framework.py 228.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
48 49
    'eager_guard',
    'in_eager_mode',
50
    'program_guard',
51
    'name_scope',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'is_compiled_with_npu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
74
_dygraph_tracer_ = None
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_global_flags_ = core.globals()
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
_eager_mode_ = False


@signature_safe_contextmanager
def eager_guard():
    global _eager_mode_
    _eager_mode_ = True
    try:
        yield
    finally:
        _eager_mode_ = False


def in_eager_mode():
    return _eager_mode_
95

96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
204
def in_dygraph_mode():
L
lujun 已提交
205
    """
206

207 208 209 210 211 212 213
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
214 215

    Returns:
216
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
217 218 219 220

    Examples:
        .. code-block:: python

221 222 223 224 225 226 227 228
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
229 230

    """
L
lujun 已提交
231
    return _dygraph_tracer_ is not None
232 233


234 235 236
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
237
        ), "We don't support %s in imperative mode" % func.__name__
238 239 240 241 242 243 244 245
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
246 247 248 249 250 251 252 253 254
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
255
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
256 257 258 259 260
        return func(*args, **kwargs)

    return __impl__


261 262 263 264 265
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


266 267 268 269 270 271
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
272
# same base class.
273 274 275
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
276 277 278 279 280
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
281 282 283 284

    return __impl__


T
tangwei12 已提交
285 286
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


304 305
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
306
static_only = wrap_decorator(_static_only_)
307
fake_interface_only = wrap_decorator(_fake_interface_only_)
308 309


L
lujun 已提交
310 311
def _dygraph_tracer():
    return _dygraph_tracer_
312

W
Wu Yi 已提交
313

314 315 316 317
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
318
def _current_expected_place():
319 320 321
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
322 323 324 325 326 327 328 329 330 331 332
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
333 334 335 336 337 338 339 340 341 342 343 344
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
360 361 362 363
    if in_eager_mode():
        return core.eager._set_expected_place(place)
    else:
        _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
364 365


L
Leo Chen 已提交
366 367 368 369
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
370

L
Leo Chen 已提交
371 372 373 374 375 376 377 378 379 380 381 382
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
383
def _cpu_num():
384
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
385 386 387 388 389 390 391 392
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
393
        os.environ['CPU_NUM'] = str(1)
394
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
395 396 397 398 399 400 401 402 403 404
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
405 406


407 408 409 410 411 412 413 414 415
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


416 417 418 419 420 421 422 423 424
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


C
chengduo 已提交
480 481 482 483
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

484
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
485 486 487 488

    Examples:
        .. code-block:: python

489
            import paddle
490
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
491 492 493 494
    """
    return core.is_compiled_with_cuda()


495 496 497 498 499 500 501 502 503 504
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
505
            support_gpu = paddle.device.is_compiled_with_rocm()
506 507 508 509
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
510
def cuda_places(device_ids=None):
L
lujun 已提交
511
    """
512 513 514 515
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
516
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
517 518

    If :code:`device_ids` is None, environment variable of
519
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
520
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
521
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
522
    If :code:`FLAGS_selected_gpus` is not set, all visible
523
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
524 525

    If :code:`device_ids` is not None, it should be the device
526
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
527
    the returned list would be 
C
Chen Weihang 已提交
528
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
529

530
    Parameters:
531
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
532 533

    Returns:
C
Chen Weihang 已提交
534
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
535 536 537 538

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
539 540
            import paddle
            import paddle.static as static
T
tangwei12 已提交
541

542 543
            # required: gpu
            
C
Chen Weihang 已提交
544 545 546
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
547 548

    """
S
sneaxiy 已提交
549 550 551
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
552
        device_ids = _cuda_ids()
S
sneaxiy 已提交
553 554 555 556 557
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


558 559 560 561
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
562 563 564 565 566 567 568 569 570 571 572
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
573 574 575 576 577 578 579
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
580

581 582
            # required: xpu

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
639
def cpu_places(device_count=None):
L
lujun 已提交
640
    """
C
Chen Weihang 已提交
641
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
642

S
add doc  
sneaxiy 已提交
643 644
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
645 646
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
647 648
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
649

650 651
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
652 653

    Returns:
C
Chen Weihang 已提交
654
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
655 656 657 658

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
659 660
            import paddle
            import paddle.static as static
T
tangwei12 已提交
661

C
Chen Weihang 已提交
662 663 664
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
665 666
    """

S
sneaxiy 已提交
667 668 669 670 671 672
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
673
    """
674
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
675 676 677

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
678 679 680 681
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
682

683 684
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
685 686

    Returns:
687
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
688 689 690 691

    Examples:
        .. code-block:: python

692
            import paddle.fluid as fluid
L
lujun 已提交
693 694 695 696 697
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
698 699 700
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
701 702
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
703 704


705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
731
@signature_safe_contextmanager
732 733
def name_scope(prefix=None):
    """
734 735
    :api_attr: Static Graph

736
    Generate hierarchical name prefix for the operators in Static Graph.
737

T
Tao Luo 已提交
738 739 740
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
741
        Don't use it in dygraph, since it will cause memory leak.
742 743

    Args:
T
Tao Luo 已提交
744
        prefix(str, optional): prefix. Default is none.
745 746 747

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
748

749 750 751
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
752
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
753
             b = a + 1
754
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
755
                c = b * 1
756
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
757
                d = c / 1
758 759 760
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
761 762 763
                g = f - 1

          # Op are created in the default main program.  
764
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
780 781
    """
    # TODO(panyx0718): Only [0-9a-z].
782
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
783 784 785
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
786
        assert prefix, "namescope prefix can not be empty."
787 788
        global _name_scope
        _name_scope = _name_scope.child(prefix)
789 790 791 792
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
793 794 795 796 797 798 799 800 801 802 803 804


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
805 806 807
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
808 809 810 811


def grad_var_name(var_name):
    """
812 813
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
814 815 816
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
817

818
def convert_np_dtype_to_dtype_(np_dtype):
819 820
    """
    Convert the data type in numpy to the data type in Paddle
821

822
    Args:
823
        np_dtype(np.dtype): the data type in numpy.
824

825 826
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
827 828

    """
829 830
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
831
        return core.VarDesc.VarType.FP32
832
    elif dtype == np.float64:
833
        return core.VarDesc.VarType.FP64
834
    elif dtype == np.float16:
835
        return core.VarDesc.VarType.FP16
836
    elif dtype == np.int32:
837
        return core.VarDesc.VarType.INT32
838
    elif dtype == np.int16:
839
        return core.VarDesc.VarType.INT16
840
    elif dtype == np.int64:
841
        return core.VarDesc.VarType.INT64
842
    elif dtype == np.bool:
843
        return core.VarDesc.VarType.BOOL
844
    elif dtype == np.uint16:
845 846 847
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
848 849
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
850 851
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
852 853 854 855
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
856
    else:
M
minqiyang 已提交
857
        raise ValueError("Not supported numpy dtype %s" % dtype)
858 859 860


def dtype_is_floating(dtype):
861 862 863
    """
    Check the data type is floating or not.
    Args:
864
        dtype(np.dtype|core.VarDesc.VarType): data type.
865 866 867 868 869
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
870
    if not isinstance(dtype, core.VarDesc.VarType):
871 872
        dtype = convert_np_dtype_to_dtype_(dtype)

873 874 875 876
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
877 878


Y
Yang Yang(Tony) 已提交
879
def _debug_string_(proto, throw_on_error=True):
880 881 882 883 884 885 886 887 888 889 890
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
891
    error_fields = list()
Y
Yang Yang(Tony) 已提交
892
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
893 894
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
895 896 897
    return proto.__str__()


898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
935
class Variable(object):
936
    """
J
Jiabin Yang 已提交
937
    **Notes**:
938
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
939

940 941
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
942 943 944
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
945
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
946 947
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
948

949
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
950
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
951

T
tianshuo78520a 已提交
952
    Most of a Variable's member variables can be set to be None. It mean
953
    it is not available or will be specified later.
954

955
    Examples:
956 957
        In Static Graph Mode:

958 959
        .. code-block:: python

960
            import paddle.fluid as fluid
961
            cur_program = fluid.Program()
962 963 964 965
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
966

J
Jiabin Yang 已提交
967
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
968 969 970 971 972 973 974 975 976

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

977 978
    """

