framework.py 129.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

70
            import paddle.fluid as fluid
L
lujun 已提交
71 72 73 74
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
75
    return _dygraph_tracer_ is not None
76 77


L
lujun 已提交
78 79
def _dygraph_tracer():
    return _dygraph_tracer_
80

W
Wu Yi 已提交
81

M
minqiyang 已提交
82
def _current_expected_place():
L
lujun 已提交
83
    return _dygraph_current_expected_place_
M
minqiyang 已提交
84 85


S
sneaxiy 已提交
86
def _cpu_num():
87
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
88 89 90 91 92 93 94 95
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
96
        os.environ['CPU_NUM'] = str(1)
97
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
98 99 100 101 102 103 104 105 106 107
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
108 109


C
chengduo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
125
def cuda_places(device_ids=None):
L
lujun 已提交
126
    """
S
add doc  
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
146 147 148 149

    Examples:
        .. code-block:: python

150
            import paddle.fluid as fluid
L
lujun 已提交
151 152 153
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
154 155 156
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
157
        device_ids = _cuda_ids()
S
sneaxiy 已提交
158 159 160 161 162 163
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
164
    """
S
add doc  
sneaxiy 已提交
165 166 167 168
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
169 170
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
171 172 173 174 175 176

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181
            import paddle.fluid as fluid
L
lujun 已提交
182 183 184
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
185 186 187 188 189 190
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
191
    """
S
add doc  
sneaxiy 已提交
192 193 194 195 196 197 198 199 200 201 202 203
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
204 205 206 207

    Examples:
        .. code-block:: python

208
            import paddle.fluid as fluid
L
lujun 已提交
209 210 211 212 213
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
214 215 216 217 218 219 220
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
247
@signature_safe_contextmanager
248 249 250 251 252 253 254 255 256 257 258 259
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
260

261
          import paddle.fluid as fluid
262 263 264 265 266 267 268 269 270 271 272
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
273 274
    """
    # TODO(panyx0718): Only [0-9a-z].
275 276 277 278 279 280 281 282 283
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
284 285 286 287 288 289 290 291 292 293 294 295


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
296 297 298
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
299 300 301 302


def grad_var_name(var_name):
    """
303 304
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
305 306 307
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
308

309
def convert_np_dtype_to_dtype_(np_dtype):
310 311
    """
    Convert the data type in numpy to the data type in Paddle
312

313
    Args:
314
        np_dtype(np.dtype): the data type in numpy.
315

316 317
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
318 319

    """
320 321
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
322
        return core.VarDesc.VarType.FP32
323
    elif dtype == np.float64:
324
        return core.VarDesc.VarType.FP64
325
    elif dtype == np.float16:
326
        return core.VarDesc.VarType.FP16
327
    elif dtype == np.int32:
328
        return core.VarDesc.VarType.INT32
329
    elif dtype == np.int16:
330
        return core.VarDesc.VarType.INT16
331
    elif dtype == np.int64:
332
        return core.VarDesc.VarType.INT64
333
    elif dtype == np.bool:
334
        return core.VarDesc.VarType.BOOL
335 336
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
337 338
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
339 340
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
341
    else:
M
minqiyang 已提交
342
        raise ValueError("Not supported numpy dtype %s" % dtype)
343 344 345


def dtype_is_floating(dtype):
346 347 348
    """
    Check the data type is floating or not.
    Args:
349
        dtype(np.dtype|core.VarDesc.VarType): data type.
350 351 352 353 354
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
355
    if not isinstance(dtype, core.VarDesc.VarType):
356 357
        dtype = convert_np_dtype_to_dtype_(dtype)

358 359 360 361
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
362 363


Y
Yang Yang(Tony) 已提交
364
def _debug_string_(proto, throw_on_error=True):
365 366 367 368 369 370 371 372 373 374 375
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
376
    error_fields = list()
Y
Yang Yang(Tony) 已提交
377
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
378 379
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
380 381 382
    return proto.__str__()


X
Xin Pan 已提交
383
class Variable(object):
384
    """
385 386 387
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
388
    two variables in different blocks could have the same name.
389

390
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
391
    and usages. Please refer to the framework.proto for details.
392

393
    Most of a Variable's member variables can be setted to be None. It mean
394
    it is not available or will be specified later.
395 396

    Args:
397
        block(Block): The block that the variable belongs to.
398 399
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
400 401
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
402
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
403
            Some kinds of variable do not contain shape, just set it to None.
404 405 406
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
407
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
408
            series data.
409
            Default: None
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

427
            import paddle.fluid as fluid
428 429 430 431 432
            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
433 434
    """

Y
Yu Yang 已提交
435 436
    def __init__(self,
                 block,
Y
Yu Yang 已提交
437
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
438 439 440 441
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
442
                 capacity=None,
Q
QI JUN 已提交
443
                 persistable=None,
F
fengjiayi 已提交
444
                 error_clip=None,
Y
Yu Yang 已提交
445
                 stop_gradient=False,
F
fengjiayi 已提交
446
                 is_data=False,
Y
Yu Yang 已提交
447
                 **kwargs):
Y
Yu Yang 已提交
448 449
        self.block = block
        if name is None:
Y
Yu Yang 已提交
450
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
451

Y
Yu Yang 已提交
452
        if dtype is not None:
453
            if not isinstance(dtype, core.VarDesc.VarType):
454
                dtype = convert_np_dtype_to_dtype_(dtype)
455

L
lujun 已提交
456
        if in_dygraph_mode():
M
minqiyang 已提交
457
            # record vars in tracer rather than blocks
M
minqiyang 已提交
458 459
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
460 461 462
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
463 464
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
465
            if persistable:
L
lujun 已提交
466
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
467
            self.op = None
M
minqiyang 已提交
468
        else:
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
541
            self.block.vars[name] = self
542
            self.op = None
543
            self._stop_gradient = stop_gradient
544
            self.is_data = is_data
Y
Yu Yang 已提交
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
        
        Returns:
            Variable: The detached Variable.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

580
    def numpy(self):
M
minqiyang 已提交
581
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
582
        return np.array(new_ivar.value().get_tensor())
583

584 585
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
586
        if backward_strategy is None:
587 588
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
589 590 591

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
592

593
    def gradient(self):
594 595
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
596

597
    def clear_gradient(self):
X
Xin Pan 已提交
598
        self._ivar._clear_gradient()
X
Xin Pan 已提交
599

600
    def __str__(self):
Y
Yang Yang(Tony) 已提交
601 602
        return self.to_string(True)

F
update  
fengjiayi 已提交
603
    def to_string(self, throw_on_error, with_details=False):
604 605 606 607
        """
        Get debug string.

        Args:
608 609
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
610
            with_details(bool): more details about variables and parameters
611 612
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
613

614 615
        Returns:
            str: The debug string.
616
        """
L
lujun 已提交
617
        if in_dygraph_mode():
L
lujun 已提交
618
            # TODO(panyx0718): add more dygraph debug info.
619 620 621
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
622

F
update  
fengjiayi 已提交
623 624
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
625
        protostr = self.desc.serialize_to_string()
626
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
627 628 629 630
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
631 632
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
633
        return res_str
634 635 636

    __repr__ = __str__

637
    def set_desc(self, input):
638 639 640 641 642 643 644 645 646
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
647 648
        self.desc = input

649
    @property
650
    def stop_gradient(self):
L
lujun 已提交
651
        if in_dygraph_mode():
M
minqiyang 已提交
652 653
            return self._ivar.stop_gradient
        else:
654
            return self._stop_gradient
655

656 657
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
658
        if in_dygraph_mode():
M
minqiyang 已提交
659
            self._ivar.stop_gradient = s
660
        else:
661
            self._stop_gradient = s
662

663 664
    @property
    def persistable(self):
L
lujun 已提交
665
        if in_dygraph_mode():
666 667 668
            return self._ivar.persistable
        else:
            return self.desc.persistable()
669

Y
Yu Yang 已提交
670 671
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
672
        if in_dygraph_mode():
673 674 675
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
676

Y
Yu Yang 已提交
677 678
    @property
    def name(self):
L
lujun 已提交
679
        if in_dygraph_mode():
680 681 682
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
683

T
typhoonzero 已提交
684 685
    @name.setter
    def name(self, new_name):
L
lujun 已提交
686
        if in_dygraph_mode():
687 688 689
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
690

Y
Yu Yang 已提交
691 692 693
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
694
        if in_dygraph_mode():
695 696 697
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
698 699

    @property
F
fengjiayi 已提交
700
    def dtype(self):
L
lujun 已提交
701
        if in_dygraph_mode():
702 703 704
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
705 706 707

    @property
    def lod_level(self):
L
lujun 已提交
708
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
709 710
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
711
        return self.desc.lod_level()
Y
Yu Yang 已提交
712

Y
Yu Yang 已提交
713 714
    @property
    def type(self):
L
lujun 已提交
715
        if in_dygraph_mode():
716 717 718
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
719

W
Wu Yi 已提交
720
    def _set_error_clip(self, error_clip):
721 722 723 724 725 726 727 728 729
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
730 731
        self.error_clip = error_clip

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
819
    def _cloneVar(self, copy=False):
820 821
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
822 823
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
824 825 826 827
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
828
        new_var = self._cloneVar()
829 830 831 832 833 834 835 836 837 838
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
839
        new_var = self._cloneVar()
840 841 842 843 844 845 846 847 848 849
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
850
                return self._cloneVar(True)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
869
                return self._cloneVar(True)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
922
            else:
H
Hongyu Liu 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
966

Y
Yu Yang 已提交
967

F
fengjiayi 已提交
968 969 970
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
971

972 973
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
974 975 976 977
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
978
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
979 980 981 982 983
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
984 985 986 987
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
988 989 990 991 992 993 994 995 996
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
997
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
998 999 1000 1001 1002 1003
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1004 1005 1006 1007 1008 1009 1010 1011
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1012 1013
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1014 1015
        return self.op_proto_map[type]

1016 1017 1018 1019
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1020
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1021 1022
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1023 1024
        }

F
fengjiayi 已提交
1025

X
Xin Pan 已提交
1026
class Operator(object):
1027
    """
1028 1029 1030 1031 1032 1033 1034
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1035
        type(str): The type of operator. Default None.
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1056
        Block.append_op or Block._prepend_op instead.
1057 1058 1059 1060

    Examples:
        .. code-block:: python

1061
            import paddle.fluid as fluid
1062 1063 1064 1065 1066 1067
            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1068
    """
1069
    OP_WITHOUT_KERNEL_SET = {
1070 1071
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1072 1073
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1074
        'c_sync_comm_stream'
1075
    }
1076

Y
Yu Yang 已提交
1077 1078
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1079
                 desc,
Y
Yu Yang 已提交
1080 1081 1082
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1083
                 attrs=None):
L
lujun 已提交
1084
        if in_dygraph_mode():
1085 1086
            if type is None:
                raise ValueError(
1087
                    "`type` to initialized an Operator can not be None.")
1088
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1089
            self.previous_ops = []
M
minqiyang 已提交
1090

M
minqiyang 已提交
1091
            self.attrs = attrs if attrs else {}
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1106
                )] = self.block.program._op_role
1107 1108 1109

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1110 1111
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1112 1113 1114 1115 1116 1117 1118 1119

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1120
                    "`type` to initialized an Operator can not be None.")
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1152
                        for index, arg in enumerate(in_args):
1153 1154 1155 1156
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1157
                            elif isinstance(arg, Variable):
1158
                                in_arg_names.append(cpt.to_text(arg.name))
1159 1160 1161 1162
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1189
                        if not in_dygraph_mode():
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1209
    def _has_kernel(self, op_type):
1210 1211
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1212
    def to_string(self, throw_on_error):
1213
        """
1214 1215
        Get debug string.

1216
        Args:
1217 1218
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1219

1220 1221
        Returns:
            str: The debug string.
1222 1223

        """
1224
        protostr = self.desc.serialize_to_string()
1225
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1226 1227 1228 1229
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1230 1231 1232

    __repr__ = __str__

F
fengjiayi 已提交
1233 1234
    @property
    def type(self):
L
lujun 已提交
1235
        if in_dygraph_mode():
1236 1237 1238
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1239 1240

    def input(self, name):
1241
        """
1242
        Get the input arguments according to the input parameter name.
1243

1244 1245
        Args:
            name(str): The input parameter name.
1246

1247 1248 1249
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1250
        """
F
fengjiayi 已提交
1251 1252
        return self.desc.input(name)

W
Wu Yi 已提交
1253
    def _rename_input(self, old_name, new_name):
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1264
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1265

W
Wu Yi 已提交
1266
    def _rename_output(self, old_name, new_name):
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1277
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1278

F
fengjiayi 已提交
1279 1280 1281 1282
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1283 1284 1285 1286 1287 1288 1289 1290
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1291
    def output(self, name):
1292
        """
1293
        Get output arguments by the output parameter name.
1294

1295 1296
        Args:
            name(str): The output parameter name.
1297

1298 1299 1300
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1301
        """
F
fengjiayi 已提交
1302 1303 1304 1305 1306 1307
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1308 1309 1310 1311 1312 1313 1314 1315
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1316
    def has_attr(self, name):
1317
        """
1318 1319
        Whether this Operator has the attribute with name or not.

1320
        Args:
1321
            name(str): the attribute name.
1322

1323 1324
        Returns:
            bool: True if has this attribute.
1325 1326

        """
F
fengjiayi 已提交
1327 1328 1329
        return self.desc.has_attr(name)

    def attr_type(self, name):
1330
        """
1331
        Get the type of attribute by attribute's name.
1332

1333 1334
        Args:
            name(str): the attribute name.
1335

1336 1337
        Returns:
            core.AttrType: the attribute type.
1338
        """
F
fengjiayi 已提交
1339 1340
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1341
    def _set_attr(self, name, val):
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1352 1353
        self._update_desc_attr(name, val)

1354 1355 1356
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1368 1369
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1370 1371
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1372
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1373 1374 1375 1376
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1377
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1378

F
fengjiayi 已提交
1379 1380 1381 1382 1383
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1384
        """
1385 1386
        Get the attribute by name.

1387
        Args:
1388
            name(str): the attribute name.
1389

1390 1391
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1392 1393
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1394
        return self.desc.attr(name)
Y
Yu Yang 已提交
1395

W
Wu Yi 已提交
1396
    def _block_attr_id(self, name):
1397
        """
G
gongweibao 已提交
1398
        Get the block attribute's id by name.
1399

1400 1401
        Args:
            name(str): the attribute name.
1402

1403 1404
        Returns:
            int: the block index.
1405
        """
W
Wu Yi 已提交
1406
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1407

W
Wu Yi 已提交
1408
    def _block_attr(self, name):
G
gongweibao 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1419
        id = self._block_attr_id(name)
G
gongweibao 已提交
1420 1421 1422
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1423
    def _blocks_attr(self, name):
G
gongweibao 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1434
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1435 1436 1437 1438 1439
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1440
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1451
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1452

J
JiayiFeng 已提交
1453
    def all_attrs(self):
F
fengjiayi 已提交
1454
        """
1455 1456 1457
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1458
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1459 1460 1461 1462
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1463 1464
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1465
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1466 1467 1468
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1469
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1470 1471 1472 1473
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1474 1475
        return attr_map

Y
Yu Yang 已提交
1476

Y
Yu Yang 已提交
1477
class Block(object):
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1492
        use `Program._create_block()` to create a block.
1493 1494 1495 1496

    Examples:
        .. code-block:: python

1497 1498 1499
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1500 1501 1502 1503 1504 1505 1506 1507 1508
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1509
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1510
        self.desc = program.desc.block(idx)
1511
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1512
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1513
        self.program = program
1514
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1515

1516
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1517 1518
        return self.to_string(True)

F
fengjiayi 已提交
1519 1520
    def to_string(self, throw_on_error, with_details=False):
        """
1521 1522
        Get debug string.

F
fengjiayi 已提交
1523 1524
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1525
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1526
            with_details(bool): more details about variables and parameters
1527 1528
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1529

1530 1531
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1532 1533 1534 1535
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1536
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1537 1538
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1539
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1540
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1541
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1542
            for op in self.ops:
F
fengjiayi 已提交
1543 1544
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1545 1546 1547
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1548 1549
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1550 1551
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1552 1553 1554

    __repr__ = __str__

Y
Yu Yang 已提交
1555 1556
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1557
        return self.desc.parent
Y
Yu Yang 已提交
1558

Y
Yu Yang 已提交
1559 1560 1561 1562
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1563
    def _set_forward_block_idx(self, idx):
1564 1565 1566 1567 1568 1569 1570 1571 1572
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1573
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1574

Y
Yu Yang 已提交
1575 1576
    @property
    def idx(self):
Y
Yu Yang 已提交
1577
        return self.desc.id
Y
Yu Yang 已提交
1578

Q
Qiao Longfei 已提交
1579
    def var(self, name):
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1593
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1594 1595 1596
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1597 1598
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1599
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1600
        return v
Q
Qiao Longfei 已提交
1601

X
Xin Pan 已提交
1602
    def _find_var_recursive(self, name):
1603 1604 1605 1606 1607 1608 1609
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1610
            Variable: the Variable with the giving name. Or None if not found.
1611
        """
Y
Yu Yang 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1636
        return None
Y
Yu Yang 已提交
1637

X
Xin Pan 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1657

Q
Qiao Longfei 已提交
1658
    def all_parameters(self):
1659
        return list(self.iter_parameters())
1660

1661
    def iter_parameters(self):
M
minqiyang 已提交
1662
        return (item[1] for item in six.iteritems(self.vars)
1663
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1664

Y
Yu Yang 已提交
1665
    def create_var(self, *args, **kwargs):
1666
        var = Variable(block=self, *args, **kwargs)
1667 1668
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1669
        return var
Y
Yu Yang 已提交
1670

Q
Qiao Longfei 已提交
1671 1672 1673
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1674
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1675 1676
        """
        Rename variable in vars and ops' inputs and outputs
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1689
        """
M
minqiyang 已提交
1690 1691
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1692

T
typhoonzero 已提交
1693
        if not self.has_var(name):
1694
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1695 1696
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1697
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1698 1699 1700 1701 1702 1703 1704
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1705
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1706 1707 1708 1709
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1710
        orig_var_type = v.type
M
minqiyang 已提交
1711
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1712
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1713
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1714
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1715 1716 1717 1718
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1719
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1720 1721 1722 1723 1724 1725 1726
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1727
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1728 1729
            var = Variable(
                self,
T
typhoonzero 已提交
1730
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1731 1732 1733 1734
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1735
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1736 1737 1738
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1739
        self._sync_with_cpp()
1740
        return var
T
typhoonzero 已提交
1741

W
Wu Yi 已提交
1742 1743
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1744
        self.desc._remove_var(cpt.to_bytes(name))
1745 1746
        del self.vars[name]

Y
Yu Yang 已提交
1747 1748
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1749
        param = Parameter(global_block, *args, **kwargs)
1750
        if 'initializer' in kwargs:
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1771
        return param
Y
Yu Yang 已提交
1772

Y
Yu Yang 已提交
1773
    def append_op(self, *args, **kwargs):
1774 1775 1776 1777 1778 1779
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1780
        if in_dygraph_mode():
1781 1782 1783
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1784 1785 1786 1787 1788
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1789

1790 1791 1792 1793
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1794 1795
                inputs=None,
                outputs=None,
1796
                attrs=attrs)
1797

M
minqiyang 已提交
1798 1799 1800
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1801
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1802 1803 1804 1805
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1806
        else:
1807 1808 1809 1810 1811 1812 1813 1814 1815
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1816
            self.ops.append(op)
M
minqiyang 已提交
1817

1818 1819
        return op

W
Wu Yi 已提交
1820
    def _insert_op(self, index, *args, **kwargs):
1821 1822 1823 1824 1825 1826 1827 1828 1829
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1830 1831
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1832 1833 1834 1835
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1836
    def _remove_op(self, index):
1837 1838 1839 1840 1841 1842 1843 1844 1845
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1846 1847
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1848 1849
        del self.ops[index]

W
Wu Yi 已提交
1850
    def _slice_ops(self, start, end):
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1861
        return self.ops[start:end]
Y
Yancey1989 已提交
1862

W
Wu Yi 已提交
1863
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1864
        if in_dygraph_mode():
1865 1866 1867 1868
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1869 1870 1871 1872 1873 1874 1875 1876
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1877
        else:
1878 1879 1880 1881 1882 1883 1884 1885
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1886
            self.ops.insert(0, op)
1887

Y
Yu Yang 已提交
1888 1889
        return op

W
Wu Yi 已提交
1890
    def _sync_with_cpp(self):
1891
        """
1892 1893
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1894
        """
Q
Qiao Longfei 已提交
1895 1896 1897 1898 1899
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1900
        # sync variables removed from c++ end
1901
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1902
            if not self.desc.find_var(cpt.to_bytes(var)):
1903 1904
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1905
        # sync operators from cpp
1906 1907 1908 1909
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1926 1927 1928 1929 1930

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1931
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1932 1933 1934 1935 1936 1937 1938

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1952 1953 1954 1955
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1956
    def _copy_param_info_from(self, other):
1957
        """
1958 1959
        Copy the information of parameters from the other block.

1960
        Args:
1961 1962 1963 1964 1965
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1966 1967 1968 1969 1970

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1971 1972
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1973
        for p in other.iter_parameters():
1974 1975 1976
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1977
                raise ValueError("_copy_param_info_from should be invoked with "
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1990
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1991
                error_clip=p.error_clip,
1992 1993 1994
                name=v.name)
            self.vars[new_p.name] = new_p

1995
    def _clone_variable(self, var, force_persistable=True):
1996 1997
        """
        Clone a variable into current block.
1998

1999 2000
        Args:
            var: the variable to be cloned.
2001 2002 2003
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2004 2005

        Returns:
2006
            Variable: the new  variable cloned from 'var' in current block.
2007 2008
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2009 2010 2011 2012 2013
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2014 2015
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2016
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2017 2018 2019 2020 2021 2022
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2023
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
2024
                is_data=var.is_data)
T
update  
typhoonzero 已提交
2025 2026 2027 2028 2029 2030 2031
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2032
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
2033
                is_data=var.is_data)
T
update  
typhoonzero 已提交
2034
        return ret_var
2035

Y
Yu Yang 已提交
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2132
    def remove_input_by_id(self, node_id):
2133 2134 2135 2136 2137 2138
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2139
        self.node.remove_input(node_id)
2140

2141
    def remove_input(self, node):
2142 2143 2144 2145
        """
        Remove a node from inputs.

        Args:
2146
            node(IrNode): the node being removed.
2147
        """
2148
        self.node.remove_input(node.node)
2149

2150
    def append_input(self, node):
2151 2152 2153 2154
        """
        Append a node in inputs.

        Args:
2155
            node(IrNode): the node being appended.
2156
        """
2157
        self.node.append_input(node.node)
2158 2159 2160 2161 2162 2163 2164 2165

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2166
    def remove_output_by_id(self, node_id):
2167 2168 2169 2170 2171 2172
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2173
        self.node.remove_output(node_id)
2174

2175
    def remove_output(self, node):
2176 2177 2178 2179
        """
        Remove a node from outputs.

        Args:
2180
            node(IrNode): the node being removed.
2181
        """
2182
        self.node.remove_output(node.node)
2183

2184
    def append_output(self, node):
2185 2186 2187 2188
        """
        Append a node in outputs.

        Args:
2189
            node(IrNode): the node being appended.
2190
        """
2191
        self.node.append_output(node.node)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2446 2447
class IrGraph(object):
    """
2448
    Python IrGraph. Beneath it is a core.Graph, which is used for
2449
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2450 2451
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2452 2453 2454 2455
    """

    def __init__(self, graph, for_test=False):
        """
2456 2457
        Construct an IrGraph using core.Graph.

2458 2459 2460 2461 2462 2463 2464 2465 2466
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2467 2468 2469 2470
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2471 2472 2473
        Warns:
            The method only clones the graph structure, not its attributes.

2474 2475 2476
        Returns:
            IrGraph: A new and duplicated graph.
        """
2477
        g = self.graph.clone()
2478 2479
        return IrGraph(g, self._for_test)

2480
    def is_test(self):
2481 2482 2483
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2484 2485
        return self._for_test

W
WangZhen 已提交
2486
    def all_nodes(self):
2487 2488 2489
        """
        Return all nodes included in the graph as a set.
        """
2490
        return {IrNode(node) for node in self.graph.nodes()}
2491

2492
    def all_var_nodes(self):
2493 2494 2495
        """
        Return all variable nodes included in the graph as a set.
        """
2496
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2497

2498
    def all_persistable_nodes(self):
2499 2500 2501
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2502 2503 2504 2505 2506
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2507
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2508

2509
    def all_op_nodes(self):
2510 2511 2512
        """
        Return all operator nodes included in the graph as a set.
        """
2513
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2514

2515
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2527
            IrVarNode: the created persistable variable node.
2528
        """
2529 2530 2531 2532 2533
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2534
        return IrVarNode(self.graph.create_var_node(var_desc))
2535 2536

    def create_var_node(self, name, var_type, shape, var_dtype):
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2548
            IrVarNode: the created variable node.
2549 2550
        """

2551 2552 2553 2554
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2555
        return IrVarNode(self.graph.create_var_node(var_desc))
2556 2557

    def create_var_node_from_desc(self, var_desc):
2558 2559 2560 2561 2562 2563 2564 2565
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2566
            IrVarNode: the created variable node.
2567
        """
2568
        return IrVarNode(self.graph.create_var_node(var_desc))
2569 2570

    def create_op_node(self, op_type, attrs, inputs, outputs):
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2581
            IrOpNode: the created operator node.
2582
        """
2583 2584
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2585
        for attr, value in six.iteritems(attrs):
2586
            self._update_desc_attr(op_desc, attr, value)
2587
        for input_name, var_nodes in six.iteritems(inputs):
2588 2589 2590 2591
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2592
        for output_name, var_nodes in six.iteritems(outputs):
2593 2594 2595 2596
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2597
        return IrOpNode(self.graph.create_op_node(op_desc))
2598 2599

    def create_op_node_from_desc(self, op_desc):
2600 2601 2602 2603 2604 2605 2606
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2607
            IrOpNode: the created operator node.
2608
        """
2609
        return IrOpNode(self.graph.create_op_node(op_desc))
2610 2611

    def update_input_link(self, old_input_node, new_input_node, op_node):
2612 2613 2614 2615
        """
        Update the input's link of a operator node.

        Args:
2616 2617 2618
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2619
        """
2620 2621
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2622
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2623 2624 2625 2626
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2627
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2628 2629

    def link_to(self, node_in, node_out):
2630 2631 2632 2633
        """
        Connect two nodes.

        Args:
2634 2635
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2636
        """
2637
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2638
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2639 2640
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2641 2642

    def safe_remove_nodes(self, remove_nodes):
2643 2644 2645 2646 2647 2648 2649
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2650
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2651 2652 2653 2654
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2655 2656
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2657

Z
Zhen Wang 已提交
2658 2659 2660 2661 2662 2663 2664 2665
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2666
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2667 2668 2669 2670
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2671
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2672 2673 2674
                        ]
                    else:
                        var_nodes[each_var_name].append(
2675 2676
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2677 2678
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2679
    def has_circle(self):
2680 2681 2682 2683 2684 2685
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2686 2687 2688
        return core.has_circle(self.graph)

    def graph_num(self):
2689 2690 2691 2692 2693 2694
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2695 2696 2697
        return core.graph_num(self.graph)

    def topology_sort(self):
2698 2699 2700 2701 2702 2703
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2704
            list(IrNode): nodes in topology order.
2705
        """
2706
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2707
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2708 2709

    def build_adjacency_list(self):
2710 2711 2712 2713
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2714
            dict{IrNode: set(IrNode)}: the adjacency list.
2715
        """
2716 2717 2718 2719 2720
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2721

2722 2723 2724 2725 2726 2727 2728 2729
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2730
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2731 2732 2733 2734 2735
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2736 2737 2738 2739 2740 2741 2742 2743 2744
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2745
        remove_ctr_vars = set()
2746
        if remove_ctr_var:
2747
            for node in self.all_var_nodes():
2748 2749 2750
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2751 2752
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2753 2754
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2755 2756 2757 2758 2759 2760
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2761 2762 2763 2764
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
2765 2766
        if not os.path.exists(save_path):
            os.makedirs(save_path)
2767 2768 2769 2770 2771 2772 2773
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2774 2775 2776
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2777
        WARN: When the graph includes backward operator nodes, the
2778 2779 2780 2781 2782 2783
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2784
        convert_pass = core.get_pass('graph_to_program_pass')
2785 2786
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2787 2788 2789 2790
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2818
class Program(object):
D
dzhwinter 已提交
2819 2820 2821 2822 2823
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
J
Jiabin Yang 已提交
2824
    it will contain nested block.
D
dzhwinter 已提交
2825 2826
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
2836 2837 2838
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2839
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2840 2841

    Returns:
Y
yuyang18 已提交
2842
        A empty program.
D
dzhwinter 已提交
2843 2844

    Examples:
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2858 2859 2860

    """

2861 2862
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2863 2864
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2865
        self._seed = 0
Y
yuyang18 已提交
2866
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2867
        self.__op_role_var = []
T
tangwei12 已提交
2868

2869 2870
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2871
        self._is_distributed = False
2872
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2873
        self._is_chief = False
2874 2875 2876
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2877
        self._endpoints = []
2878 2879 2880
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2881
        self._trainers_endpoints = []
2882
        # the distributed lookup table names
T
tangwei12 已提交
2883
        self._distributed_lookup_table = None
2884 2885 2886

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2887 2888
        self._use_lamb = False

2889 2890 2891
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
2892

2893 2894 2895
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2896
        self._program_config = None
2897

H
hutuxian 已提交
2898 2899 2900
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2901 2902 2903
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
2904
    @property
2905
    def _op_role(self):
Y
yuyang18 已提交
2906 2907 2908 2909 2910 2911 2912 2913
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2914
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2915 2916 2917 2918
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2919 2920
        return self._current_role

2921 2922
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2923 2924 2925
        self._current_role = role

    @property
2926
    def _op_role_var(self):
Y
yuyang18 已提交
2927
        """
2928
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2929

2930
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2931 2932 2933

        Notes: This is a very low-level API. Users should not use it directly.
        """
2934
        return self.__op_role_var
Y
yuyang18 已提交
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2945
    @signature_safe_contextmanager
W
Wu Yi 已提交
2946
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2947 2948 2949 2950 2951 2952 2953
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2954
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2955 2956 2957

        Examples:

2958
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
2959
            >>> p, g = backward(...)
W
Wu Yi 已提交
2960
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2961 2962
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2963
        tmp_role = self._current_role
2964
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2965

Y
yuyang18 已提交
2966 2967
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2968
        self.__op_role_var = [
2969 2970 2971
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2972
        yield
2973
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2974
        self._current_role = tmp_role
Y
Yu Yang 已提交
2975

S
rename  
sneaxiy 已提交
2976
    @signature_safe_contextmanager
X
Xin Pan 已提交
2977
    def _lr_schedule_guard(self, is_with_opt=False):
2978 2979 2980 2981 2982 2983 2984
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2985 2986 2987 2988
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2989 2990 2991

        Examples:

2992
            >>> import paddle.fluid as fluid
2993 2994 2995 2996
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2997 2998

        tmp_role = self._current_role
2999
        tmp_var = self.__op_role_var
3000

3001 3002
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3003 3004
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3005
        # TODO(typhoonzero): how to set target learning rate var
3006
        self.__op_role_var = []
3007
        yield
3008
        self.__op_role_var = tmp_var
3009
        self._current_role = tmp_role
3010

3011
    def __str__(self):
Y
yuyang18 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3021 3022
        return self.to_string(True)

F
fengjiayi 已提交
3023 3024 3025
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3026

F
fengjiayi 已提交
3027
        Args:
Y
yuyang18 已提交
3028 3029
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
3030

Y
yuyang18 已提交
3031 3032 3033 3034
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3035 3036
        Returns:
            str : The debug string.
Y
yuyang18 已提交
3037 3038 3039 3040

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3041

3042 3043 3044 3045 3046 3047 3048 3049 3050
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3060 3061
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3062 3063
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3064

W
Wu Yi 已提交
3065
    def _get_desc(self):
Y
yuyang18 已提交
3066 3067 3068 3069 3070 3071 3072
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3073 3074
        return self.desc

X
version  
Xin Pan 已提交
3075 3076 3077
    def _version(self):
        return self.desc._version()

3078
    def clone(self, for_test=False):
Y
yuyang18 已提交
3079 3080 3081
        """
        Create a new, duplicated program.

3082

Y
yuyang18 已提交
3083 3084 3085 3086
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3087

Y
yuyang18 已提交
3088
        * Set for_test to False when we want to clone the program for training.
3089 3090 3091 3092
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3093

3094 3095 3096 3097
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3098

3099 3100 3101 3102 3103
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3104 3105

        Args:
Y
yuyang18 已提交
3106 3107
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3108

D
dzhwinter 已提交
3109
        Returns:
Y
yuyang18 已提交
3110 3111 3112 3113
            Program: The new, duplicated Program object.

        Examples:

3114 3115 3116 3117 3118 3119
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3157 3158 3159

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3227 3228
        """
        if for_test:
X
Xin Pan 已提交
3229
            p = self._inference_optimize(prune_read_op=False)
3230
        else:
3231
            p = Program()
G
gongweibao 已提交
3232 3233
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3234
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3235 3236 3237
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3238 3239

            p._current_role = self._current_role
3240
            p.__op_role_var = self.__op_role_var
3241
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3242

W
Wu Yi 已提交
3243
            p._sync_with_cpp()
3244

W
Wu Yi 已提交
3245
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3246
        p._copy_data_info_from(self)
3247
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3248
        return p
3249

3250
    def _prune(self, feeded_var_names, targets):
Y
yuyang18 已提交
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3266 3267
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3268 3269
        if not isinstance(targets, list):
            targets = [targets]
3270 3271 3272 3273 3274 3275

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3276 3277 3278 3279
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3280 3281
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3282
                    # and we need to find the current op that generate this
3283 3284 3285 3286 3287 3288 3289 3290
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3291
                    t = t.op
3292 3293 3294 3295
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3296
                else:
3297 3298
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3299 3300 3301

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3302
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3303 3304 3305
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3306
        res._sync_with_cpp()
3307 3308
        return res

X
Xin Pan 已提交
3309
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3310
        """
F
fengjiayi 已提交
3311 3312 3313 3314 3315
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3316
        3. change the :code:`is_test`
Y
yuyang18 已提交
3317 3318 3319
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3320
        Args:
X
Xin Pan 已提交
3321 3322
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3323

Y
yuyang18 已提交
3324 3325 3326 3327 3328 3329
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3330
        res = Program()
3331
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3332 3333 3334 3335

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3336
        if prune_read_op:
3337 3338 3339 3340 3341 3342 3343 3344 3345
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3346
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3347 3348

        # change all `is_test` attributes to True
M
minqiyang 已提交
3349
        for i in six.moves.range(res.desc.num_blocks()):
3350
            block = res.desc.block(i)
M
minqiyang 已提交
3351
            for j in six.moves.range(block.op_size()):
3352 3353
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3354
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3355 3356 3357
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3358
        res._sync_with_cpp()
3359 3360
        return res

3361 3362
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3363 3364 3365 3366 3367 3368 3369
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3370
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3371 3372 3373 3374

        Returns:
            Program: A deserialized program desc.
        """
3375 3376
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3377
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3378
        p._sync_with_cpp()
3379
        return p
Y
Yu Yang 已提交
3380

3381
    @staticmethod
3382
    def _construct_from_desc(desc):
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3398 3399
    @property
    def random_seed(self):
Y
yuyang18 已提交
3400 3401 3402 3403 3404
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3416
        """
D
dzhwinter 已提交
3417 3418
        return self._seed

Q
qiaolongfei 已提交
3419 3420
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3421 3422
        """
        The number of blocks in this program.
3423 3424 3425 3426 3427 3428 3429 3430 3431

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3432
        """
Q
qiaolongfei 已提交
3433 3434
        return self.desc.num_blocks()

D
dzhwinter 已提交
3435 3436 3437 3438 3439 3440
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3441
    def __repr__(self):
3442
        return self.__str__()
3443

Y
Yu Yang 已提交
3444
    def global_block(self):
Y
yuyang18 已提交
3445 3446
        """
        Get the first block of this program.
3447 3448 3449 3450 3451 3452 3453 3454 3455

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3456
        """
Y
Yu Yang 已提交
3457 3458
        return self.blocks[0]

Q
Qiao Longfei 已提交
3459
    def block(self, index):
Y
yuyang18 已提交
3460 3461 3462 3463 3464 3465 3466
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3467 3468 3469 3470 3471 3472 3473 3474 3475

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3476
        """
Q
Qiao Longfei 已提交
3477 3478
        return self.blocks[index]

Y
Yu Yang 已提交
3479
    def current_block(self):
Y
yuyang18 已提交
3480 3481 3482
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3483 3484 3485 3486 3487 3488 3489 3490 3491

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3492
        """
Y
Yu Yang 已提交
3493 3494
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3495
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3506
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3507 3508 3509
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3510 3511 3512 3513
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3514
    def _rollback(self):
Y
yuyang18 已提交
3515 3516 3517 3518 3519
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3520 3521
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3522
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3533 3534 3535
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3536
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3537

W
Wu Yi 已提交
3538
    def _copy_param_info_from(self, other):
3539
        """
3540
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3541

Y
yuyang18 已提交
3542 3543 3544
        Notes: This is a very low level API. Users should not invoke it
        directly.

3545 3546 3547 3548 3549 3550 3551
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3552
            raise TypeError("_copy_param_info_from should be invoked with "
3553 3554 3555
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3556
            raise ValueError("_copy_param_info_from should be invoked with two "
3557
                             "program, with represent the same topology")
W
Wu Yi 已提交
3558
        self.global_block()._copy_param_info_from(other.global_block())
3559

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3575
        self._parameters_on_pservers = other._parameters_on_pservers
3576
        self._endpoints = other._endpoints
3577
        self._ps_endpoint = other._ps_endpoint
3578 3579
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3580
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3581 3582
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3583

Y
yuyang18 已提交
3584 3585 3586
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3587 3588 3589 3590 3591 3592 3593
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3594
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3595 3596 3597
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3598
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3599
                             "program, with represent the same topology")
3600
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3601 3602 3603
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3604
    def list_vars(self):
Y
yuyang18 已提交
3605 3606 3607 3608 3609
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3621
        """
3622
        for each_block in self.blocks:
3623
            for each_var in list(each_block.vars.values()):
3624 3625
                yield each_var

Y
Yu Yang 已提交
3626

Y
Yu Yang 已提交
3627
class Parameter(Variable):
3628
    """
3629
    Parameter is derived from Variable. A parameter is a persistable
3630
    Variable, and will be updated by optimizers after each iteration.
3631
    The training of a neural network is essentially the updating of
3632 3633
    its parameters.

3634
    Relative to a general Variable, a Parameter has several its own
3635 3636
    member variables:

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3649 3650
    """

Y
Yu Yang 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3661 3662 3663

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3664 3665 3666 3667
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3668 3669
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3670
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3671

W
wanghaoshuang 已提交
3672
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3673

3674 3675
        self.is_distributed = False

F
fengjiayi 已提交
3676 3677 3678
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3679 3680 3681
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3682

F
update  
fengjiayi 已提交
3683 3684 3685 3686 3687 3688 3689 3690
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3691 3692 3693 3694 3695 3696 3697 3698 3699
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3700 3701 3702 3703 3704 3705
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3706
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3707
            for attr_name in additional_attr:
3708 3709
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3710 3711
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3712 3713 3714 3715
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3716

Y
Yu Yang 已提交
3717
# program is a global instance.
Y
Yu Yang 已提交
3718 3719
_main_program_ = Program()
_startup_program_ = Program()
3720

3721

3722
def default_startup_program():
Y
Yu Yang 已提交
3723
    """
Y
yuyang18 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3733

Y
Yu Yang 已提交
3734 3735
    Returns:
        Program: startup program
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3751
    """
Y
Yu Yang 已提交
3752
    return _startup_program_
3753

3754

3755
def default_main_program():
Y
Yu Yang 已提交
3756
    """
Y
yuyang18 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3766

Y
Yu Yang 已提交
3767 3768
    Returns:
        Program: main program
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
3797 3798
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
3799
    """
Y
Yu Yang 已提交
3800
    return _main_program_
Y
Yu Yang 已提交
3801 3802 3803 3804 3805


def switch_main_program(program):
    """
    Switch the main program to a new program.
3806

Y
Yu Yang 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3821
    Switch the startup program to a new program
Y
Yu Yang 已提交
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3834
@signature_safe_contextmanager
Y
Yu Yang 已提交
3835 3836
def program_guard(main_program, startup_program=None):
    """
3837 3838
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3839
    variables to the new main programs.
3840

Y
Yu Yang 已提交
3841
    Examples:
3842 3843 3844
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3845

3846 3847 3848 3849 3850
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3851 3852 3853

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3854

Y
Yu Yang 已提交
3855
    Examples:
3856
       .. code-block:: python
Y
yuyang18 已提交
3857

3858 3859 3860 3861 3862 3863
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3864

Y
Yu Yang 已提交
3865
    Args:
3866 3867 3868
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3881 3882


W
Wu Yi 已提交
3883
def _get_var(name, program=None):
X
xuwei06 已提交
3884
    """
Y
yuyang18 已提交
3885
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3886

X
xuwei06 已提交
3887 3888 3889
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3890
        If None, default_global_program() will be used.
X
xuwei06 已提交
3891 3892 3893 3894 3895 3896 3897

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3898
    assert isinstance(program, Program)
X
xuwei06 已提交
3899 3900

    return program.global_block().var(name)
3901 3902


S
rename  
sneaxiy 已提交
3903
@signature_safe_contextmanager
L
lujun 已提交
3904 3905 3906 3907
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3908

3909
    yield
P
Paddle CI 已提交
3910

L
lujun 已提交
3911
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3912 3913


S
rename  
sneaxiy 已提交
3914
@signature_safe_contextmanager
L
lujun 已提交
3915 3916 3917 3918
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3919

3920
    yield
M
minqiyang 已提交
3921

L
lujun 已提交
3922
    _dygraph_current_expected_place_ = tmp_place