framework.py 68.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21
import traceback
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41
    'Program',
    'Operator',
F
fengjiayi 已提交
42
    'Parameter',
43 44 45
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
46
    'get_var',
47
]
Y
Yu Yang 已提交
48

Q
qiaolongfei 已提交
49 50 51 52 53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
57 58
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
59 60 61
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
62

63
def convert_np_dtype_to_dtype_(np_dtype):
64 65
    """
    Convert the data type in numpy to the data type in Paddle
66

67
    Args:
68
        np_dtype(np.dtype): the data type in numpy.
69

70 71
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
72 73

    """
74 75
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
76
        return core.VarDesc.VarType.FP32
77
    elif dtype == np.float64:
78
        return core.VarDesc.VarType.FP64
79
    elif dtype == np.float16:
80
        return core.VarDesc.VarType.FP16
81
    elif dtype == np.int32:
82
        return core.VarDesc.VarType.INT32
83
    elif dtype == np.int16:
84
        return core.VarDesc.VarType.INT16
85
    elif dtype == np.int64:
86
        return core.VarDesc.VarType.INT64
87
    elif dtype == np.bool:
88
        return core.VarDesc.VarType.BOOL
89 90
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
91 92
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
93
    else:
M
minqiyang 已提交
94
        raise ValueError("Not supported numpy dtype %s" % dtype)
95 96 97


def dtype_is_floating(dtype):
98 99 100
    """
    Check the data type is floating or not.
    Args:
101
        dtype(np.dtype|core.VarDesc.VarType): data type.
102 103 104 105 106
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
107
    if not isinstance(dtype, core.VarDesc.VarType):
108 109
        dtype = convert_np_dtype_to_dtype_(dtype)

110 111 112 113
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
114 115


Y
Yang Yang(Tony) 已提交
116
def _debug_string_(proto, throw_on_error=True):
117 118 119 120 121 122 123 124 125 126 127
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
128
    error_fields = list()
Y
Yang Yang(Tony) 已提交
129
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
130 131
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
132 133 134
    return proto.__str__()


Y
Yu Yang 已提交
135
class Variable(object):
136
    """
137 138 139
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
140
    two variables in different blocks could have the same name.
141

142 143
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
144

145
    Most of a Variable's member variables can be setted to be None. It mean
146
    it is not available or will be specified later.
147 148

    Args:
149
        block(Block): The block that the variable belongs to.
150 151
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
152 153
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
154
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
155
            Some kinds of variable do not contain shape, just set it to None.
156 157 158
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
159
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
160
            series data.
161
            Default: None
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
184 185
    """

Y
Yu Yang 已提交
186 187
    def __init__(self,
                 block,
Y
Yu Yang 已提交
188
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
189 190 191 192
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
193
                 capacity=None,
Q
QI JUN 已提交
194
                 persistable=None,
F
fengjiayi 已提交
195
                 error_clip=None,
Y
Yu Yang 已提交
196
                 stop_gradient=False,
F
fengjiayi 已提交
197
                 is_data=False,
Y
Yu Yang 已提交
198
                 **kwargs):
Y
Yu Yang 已提交
199
        self.block = block
F
fengjiayi 已提交
200
        self.error_clip = error_clip
Y
Yu Yang 已提交
201 202

        if name is None:
Y
Yu Yang 已提交
203
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
204
        is_new_var = False
M
minqiyang 已提交
205
        name = cpt.to_text(name)
M
minqiyang 已提交
206
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
207 208

        if self.desc is None:
M
minqiyang 已提交
209
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
210
            is_new_var = True
Y
Yu Yang 已提交
211

Y
Yu Yang 已提交
212 213 214 215 216 217 218 219
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
220
        if shape is not None:
Y
Yu Yang 已提交
221
            if is_new_var:
222
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
223 224 225 226 227 228 229 230
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
231
        if dtype is not None:
232
            if not isinstance(dtype, core.VarDesc.VarType):
233
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
234
            if is_new_var:
F
fengjiayi 已提交
235
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
236
            else:
F
fengjiayi 已提交
237
                old_dtype = self.dtype
Q
QI JUN 已提交
238
                if dtype != old_dtype:
Y
Yu Yang 已提交
239 240 241 242 243
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
244 245

        if lod_level is not None:
Y
Yu Yang 已提交
246
            if is_new_var:
247
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
248 249 250 251 252 253 254
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
255 256 257 258 259 260 261 262 263 264 265
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

266 267 268 269 270 271 272 273
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
274
        self.block.vars[name] = self
Y
Yu Yang 已提交
275
        self.op = None
Y
Yu Yang 已提交
276
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
277
        self.is_data = is_data
Y
Yu Yang 已提交
278

279
    def __str__(self):
Y
Yang Yang(Tony) 已提交
280 281
        return self.to_string(True)

F
update  
fengjiayi 已提交
282
    def to_string(self, throw_on_error, with_details=False):
283 284 285 286
        """
        Get debug string.