Y
Yu Yang 已提交
979 980
    def __init__(self,
                 block,
Y
Yu Yang 已提交
981
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
982 983 984 985
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
986
                 capacity=None,
Q
QI JUN 已提交
987
                 persistable=None,
F
fengjiayi 已提交
988
                 error_clip=None,
Y
Yu Yang 已提交
989
                 stop_gradient=False,
F
fengjiayi 已提交
990
                 is_data=False,
H
Huihuang Zheng 已提交
991
                 need_check_feed=False,
H
hong 已提交
992
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
993
                 **kwargs):
Y
Yu Yang 已提交
994 995
        self.block = block
        if name is None:
Y
Yu Yang 已提交
996
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
997

Y
Yu Yang 已提交
998
        if dtype is not None:
999
            if not isinstance(dtype, core.VarDesc.VarType):
1000
                dtype = convert_np_dtype_to_dtype_(dtype)
1001

S
Steffy-zxf 已提交
1002 1003 1004 1005
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1006 1007
        self.belong_to_optimizer = belong_to_optimizer

1008 1009 1010 1011 1012
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1013

1014 1015 1016
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1017

1018 1019 1020
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1021 1022
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1023 1024
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1025

1026
        if shape is not None:
1027
            if is_new_var:
1028 1029 1030 1031 1032 1033
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1034 1035
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1036 1037 1038 1039 1040 1041 1042
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1043 1044
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1045 1046 1047 1048 1049 1050 1051 1052 1053
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1054 1055
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1056 1057 1058 1059 1060 1061 1062 1063 1064
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1065 1066
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1067 1068
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1069

1070 1071
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1072

1073 1074 1075 1076 1077 1078 1079
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1080

1081 1082
        self.block.vars[name] = self
        self.op = None
1083
        self.stop_gradient = stop_gradient
1084
        self.is_data = is_data
Y
Yu Yang 已提交
1085

1086 1087 1088
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1089 1090
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1091

1092
        Returns:
J
Jiabin Yang 已提交
1093
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1094 1095 1096 1097

        Examples:
            .. code-block:: python

1098
                import paddle
1099

1100 1101 1102 1103
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1104

1105 1106
                # create a detached Variable
                y = x.detach()
1107
        """
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1123

1124
    @fake_interface_only
1125
    def numpy(self):
1126
        """
J
Jiabin Yang 已提交
1127
        **Notes**:
T
tianshuo78520a 已提交
1128
            **This API is ONLY available in Dygraph mode**
1129

J
Jiabin Yang 已提交
1130
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1131 1132 1133 1134 1135

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1136
            ndarray: dtype is same as current Variable
1137 1138 1139 1140 1141 1142

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1143
                from paddle.fluid.dygraph import Linear
1144 1145 1146 1147
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1148
                    linear = Linear(32, 64)
1149
                    data = to_variable(data)
1150
                    x = linear(data)
1151 1152 1153
                    print(x.numpy())

        """
1154
        pass
1155

1156
    @fake_interface_only
1157
    def backward(self, retain_graph=False):
1158
        """
J
Jiabin Yang 已提交
1159
        **Notes**:
T
tianshuo78520a 已提交
1160
            **This API is ONLY available in Dygraph mode**
1161

1162
        Run backward of current Graph which starts from current Tensor.
1163

J
Jiabin Yang 已提交
1164
        Args:
1165 1166 1167 1168
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1169

J
Jiabin Yang 已提交
1170 1171
        Returns:
            NoneType: None
1172 1173 1174 1175 1176

        Examples:
            .. code-block:: python

                import numpy as np
1177 1178
                import paddle
                paddle.disable_static()
1179 1180

                x = np.ones([2, 2], np.float32)
1181 1182 1183 1184 1185 1186 1187
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1188 1189
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1190
                loss.backward()
1191 1192

        """
1193
        pass
1194

1195
    @fake_interface_only
1196
    def gradient(self):
1197
        """
J
Jiabin Yang 已提交
1198
        **Notes**:
T
tianshuo78520a 已提交
1199
            **This API is ONLY available in Dygraph mode**
1200 1201 1202

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1203
        Returns:
1204
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1205 1206 1207 1208 1209 1210 1211

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1212
                # example1: return ndarray
1213 1214 1215 1216 1217 1218 1219 1220 1221
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1222
                    loss2.backward()
1223 1224
                    print(loss2.gradient())

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1238
        """
1239
        pass
1240

1241
    @fake_interface_only
1242
    def clear_gradient(self):
1243
        """
J
Jiabin Yang 已提交
1244
        **Notes**:
T
tianshuo78520a 已提交
1245
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1246 1247

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1248

J
Jiabin Yang 已提交
1249
        Clear  (set to ``0`` ) the Gradient of Current Variable
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1268
                    loss2.backward()
1269 1270 1271 1272 1273
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1274
        pass
X
Xin Pan 已提交
1275

1276 1277 1278 1279
    @fake_interface_only
    def register_hook(self, hook):
        pass

1280
    def __str__(self):
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1297 1298
                import paddle
                import paddle.static as static
1299

1300 1301 1302
                paddle.enable_static()

                cur_program = static.Program()
1303 1304 1305 1306 1307 1308
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1309 1310
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1311
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1312 1313
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1314 1315
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1316
        else:
1317 1318
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1319

1320
        if self.is_parameter:
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1331
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1332
        dist_context = get_default_distributed_context()
1333 1334
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1335
            var_str += ", {name} = {value}".format(
1336
                name="dist_attr", value=dist_tensor)
1337

1338
        return var_str
Y
Yang Yang(Tony) 已提交
1339

F
update  
fengjiayi 已提交
1340
    def to_string(self, throw_on_error, with_details=False):
1341 1342 1343
        """
        Get debug string.

J
Jiabin Yang 已提交
1344 1345 1346 1347 1348
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1349

1350 1351
        Returns:
            str: The debug string.
1352 1353 1354 1355 1356

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1357
                import paddle
1358

1359
                paddle.enable_static()
1360 1361 1362 1363 1364
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1365
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1366
                print("=============with detail===============")
1367
                print(new_variable.to_string(True, True))
1368
        """
F
update  
fengjiayi 已提交
1369 1370
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1371
        protostr = self.desc.serialize_to_string()
1372
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1373 1374
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1375
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1376
            for attr_name in additional_attr:
1377 1378 1379
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1380
        return res_str
1381 1382 1383

    __repr__ = __str__

1384
    @property
1385
    def stop_gradient(self):
J
Jiabin Yang 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1401 1402
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1403 1404 1405
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1406 1407
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1408 1409 1410 1411
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1412
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1413 1414
                assert (out1.gradient() == 0).all()
        """
1415
        return self.desc.stop_gradient()
1416

1417 1418
    @stop_gradient.setter
    def stop_gradient(self, s):
1419
        self.desc.set_stop_gradient(s)
1420

1421 1422
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1444
        return self.desc.persistable()
1445

Y
Yu Yang 已提交
1446 1447
    @persistable.setter
    def persistable(self, p):
1448
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1475 1476
    @property
    def name(self):
J
Jiabin Yang 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1493
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1494

1495 1496 1497 1498 1499 1500
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1501 1502
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1515 1516
    @name.setter
    def name(self, new_name):
1517
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1518

Y
Yu Yang 已提交
1519 1520
    @property
    def shape(self):
J
Jiabin Yang 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1538
        # convert to tuple, make it as same as numpy API.
1539
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1540 1541

    @property
F
fengjiayi 已提交
1542
    def dtype(self):
J
Jiabin Yang 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1559
        return self.desc.dtype()
Y
Yu Yang 已提交
1560 1561 1562

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1584 1585 1586
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1587
        return self.desc.lod_level()
Y
Yu Yang 已提交
1588

Y
Yu Yang 已提交
1589 1590
    @property
    def type(self):
J
Jiabin Yang 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1607
        return self.desc.type()
Y
Yu Yang 已提交
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1692
    def _set_error_clip(self, error_clip):
1693 1694 1695 1696 1697 1698 1699 1700 1701
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1702 1703
        self.error_clip = error_clip

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1744
            raise ValueError("slice step can not be zero")
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1820
    def _cloneVar(self, copy=False):
1821 1822
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1823 1824
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1825 1826 1827 1828
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1829
        new_var = self._cloneVar()
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1840
        new_var = self._cloneVar()
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1851
                return self._cloneVar(True)
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1870
                return self._cloneVar(True)
1871
            index = int(item)
1872
            if (index > 0 and index >= self.shape[axis]) \
1873 1874 1875 1876 1877 1878 1879
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1880
        return _getitem_impl_(self, item)
1881

1882
    def __setitem__(self, item, value):
1883
        return _setitem_impl_(self, item, value)
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2031 2032 2033 2034
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2035 2036 2037 2038 2039 2040 2041
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2151

F
fengjiayi 已提交
2152 2153 2154
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2155

2156 2157
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2158 2159 2160 2161
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2162
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2163 2164 2165 2166 2167
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2168 2169 2170 2171
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2181
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2182 2183 2184 2185 2186 2187
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2188 2189 2190 2191 2192 2193 2194 2195
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2196 2197
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2198 2199
        return self.op_proto_map[type]

2200 2201
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2202
        custom_op_names = []
2203 2204 2205
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2206 2207 2208
                custom_op_names.append(proto.type)

        return custom_op_names
2209

2210 2211 2212 2213
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2214
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2215
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2216 2217
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2218 2219
        }

F
fengjiayi 已提交
2220

X
Xin Pan 已提交
2221
class Operator(object):
2222
    """
2223 2224 2225 2226 2227 2228 2229
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2230
        type(str): The type of operator. Default None.
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2251
        Block.append_op or Block._prepend_op instead.
2252 2253 2254 2255

    Examples:
        .. code-block:: python

2256
            import paddle.fluid as fluid
2257
            cur_program = fluid.Program()
2258 2259 2260 2261 2262
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2263
    """
2264
    OP_WITHOUT_KERNEL_SET = {
2265 2266
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2267
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2268 2269
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2270
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2271 2272
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2273
    }
2274

Y
Yu Yang 已提交
2275 2276
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2277
                 desc,
Y
Yu Yang 已提交
2278 2279 2280
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2281
                 attrs=None):
L
lujun 已提交
2282
        if in_dygraph_mode():
2283 2284
            if type is None:
                raise ValueError(
2285
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2286
            self._type = type
M
minqiyang 已提交
2287
            self.attrs = attrs if attrs else {}
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2302
                )] = self.block.program._op_role
2303 2304 2305

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2306 2307
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2308 2309 2310 2311 2312

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2313 2314 2315 2316 2317
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2318 2319 2320
                return
            if type is None:
                raise ValueError(
2321
                    "`type` to initialized an Operator can not be None.")
2322 2323
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2324 2325 2326 2327 2328 2329 2330
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2331 2332 2333 2334 2335 2336 2337

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2355 2356 2357 2358 2359
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2360

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2374
                        if not isinstance(in_args, (list, tuple)):
2375 2376 2377 2378 2379 2380
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2381
                        for index, arg in enumerate(in_args):
2382 2383 2384 2385
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2386
                            elif isinstance(arg, (Variable, core.VarBase)):
2387
                                in_arg_names.append(cpt.to_text(arg.name))
2388
                            else:
2389 2390 2391 2392
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2393 2394
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2419 2420 2421 2422
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2423
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2424
                        if not in_dygraph_mode():
2425 2426 2427 2428
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2447
    def _has_kernel(self, op_type):
2448 2449
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2450
    def to_string(self, throw_on_error):
2451
        """
2452 2453
        Get debug string.

2454
        Args:
2455 2456
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2457

2458 2459
        Returns:
            str: The debug string.
2460 2461

        """
2462
        protostr = self.desc.serialize_to_string()
2463
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2464 2465
        return _debug_string_(proto, throw_on_error)

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2498
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2551
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2552
        dist_context = get_default_distributed_context()
2553 2554
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2555
            attrs_str += ", {name} = {value}".format(
2556
                name="dist_attr", value=dist_op)
2557

2558 2559
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2560 2561
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2562 2563 2564 2565 2566
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2567
    def __str__(self):
2568
        return self._to_readable_code()
2569 2570 2571

    __repr__ = __str__

F
fengjiayi 已提交
2572 2573
    @property
    def type(self):
2574
        return self.desc.type()
F
fengjiayi 已提交
2575 2576

    def input(self, name):
2577
        r"""
2578
        Get the input arguments according to the input parameter name.
2579

2580 2581
        Args:
            name(str): The input parameter name.
2582

2583 2584 2585
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2586
        """
F
fengjiayi 已提交
2587 2588
        return self.desc.input(name)

W
Wu Yi 已提交
2589
    def _rename_input(self, old_name, new_name):
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2600
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2601

W
Wu Yi 已提交
2602
    def _rename_output(self, old_name, new_name):
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2613
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2614

F
fengjiayi 已提交
2615 2616 2617 2618
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2619 2620 2621 2622 2623 2624 2625 2626
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2627
    def output(self, name):
2628
        r"""
2629
        Get output arguments by the output parameter name.
2630

2631 2632
        Args:
            name(str): The output parameter name.
2633

2634 2635 2636
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2637
        """
F
fengjiayi 已提交
2638 2639 2640 2641 2642 2643
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2644 2645 2646 2647 2648 2649 2650 2651
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2652
    def has_attr(self, name):
2653
        """
2654 2655
        Whether this Operator has the attribute with name or not.

2656
        Args:
2657
            name(str): the attribute name.
2658

2659 2660
        Returns:
            bool: True if has this attribute.
2661 2662

        """
F
fengjiayi 已提交
2663 2664 2665
        return self.desc.has_attr(name)

    def attr_type(self, name):
2666
        """
2667
        Get the type of attribute by attribute's name.
2668

2669 2670
        Args:
            name(str): the attribute name.
2671

2672 2673
        Returns:
            core.AttrType: the attribute type.
2674
        """
F
fengjiayi 已提交
2675 2676
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2677
    def _set_attr(self, name, val):
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2688 2689
        self._update_desc_attr(name, val)

2690 2691 2692
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2704 2705
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2706 2707
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2708
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2709 2710 2711 2712
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2713
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2714

F
fengjiayi 已提交
2715 2716 2717 2718 2719
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2720
        """
2721 2722
        Get the attribute by name.

2723
        Args:
2724
            name(str): the attribute name.
2725

2726 2727
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2728 2729
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2730
        return self.desc.attr(name)
Y
Yu Yang 已提交
2731

W
Wu Yi 已提交
2732
    def _block_attr_id(self, name):
2733
        """
G
gongweibao 已提交
2734
        Get the block attribute's id by name.
2735

2736 2737
        Args:
            name(str): the attribute name.
2738

2739 2740
        Returns:
            int: the block index.
2741
        """
W
Wu Yi 已提交
2742
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2743

W
Wu Yi 已提交
2744
    def _block_attr(self, name):
G
gongweibao 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2755
        id = self._block_attr_id(name)
G
gongweibao 已提交
2756 2757 2758
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2759
    def _blocks_attr(self, name):
G
gongweibao 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2770
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2771 2772 2773 2774 2775
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2776
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2787
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2788

J
JiayiFeng 已提交
2789
    def all_attrs(self):
F
fengjiayi 已提交
2790
        """
2791 2792 2793
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2794
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2795 2796 2797 2798
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2799 2800
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2801
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2802 2803 2804
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2805
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2806 2807 2808 2809
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2810 2811
        return attr_map

2812 2813 2814
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2815 2816 2817 2818

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2819 2820 2821
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2822 2823 2824 2825 2826 2827 2828 2829

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2830 2831
            return False

2832 2833 2834 2835 2836 2837
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2863

Y
Yu Yang 已提交
2864
class Block(object):
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2879
        use `Program._create_block()` to create a block.
2880 2881 2882 2883

    Examples:
        .. code-block:: python

2884 2885 2886
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2887 2888 2889 2890 2891 2892 2893 2894 2895
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2896
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2897
        self.desc = program.desc.block(idx)
2898
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2899
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2900
        self.program = program
2901
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2902

2903
    def __str__(self):
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2938
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2950

F
fengjiayi 已提交
2951 2952
    def to_string(self, throw_on_error, with_details=False):
        """
2953 2954
        Get debug string.

F
fengjiayi 已提交
2955 2956
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2957
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2958
            with_details(bool): more details about variables and parameters
2959 2960
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2961

2962 2963
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2964 2965 2966 2967
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2968
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2969 2970
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2971
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2972
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2973
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2974
            for op in self.ops:
F
fengjiayi 已提交
2975 2976
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2977 2978 2979
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2980 2981
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2982 2983
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2984 2985 2986

    __repr__ = __str__

Y
Yu Yang 已提交
2987 2988
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2989
        return self.desc.parent
Y
Yu Yang 已提交
2990

Y
Yu Yang 已提交
2991 2992 2993 2994
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2995
    def _set_forward_block_idx(self, idx):
2996 2997 2998 2999 3000 3001 3002 3003 3004
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3005
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3006

3007 3008 3009 3010 3011 3012 3013 3014
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3015 3016
    @property
    def idx(self):
Y
Yu Yang 已提交
3017
        return self.desc.id
Y
Yu Yang 已提交
3018

Q
Qiao Longfei 已提交
3019
    def var(self, name):
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3033
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3034 3035 3036
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3037 3038
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3039
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3040
        return v
Q
Qiao Longfei 已提交
3041

X
Xin Pan 已提交
3042
    def _find_var_recursive(self, name):
3043 3044 3045 3046 3047 3048 3049
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3050
            Variable: the Variable with the giving name. Or None if not found.
3051
        """
Y
Yu Yang 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3076
        return None
Y
Yu Yang 已提交
3077

X
Xin Pan 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3097

Q
Qiao Longfei 已提交
3098
    def all_parameters(self):
3099
        return list(self.iter_parameters())
3100

3101
    def iter_parameters(self):
M
minqiyang 已提交
3102
        return (item[1] for item in six.iteritems(self.vars)
3103
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3104

Y
Yu Yang 已提交
3105
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3106 3107 3108
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3109 3110 3111
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3112
        return var
Y
Yu Yang 已提交
3113

Q
Qiao Longfei 已提交
3114 3115 3116
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3117
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3118 3119
        """
        Rename variable in vars and ops' inputs and outputs
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3132
        """
M
minqiyang 已提交
3133 3134
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3135

T
typhoonzero 已提交
3136
        if not self.has_var(name):
3137
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3138 3139
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3140
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3141 3142 3143 3144 3145 3146
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3147
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3148 3149 3150 3151
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3152
        orig_var_type = v.type
M
minqiyang 已提交
3153
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3154
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3155
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3156
        if var_type == "Parameter":
L
Leo Chen 已提交
3157 3158
            if in_dygraph_mode():
                var = ParamBase(
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3169 3170
                var = Parameter(
                    self,
3171 3172 3173 3174 3175 3176 3177 3178 3179
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3180
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3181 3182
            var = Variable(
                self,
T
typhoonzero 已提交
3183
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3184 3185 3186 3187
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3188
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3189 3190 3191
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3192
        self._sync_with_cpp()
3193
        return var
T
typhoonzero 已提交
3194

3195 3196 3197
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3198
        self.desc._remove_var(cpt.to_bytes(name))
3199 3200
        del self.vars[name]

Y
Yu Yang 已提交
3201 3202
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3203
        param = None
L
Leo Chen 已提交
3204
        if in_dygraph_mode():
3205
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3206 3207
        else:
            param = Parameter(global_block, *args, **kwargs)
3208

3209
        if 'initializer' in kwargs:
3210 3211 3212 3213 3214

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3215
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3216
                        # are treated as initialization ops that cause error.
3217
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3218 3219 3220 3221 3222
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3223
                            continue
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3235
                # TODO already inited, do nothing, should log a warning
3236 3237 3238
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3239
        return param
Y
Yu Yang 已提交
3240

Y
Yu Yang 已提交
3241
    def append_op(self, *args, **kwargs):
3242 3243 3244 3245 3246 3247
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3248
        if in_dygraph_mode():
3249
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3250
            type = kwargs.get("type", None)
3251 3252 3253
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3254
                type=type,
M
minqiyang 已提交
3255 3256
                inputs=None,
                outputs=None,
3257
                attrs=attrs)
3258

M
minqiyang 已提交
3259 3260 3261
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3262
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3263 3264

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3265
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3266 3267
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3268
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3269
        else:
3270 3271
            from paddle.fluid.dygraph.base import param_guard

3272
            op_desc = self.desc.append_op()
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3286

M
minqiyang 已提交
3287
            self.ops.append(op)
M
minqiyang 已提交
3288

3289 3290
        return op

W
Wu Yi 已提交
3291
    def _insert_op(self, index, *args, **kwargs):
3292 3293 3294 3295 3296 3297 3298 3299 3300
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3301
        self._sync_with_cpp()
F
fangshuixun007 已提交
3302
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3321 3322 3323 3324 3325 3326 3327 3328 3329
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3330 3331
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3332
        self.desc._remove_op(index, index + 1)
3333 3334
        del self.ops[index]

W
Wu Yi 已提交
3335
    def _slice_ops(self, start, end):
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3346
        return self.ops[start:end]
Y
Yancey1989 已提交
3347

W
Wu Yi 已提交
3348
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3349
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3350 3351
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3352
            op = Operator(
J
Jiabin Yang 已提交
3353
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3354

J
Jiabin Yang 已提交
3355
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3356
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3357 3358
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3359
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3360
        else:
3361 3362 3363 3364 3365 3366 3367 3368
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3369
            self.ops.insert(0, op)
3370

Y
Yu Yang 已提交
3371 3372
        return op

W
Wu Yi 已提交
3373
    def _sync_with_cpp(self):
3374
        """
3375 3376
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3377
        """
Q
Qiao Longfei 已提交
3378 3379 3380
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3398

3399
        # sync variables removed from c++ end
3400
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3401
            if not self.desc.find_var(cpt.to_bytes(var)):
3402 3403
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3404
        # sync operators from cpp
3405 3406 3407 3408
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3425 3426 3427 3428 3429

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3430
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3431 3432 3433 3434 3435 3436 3437

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3451 3452 3453 3454
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3455
    def _copy_param_info_from(self, other):
3456
        """
3457 3458
        Copy the information of parameters from the other block.

3459
        Args:
3460 3461 3462 3463 3464
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3465 3466 3467 3468 3469

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3470 3471
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3472
        for p in other.iter_parameters():
3473 3474 3475
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3476 3477
                # if the Parameter is pruned, v may be None
                continue
3478
            assert isinstance(v, Variable)
3479
            new_p = None
L
Leo Chen 已提交
3480 3481
            if in_dygraph_mode():
                new_p = ParamBase(
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3493 3494
                new_p = Parameter(
                    block=self,
3495 3496 3497
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3498 3499
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3500 3501 3502 3503 3504 3505
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3506 3507
            self.vars[new_p.name] = new_p

3508
    def _clone_variable(self, var, force_persistable=True):
3509 3510
        """
        Clone a variable into current block.
3511

3512 3513
        Args:
            var: the variable to be cloned.
3514 3515 3516
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3517 3518

        Returns:
3519
            Variable: the new  variable cloned from 'var' in current block.
3520 3521
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3522 3523 3524 3525 3526
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3527 3528
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3529
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3530 3531 3532 3533 3534 3535
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3536
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3537 3538
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3539 3540 3541 3542 3543 3544 3545
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3546
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3547 3548
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3549
        return ret_var
3550

Y
Yu Yang 已提交
3551

3552 3553 3554 3555 3556 3557
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3669
    def remove_input_by_id(self, node_id):
3670 3671 3672 3673 3674 3675
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3676
        self.node.remove_input(node_id)
3677

3678
    def remove_input(self, node):
3679 3680 3681 3682
        """
        Remove a node from inputs.

        Args:
3683
            node(IrNode): the node being removed.
3684
        """
3685
        self.node.remove_input(node.node)
3686

3687
    def append_input(self, node):
3688 3689 3690 3691
        """
        Append a node in inputs.

        Args:
3692
            node(IrNode): the node being appended.
3693
        """
3694
        self.node.append_input(node.node)
3695 3696 3697 3698 3699 3700 3701 3702

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3703
    def remove_output_by_id(self, node_id):
3704 3705 3706 3707 3708 3709
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3710
        self.node.remove_output(node_id)
3711

3712
    def remove_output(self, node):
3713 3714 3715 3716
        """
        Remove a node from outputs.

        Args:
3717
            node(IrNode): the node being removed.
3718
        """
3719
        self.node.remove_output(node.node)
3720

3721
    def append_output(self, node):
3722 3723 3724 3725
        """
        Append a node in outputs.

        Args:
3726
            node(IrNode): the node being appended.
3727
        """
3728
        self.node.append_output(node.node)
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3776
            "The node variable description can not be None."
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3787
            "The node variable description can not be None."
3788 3789
        return self.node.var().persistable()

3790 3791 3792 3793 3794 3795 3796 3797
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3798
            "The node variable description can not be None."
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3809
            "The node variable description can not be None."
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3820
            "The node variable description can not be None."
3821 3822
        return self.node.var().shape()

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3870
            "The node operator description can not be None."
3871 3872
        self.node.op()._rename_input(old_input_name, new_input_name)

3873 3874 3875 3876 3877 3878 3879 3880 3881
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3882
            "The node operator description can not be None."
3883 3884
        self.node.op()._rename_output(old_output_name, new_output_name)

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3896
            "The node operator description can not be None."
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3910
            "The node operator description can not be None."
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3921
            "The node operator description can not be None."
3922 3923
        return self.node.op().set_type(new_type)

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3939
            "The node operator description can not be None."
3940 3941 3942 3943
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3944
                all(isinstance(v, Block) for v in val):
3945 3946
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3947
                isinstance(val, core.ProgramDesc):
3948 3949 3950 3951
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3952 3953 3954 3955 3956 3957 3958 3959
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3960
            "The node operator description can not be None."
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3971
            "The node operator description can not be None."
3972 3973
        return self.node.op().output_arg_names()

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3995 3996
class IrGraph(object):
    """
3997
    Python IrGraph. Beneath it is a core.Graph, which is used for
3998
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3999 4000
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4001 4002 4003 4004
    """

    def __init__(self, graph, for_test=False):
        """
4005 4006
        Construct an IrGraph using core.Graph.

4007 4008 4009 4010 4011 4012 4013 4014 4015
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4016 4017 4018 4019
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4020 4021 4022
        Warns:
            The method only clones the graph structure, not its attributes.

4023 4024 4025
        Returns:
            IrGraph: A new and duplicated graph.
        """
4026
        g = self.graph.clone()
4027 4028
        return IrGraph(g, self._for_test)

4029
    def is_test(self):
4030 4031 4032
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4033 4034
        return self._for_test

W
WangZhen 已提交
4035
    def all_nodes(self):
4036 4037 4038
        """
        Return all nodes included in the graph as a set.
        """
4039
        return {IrNode(node) for node in self.graph.nodes()}
4040

4041
    def all_var_nodes(self):
4042 4043 4044
        """
        Return all variable nodes included in the graph as a set.
        """
4045
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4046

4047
    def all_persistable_nodes(self):
4048 4049 4050
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4051 4052 4053 4054 4055
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4056
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4057

4058
    def all_op_nodes(self):
4059 4060 4061
        """
        Return all operator nodes included in the graph as a set.
        """
4062
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4063

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4081
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4093
            IrVarNode: the created persistable variable node.
4094
        """
4095 4096 4097 4098 4099
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4100
        return IrVarNode(self.graph.create_var_node(var_desc))
4101 4102

    def create_var_node(self, name, var_type, shape, var_dtype):
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4114
            IrVarNode: the created variable node.
4115 4116
        """

4117 4118 4119 4120
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4121
        return IrVarNode(self.graph.create_var_node(var_desc))
4122

4123 4124 4125 4126 4127 4128
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4129
    def create_var_node_from_desc(self, var_desc):
4130 4131 4132 4133 4134 4135 4136 4137
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4138
            IrVarNode: the created variable node.
4139
        """
4140
        return IrVarNode(self.graph.create_var_node(var_desc))
4141 4142

    def create_op_node(self, op_type, attrs, inputs, outputs):
4143 4144 4145 4146 4147 4148 4149
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4150
            outputs(dict): the outputs of the operator node.
4151 4152

        Returns:
4153
            IrOpNode: the created operator node.
4154
        """
4155 4156
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4157
        for attr, value in six.iteritems(attrs):
4158
            self._update_desc_attr(op_desc, attr, value)
4159
        for input_name, var_nodes in six.iteritems(inputs):
4160 4161 4162 4163
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4164
        for output_name, var_nodes in six.iteritems(outputs):
4165 4166 4167 4168
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4169
        return IrOpNode(self.graph.create_op_node(op_desc))
4170 4171

    def create_op_node_from_desc(self, op_desc):
4172 4173 4174 4175 4176 4177 4178
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4179
            IrOpNode: the created operator node.
4180
        """
4181
        return IrOpNode(self.graph.create_op_node(op_desc))
4182 4183

    def update_input_link(self, old_input_node, new_input_node, op_node):
4184 4185 4186 4187
        """
        Update the input's link of a operator node.

        Args:
4188 4189 4190
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4191
        """
4192
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4193
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4194
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4195 4196 4197 4198
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4199
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4200

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4211
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4212
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4213 4214 4215 4216 4217 4218
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4219
    def link_to(self, node_in, node_out):
4220 4221 4222 4223
        """
        Connect two nodes.

        Args:
4224 4225
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4226
        """
4227 4228 4229 4230
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4231 4232
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4233 4234

    def safe_remove_nodes(self, remove_nodes):
4235 4236 4237 4238 4239 4240 4241
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4242
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4243 4244 4245 4246
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4247 4248
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4249

Z
Zhen Wang 已提交
4250 4251 4252 4253 4254 4255 4256 4257
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4258
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4259 4260 4261 4262
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4263
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4264 4265 4266
                        ]
                    else:
                        var_nodes[each_var_name].append(
4267 4268
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4269 4270
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4271
    def has_circle(self):
4272 4273 4274 4275 4276 4277
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4278 4279 4280
        return core.has_circle(self.graph)

    def graph_num(self):
4281 4282 4283 4284 4285 4286
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4287 4288 4289
        return core.graph_num(self.graph)

    def topology_sort(self):
4290 4291 4292
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4293
        Notes: the `graph` can not contain a circle.
4294 4295

        Returns:
Z
Zhen Wang 已提交
4296
            list(IrNode): nodes in topology order.
4297
        """
4298
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4299
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4300 4301

    def build_adjacency_list(self):
4302 4303 4304 4305
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4306
            dict{IrNode: set(IrNode)}: the adjacency list.
4307
        """
4308 4309 4310 4311 4312
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4313

4314 4315 4316 4317 4318 4319 4320 4321
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4322
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4323 4324 4325 4326 4327
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4328 4329
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4330 4331 4332
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4333 4334 4335 4336 4337
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4338
        remove_ctr_vars = set()
4339
        if remove_ctr_var:
4340
            for node in self.all_var_nodes():
4341 4342 4343
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4344 4345
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4346 4347
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4348 4349 4350 4351 4352 4353
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4354 4355 4356 4357
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4358 4359
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4360 4361 4362 4363 4364 4365 4366
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4367 4368 4369
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4370
        WARN: When the graph includes backward operator nodes, the
4371 4372 4373 4374 4375 4376
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4377
        convert_pass = core.get_pass('graph_to_program_pass')
4378 4379
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4380 4381 4382 4383
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4384 4385 4386 4387 4388 4389 4390 4391
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4392 4393
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4394 4395
        return target_node

4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4412
class Program(object):
D
dzhwinter 已提交
4413
    """
4414
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4415
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4416
    it will contain nested block.
4417

J
Jiabin Yang 已提交
4418 4419 4420
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4421

J
Jiabin Yang 已提交
4422
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4423
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4424 4425 4426 4427 4428 4429 4430
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4431
    **Notes**:
4432 4433 4434
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4435 4436

    Returns:
J
Jiabin Yang 已提交
4437
        Program: An empty Program.
D
dzhwinter 已提交
4438 4439

    Examples:
4440 4441
        .. code-block:: python

4442 4443 4444 4445
            import paddle
            import paddle.static as static

            paddle.enable_static()
4446

4447 4448 4449 4450 4451
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4452
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4453 4454 4455

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4456 4457 4458

    """

4459 4460
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4461 4462
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4463 4464
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4465
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4466
        self.__op_role_var = []
T
tangwei12 已提交
4467

4468 4469
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4470
        self._is_distributed = False
4471
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4472
        self._is_chief = False
4473 4474 4475
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4476
        self._endpoints = []
4477 4478 4479
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4480
        self._trainers_endpoints = []
4481
        # the distributed lookup table names
T
tangwei12 已提交
4482
        self._distributed_lookup_table = None
4483 4484 4485

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4486 4487
        self._use_lamb = False

4488 4489 4490
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4491

4492 4493 4494
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4495
        self._program_config = None
4496

H
hutuxian 已提交
4497 4498 4499
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4500 4501 4502
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4503 4504 4505
        # appending gradients times
        self._appending_grad_times = 0

4506 4507 4508 4509
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4510 4511
        # compiled program, i.e. Graph
        self._graph = None
4512 4513
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4514

4515
    def _find_var_class_kwargs(self, new_desc):
4516 4517 4518 4519 4520 4521 4522 4523
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4593
        assert block_num == self.desc.num_blocks()
4594 4595

        # clear old blocks and desc
4596 4597 4598 4599 4600 4601 4602 4603 4604
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4605

4606
        del desc
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4636 4637
                import paddle
                import paddle.static as static
4638

4639 4640 4641
                paddle.enable_static()

                prog = static.default_main_program()
4642 4643 4644 4645 4646
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4647
                prog1 = static.default_main_program()
4648 4649 4650 4651 4652 4653 4654 4655
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4656
    @property
4657
    def _op_role(self):
Y
yuyang18 已提交
4658 4659 4660 4661 4662 4663 4664 4665
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4666
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4667 4668 4669 4670
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4671 4672
        return self._current_role

4673 4674
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4675 4676 4677
        self._current_role = role

    @property
4678
    def _op_role_var(self):
Y
yuyang18 已提交
4679
        """
4680
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4681

4682
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4683 4684 4685

        Notes: This is a very low-level API. Users should not use it directly.
        """
4686
        return self.__op_role_var
Y
yuyang18 已提交
4687

4688
    @signature_safe_contextmanager
4689 4690 4691 4692 4693
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4694 4695 4696 4697
        try:
            yield
        finally:
            self._current_role = tmp_role
4698

S
rename  
sneaxiy 已提交
4699
    @signature_safe_contextmanager
W
Wu Yi 已提交
4700
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4701 4702 4703 4704 4705 4706 4707
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4708
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4709 4710 4711

        Examples:

4712
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4713
            >>> p, g = backward(...)
W
Wu Yi 已提交
4714
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4715 4716
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4717
        tmp_role = self._current_role
4718
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4719

Y
yuyang18 已提交
4720 4721
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4722
        self.__op_role_var = [
4723 4724 4725
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4726 4727 4728 4729 4730
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4731

S
rename  
sneaxiy 已提交
4732
    @signature_safe_contextmanager
X
Xin Pan 已提交
4733
    def _lr_schedule_guard(self, is_with_opt=False):
4734 4735 4736 4737 4738 4739 4740
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4741 4742 4743 4744
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4745 4746 4747

        Examples:

4748
            >>> import paddle.fluid as fluid
4749 4750 4751 4752
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4753 4754

        tmp_role = self._current_role
4755
        tmp_var = self.__op_role_var
4756

4757 4758
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4759 4760
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4761
        # TODO(typhoonzero): how to set target learning rate var
4762
        self.__op_role_var = []
4763 4764 4765 4766 4767
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4768

4769
    def __str__(self):
Y
yuyang18 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4799 4800
            import paddle
            import paddle.static as static
4801

4802 4803 4804
            paddle.enable_static()

            cur_program = static.Program()
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4816
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4817 4818 4819 4820
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4821
            program_str += '\n'
4822
        return program_str
Y
Yang Yang(Tony) 已提交
4823

F
fengjiayi 已提交
4824 4825 4826
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4827

J
Jiabin Yang 已提交
4828 4829 4830
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4831

J
Jiabin Yang 已提交
4832
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4833

H
haowang101779990 已提交
4834
        Returns:
J
Jiabin Yang 已提交
4835
            str: The debug string describe current Program.
Y
yuyang18 已提交
4836 4837

        Raises:
J
Jiabin Yang 已提交
4838
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4839

4840 4841 4842
        Examples:
            .. code-block:: python

4843 4844 4845 4846
                import paddle
                import paddle.static as static

                paddle.enable_static()
4847

4848 4849 4850
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4851
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4852
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4853
                print("program string without detail: {}".format(prog_string))
4854
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4855
        """
4856 4857 4858 4859 4860 4861 4862 4863 4864
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4865 4866 4867 4868 4869 4870
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4871 4872
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4873 4874
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4875

W
Wu Yi 已提交
4876
    def _get_desc(self):
Y
yuyang18 已提交
4877 4878 4879 4880 4881 4882 4883
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4884 4885
        return self.desc

X
version  
Xin Pan 已提交
4886 4887 4888
    def _version(self):
        return self.desc._version()

4889
    def clone(self, for_test=False):
Y
yuyang18 已提交
4890
        """
4891 4892 4893 4894
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4895

4896
        Create a new Program with forward content of original one when ``for_test=True``.
4897
        Create a new Program as same as the original one when ``for_test=False``.
4898

4899
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4900 4901 4902
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4903

4904 4905
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4906 4907
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4908
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4909

J
Jiabin Yang 已提交
4910
        For Example:
4911
          ::
L
Luo Tao 已提交
4912

4913 4914 4915 4916 4917 4918
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4919
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4920
            loss = paddle.mean(pred)
4921
            # Here we use clone before Momentum
4922 4923
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4924
            optimizer.minimize(loss)
4925

J
Jiabin Yang 已提交
4926
        Args:
4927

4928 4929
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4930

J
Jiabin Yang 已提交
4931
        Returns:
4932
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4933

Y
yuyang18 已提交
4934 4935 4936

        Examples:

4937 4938 4939 4940 4941 4942 4943
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4960
            1. To clone a test program, the sample code is:
4961 4962 4963
                .. code-block:: python

                    import six
4964 4965 4966 4967 4968 4969
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4982 4983
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4984 4985 4986

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4987 4988 4989
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4990
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4991 4992
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4993
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4994 4995
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4996
                            test_program = train_program.clone(for_test=True)
4997
                    print_prog(test_program)
J
Jiabin Yang 已提交
4998 4999 5000 5001

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5002
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5003 5004 5005 5006
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5007 5008 5009
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5010 5011 5012
                            sgd.minimize(avg_loss)


5013
            2. The clone method can be avoid if you create program for training and program for testing individually.
5014 5015 5016
                .. code-block:: python

                    import six
5017 5018 5019 5020 5021 5022
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5034

5035
                    def network():
5036
                        img = static.data(name='image', shape=[None, 784])
5037
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5038 5039
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5040
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5041 5042
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5043 5044
                        return avg_loss

5045 5046 5047 5048 5049
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5050
                            avg_loss = network()
5051
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5052
                            sgd.minimize(avg_loss)
5053
                    # the test startup program is not used.
5054 5055
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5056 5057
                            avg_loss = network()
                    print_prog(test_program_2)
5058

5059
            The two code snippets above will generate and print same programs.
5060
        """
5061

T
tangwei12 已提交
5062
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5063 5064 5065
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5066
        pruned_origin_block_id_map = None
5067
        if for_test:
5068 5069 5070 5071 5072 5073 5074 5075 5076
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5077
        else:
5078
            p = Program()
G
gongweibao 已提交
5079 5080
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5081
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5082 5083 5084
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5085 5086

            p._current_role = self._current_role
5087
            p.__op_role_var = self.__op_role_var
5088
            p._appending_grad_times = self._appending_grad_times
5089 5090
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5091

T
tangwei12 已提交
5092
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5093
            # its desc.
W
Wu Yi 已提交
5094
            p._sync_with_cpp()
5095

W
Wu Yi 已提交
5096
        p._copy_param_info_from(self)
5097
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5098
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5099
        return p
5100

5101
    def _prune(self, targets):
Y
yuyang18 已提交
5102 5103 5104 5105 5106 5107 5108 5109
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5110
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5111 5112 5113 5114
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5115
        """
5116
        return self._prune_with_input([], targets)
5117 5118

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5119
        """
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5130
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5131 5132 5133 5134 5135 5136
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5137
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5138 5139 5140
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5141 5142
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5143 5144
        if not isinstance(targets, list):
            targets = [targets]
5145 5146 5147

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5148 5149 5150
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5151

5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5168 5169 5170 5171
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5172 5173 5174
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5175
                else:
5176 5177 5178
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5179 5180 5181 5182 5183 5184

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5185 5186 5187
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5188

5189 5190 5191 5192 5193 5194 5195 5196 5197
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5198
                        # Skip optimize op except for optimize op in targets,
5199 5200 5201 5202 5203
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5204

5205
                if target_op is not None:
5206 5207 5208
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5209

5210
        res = Program()
5211 5212 5213
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5214 5215 5216
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5217
        res._sync_with_cpp()
5218 5219 5220 5221 5222

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5223 5224
        return res

X
Xin Pan 已提交
5225
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5226
        """
F
fengjiayi 已提交
5227 5228 5229 5230 5231
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5232
        3. change the :code:`is_test`
Y
yuyang18 已提交
5233 5234 5235
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5236
        Args:
X
Xin Pan 已提交
5237 5238
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5239

Y
yuyang18 已提交
5240 5241 5242 5243 5244 5245
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5246
        res = Program()
5247
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5248 5249 5250 5251

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5252
        if prune_read_op:
5253 5254 5255 5256 5257 5258 5259 5260 5261
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5262
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5263 5264

        # change all `is_test` attributes to True
M
minqiyang 已提交
5265
        for i in six.moves.range(res.desc.num_blocks()):
5266
            block = res.desc.block(i)
M
minqiyang 已提交
5267
            for j in six.moves.range(block.op_size()):
5268 5269
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5270
                    op._set_attr('is_test', True)
5271 5272 5273
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5274 5275 5276
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5277
        res._sync_with_cpp()
5278 5279
        return res

5280
    def _remove_training_info(self, clip_extra=True):
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5370 5371
        return res

5372 5373
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5374
        """
5375 5376 5377
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5378

5379 5380
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5381

J
Jiabin Yang 已提交
5382
        Args:
Y
yuyang18 已提交
5383

J
Jiabin Yang 已提交
5384
            binary_str_type (str): the binary prootbuf string.
5385

J
Jiabin Yang 已提交
5386 5387
        Returns:
            Program: A deserialized Program.
5388 5389 5390 5391

        Examples:
            .. code-block:: python

5392 5393 5394 5395
                import paddle
                import paddle.static as static

                paddle.enable_static()
5396

5397 5398 5399 5400
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5401

5402
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5403

5404
                    z = paddle.matmul(x=x, y=y)
5405

5406 5407
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5408

5409
                    print(static.default_main_program())
5410
                    print(prog_restored)
Y
yuyang18 已提交
5411
        """
5412 5413
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5414
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5415
        p._sync_with_cpp()
5416
        return p
Y
Yu Yang 已提交
5417

5418
    @staticmethod
5419
    def _construct_from_desc(desc):
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5435 5436
    @property
    def random_seed(self):
Y
yuyang18 已提交
5437
        """
J
Jiabin Yang 已提交
5438
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5439 5440
        the random seed from random device.

5441 5442
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5443 5444 5445

        Returns:
            int64: Random seed in current Program
5446

5447 5448 5449 5450

        Examples:
            .. code-block:: python

5451 5452 5453
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5454

5455 5456 5457
                paddle.enable_static()

                prog = static.default_main_program()
5458
                random_seed = prog.random_seed
5459
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5460 5461 5462
                print(random_seed)
                ## 0
                ## the default random seed is 0
5463

5464
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5465
                prog.random_seed = 1
5466
                z_var = F.dropout(x_var, 0.7)
5467

5468
                print(prog.random_seed)
5469 5470
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5471
        """
D
dzhwinter 已提交
5472 5473
        return self._seed

Q
qiaolongfei 已提交
5474 5475
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5476
        """
5477 5478
        The number of :ref:`api_guide_Block_en`  in this Program.

5479 5480
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5481 5482 5483

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5484

5485 5486 5487 5488

        Examples:
            .. code-block:: python

5489 5490 5491 5492
                import paddle
                import paddle.static as static

                paddle.enable_static()
5493

5494
                prog = static.default_main_program()
5495 5496
                num_blocks = prog.num_blocks
                print(num_blocks)
5497

5498 5499
                # print result:
                # 1
Y
yuyang18 已提交
5500
        """
Q
qiaolongfei 已提交
5501 5502
        return self.desc.num_blocks()

D
dzhwinter 已提交
5503 5504 5505
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5506 5507 5508
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5509 5510
        self._seed = seed

Y
Yu Yang 已提交
5511
    def __repr__(self):
5512
        return self.__str__()
5513

Y
Yu Yang 已提交
5514
    def global_block(self):
Y
yuyang18 已提交
5515
        """
5516 5517
        .. note::
            This API has no effect in Dygraph mode.
5518 5519 5520

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5521 5522
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5523

5524 5525 5526 5527

        Examples:
            .. code-block:: python

5528 5529 5530 5531
                import paddle
                import paddle.static as static

                paddle.enable_static()
5532

5533
                prog = static.default_main_program()
5534 5535
                gb_block = prog.global_block()
                print(gb_block)
5536

Y
yuyang18 已提交
5537
        """
Y
Yu Yang 已提交
5538 5539
        return self.blocks[0]

Q
Qiao Longfei 已提交
5540
    def block(self, index):
Y
yuyang18 已提交
5541
        """
5542 5543
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5544

5545 5546
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5547 5548
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5549

J
Jiabin Yang 已提交
5550 5551
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5552 5553 5554 5555

        Examples:
            .. code-block:: python

5556 5557 5558 5559
                import paddle
                import paddle.static as static

                paddle.enable_static()
5560

5561
                prog = static.default_main_program()
5562 5563
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5564
        """
Q
Qiao Longfei 已提交
5565 5566
        return self.blocks[index]

Y
Yu Yang 已提交
5567
    def current_block(self):
Y
yuyang18 已提交
5568
        """
5569 5570
        .. note::
            This API has no effect in Dygraph mode.
5571

J
Jiabin Yang 已提交
5572 5573
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5574

J
Jiabin Yang 已提交
5575 5576
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5577

5578 5579 5580
        Examples:
            .. code-block:: python

5581 5582 5583 5584
                import paddle
                import paddle.static as static

                paddle.enable_static()
5585

5586
                prog = static.default_main_program()
5587 5588
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5589
        """
Y
Yu Yang 已提交
5590 5591
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5592
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5593 5594 5595 5596 5597
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5598

Y
yuyang18 已提交
5599 5600 5601 5602 5603
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5604
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5605 5606 5607
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5608 5609 5610 5611
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5612
    def _rollback(self):
Y
yuyang18 已提交
5613 5614 5615 5616 5617
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5618 5619
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5620
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5631 5632 5633
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5634
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5635

W
Wu Yi 已提交
5636
    def _copy_param_info_from(self, other):
5637
        """
5638
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5639

Y
yuyang18 已提交
5640 5641 5642
        Notes: This is a very low level API. Users should not invoke it
        directly.

5643 5644 5645 5646 5647 5648 5649
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5650 5651 5652
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5653

W
Wu Yi 已提交
5654
        self.global_block()._copy_param_info_from(other.global_block())
5655

5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5667 5668 5669
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5670 5671
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5672
        self._parameters_on_pservers = other._parameters_on_pservers
5673
        self._endpoints = other._endpoints
5674
        self._ps_endpoint = other._ps_endpoint
5675 5676
        self._distributed_lookup_table = other._distributed_lookup_table

5677
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5678 5679
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5680

Y
yuyang18 已提交
5681 5682 5683
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5684 5685
        Args:
            other(Program): Other program
5686 5687 5688 5689
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5690 5691 5692 5693 5694

        Returns:
            None
        """
        if not isinstance(other, Program):
5695 5696 5697
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5698

5699 5700 5701 5702 5703
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5704 5705 5706

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5707 5708
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5709
            for var in list(block.vars.values()):
5710 5711 5712 5713 5714 5715 5716
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5717

5718
    def list_vars(self):
Y
yuyang18 已提交
5719
        """
5720
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5721

J
Jiabin Yang 已提交
5722
        Returns:
5723
            iterable Tensors: The Generator will yield every Tensor in this program.
5724 5725 5726 5727

        Examples:
            .. code-block:: python

5728 5729
                import paddle
                import paddle.static as static
5730

5731 5732 5733 5734 5735
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5736 5737
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5738

5739 5740
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5741
        """
5742
        for each_block in self.blocks:
5743
            for each_var in list(each_block.vars.values()):
5744 5745
                yield each_var

5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5756 5757 5758 5759
                import paddle
                import paddle.static as static

                paddle.enable_static()
5760

5761 5762
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5763
                hidden = static.nn.fc(x=data, size=10)
5764 5765
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5766 5767 5768 5769 5770 5771 5772

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5773 5774
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5952

5953
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5954
class Parameter(Variable):
5955
    """
5956
    Parameter is derived from Variable. A parameter is a persistable
5957
    Variable, and will be updated by optimizers after each iteration.
5958
    The training of a neural network is essentially the updating of
5959 5960
    its parameters.

5961
    Relative to a general Variable, a Parameter has several its own
5962 5963
    member variables:

5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5974 5975
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5976 5977
    """

5978 5979 5980 5981 5982 5983
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5984 5985 5986 5987 5988
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5989
        if len(shape) == 0:
5990 5991
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5992 5993 5994

        for each in shape:
            if each < 0:
5995 5996 5997
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5998 5999

        Variable.__init__(
6000 6001 6002 6003 6004 6005 6006
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6007 6008 6009 6010
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6011 6012
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6013
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6014

6015 6016
        self.need_clip = kwargs.get('need_clip', True)

6017 6018
        self.is_distributed = False

6019 6020
        self.is_parameter = True

F
fengjiayi 已提交
6021
    def __str__(self):
6022
        return self._to_readable_code()
F
fengjiayi 已提交
6023

F
update  
fengjiayi 已提交
6024 6025 6026
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6027

F
update  
fengjiayi 已提交
6028 6029 6030 6031 6032 6033 6034 6035
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6036 6037 6038 6039 6040 6041 6042 6043 6044
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6045 6046 6047 6048 6049 6050
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6051
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6052
            for attr_name in additional_attr:
6053 6054
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6055 6056
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6057 6058 6059 6060
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6061

6062 6063
class ParamBase(core.VarBase):
    """
6064 6065 6066
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6067 6068 6069
    The training of a neural network is essentially the updating of
    its ParamBase.

6070
    Relative to a general Tensor, a ParamBase has several its own
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6083 6084
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6115 6116
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6117 6118 6119 6120 6121 6122 6123

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6124 6125
        self.need_clip = kwargs.get('need_clip', True)

6126
        self.is_distributed = kwargs.get('is_distributed', False)
6127
        # self.block = default_main_program().global_block()
6128

6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6142
    def __str__(self):
6143
        """
6144
        Convert a ParamBase object to a readable string.
6145

6146
        Returns(str): A readable string.
6147 6148 6149 6150

        Examples:
            .. code-block:: python

6151
                import paddle
6152 6153 6154 6155 6156 6157 6158
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6159
        """
6160 6161
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6162

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6174

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6193 6194 6195 6196 6197 6198
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6199 6200 6201
    __repr__ = __str__


Y
Yu Yang 已提交
6202
# program is a global instance.
Y
Yu Yang 已提交
6203 6204
_main_program_ = Program()
_startup_program_ = Program()
6205
_startup_program_._is_start_up_program_ = True
6206

6207

6208
def default_startup_program():
Y
Yu Yang 已提交
6209
    """
Y
yuyang18 已提交
6210 6211
    Get default/global startup program.

6212 6213
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6214

6215 6216
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6217

6218 6219
    Returns:
        Program: current default startup program.
6220

6221
    Returns type: 
6222 6223 6224 6225

    Examples:
        .. code-block:: python

6226
            import paddle
6227

6228
            paddle.enable_static()
6229 6230 6231 6232
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6233
    """
Y
Yu Yang 已提交
6234
    return _startup_program_
6235

6236

6237
def default_main_program():
Y
Yu Yang 已提交
6238
    """
6239
    This API can be used to get ``default main program`` which store the 
6240
    descriptions of Ops and tensors.
T
tangwei12 已提交
6241

6242
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6243
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6244

6245 6246
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6247
    :code:`default_main_program` when the program is not specified.
6248

6249
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6250

Y
Yu Yang 已提交
6251
    Returns:
6252
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6253 6254 6255 6256

    Examples:
        ..  code-block:: python

6257
            import paddle
6258

6259
            paddle.enable_static()
6260
            # Sample Network:
6261 6262 6263
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6264

6265 6266 6267
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6268
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6269
    """
Y
Yu Yang 已提交
6270
    return _main_program_
Y
Yu Yang 已提交
6271 6272 6273 6274 6275


def switch_main_program(program):
    """
    Switch the main program to a new program.
6276

Y
Yu Yang 已提交
6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6291
    Switch the startup program to a new program
Y
Yu Yang 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6304
@signature_safe_contextmanager
Y
Yu Yang 已提交
6305 6306
def program_guard(main_program, startup_program=None):
    """
6307 6308
    :api_attr: Static Graph

6309 6310 6311
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6312

G
guofei 已提交
6313
    Args:
6314 6315
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6316 6317 6318 6319
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6320
    Examples:
6321
       .. code-block:: python
T
tangwei12 已提交
6322

6323
          import paddle
Y
yuyang18 已提交
6324

6325 6326 6327 6328 6329
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6330
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6331 6332 6333

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6334

Y
Yu Yang 已提交
6335
    Examples:
6336
       .. code-block:: python
Y
yuyang18 已提交
6337

6338
          import paddle
6339

6340 6341 6342 6343 6344
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6345

Y
Yu Yang 已提交
6346
    """
6347
    from .data_feeder import check_type
6348 6349
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6350 6351
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6352
        check_type(startup_program, 'startup_program', Program,
6353
                   'paddle.static.program_guard')
6354 6355
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6356
        startup_program = switch_startup_program(startup_program)
6357 6358 6359 6360 6361 6362
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6363 6364


W
Wu Yi 已提交
6365
def _get_var(name, program=None):
X
xuwei06 已提交
6366
    """
Y
yuyang18 已提交
6367
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6368

X
xuwei06 已提交
6369 6370 6371
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6372
        If None, default_global_program() will be used.
X
xuwei06 已提交
6373 6374 6375 6376 6377 6378 6379

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6380
    assert isinstance(program, Program)
X
xuwei06 已提交
6381 6382

    return program.global_block().var(name)
6383 6384


S
rename  
sneaxiy 已提交
6385
@signature_safe_contextmanager
L
lujun 已提交
6386 6387
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6388
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6389
    _dygraph_tracer_ = tracer
6390
    core._switch_tracer(tracer)
M
minqiyang 已提交
6391

6392 6393 6394
    try:
        yield
    finally:
6395 6396
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6397 6398


S
rename  
sneaxiy 已提交
6399
@signature_safe_contextmanager
L
lujun 已提交
6400
def _dygraph_place_guard(place):
6401 6402 6403
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6404

6405 6406
    _set_dygraph_tracer_expected_place(place)

6407 6408 6409
    try:
        yield
    finally:
6410
        _global_expected_place_ = tmp_place
6411
        _set_dygraph_tracer_expected_place(tmp_place)
6412 6413


6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6430 6431
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6432 6433 6434 6435 6436 6437 6438 6439 6440
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6441
            import paddle
6442

Z
Zhang Ting 已提交
6443 6444 6445
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6446
            if support_gpu:
Z
Zhang Ting 已提交
6447
                place = paddle.CUDAPlace(0)
6448 6449

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6450 6451 6452
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6453

Z
Zhang Ting 已提交
6454
            with paddle.static.device_guard("cpu"):
6455
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6456 6457
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6458
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6459
                out = paddle.reshape(data1, shape=shape)
6460

Z
Zhang Ting 已提交
6461 6462
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6463 6464 6465
            result = exe.run(fetch_list=[out])
    """

6466 6467 6468 6469 6470
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6471
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6472
        raise ValueError(
6473
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6474
            "when there is no need to specify device. But received %s" % device)
6475 6476
    if index:
        device = ":".join([device, index])
6477
    pre_device = switch_device(device)
6478 6479 6480 6481
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6482 6483 6484 6485 6486


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6487
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6488 6489 6490 6491 6492 6493 6494

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6495 6496
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6497 6498 6499 6500
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6501 6502
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6503 6504 6505 6506 6507 6508 6509 6510
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6511
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6512 6513 6514 6515 6516 6517 6518 6519 6520 6521

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6522
            import paddle
G
guofei 已提交
6523 6524

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6525
            res = paddle.get_flags(flags)
G
guofei 已提交
6526 6527 6528 6529 6530 6531
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6532 6533
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6534 6535 6536 6537 6538 6539 6540
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6541 6542
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6543 6544 6545 6546 6547 6548 6549 6550
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6551 6552 6553 6554 6555 6556 6557


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6558
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6559 6560 6561 6562 6563 6564 6565 6566 6567
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6568

6569 6570 6571
    if (place == "device"):
        return core.Place()

6572
    # GPU
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6588 6589

    # XPU
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6613
    raise ValueError(
6614 6615
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret