596 5597

        for each in shape:
            if each < 0:
5598 5599 5600
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5601 5602

        Variable.__init__(
5603 5604 5605 5606 5607 5608 5609
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5610 5611 5612 5613
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5614 5615
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5616
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5617

5618 5619
        self.need_clip = kwargs.get('need_clip', True)

5620 5621
        self.is_distributed = False

F
fengjiayi 已提交
5622
    def __str__(self):
5623
        return self._to_readable_code()
F
fengjiayi 已提交
5624

F
update  
fengjiayi 已提交
5625 5626 5627
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5628

F
update  
fengjiayi 已提交
5629 5630 5631 5632 5633 5634 5635 5636
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5637 5638 5639 5640 5641 5642 5643 5644 5645
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5646 5647 5648 5649 5650 5651
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5652
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5653
            for attr_name in additional_attr:
5654 5655
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5656 5657
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5658 5659 5660 5661
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5662

5663 5664
class ParamBase(core.VarBase):
    """
5665 5666 5667
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5668 5669 5670
    The training of a neural network is essentially the updating of
    its ParamBase.

5671
    Relative to a general Tensor, a ParamBase has several its own
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5684 5685
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5716 5717
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5718 5719 5720 5721 5722 5723 5724

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5725 5726
        self.need_clip = kwargs.get('need_clip', True)

5727
        self.is_distributed = False
5728
        # self.block = default_main_program().global_block()
5729

5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5743
    def __str__(self):
5744
        """
5745
        Convert a ParamBase object to a readable string.
5746

5747
        Returns(str): A readable string.
5748 5749 5750 5751

        Examples:
            .. code-block:: python

5752
                import paddle
5753 5754 5755 5756 5757 5758 5759
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5760
        """
5761 5762
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5775

5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5794 5795 5796 5797 5798 5799 5800
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5801 5802 5803
    __repr__ = __str__


Y
Yu Yang 已提交
5804
# program is a global instance.
Y
Yu Yang 已提交
5805 5806
_main_program_ = Program()
_startup_program_ = Program()
5807

5808

5809
def default_startup_program():
Y
Yu Yang 已提交
5810
    """
Y
yuyang18 已提交
5811 5812
    Get default/global startup program.

5813 5814
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5815

5816 5817
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5818

5819 5820
    Returns:
        Program: current default startup program.
5821

5822
    Returns type: 
5823 5824 5825 5826

    Examples:
        .. code-block:: python

5827
            import paddle
5828

5829
            paddle.enable_static()
5830 5831 5832 5833
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5834
    """
Y
Yu Yang 已提交
5835
    return _startup_program_
5836

5837

5838
def default_main_program():
Y
Yu Yang 已提交
5839
    """
5840
    This API can be used to get ``default main program`` which store the 
5841
    descriptions of Ops and tensors.
T
tangwei12 已提交
5842

5843
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5844
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5845

5846 5847
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5848
    :code:`default_main_program` when the program is not specified.
5849

5850
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5851

Y
Yu Yang 已提交
5852
    Returns:
5853
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5854 5855 5856 5857

    Examples:
        ..  code-block:: python

5858
            import paddle
5859

5860
            paddle.enable_static()
5861
            # Sample Network:
5862 5863 5864
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5865

5866 5867 5868
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5869
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5870
    """
Y
Yu Yang 已提交
5871
    return _main_program_
Y
Yu Yang 已提交
5872 5873 5874 5875 5876


def switch_main_program(program):
    """
    Switch the main program to a new program.
5877

Y
Yu Yang 已提交
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5892
    Switch the startup program to a new program
Y
Yu Yang 已提交
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5905
@signature_safe_contextmanager
Y
Yu Yang 已提交
5906 5907
def program_guard(main_program, startup_program=None):
    """
5908 5909
    :api_attr: Static Graph

5910 5911 5912
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5913

G
guofei 已提交
5914
    Args:
5915 5916
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5917 5918 5919 5920
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5921
    Examples:
5922
       .. code-block:: python
T
tangwei12 已提交
5923

5924
          import paddle
Y
yuyang18 已提交
5925

5926 5927 5928 5929 5930
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5931
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5932 5933 5934

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5935

Y
Yu Yang 已提交
5936
    Examples:
5937
       .. code-block:: python
Y
yuyang18 已提交
5938

5939
          import paddle
5940

5941 5942 5943 5944 5945
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5946

Y
Yu Yang 已提交
5947
    """
5948
    from .data_feeder import check_type
5949 5950
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5951 5952
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5953
        check_type(startup_program, 'startup_program', Program,
5954
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5955
        startup_program = switch_startup_program(startup_program)
5956 5957 5958 5959 5960 5961
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5962 5963


W
Wu Yi 已提交
5964
def _get_var(name, program=None):
X
xuwei06 已提交
5965
    """
Y
yuyang18 已提交
5966
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5967

X
xuwei06 已提交
5968 5969 5970
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5971
        If None, default_global_program() will be used.
X
xuwei06 已提交
5972 5973 5974 5975 5976 5977 5978

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5979
    assert isinstance(program, Program)
X
xuwei06 已提交
5980 5981

    return program.global_block().var(name)
5982 5983


S
rename  
sneaxiy 已提交
5984
@signature_safe_contextmanager
L
lujun 已提交
5985 5986
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5987
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5988
    _dygraph_tracer_ = tracer
5989
    core._switch_tracer(tracer)
M
minqiyang 已提交
5990

5991 5992 5993
    try:
        yield
    finally:
5994 5995
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5996 5997


S
rename  
sneaxiy 已提交
5998
@signature_safe_contextmanager
L
lujun 已提交
5999
def _dygraph_place_guard(place):
6000 6001 6002
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6003

6004 6005
    _set_dygraph_tracer_expected_place(place)

6006 6007 6008
    try:
        yield
    finally:
6009
        _global_expected_place_ = tmp_place
6010
        _set_dygraph_tracer_expected_place(tmp_place)
6011 6012


6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6029 6030
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6031 6032 6033 6034 6035 6036 6037 6038 6039
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6040
            import paddle
6041

Z
Zhang Ting 已提交
6042 6043 6044
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6045
            if support_gpu:
Z
Zhang Ting 已提交
6046
                place = paddle.CUDAPlace(0)
6047 6048

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6049 6050 6051
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6052

Z
Zhang Ting 已提交
6053
            with paddle.static.device_guard("cpu"):
6054
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6055 6056
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6057
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6058
                out = paddle.reshape(data1, shape=shape)
6059

Z
Zhang Ting 已提交
6060 6061
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6062 6063 6064
            result = exe.run(fetch_list=[out])
    """

6065 6066 6067 6068 6069
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6070
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6071
        raise ValueError(
6072
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6073
            "when there is no need to specify device. But received %s" % device)
6074 6075
    if index:
        device = ":".join([device, index])
6076
    pre_device = switch_device(device)
6077 6078 6079 6080
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6148 6149 6150 6151 6152 6153 6154


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6155
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6156 6157 6158 6159 6160 6161 6162 6163 6164
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6165

6166 6167 6168
    if (place == "device"):
        return core.Place()

6169
    # GPU
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6185 6186

    # XPU
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6210
    raise ValueError(
6211 6212
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret