framework.py 180.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69

70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
Y
Youwei Song 已提交
182
    This function checks whether the program runs in dynamic graph mode or not.
183 184 185
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
186 187

    Returns:
Y
Youwei Song 已提交
188
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
189 190 191 192

    Examples:
        .. code-block:: python

193
            import paddle.fluid as fluid
L
lujun 已提交
194

195 196 197 198
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
199
    """
L
lujun 已提交
200
    return _dygraph_tracer_ is not None
201 202


203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
225 226
def _dygraph_tracer():
    return _dygraph_tracer_
227

W
Wu Yi 已提交
228

M
minqiyang 已提交
229
def _current_expected_place():
L
lujun 已提交
230
    return _dygraph_current_expected_place_
M
minqiyang 已提交
231 232


L
Leo Chen 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
250
def _cpu_num():
251
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
252 253 254 255 256 257 258 259
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
260
        os.environ['CPU_NUM'] = str(1)
261
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
262 263 264 265 266 267 268 269 270 271
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
272 273


C
chengduo 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
289
def cuda_places(device_ids=None):
L
lujun 已提交
290
    """
291 292 293 294 295
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
296 297

    If :code:`device_ids` is None, environment variable of
298
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
299 300 301
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
302
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
303 304

    If :code:`device_ids` is not None, it should be the device
305
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
306 307 308
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
309 310
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
311 312

    Returns:
313
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
314 315 316 317

    Examples:
        .. code-block:: python

318
            import paddle.fluid as fluid
L
lujun 已提交
319 320 321
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
322 323 324
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
325
        device_ids = _cuda_ids()
S
sneaxiy 已提交
326 327 328 329 330 331
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
332
    """
333
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
334 335 336
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
337 338
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
339 340
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
341

342 343
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
344 345

    Returns:
346
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
347 348 349 350

    Examples:
        .. code-block:: python

351
            import paddle.fluid as fluid
L
lujun 已提交
352 353 354
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
355 356 357 358 359 360
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
361
    """
362
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
363 364 365

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
366 367 368 369
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
370

371 372
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
373 374

    Returns:
375
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
376 377 378 379

    Examples:
        .. code-block:: python

380
            import paddle.fluid as fluid
L
lujun 已提交
381 382 383 384 385
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
386 387 388
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
389 390
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
391 392


393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
419
@signature_safe_contextmanager
420 421 422 423
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
424 425 426
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
427 428

    Args:
T
Tao Luo 已提交
429
        prefix(str, optional): prefix. Default is none.
430 431 432

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
433

434
          import paddle.fluid as fluid
435
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
436 437 438 439 440 441
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
442
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
443
                f = fluid.layers.pow(d, 2.0)
444
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
464 465
    """
    # TODO(panyx0718): Only [0-9a-z].
466
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
467 468 469
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
470
        assert prefix, "namescope prefix can not be empty."
471 472 473 474
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
475 476 477 478 479 480 481 482 483 484 485 486


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
487 488 489
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
490 491 492 493


def grad_var_name(var_name):
    """
494 495
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
496 497 498
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
499

500
def convert_np_dtype_to_dtype_(np_dtype):
501 502
    """
    Convert the data type in numpy to the data type in Paddle
503

504
    Args:
505
        np_dtype(np.dtype): the data type in numpy.
506

507 508
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
509 510

    """
511 512
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
513
        return core.VarDesc.VarType.FP32
514
    elif dtype == np.float64:
515
        return core.VarDesc.VarType.FP64
516
    elif dtype == np.float16:
517
        return core.VarDesc.VarType.FP16
518
    elif dtype == np.int32:
519
        return core.VarDesc.VarType.INT32
520
    elif dtype == np.int16:
521
        return core.VarDesc.VarType.INT16
522
    elif dtype == np.int64:
523
        return core.VarDesc.VarType.INT64
524
    elif dtype == np.bool:
525
        return core.VarDesc.VarType.BOOL
526 527
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
528 529
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
530 531
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
532
    else:
M
minqiyang 已提交
533
        raise ValueError("Not supported numpy dtype %s" % dtype)
534 535 536


def dtype_is_floating(dtype):
537 538 539
    """
    Check the data type is floating or not.
    Args:
540
        dtype(np.dtype|core.VarDesc.VarType): data type.
541 542 543 544 545
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
546
    if not isinstance(dtype, core.VarDesc.VarType):
547 548
        dtype = convert_np_dtype_to_dtype_(dtype)

549 550 551 552
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
553 554


Y
Yang Yang(Tony) 已提交
555
def _debug_string_(proto, throw_on_error=True):
556 557 558 559 560 561 562 563 564 565 566
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
567
    error_fields = list()
Y
Yang Yang(Tony) 已提交
568
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
569 570
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
571 572 573
    return proto.__str__()


574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
727

728
    # starts
L
Leo Chen 已提交
729
    if contain_var(slice_start):
730 731 732 733 734 735 736 737
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
738 739 740 741
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
742 743 744 745 746 747 748
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
749 750 751
    else:
        attrs['ends'] = slice_end

752 753
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
754
        if contain_var(slice_step):
755 756 757 758 759 760 761
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
762 763
        else:
            attrs['strides'] = slice_step
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
811
class Variable(object):
812
    """
J
Jiabin Yang 已提交
813
    **Notes**:
814
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
815

816 817
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
818 819 820
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
821
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
822 823
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
824

825
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
826
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
827

T
tianshuo78520a 已提交
828
    Most of a Variable's member variables can be set to be None. It mean
829
    it is not available or will be specified later.
830

831
    Examples:
832 833
        In Static Graph Mode:

834 835
        .. code-block:: python

836
            import paddle.fluid as fluid
837
            cur_program = fluid.Program()
838 839 840 841
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
842
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
843 844 845 846 847 848 849 850 851

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

852 853
    """

Y
Yu Yang 已提交
854 855
    def __init__(self,
                 block,
Y
Yu Yang 已提交
856
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
857 858 859 860
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
861
                 capacity=None,
Q
QI JUN 已提交
862
                 persistable=None,
F
fengjiayi 已提交
863
                 error_clip=None,
Y
Yu Yang 已提交
864
                 stop_gradient=False,
F
fengjiayi 已提交
865
                 is_data=False,
H
Huihuang Zheng 已提交
866
                 need_check_feed=False,
H
hong 已提交
867
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
868
                 **kwargs):
Y
Yu Yang 已提交
869 870
        self.block = block
        if name is None:
Y
Yu Yang 已提交
871
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
872

Y
Yu Yang 已提交
873
        if dtype is not None:
874
            if not isinstance(dtype, core.VarDesc.VarType):
875
                dtype = convert_np_dtype_to_dtype_(dtype)
876

H
hong 已提交
877 878
        self.belong_to_optimizer = belong_to_optimizer

879 880 881 882 883
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
884

885 886 887
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
888

889 890 891 892 893 894 895
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
896

897
        if shape is not None:
898
            if is_new_var:
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
940

941 942
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
943

944 945 946 947 948 949 950
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
951

952 953 954 955
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
956

957
    @dygraph_only
958 959
    def detach(self):
        """
J
Jiabin Yang 已提交
960
        **Notes**:
T
tianshuo78520a 已提交
961
            **This API is ONLY available in Dygraph mode**
962

963
        Returns a new Variable, detached from the current graph.
964

965
        Returns:
J
Jiabin Yang 已提交
966
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
967

968

969 970 971 972 973
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
974
                from paddle.fluid.dygraph import Linear
975 976 977 978
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
979
                    linear = Linear(32, 64)
980
                    data = to_variable(data)
981
                    x = linear(data)
982 983 984
                    y = x.detach()

        """
985
        pass
986

987
    @dygraph_only
988
    def numpy(self):
989
        """
J
Jiabin Yang 已提交
990
        **Notes**:
T
tianshuo78520a 已提交
991
            **This API is ONLY available in Dygraph mode**
992

J
Jiabin Yang 已提交
993
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
994 995 996 997 998

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
999
            ndarray: dtype is same as current Variable
1000 1001 1002 1003 1004 1005

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1006
                from paddle.fluid.dygraph import Linear
1007 1008 1009 1010
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1011
                    linear = Linear(32, 64)
1012
                    data = to_variable(data)
1013
                    x = linear(data)
1014 1015 1016
                    print(x.numpy())

        """
1017
        pass
1018

1019 1020 1021
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1022
        **Notes**:
T
tianshuo78520a 已提交
1023
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1035
                from paddle.fluid.dygraph import Linear
1036 1037
                import numpy as np

1038
                data = np.ones([3, 1024], dtype='float32')
1039
                with fluid.dygraph.guard():
1040
                    linear = fluid.dygraph.Linear(1024, 4)
1041
                    t = to_variable(data)
1042
                    linear(t)  # call with default weight
1043
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1044 1045
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1046 1047

        """
1048
        pass
1049

1050
    @dygraph_only
1051
    def backward(self, backward_strategy=None):
1052
        """
J
Jiabin Yang 已提交
1053
        **Notes**:
T
tianshuo78520a 已提交
1054
            **This API is ONLY available in Dygraph mode**
1055 1056 1057

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1058 1059
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1060

J
Jiabin Yang 已提交
1061 1062
        Returns:
            NoneType: None
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1075 1076
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1077 1078 1079 1080 1081 1082 1083 1084 1085
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1086
        pass
1087

1088
    @dygraph_only
1089
    def gradient(self):
1090
        """
J
Jiabin Yang 已提交
1091
        **Notes**:
T
tianshuo78520a 已提交
1092
            **This API is ONLY available in Dygraph mode**
1093 1094 1095

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1096
        Returns:
1097
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1098 1099 1100 1101 1102 1103 1104

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1105
                # example1: return ndarray
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1133
        """
1134
        pass
1135

1136
    @dygraph_only
1137
    def clear_gradient(self):
1138
        """
J
Jiabin Yang 已提交
1139
        **Notes**:
T
tianshuo78520a 已提交
1140
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1141 1142

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1143

J
Jiabin Yang 已提交
1144
        Clear  (set to ``0`` ) the Gradient of Current Variable
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1171
        pass
X
Xin Pan 已提交
1172

1173
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1174 1175
        return self.to_string(True)

F
update  
fengjiayi 已提交
1176
    def to_string(self, throw_on_error, with_details=False):
1177 1178 1179
        """
        Get debug string.

J
Jiabin Yang 已提交
1180 1181 1182 1183 1184
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1185

1186 1187
        Returns:
            str: The debug string.
1188 1189 1190 1191 1192

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1193

1194 1195 1196 1197 1198
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1199
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1200
                print("=============with detail===============")
1201
                print(new_variable.to_string(True, True))
1202
        """
L
lujun 已提交
1203
        if in_dygraph_mode():
1204
            return
1205

F
update  
fengjiayi 已提交
1206 1207
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1208
        protostr = self.desc.serialize_to_string()
1209
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1210 1211 1212 1213
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1214 1215 1216
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1217
        return res_str
1218 1219 1220

    __repr__ = __str__

1221
    @property
1222
    def stop_gradient(self):
J
Jiabin Yang 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1238 1239
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1240 1241 1242
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1243 1244
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1245 1246 1247 1248
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1249
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1250 1251
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1252
        if in_dygraph_mode():
1253
            pass
M
minqiyang 已提交
1254
        else:
1255
            return self._stop_gradient
1256

1257 1258
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1259
        if in_dygraph_mode():
1260
            pass
1261
        else:
1262
            self._stop_gradient = s
1263

1264 1265
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1287
        if in_dygraph_mode():
1288
            pass
1289 1290
        else:
            return self.desc.persistable()
1291

Y
Yu Yang 已提交
1292 1293
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1294
        if in_dygraph_mode():
1295 1296 1297
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1298 1299
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1300

Y
Yu Yang 已提交
1301 1302
    @property
    def name(self):
J
Jiabin Yang 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1319
        if in_dygraph_mode():
1320
            pass
1321 1322
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1344 1345
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1346
        if in_dygraph_mode():
1347
            pass
1348 1349
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1350

Y
Yu Yang 已提交
1351 1352
    @property
    def shape(self):
J
Jiabin Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1370
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1371
        if in_dygraph_mode():
1372
            pass
1373 1374
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1375 1376

    @property
F
fengjiayi 已提交
1377
    def dtype(self):
J
Jiabin Yang 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1394
        if in_dygraph_mode():
1395
            pass
1396 1397
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1398 1399

    @property
1400
    @dygraph_not_support
Y
Yu Yang 已提交
1401
    def lod_level(self):
J
Jiabin Yang 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1423
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1424 1425
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1426 1427 1428 1429

        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1430
        return self.desc.lod_level()
Y
Yu Yang 已提交
1431

Y
Yu Yang 已提交
1432 1433
    @property
    def type(self):
J
Jiabin Yang 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1450
        if in_dygraph_mode():
1451
            pass
1452 1453
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1454

W
Wu Yi 已提交
1455
    def _set_error_clip(self, error_clip):
1456 1457 1458 1459 1460 1461 1462 1463 1464
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1465 1466
        self.error_clip = error_clip

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1507
            raise ValueError("slice step can not be zero")
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1583
    def _cloneVar(self, copy=False):
1584 1585
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1586 1587
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1588 1589 1590 1591
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1592
        new_var = self._cloneVar()
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1603
        new_var = self._cloneVar()
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1614
                return self._cloneVar(True)
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1633
                return self._cloneVar(True)
1634
            index = int(item)
1635
            if (index > 0 and index >= self.shape[axis]) \
1636 1637 1638 1639 1640 1641 1642
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1643
        return _getitem_impl_(self, item)
1644

Y
Yu Yang 已提交
1645

F
fengjiayi 已提交
1646 1647 1648
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1649

1650 1651
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1652 1653 1654 1655
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1656
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1657 1658 1659 1660
        ret_values.append(op_proto)
    return ret_values


1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
class ComplexVariable(object):
    """
    The Variable defined on the complex number domain. It contains two common 
    real number Variables as its members, :attr:`real` and :attr:`imag` 
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
        **The constructor of Variable should not be invoked directly.**

        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **
          to create a dygraph ComplexVariable with complex number data.**

    Args:
        real (Variable): The Variable holding real-part data.
        imag (Variable): The Variable holding imaginery-part data.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            a = np.array([1.0+2.0j, 0.2])
            with fluid.dygraph.guard():
                var = fluid.dygraph.to_variable(a, name="new_var")
                print(var.name, var.dtype, var.shape)
                # ({'real': u'new_var.real', 'imag': u'new_var.imag'}, 'complex128', [2L]) 
                print(var.numpy())
                # [1. +2.j 0.2+0.j]
    """

    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
        return "REAL: " + self.real.__str__() + "IMAG: " + self.imag.__str__()

    __repr__ = __str__


F
fengjiayi 已提交
1743
class OpProtoHolder(object):
1744 1745 1746 1747
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1757
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1758 1759 1760 1761 1762 1763
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1764 1765 1766 1767 1768 1769 1770 1771
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1772 1773
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1774 1775
        return self.op_proto_map[type]

1776 1777 1778 1779 1780 1781
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1782 1783 1784 1785
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1786
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1787
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1788 1789
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1790 1791
        }

F
fengjiayi 已提交
1792

X
Xin Pan 已提交
1793
class Operator(object):
1794
    """
1795 1796 1797 1798 1799 1800 1801
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1802
        type(str): The type of operator. Default None.
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1823
        Block.append_op or Block._prepend_op instead.
1824 1825 1826 1827

    Examples:
        .. code-block:: python

1828
            import paddle.fluid as fluid
1829
            cur_program = fluid.Program()
1830 1831 1832 1833 1834
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1835
    """
1836
    OP_WITHOUT_KERNEL_SET = {
1837 1838
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1839 1840
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1841
        'c_sync_comm_stream'
1842
    }
1843

Y
Yu Yang 已提交
1844 1845
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1846
                 desc,
Y
Yu Yang 已提交
1847 1848 1849
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1850
                 attrs=None):
L
lujun 已提交
1851
        if in_dygraph_mode():
1852 1853
            if type is None:
                raise ValueError(
1854
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1855
            self._type = type
M
minqiyang 已提交
1856
            self.attrs = attrs if attrs else {}
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1871
                )] = self.block.program._op_role
1872 1873 1874

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1875 1876
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1877 1878 1879 1880 1881 1882 1883 1884

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1885
                    "`type` to initialized an Operator can not be None.")
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1935
                        for index, arg in enumerate(in_args):
1936 1937 1938 1939
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1940
                            elif isinstance(arg, Variable):
1941
                                in_arg_names.append(cpt.to_text(arg.name))
1942
                            else:
1943 1944 1945 1946
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1947 1948
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1975
                        if not in_dygraph_mode():
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1995
    def _has_kernel(self, op_type):
1996 1997
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1998
    def to_string(self, throw_on_error):
1999
        """
2000 2001
        Get debug string.

2002
        Args:
2003 2004
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2005

2006 2007
        Returns:
            str: The debug string.
2008 2009

        """
2010
        protostr = self.desc.serialize_to_string()
2011
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2012 2013 2014 2015
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
2016 2017 2018

    __repr__ = __str__

F
fengjiayi 已提交
2019 2020
    @property
    def type(self):
L
lujun 已提交
2021
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2022
            return self._type
2023 2024
        else:
            return self.desc.type()
F
fengjiayi 已提交
2025 2026

    def input(self, name):
2027
        """
2028
        Get the input arguments according to the input parameter name.
2029

2030 2031
        Args:
            name(str): The input parameter name.
2032

2033 2034 2035
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2036
        """
F
fengjiayi 已提交
2037 2038
        return self.desc.input(name)

W
Wu Yi 已提交
2039
    def _rename_input(self, old_name, new_name):
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2050
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2051

W
Wu Yi 已提交
2052
    def _rename_output(self, old_name, new_name):
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2063
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2064

F
fengjiayi 已提交
2065 2066 2067 2068
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2069 2070 2071 2072 2073 2074 2075 2076
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2077
    def output(self, name):
2078
        """
2079
        Get output arguments by the output parameter name.
2080

2081 2082
        Args:
            name(str): The output parameter name.
2083

2084 2085 2086
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2087
        """
F
fengjiayi 已提交
2088 2089 2090 2091 2092 2093
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2094 2095 2096 2097 2098 2099 2100 2101
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2102
    def has_attr(self, name):
2103
        """
2104 2105
        Whether this Operator has the attribute with name or not.

2106
        Args:
2107
            name(str): the attribute name.
2108

2109 2110
        Returns:
            bool: True if has this attribute.
2111 2112

        """
F
fengjiayi 已提交
2113 2114 2115
        return self.desc.has_attr(name)

    def attr_type(self, name):
2116
        """
2117
        Get the type of attribute by attribute's name.
2118

2119 2120
        Args:
            name(str): the attribute name.
2121

2122 2123
        Returns:
            core.AttrType: the attribute type.
2124
        """
F
fengjiayi 已提交
2125 2126
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2127
    def _set_attr(self, name, val):
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2138 2139
        self._update_desc_attr(name, val)

2140 2141 2142
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2154 2155
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2156 2157
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2158
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2159 2160 2161 2162
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2163
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2164

F
fengjiayi 已提交
2165 2166 2167 2168 2169
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2170
        """
2171 2172
        Get the attribute by name.

2173
        Args:
2174
            name(str): the attribute name.
2175

2176 2177
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2178 2179
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2180
        return self.desc.attr(name)
Y
Yu Yang 已提交
2181

W
Wu Yi 已提交
2182
    def _block_attr_id(self, name):
2183
        """
G
gongweibao 已提交
2184
        Get the block attribute's id by name.
2185

2186 2187
        Args:
            name(str): the attribute name.
2188

2189 2190
        Returns:
            int: the block index.
2191
        """
W
Wu Yi 已提交
2192
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2193

W
Wu Yi 已提交
2194
    def _block_attr(self, name):
G
gongweibao 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2205
        id = self._block_attr_id(name)
G
gongweibao 已提交
2206 2207 2208
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2209
    def _blocks_attr(self, name):
G
gongweibao 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2220
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2221 2222 2223 2224 2225
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2226
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2237
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2238

J
JiayiFeng 已提交
2239
    def all_attrs(self):
F
fengjiayi 已提交
2240
        """
2241 2242 2243
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2244
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2245 2246 2247 2248
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2249 2250
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2251
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2252 2253 2254
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2255
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2256 2257 2258 2259
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2260 2261
        return attr_map

2262 2263 2264 2265 2266 2267 2268 2269 2270
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2271

Y
Yu Yang 已提交
2272
class Block(object):
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2287
        use `Program._create_block()` to create a block.
2288 2289 2290 2291

    Examples:
        .. code-block:: python

2292 2293 2294
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2295 2296 2297 2298 2299 2300 2301 2302 2303
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2304
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2305
        self.desc = program.desc.block(idx)
2306
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2307
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2308
        self.program = program
2309
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2310

2311
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2312 2313
        return self.to_string(True)

F
fengjiayi 已提交
2314 2315
    def to_string(self, throw_on_error, with_details=False):
        """
2316 2317
        Get debug string.

F
fengjiayi 已提交
2318 2319
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2320
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2321
            with_details(bool): more details about variables and parameters
2322 2323
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2324

2325 2326
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2327 2328 2329 2330
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2331
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2332 2333
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2334
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2335
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2336
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2337
            for op in self.ops:
F
fengjiayi 已提交
2338 2339
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2340 2341 2342
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2343 2344
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2345 2346
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2347 2348 2349

    __repr__ = __str__

Y
Yu Yang 已提交
2350 2351
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2352
        return self.desc.parent
Y
Yu Yang 已提交
2353

Y
Yu Yang 已提交
2354 2355 2356 2357
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2358
    def _set_forward_block_idx(self, idx):
2359 2360 2361 2362 2363 2364 2365 2366 2367
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2368
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2369

2370 2371 2372 2373 2374 2375 2376 2377
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2378 2379
    @property
    def idx(self):
Y
Yu Yang 已提交
2380
        return self.desc.id
Y
Yu Yang 已提交
2381

Q
Qiao Longfei 已提交
2382
    def var(self, name):
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2396
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2397 2398 2399
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2400 2401
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2402
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2403
        return v
Q
Qiao Longfei 已提交
2404

X
Xin Pan 已提交
2405
    def _find_var_recursive(self, name):
2406 2407 2408 2409 2410 2411 2412
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2413
            Variable: the Variable with the giving name. Or None if not found.
2414
        """
Y
Yu Yang 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2439
        return None
Y
Yu Yang 已提交
2440

X
Xin Pan 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2460

Q
Qiao Longfei 已提交
2461
    def all_parameters(self):
2462
        return list(self.iter_parameters())
2463

2464
    def iter_parameters(self):
M
minqiyang 已提交
2465
        return (item[1] for item in six.iteritems(self.vars)
2466
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2467

Y
Yu Yang 已提交
2468
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2469 2470 2471
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2472 2473 2474
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2475
        return var
Y
Yu Yang 已提交
2476

Q
Qiao Longfei 已提交
2477 2478 2479
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2480
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2481 2482
        """
        Rename variable in vars and ops' inputs and outputs
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2495
        """
M
minqiyang 已提交
2496 2497
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2498

T
typhoonzero 已提交
2499
        if not self.has_var(name):
2500
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2501 2502
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2503
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2504 2505 2506 2507 2508 2509
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2510
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2511 2512 2513 2514
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2515
        orig_var_type = v.type
M
minqiyang 已提交
2516
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2517
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2518
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2519
        if var_type == "Parameter":
L
Leo Chen 已提交
2520 2521
            if in_dygraph_mode():
                var = ParamBase(
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2532 2533
                var = Parameter(
                    self,
2534 2535 2536 2537 2538 2539 2540 2541 2542
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2543
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2544 2545
            var = Variable(
                self,
T
typhoonzero 已提交
2546
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2547 2548 2549 2550
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2551
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2552 2553 2554
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2555
        self._sync_with_cpp()
2556
        return var
T
typhoonzero 已提交
2557

W
Wu Yi 已提交
2558 2559
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2560
        self.desc._remove_var(cpt.to_bytes(name))
2561 2562
        del self.vars[name]

Y
Yu Yang 已提交
2563 2564
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2565
        param = None
L
Leo Chen 已提交
2566
        if in_dygraph_mode():
2567
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2568 2569
        else:
            param = Parameter(global_block, *args, **kwargs)
2570
        if 'initializer' in kwargs:
2571 2572 2573 2574 2575

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2576 2577 2578 2579 2580
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2592
                # TODO already inited, do nothing, should log a warning
2593 2594 2595
                pass
            else:
                initializer(param, self)
2596
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2597
        return param
Y
Yu Yang 已提交
2598

Y
Yu Yang 已提交
2599
    def append_op(self, *args, **kwargs):
2600 2601 2602 2603 2604 2605
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2606
        if in_dygraph_mode():
2607
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2608
            type = kwargs.get("type", None)
2609 2610 2611
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2612
                type=type,
M
minqiyang 已提交
2613 2614
                inputs=None,
                outputs=None,
2615
                attrs=attrs)
2616

M
minqiyang 已提交
2617 2618 2619
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2620
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2621 2622

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2623
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2624 2625
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2626
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2627
        else:
2628 2629 2630 2631 2632 2633 2634 2635 2636
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2637
            self.ops.append(op)
M
minqiyang 已提交
2638

2639 2640
        return op

W
Wu Yi 已提交
2641
    def _insert_op(self, index, *args, **kwargs):
2642 2643 2644 2645 2646 2647 2648 2649 2650
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2651 2652
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2653 2654 2655 2656
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2657
    def _remove_op(self, index):
2658 2659 2660 2661 2662 2663 2664 2665 2666
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2667 2668
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2669 2670
        del self.ops[index]

W
Wu Yi 已提交
2671
    def _slice_ops(self, start, end):
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2682
        return self.ops[start:end]
Y
Yancey1989 已提交
2683

W
Wu Yi 已提交
2684
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2685
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2686 2687
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2688
            op = Operator(
J
Jiabin Yang 已提交
2689
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2690

J
Jiabin Yang 已提交
2691
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2692
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2693 2694
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2695
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2696
        else:
2697 2698 2699 2700 2701 2702 2703 2704
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2705
            self.ops.insert(0, op)
2706

Y
Yu Yang 已提交
2707 2708
        return op

W
Wu Yi 已提交
2709
    def _sync_with_cpp(self):
2710
        """
2711 2712
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2713
        """
Q
Qiao Longfei 已提交
2714 2715 2716 2717 2718
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2719
        # sync variables removed from c++ end
2720
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2721
            if not self.desc.find_var(cpt.to_bytes(var)):
2722 2723
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2724
        # sync operators from cpp
2725 2726 2727 2728
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2745 2746 2747 2748 2749

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2750
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2751 2752 2753 2754 2755 2756 2757

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2771 2772 2773 2774
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2775
    def _copy_param_info_from(self, other):
2776
        """
2777 2778
        Copy the information of parameters from the other block.

2779
        Args:
2780 2781 2782 2783 2784
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2785 2786 2787 2788 2789

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2790 2791
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2792
        for p in other.iter_parameters():
2793 2794 2795
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2796 2797
                # if the Parameter is pruned, v may be None
                continue
2798
            assert isinstance(v, Variable)
2799
            new_p = None
L
Leo Chen 已提交
2800 2801
            if in_dygraph_mode():
                new_p = ParamBase(
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2813 2814
                new_p = Parameter(
                    block=self,
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2825 2826
            self.vars[new_p.name] = new_p

2827
    def _clone_variable(self, var, force_persistable=True):
2828 2829
        """
        Clone a variable into current block.
2830

2831 2832
        Args:
            var: the variable to be cloned.
2833 2834 2835
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2836 2837

        Returns:
2838
            Variable: the new  variable cloned from 'var' in current block.
2839 2840
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2841 2842 2843 2844 2845
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2846 2847
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2848
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2849 2850 2851 2852 2853 2854
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2855
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2856 2857
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2858 2859 2860 2861 2862 2863 2864
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2865
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2866 2867
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2868
        return ret_var
2869

Y
Yu Yang 已提交
2870

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2966
    def remove_input_by_id(self, node_id):
2967 2968 2969 2970 2971 2972
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2973
        self.node.remove_input(node_id)
2974

2975
    def remove_input(self, node):
2976 2977 2978 2979
        """
        Remove a node from inputs.

        Args:
2980
            node(IrNode): the node being removed.
2981
        """
2982
        self.node.remove_input(node.node)
2983

2984
    def append_input(self, node):
2985 2986 2987 2988
        """
        Append a node in inputs.

        Args:
2989
            node(IrNode): the node being appended.
2990
        """
2991
        self.node.append_input(node.node)
2992 2993 2994 2995 2996 2997 2998 2999

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3000
    def remove_output_by_id(self, node_id):
3001 3002 3003 3004 3005 3006
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3007
        self.node.remove_output(node_id)
3008

3009
    def remove_output(self, node):
3010 3011 3012 3013
        """
        Remove a node from outputs.

        Args:
3014
            node(IrNode): the node being removed.
3015
        """
3016
        self.node.remove_output(node.node)
3017

3018
    def append_output(self, node):
3019 3020 3021 3022
        """
        Append a node in outputs.

        Args:
3023
            node(IrNode): the node being appended.
3024
        """
3025
        self.node.append_output(node.node)
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3073
            "The node variable description can not be None."
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3084
            "The node variable description can not be None."
3085 3086
        return self.node.var().persistable()

3087 3088 3089 3090 3091 3092 3093 3094
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3095
            "The node variable description can not be None."
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3106
            "The node variable description can not be None."
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3117
            "The node variable description can not be None."
3118 3119
        return self.node.var().shape()

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3167
            "The node operator description can not be None."
3168 3169
        self.node.op()._rename_input(old_input_name, new_input_name)

3170 3171 3172 3173 3174 3175 3176 3177 3178
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3179
            "The node operator description can not be None."
3180 3181 3182 3183
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3195
            "The node operator description can not be None."
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3209
            "The node operator description can not be None."
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3220
            "The node operator description can not be None."
3221 3222
        return self.node.op().set_type(new_type)

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3238
            "The node operator description can not be None."
3239 3240 3241 3242
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3243
                all(isinstance(v, Block) for v in val):
3244 3245
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3246
                isinstance(val, core.ProgramDesc):
3247 3248 3249 3250
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3251 3252 3253 3254 3255 3256 3257 3258
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3259
            "The node operator description can not be None."
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3270
            "The node operator description can not be None."
3271 3272
        return self.node.op().output_arg_names()

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3294 3295
class IrGraph(object):
    """
3296
    Python IrGraph. Beneath it is a core.Graph, which is used for
3297
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3298 3299
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3300 3301 3302 3303
    """

    def __init__(self, graph, for_test=False):
        """
3304 3305
        Construct an IrGraph using core.Graph.

3306 3307 3308 3309 3310 3311 3312 3313 3314
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3315 3316 3317 3318
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3319 3320 3321
        Warns:
            The method only clones the graph structure, not its attributes.

3322 3323 3324
        Returns:
            IrGraph: A new and duplicated graph.
        """
3325
        g = self.graph.clone()
3326 3327
        return IrGraph(g, self._for_test)

3328
    def is_test(self):
3329 3330 3331
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3332 3333
        return self._for_test

W
WangZhen 已提交
3334
    def all_nodes(self):
3335 3336 3337
        """
        Return all nodes included in the graph as a set.
        """
3338
        return {IrNode(node) for node in self.graph.nodes()}
3339

3340
    def all_var_nodes(self):
3341 3342 3343
        """
        Return all variable nodes included in the graph as a set.
        """
3344
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3345

3346
    def all_persistable_nodes(self):
3347 3348 3349
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3350 3351 3352 3353 3354
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3355
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3356

3357
    def all_op_nodes(self):
3358 3359 3360
        """
        Return all operator nodes included in the graph as a set.
        """
3361
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3362

3363
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3375
            IrVarNode: the created persistable variable node.
3376
        """
3377 3378 3379 3380 3381
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3382
        return IrVarNode(self.graph.create_var_node(var_desc))
3383 3384

    def create_var_node(self, name, var_type, shape, var_dtype):
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3396
            IrVarNode: the created variable node.
3397 3398
        """

3399 3400 3401 3402
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3403
        return IrVarNode(self.graph.create_var_node(var_desc))
3404 3405

    def create_var_node_from_desc(self, var_desc):
3406 3407 3408 3409 3410 3411 3412 3413
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3414
            IrVarNode: the created variable node.
3415
        """
3416
        return IrVarNode(self.graph.create_var_node(var_desc))
3417 3418

    def create_op_node(self, op_type, attrs, inputs, outputs):
3419 3420 3421 3422 3423 3424 3425
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3426
            outputs(dict): the outputs of the operator node.
3427 3428

        Returns:
3429
            IrOpNode: the created operator node.
3430
        """
3431 3432
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3433
        for attr, value in six.iteritems(attrs):
3434
            self._update_desc_attr(op_desc, attr, value)
3435
        for input_name, var_nodes in six.iteritems(inputs):
3436 3437 3438 3439
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3440
        for output_name, var_nodes in six.iteritems(outputs):
3441 3442 3443 3444
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3445
        return IrOpNode(self.graph.create_op_node(op_desc))
3446 3447

    def create_op_node_from_desc(self, op_desc):
3448 3449 3450 3451 3452 3453 3454
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3455
            IrOpNode: the created operator node.
3456
        """
3457
        return IrOpNode(self.graph.create_op_node(op_desc))
3458 3459

    def update_input_link(self, old_input_node, new_input_node, op_node):
3460 3461 3462 3463
        """
        Update the input's link of a operator node.

        Args:
3464 3465 3466
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3467
        """
3468
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3469 3470
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3471 3472 3473 3474
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3475
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3476

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3487 3488
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3489 3490 3491 3492 3493 3494
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3495
    def link_to(self, node_in, node_out):
3496 3497 3498 3499
        """
        Connect two nodes.

        Args:
3500 3501
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3502
        """
3503
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3504
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3505 3506
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3507 3508

    def safe_remove_nodes(self, remove_nodes):
3509 3510 3511 3512 3513 3514 3515
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3516
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3517 3518 3519 3520
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3521 3522
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3523

Z
Zhen Wang 已提交
3524 3525 3526 3527 3528 3529 3530 3531
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3532
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3533 3534 3535 3536
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3537
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3538 3539 3540
                        ]
                    else:
                        var_nodes[each_var_name].append(
3541 3542
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3543 3544
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3545
    def has_circle(self):
3546 3547 3548 3549 3550 3551
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3552 3553 3554
        return core.has_circle(self.graph)

    def graph_num(self):
3555 3556 3557 3558 3559 3560
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3561 3562 3563
        return core.graph_num(self.graph)

    def topology_sort(self):
3564 3565 3566
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3567
        Notes: the `graph` can not contain a circle.
3568 3569

        Returns:
Z
Zhen Wang 已提交
3570
            list(IrNode): nodes in topology order.
3571
        """
3572
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3573
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3574 3575

    def build_adjacency_list(self):
3576 3577 3578 3579
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3580
            dict{IrNode: set(IrNode)}: the adjacency list.
3581
        """
3582 3583 3584 3585 3586
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3587

3588 3589 3590 3591 3592 3593 3594 3595
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3596
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3597 3598 3599 3600 3601
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3602 3603 3604
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3605
                                          + ' -o ' + pdf_save_path, shell=True)
3606 3607 3608 3609 3610
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3611
        remove_ctr_vars = set()
3612
        if remove_ctr_var:
3613
            for node in self.all_var_nodes():
3614 3615 3616
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3617 3618
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3619 3620
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3621 3622 3623 3624 3625 3626
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3627 3628 3629 3630
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3631 3632
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3633 3634 3635 3636 3637 3638 3639
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3640 3641 3642
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3643
        WARN: When the graph includes backward operator nodes, the
3644 3645 3646 3647 3648 3649
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3650
        convert_pass = core.get_pass('graph_to_program_pass')
3651 3652
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3653 3654 3655 3656
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3684
class Program(object):
D
dzhwinter 已提交
3685
    """
3686 3687
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3688
    it will contain nested block.
3689

J
Jiabin Yang 已提交
3690 3691 3692
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3693

J
Jiabin Yang 已提交
3694
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3695
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3696 3697 3698 3699 3700 3701 3702
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3703 3704 3705 3706
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3707 3708

    Returns:
J
Jiabin Yang 已提交
3709
        Program: An empty Program.
D
dzhwinter 已提交
3710 3711

    Examples:
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3725 3726 3727

    """

3728 3729
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3730 3731
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3732 3733
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3734
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3735
        self.__op_role_var = []
T
tangwei12 已提交
3736

3737 3738
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3739
        self._is_distributed = False
3740
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3741
        self._is_chief = False
3742 3743 3744
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3745
        self._endpoints = []
3746 3747 3748
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3749
        self._trainers_endpoints = []
3750
        # the distributed lookup table names
T
tangwei12 已提交
3751
        self._distributed_lookup_table = None
3752 3753 3754

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3755 3756
        self._use_lamb = False

3757 3758 3759
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3760

3761 3762 3763
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3764
        self._program_config = None
3765

H
hutuxian 已提交
3766 3767 3768
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3769 3770 3771
        # appending gradients times
        self._appending_grad_times = 0

3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3799
    @property
3800
    def _op_role(self):
Y
yuyang18 已提交
3801 3802 3803 3804 3805 3806 3807 3808
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3809
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3810 3811 3812 3813
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3814 3815
        return self._current_role

3816 3817
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3818 3819 3820
        self._current_role = role

    @property
3821
    def _op_role_var(self):
Y
yuyang18 已提交
3822
        """
3823
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3824

3825
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3826 3827 3828

        Notes: This is a very low-level API. Users should not use it directly.
        """
3829
        return self.__op_role_var
Y
yuyang18 已提交
3830

3831 3832 3833 3834 3835 3836 3837 3838 3839
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3840
    @signature_safe_contextmanager
W
Wu Yi 已提交
3841
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3842 3843 3844 3845 3846 3847 3848
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3849
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3850 3851 3852

        Examples:

3853
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3854
            >>> p, g = backward(...)
W
Wu Yi 已提交
3855
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3856 3857
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3858
        tmp_role = self._current_role
3859
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3860

Y
yuyang18 已提交
3861 3862
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3863
        self.__op_role_var = [
3864 3865 3866
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3867
        yield
3868
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3869
        self._current_role = tmp_role
Y
Yu Yang 已提交
3870

S
rename  
sneaxiy 已提交
3871
    @signature_safe_contextmanager
X
Xin Pan 已提交
3872
    def _lr_schedule_guard(self, is_with_opt=False):
3873 3874 3875 3876 3877 3878 3879
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3880 3881 3882 3883
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3884 3885 3886

        Examples:

3887
            >>> import paddle.fluid as fluid
3888 3889 3890 3891
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3892 3893

        tmp_role = self._current_role
3894
        tmp_var = self.__op_role_var
3895

3896 3897
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3898 3899
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3900
        # TODO(typhoonzero): how to set target learning rate var
3901
        self.__op_role_var = []
3902
        yield
3903
        self.__op_role_var = tmp_var
3904
        self._current_role = tmp_role
3905

3906
    def __str__(self):
Y
yuyang18 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3916 3917
        return self.to_string(True)

F
fengjiayi 已提交
3918 3919 3920
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3921

J
Jiabin Yang 已提交
3922 3923 3924
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3925

J
Jiabin Yang 已提交
3926
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3927

H
haowang101779990 已提交
3928
        Returns:
J
Jiabin Yang 已提交
3929
            str: The debug string describe current Program.
Y
yuyang18 已提交
3930 3931

        Raises:
J
Jiabin Yang 已提交
3932
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3933

3934 3935 3936 3937 3938 3939
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
3940 3941
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
3942
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3943
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
3944
                print("program string without detail: {}".format(prog_string))
3945
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
3946
        """
3947 3948 3949 3950 3951 3952 3953 3954 3955
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
3956 3957 3958 3959 3960 3961
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3962 3963
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3964 3965
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3966

W
Wu Yi 已提交
3967
    def _get_desc(self):
Y
yuyang18 已提交
3968 3969 3970 3971 3972 3973 3974
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3975 3976
        return self.desc

X
version  
Xin Pan 已提交
3977 3978 3979
    def _version(self):
        return self.desc._version()

3980
    @dygraph_not_support
3981
    def clone(self, for_test=False):
Y
yuyang18 已提交
3982
        """
3983
        **Notes**:
J
Jiabin Yang 已提交
3984 3985 3986 3987
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3988
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3989

3990
        Create a new Program with forward content of original one when ``for_test=True``.
3991
        Create a new Program as same as the original one when ``for_test=False``.
3992

J
Jiabin Yang 已提交
3993
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3994 3995 3996
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3997

3998 3999
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4000 4001
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4002
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4003

J
Jiabin Yang 已提交
4004
        For Example:
4005
          ::
L
Luo Tao 已提交
4006

4007 4008 4009 4010 4011 4012 4013 4014
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4015

J
Jiabin Yang 已提交
4016
        Args:
4017

4018 4019
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4020

J
Jiabin Yang 已提交
4021
        Returns:
4022
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4023

Y
yuyang18 已提交
4024 4025 4026

        Examples:

J
Jiabin Yang 已提交
4027
        **Notes: The Program's order maybe different after** :code:`clone` **and
4028
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4029
        example we give you an simple method** :code:`print_prog(program)` **to
4030
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4031
        after** :code:`clone`:
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4068 4069 4070

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4071 4072 4073 4074 4075 4076 4077 4078 4079
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4080
                            test_program = train_program.clone(for_test=True)
4081
                    print_prog(test_program)
J
Jiabin Yang 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4113 4114
                    
                    def network():
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4129 4130 4131
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4132
                    # the test startup program is not used.
4133
                    with fluid.program_guard(test_program_2, startup_program_2):
4134
                        with fluid.unique_name.guard():
4135 4136
                            avg_loss = network()
                    print_prog(test_program_2)
4137 4138

        The two code snippets above will generate and print same programs.
4139
        """
4140 4141 4142 4143 4144

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4145
        pruned_origin_block_id_map = None
4146
        if for_test:
4147 4148 4149 4150 4151 4152 4153 4154 4155
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4156
        else:
4157
            p = Program()
G
gongweibao 已提交
4158 4159
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4160
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4161 4162 4163
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4164 4165

            p._current_role = self._current_role
4166
            p.__op_role_var = self.__op_role_var
4167
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4168

4169 4170
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4171
            p._sync_with_cpp()
4172

W
Wu Yi 已提交
4173
        p._copy_param_info_from(self)
4174
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4175
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4176
        return p
4177

4178
    def _prune(self, targets):
Y
yuyang18 已提交
4179 4180 4181 4182 4183 4184 4185 4186
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4187
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4188 4189 4190 4191
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4192
        """
4193
        return self._prune_with_input([], targets)
4194 4195

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4196
        """
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4207
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4208 4209 4210 4211 4212 4213
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4214 4215 4216 4217
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4218 4219
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4220 4221
        if not isinstance(targets, list):
            targets = [targets]
4222 4223 4224

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4225 4226 4227
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4228

4229 4230 4231 4232
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4233 4234 4235
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4236
                else:
4237 4238 4239
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
                t = target_op
                if t is None:
                    raise ValueError("The target variable must have an "
                                     "associated operator that generates it.")
4260
            targets_idx.append([t.block.idx, t.idx])
4261

4262
        res = Program()
4263 4264 4265
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4266 4267 4268
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4269
        res._sync_with_cpp()
4270 4271 4272 4273 4274

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4275 4276
        return res

X
Xin Pan 已提交
4277
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4278
        """
F
fengjiayi 已提交
4279 4280 4281 4282 4283
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4284
        3. change the :code:`is_test`
Y
yuyang18 已提交
4285 4286 4287
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4288
        Args:
X
Xin Pan 已提交
4289 4290
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4291

Y
yuyang18 已提交
4292 4293 4294 4295 4296 4297
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4298
        res = Program()
4299
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4300 4301 4302 4303

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4304
        if prune_read_op:
4305 4306 4307 4308 4309 4310 4311 4312 4313
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4314
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4315 4316

        # change all `is_test` attributes to True
M
minqiyang 已提交
4317
        for i in six.moves.range(res.desc.num_blocks()):
4318
            block = res.desc.block(i)
M
minqiyang 已提交
4319
            for j in six.moves.range(block.op_size()):
4320 4321
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4322
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4323 4324 4325
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4326
        res._sync_with_cpp()
4327 4328
        return res

4329 4330
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4331
        """
J
Jiabin Yang 已提交
4332 4333 4334 4335
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4336

4337 4338
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4339

J
Jiabin Yang 已提交
4340
        Args:
Y
yuyang18 已提交
4341

J
Jiabin Yang 已提交
4342
            binary_str_type (str): the binary prootbuf string.
4343

J
Jiabin Yang 已提交
4344 4345
        Returns:
            Program: A deserialized Program.
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4368
        """
4369 4370
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4371
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4372
        p._sync_with_cpp()
4373
        return p
Y
Yu Yang 已提交
4374

4375
    @staticmethod
4376
    def _construct_from_desc(desc):
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4392 4393
    @property
    def random_seed(self):
Y
yuyang18 已提交
4394
        """
J
Jiabin Yang 已提交
4395
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4396 4397
        the random seed from random device.

J
Jiabin Yang 已提交
4398 4399 4400 4401
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4402

4403 4404 4405 4406 4407 4408 4409 4410

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4411
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4412 4413 4414
                print(random_seed)
                ## 0
                ## the default random seed is 0
4415 4416

                # Here we need to set random seed before we use fluid.layers.dropout
4417
                prog.random_seed = 1
4418 4419
                z_var = fluid.layers.dropout(x_var, 0.7)

4420
                print(prog.random_seed)
4421 4422
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4423
        """
D
dzhwinter 已提交
4424 4425
        return self._seed

Q
qiaolongfei 已提交
4426 4427
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4428
        """
4429 4430
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4431 4432 4433 4434
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4435

4436 4437 4438 4439 4440 4441 4442 4443 4444

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4445 4446


Y
yuyang18 已提交
4447
        """
Q
qiaolongfei 已提交
4448 4449
        return self.desc.num_blocks()

D
dzhwinter 已提交
4450 4451 4452
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4453 4454 4455
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4456 4457
        self._seed = seed

Y
Yu Yang 已提交
4458
    def __repr__(self):
4459
        return self.__str__()
4460

Y
Yu Yang 已提交
4461
    def global_block(self):
Y
yuyang18 已提交
4462
        """
J
Jiabin Yang 已提交
4463 4464
        **Notes**:
            **This API has no effect in Dygraph mode**
4465 4466 4467

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4468 4469
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4470

4471 4472 4473 4474 4475 4476 4477 4478 4479

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4480

Y
yuyang18 已提交
4481
        """
Y
Yu Yang 已提交
4482 4483
        return self.blocks[0]

Q
Qiao Longfei 已提交
4484
    def block(self, index):
Y
yuyang18 已提交
4485
        """
J
Jiabin Yang 已提交
4486 4487
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4488

4489 4490
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4491 4492
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4493

J
Jiabin Yang 已提交
4494 4495
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4496 4497 4498 4499 4500 4501 4502 4503 4504

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4505
        """
Q
Qiao Longfei 已提交
4506 4507
        return self.blocks[index]

Y
Yu Yang 已提交
4508
    def current_block(self):
Y
yuyang18 已提交
4509
        """
J
Jiabin Yang 已提交
4510 4511
        **Notes**:
            **This API has no effect in Dygraph mode**
4512

J
Jiabin Yang 已提交
4513 4514
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4515

J
Jiabin Yang 已提交
4516 4517
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4518

4519 4520 4521 4522 4523 4524 4525 4526
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4527
        """
Y
Yu Yang 已提交
4528 4529
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4530
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4531 4532 4533 4534 4535
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4536

Y
yuyang18 已提交
4537 4538 4539 4540 4541
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4542
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4543 4544 4545
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4546 4547 4548 4549
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4550
    def _rollback(self):
Y
yuyang18 已提交
4551 4552 4553 4554 4555
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4556 4557
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4558
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4569 4570 4571
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4572
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4573

W
Wu Yi 已提交
4574
    def _copy_param_info_from(self, other):
4575
        """
4576
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4577

Y
yuyang18 已提交
4578 4579 4580
        Notes: This is a very low level API. Users should not invoke it
        directly.

4581 4582 4583 4584 4585 4586 4587
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4588 4589 4590
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4591

W
Wu Yi 已提交
4592
        self.global_block()._copy_param_info_from(other.global_block())
4593

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4605 4606 4607
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4608 4609
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4610
        self._parameters_on_pservers = other._parameters_on_pservers
4611
        self._endpoints = other._endpoints
4612
        self._ps_endpoint = other._ps_endpoint
4613 4614
        self._distributed_lookup_table = other._distributed_lookup_table

4615
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4616 4617
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4618

Y
yuyang18 已提交
4619 4620 4621
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4622 4623
        Args:
            other(Program): Other program
4624 4625 4626 4627
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4628 4629 4630 4631 4632

        Returns:
            None
        """
        if not isinstance(other, Program):
4633 4634 4635
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4636

4637 4638 4639 4640 4641
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4642 4643 4644

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4645 4646
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4647
            for var in list(block.vars.values()):
4648 4649 4650 4651 4652 4653 4654
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4655

4656
    @dygraph_not_support
4657
    def list_vars(self):
Y
yuyang18 已提交
4658
        """
J
Jiabin Yang 已提交
4659
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4660

J
Jiabin Yang 已提交
4661 4662
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4674
        """
4675
        for each_block in self.blocks:
4676
            for each_var in list(each_block.vars.values()):
4677 4678
                yield each_var

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
    @dygraph_not_support
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4738

4739
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4740
class Parameter(Variable):
4741
    """
4742
    Parameter is derived from Variable. A parameter is a persistable
4743
    Variable, and will be updated by optimizers after each iteration.
4744
    The training of a neural network is essentially the updating of
4745 4746
    its parameters.

4747
    Relative to a general Variable, a Parameter has several its own
4748 4749
    member variables:

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4760 4761
    """

4762 4763 4764 4765 4766 4767
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4768 4769 4770 4771 4772
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4773
        if len(shape) == 0:
4774 4775
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4776 4777 4778

        for each in shape:
            if each < 0:
4779 4780 4781
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4782 4783

        Variable.__init__(
4784 4785 4786 4787 4788 4789 4790
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4791 4792 4793 4794
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4795 4796
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
4797
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4798

4799 4800
        self.is_distributed = False

F
fengjiayi 已提交
4801 4802 4803
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4804 4805 4806
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4807

F
update  
fengjiayi 已提交
4808 4809 4810 4811 4812 4813 4814 4815
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4816 4817 4818 4819 4820 4821 4822 4823 4824
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4825 4826 4827 4828 4829 4830
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
4831
                               "do_model_average")
F
update  
fengjiayi 已提交
4832
            for attr_name in additional_attr:
4833 4834
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4835 4836
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4837 4838 4839 4840
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4841

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4902
        # self.block = default_main_program().global_block()
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4941
# program is a global instance.
Y
Yu Yang 已提交
4942 4943
_main_program_ = Program()
_startup_program_ = Program()
4944

4945

4946
def default_startup_program():
Y
Yu Yang 已提交
4947
    """
Y
yuyang18 已提交
4948 4949
    Get default/global startup program.

J
Jiabin Yang 已提交
4950 4951 4952
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4953 4954 4955
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4956
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4957

J
Jiabin Yang 已提交
4958
    Returns: current default startup :ref:`api_fluid_Program`
4959

J
Jiabin Yang 已提交
4960
    Returns type: :ref:`api_fluid_Program`
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4976
    """
Y
Yu Yang 已提交
4977
    return _startup_program_
4978

4979

4980
def default_main_program():
Y
Yu Yang 已提交
4981
    """
4982 4983 4984 4985 4986
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4987

4988 4989
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4990
    :code:`default_main_program` when the program is not specified.
4991

4992 4993
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4994
    Returns:
4995
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4996 4997 4998 4999 5000

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5001

5002
            # Sample Network:
5003 5004
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5024
            #print the number of blocks in the program, 1 in this case
5025
            print(fluid.default_main_program().num_blocks)
5026 5027

            #print the description of variable 'image'
5028
            print(fluid.default_main_program().blocks[0].var('image'))
5029

Y
Yu Yang 已提交
5030
    """
Y
Yu Yang 已提交
5031
    return _main_program_
Y
Yu Yang 已提交
5032 5033 5034 5035 5036


def switch_main_program(program):
    """
    Switch the main program to a new program.
5037

Y
Yu Yang 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5052
    Switch the startup program to a new program
Y
Yu Yang 已提交
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5065
@signature_safe_contextmanager
Y
Yu Yang 已提交
5066 5067
def program_guard(main_program, startup_program=None):
    """
5068 5069
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5070
    variables to the new main programs.
5071

G
guofei 已提交
5072 5073 5074 5075 5076 5077 5078
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5079
    Examples:
5080 5081 5082
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5083

5084 5085 5086
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5087
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5088
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5089 5090 5091

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5092

Y
Yu Yang 已提交
5093
    Examples:
5094
       .. code-block:: python
Y
yuyang18 已提交
5095

5096 5097 5098 5099 5100
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5101 5102
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5103
    """
5104 5105
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5106 5107
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5108 5109
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5110 5111 5112 5113 5114
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
5115 5116


W
Wu Yi 已提交
5117
def _get_var(name, program=None):
X
xuwei06 已提交
5118
    """
Y
yuyang18 已提交
5119
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5120

X
xuwei06 已提交
5121 5122 5123
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5124
        If None, default_global_program() will be used.
X
xuwei06 已提交
5125 5126 5127 5128 5129 5130 5131

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5132
    assert isinstance(program, Program)
X
xuwei06 已提交
5133 5134

    return program.global_block().var(name)
5135 5136


S
rename  
sneaxiy 已提交
5137
@signature_safe_contextmanager
L
lujun 已提交
5138 5139 5140 5141
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5142
    core._switch_tracer(tracer)
M
minqiyang 已提交
5143

5144
    yield
P
Paddle CI 已提交
5145

5146
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5147
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5148 5149


S
rename  
sneaxiy 已提交
5150
@signature_safe_contextmanager
L
lujun 已提交
5151 5152 5153 5154
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5155

5156
    yield
M
minqiyang 已提交
5157

L
lujun 已提交
5158
    _dygraph_current_expected_place_ = tmp_place
5159 5160 5161 5162 5163 5164 5165


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5166
    Please note, the type of custom operators can't have the same type
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
    yield
    switch_device(pre_device)
G
guofei 已提交
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value