        Args:
287 288
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
289
            with_details(bool): more details about variables and parameters
290 291
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
292

293 294
        Returns:
            str: The debug string.
295
        """
F
update  
fengjiayi 已提交
296 297
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
298
        protostr = self.desc.serialize_to_string()
299
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
300 301 302 303
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
304 305
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
306
        return res_str
307 308 309

    __repr__ = __str__

W
Wu Yi 已提交
310
    def _set_desc(self, input):
311 312 313 314 315 316 317 318 319
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
320 321
        self.desc = input

322 323 324 325
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
326 327 328 329
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
330 331
    @property
    def name(self):
M
minqiyang 已提交
332
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
333

T
typhoonzero 已提交
334 335 336 337
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
338 339 340
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
341
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
342 343

    @property
F
fengjiayi 已提交
344 345
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
346 347 348

    @property
    def lod_level(self):
349
        return self.desc.lod_level()
Y
Yu Yang 已提交
350

Y
Yu Yang 已提交
351 352 353 354
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
355
    def _set_error_clip(self, error_clip):
356 357 358 359 360 361 362 363 364
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
365 366
        self.error_clip = error_clip

Y
Yu Yang 已提交
367

F
fengjiayi 已提交
368 369 370
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
371

372 373
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
374 375 376 377
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
378
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
379 380 381 382 383
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
384 385 386 387
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
388 389 390 391 392 393 394 395 396
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
397
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
398 399 400 401 402 403
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
404 405 406 407 408 409 410 411
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
412 413
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
414 415
        return self.op_proto_map[type]

416 417 418 419 420 421 422
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
423

Y
Yu Yang 已提交
424
class Operator(object):
425
    """
426 427 428 429 430 431 432
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
433
        type(str): The type of operator. Default None.
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
454
        Block.append_op or Block._prepend_op instead.
455 456 457 458 459 460 461 462 463 464

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
465
    """
466 467 468 469 470
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
471
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
472
    }
473

Y
Yu Yang 已提交
474 475
    def __init__(self,
                 block,
Y
Yu Yang 已提交
476
                 desc,
Y
Yu Yang 已提交
477 478 479 480 481
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
482
        self.desc = desc
G
gongweibao 已提交
483 484 485 486 487
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
488 489 490 491
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
492 493
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
494 495 496

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
497 498
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
499

G
gongweibao 已提交
500 501
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
502

503 504 505 506
        callstack_var_name = op_maker.kOpCreationCallstackAttrName()
        op_attrs[callstack_var_name] = list(
            reversed(traceback.format_stack()))[1:]

F
fengjiayi 已提交
507 508 509 510 511
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
512
        self.desc.set_type(type)
F
fengjiayi 已提交
513
        proto = OpProtoHolder.instance().get_op_proto(type)
514

Y
Yang Yang(Tony) 已提交
515 516
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
517
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
518 519
                    return True
            return False
Q
QI JUN 已提交
520

Y
Yang Yang(Tony) 已提交
521 522 523 524 525 526 527
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
528 529 530 531
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
532 533
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
534 535 536
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
537
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
538
                            in_arg_names.append(arg)
539 540
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
541
                        else:
M
minqiyang 已提交
542
                            in_arg_names.append(cpt.to_text(arg.name))
543
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
544 545
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
546

Y
Yu Yang 已提交
547
        if outputs is not None:
548 549 550 551 552 553 554
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
555 556
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
557 558 559
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
560

F
fengjiayi 已提交
561
            for out_proto in proto.outputs:
562 563 564 565
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
566 567
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
568 569 570
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
571
                    out_arg_names.append(cpt.to_text(arg.name))
572 573
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
574

G
gongweibao 已提交
575 576
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
577
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
578
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
579
                attr_name = attr.name
G
gongweibao 已提交
580
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
581
                    continue
G
gongweibao 已提交
582
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
583 584
                self._update_desc_attr(attr_name, attr_val)

585
        self.desc.check_attrs()
586
        if self.has_kernel(type):
Q
QI JUN 已提交
587
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
588
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
589

590 591 592
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
593
    def to_string(self, throw_on_error):
594
        """
595 596
        Get debug string.

597
        Args:
598 599
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
600

601 602
        Returns:
            str: The debug string.
603 604

        """
605
        protostr = self.desc.serialize_to_string()
606
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
607 608 609 610
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
611 612 613

    __repr__ = __str__

F
fengjiayi 已提交
614 615 616 617 618
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
619
        """
620
        Get the input arguments according to the input parameter name.
621

622 623
        Args:
            name(str): The input parameter name.
624

625 626 627
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
628
        """
F
fengjiayi 已提交
629 630
        return self.desc.input(name)

T
typhoonzero 已提交
631
    def rename_input(self, old_name, new_name):
632 633 634 635 636 637 638 639 640 641
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
642 643 644
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
645 646 647 648 649 650 651 652 653 654
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
655 656
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
657 658 659 660
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
661 662 663 664 665 666 667 668
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
669
    def output(self, name):
670
        """
671
        Get output arguments by the output parameter name.
672

673 674
        Args:
            name(str): The output parameter name.
675

676 677 678
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
679
        """
F
fengjiayi 已提交
680 681 682 683 684 685
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

686 687 688 689 690 691 692 693
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
694
    def has_attr(self, name):
695
        """
696 697
        Whether this Operator has the attribute with name or not.

698
        Args:
699
            name(str): the attribute name.
700

701 702
        Returns:
            bool: True if has this attribute.
703 704

        """
F
fengjiayi 已提交
705 706 707
        return self.desc.has_attr(name)

    def attr_type(self, name):
708
        """
709
        Get the type of attribute by attribute's name.
710

711 712
        Args:
            name(str): the attribute name.
713

714 715
        Returns:
            core.AttrType: the attribute type.
716
        """
F
fengjiayi 已提交
717 718
        return self.desc.attr_type(name)

Y
yuyang18 已提交
719
    def set_attr(self, name, val):
720 721 722 723 724 725 726 727 728 729
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
743 744
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
745 746
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
747
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
748 749 750 751 752
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
753

F
fengjiayi 已提交
754 755 756 757 758
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
759
        """
760 761
        Get the attribute by name.

762
        Args:
763
            name(str): the attribute name.
764

765 766
        Returns:
            bool|int|str|float|list: The attribute value. The return value
767 768
            can be any valid attribute type.
        """
F
fengjiayi 已提交
769
        return self.desc.attr(name)
Y
Yu Yang 已提交
770

G
gongweibao 已提交
771
    def block_attr_id(self, name):
772
        """
G
gongweibao 已提交
773
        Get the block attribute's id by name.
774

775 776
        Args:
            name(str): the attribute name.
777

778 779
        Returns:
            int: the block index.
780
        """
G
gongweibao 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
827

J
JiayiFeng 已提交
828
    def all_attrs(self):
F
fengjiayi 已提交
829
        """
830 831 832
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
833
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
834 835 836 837
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
838 839
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
840
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
841 842 843 844 845 846 847 848
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
849 850
        return attr_map

Y
Yu Yang 已提交
851

Y
Yu Yang 已提交
852
class Block(object):
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
882
    def __init__(self, program, idx):
Y
Yu Yang 已提交
883
        self.desc = program.desc.block(idx)
884
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
885
        self.ops = list()  # operator list
Y
Yu Yang 已提交
886
        self.program = program
887
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
888

889
    def __str__(self):
Y
Yang Yang(Tony) 已提交
890 891
        return self.to_string(True)

F
fengjiayi 已提交
892 893
    def to_string(self, throw_on_error, with_details=False):
        """
894 895
        Get debug string.

F
fengjiayi 已提交
896 897
        Args:
            throw_on_error(bool): raise exception when self is not initialized
898
                when throw_on_error is True.
F
update  
fengjiayi 已提交
899
            with_details(bool): more details about variables and parameters
900 901
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
902

903 904
        Returns:
            str: The debug string.
F
fengjiayi 已提交
905 906 907 908
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
909
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
910 911
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
912
            for var in list(self.vars.values()):
F
fengjiayi 已提交
913
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
914
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
915
            for op in self.ops:
F
fengjiayi 已提交
916 917
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
918 919 920
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
921 922
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
923 924
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
925 926 927

    __repr__ = __str__

Y
Yu Yang 已提交
928 929
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
930
        return self.desc.parent
Y
Yu Yang 已提交
931

Y
Yu Yang 已提交
932 933 934 935
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
936
    def _set_forward_block_idx(self, idx):
937 938 939 940 941 942 943 944 945
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
946
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
947

Y
Yu Yang 已提交
948 949
    @property
    def idx(self):
Y
Yu Yang 已提交
950
        return self.desc.id
Y
Yu Yang 已提交
951

Q
Qiao Longfei 已提交
952
    def var(self, name):
953 954 955 956 957 958 959 960 961 962 963 964 965
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
966
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
967 968 969
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
970 971
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
972
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
973
        return v
Q
Qiao Longfei 已提交
974

W
Wu Yi 已提交
975
    def _var_recursive(self, name):
976 977 978 979 980 981 982 983 984 985 986 987 988
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1015

Q
Qiao Longfei 已提交
1016
    def all_parameters(self):
1017
        return list(self.iter_parameters())
1018

1019
    def iter_parameters(self):
M
minqiyang 已提交
1020
        return (item[1] for item in six.iteritems(self.vars)
1021
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1022

Y
Yu Yang 已提交
1023
    def create_var(self, *args, **kwargs):
1024
        var = Variable(block=self, *args, **kwargs)
1025 1026
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1027
        return var
Y
Yu Yang 已提交
1028

Q
Qiao Longfei 已提交
1029 1030 1031
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1032
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1033 1034
        """
        Rename variable in vars and ops' inputs and outputs
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1047
        """
M
minqiyang 已提交
1048 1049
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1050

T
typhoonzero 已提交
1051
        if not self.has_var(name):
1052
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1053 1054
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1055
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1056 1057 1058 1059 1060 1061 1062
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1063
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1064 1065 1066 1067
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1068
        orig_var_type = v.type
M
minqiyang 已提交
1069
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1070
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1071
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1072
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1073 1074 1075 1076
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1077
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1078 1079 1080 1081 1082 1083 1084
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1085
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1086 1087
            var = Variable(
                self,
T
typhoonzero 已提交
1088
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1089 1090 1091 1092
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1093
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1094 1095 1096
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1097
        self._sync_with_cpp()
1098
        return var
T
typhoonzero 已提交
1099

W
Wu Yi 已提交
1100 1101
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1102
        self.desc._remove_var(cpt.to_bytes(name))
1103 1104
        del self.vars[name]

Y
Yu Yang 已提交
1105 1106
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1107
        param = Parameter(global_block, *args, **kwargs)
1108
        if 'initializer' in kwargs:
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1129
        return param
Y
Yu Yang 已提交
1130

Y
Yu Yang 已提交
1131
    def append_op(self, *args, **kwargs):
1132 1133 1134 1135 1136 1137
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1138
        op_desc = self.desc.append_op()
1139
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1140 1141 1142
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1143
    def _insert_op(self, index, *args, **kwargs):
1144 1145 1146 1147 1148 1149 1150 1151 1152
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1153 1154
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1155 1156 1157 1158
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1159
    def _remove_op(self, index):
1160 1161 1162 1163 1164 1165 1166 1167 1168
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1169 1170
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1171 1172
        del self.ops[index]

W
Wu Yi 已提交
1173
    def _slice_ops(self, start, end):
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1184
        return self.ops[start:end]
Y
Yancey1989 已提交
1185

W
Wu Yi 已提交
1186 1187
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1188
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1189
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1190 1191
        return op

W
Wu Yi 已提交
1192
    def _sync_with_cpp(self):
1193
        """
1194 1195
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1196
        """
Q
Qiao Longfei 已提交
1197 1198 1199 1200 1201
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1202
        # sync variables removed from c++ end
1203
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1204
            if not self.desc.find_var(cpt.to_bytes(var)):
1205 1206
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1207
        # sync operators from cpp
1208 1209 1210 1211
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1228 1229 1230 1231 1232

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1233
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1234 1235 1236 1237 1238 1239 1240

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1254 1255 1256 1257
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1258
    def _copy_param_info_from(self, other):
1259
        """
1260 1261
        Copy the information of parameters from the other block.

1262
        Args:
1263 1264 1265 1266 1267
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1268 1269 1270 1271 1272

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1273 1274
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1275
        for p in other.iter_parameters():
1276 1277 1278
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1279
                raise ValueError("_copy_param_info_from should be invoked with "
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1292
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1293
                error_clip=p.error_clip,
1294 1295 1296
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1297
    def _clone_variable(self, var):
1298 1299
        """
        Clone a variable into current block.
1300

1301 1302 1303 1304
        Args:
            var: the variable to be cloned.

        Returns:
1305
            Variable: the new  variable cloned from 'var' in current block.
1306 1307
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1308 1309 1310 1311 1312
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1313 1314
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1315
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1316 1317 1318 1319 1320 1321
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1322 1323
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1324 1325 1326 1327 1328 1329 1330
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1331 1332
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1333
        return ret_var
1334

Y
Yu Yang 已提交
1335 1336

class Program(object):
D
dzhwinter 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1348
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1349 1350

    Returns:
Y
yuyang18 已提交
1351
        A empty program.
D
dzhwinter 已提交
1352 1353

    Examples:
Y
yuyang18 已提交
1354 1355 1356 1357 1358 1359
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1360 1361 1362

    """

1363 1364
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1365 1366
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1367
        self._seed = 0
Y
yuyang18 已提交
1368
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1369
        self._op_role_var = []
T
tangwei12 已提交
1370 1371 1372 1373

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1374
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1375 1376
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1377 1378 1379

    @property
    def op_role(self):
Y
yuyang18 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1393 1394 1395 1396 1397 1398 1399 1400
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1401 1402 1403 1404 1405 1406 1407
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1408 1409 1410 1411
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1412
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1413 1414

    @contextlib.contextmanager
1415
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1416 1417 1418 1419 1420 1421 1422
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1423
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1424 1425 1426 1427

        Examples:

            >>> p, g = backward(...)
1428
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1429 1430
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1431 1432
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1433 1434 1435 1436
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1437
        yield
Y
yuyang18 已提交
1438
        self._op_role_var = []
Y
yuyang18 已提交
1439
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1440

1441
    def __str__(self):
Y
yuyang18 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1451 1452
        return self.to_string(True)

F
fengjiayi 已提交
1453 1454 1455
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1456

F
fengjiayi 已提交
1457
        Args:
Y
yuyang18 已提交
1458 1459
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1460

Y
yuyang18 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1481 1482
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1483 1484
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1485

1486
    def get_desc(self):
Y
yuyang18 已提交
1487 1488 1489 1490 1491 1492 1493
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1494 1495
        return self.desc

1496
    def clone(self, for_test=False):
Y
yuyang18 已提交
1497 1498 1499
        """
        Create a new, duplicated program.

1500

Y
yuyang18 已提交
1501 1502 1503 1504
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1505

Y
yuyang18 已提交
1506 1507 1508 1509
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1510 1511 1512 1513 1514
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1515 1516

        Args:
Y
yuyang18 已提交
1517 1518
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1519

D
dzhwinter 已提交
1520
        Returns:
Y
yuyang18 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1574 1575
        """
        if for_test:
1576
            p = self.inference_optimize(export_for_deployment=False)
1577
        else:
1578
            p = Program()
G
gongweibao 已提交
1579 1580
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1581
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1582 1583 1584
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1585 1586 1587 1588

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1589
            p._sync_with_cpp()
1590

W
Wu Yi 已提交
1591
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1592
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1593
        return p
1594

1595
    def prune(self, targets):
Y
yuyang18 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1611 1612 1613 1614 1615 1616
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1617 1618
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1619
                    # and we need to find the current op that generate this
1620 1621 1622 1623 1624 1625 1626 1627
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1628
                    t = t.op
1629 1630 1631 1632
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1633
                else:
1634 1635
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1636 1637 1638 1639

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1640 1641 1642
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1643
        res._sync_with_cpp()
1644 1645
        return res

1646
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1647
        """
F
fengjiayi 已提交
1648 1649 1650 1651 1652
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1653
        3. change the :code:`is_test`
Y
yuyang18 已提交
1654 1655 1656
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1657 1658 1659 1660
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1661 1662 1663 1664 1665 1666
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1667 1668
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1669
        res = Program()
1670
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1671 1672 1673 1674

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1685
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1686 1687

        # change all `is_test` attributes to True
M
minqiyang 已提交
1688
        for i in six.moves.range(res.desc.num_blocks()):
1689
            block = res.desc.block(i)
M
minqiyang 已提交
1690
            for j in six.moves.range(block.op_size()):
1691 1692 1693
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1694 1695 1696
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1697
        res._sync_with_cpp()
1698 1699
        return res

1700 1701
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1702 1703 1704 1705 1706 1707 1708
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1709
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1710 1711 1712 1713

        Returns:
            Program: A deserialized program desc.
        """
1714 1715
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1716
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1717
        p._sync_with_cpp()
1718
        return p
Y
Yu Yang 已提交
1719

D
dzhwinter 已提交
1720 1721
    @property
    def random_seed(self):
Y
yuyang18 已提交
1722 1723 1724 1725 1726 1727
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1728 1729
        return self._seed

Q
qiaolongfei 已提交
1730 1731
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1732 1733 1734
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1735 1736
        return self.desc.num_blocks()

D
dzhwinter 已提交
1737 1738 1739 1740 1741 1742
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1743
    def __repr__(self):
1744
        return self.__str__()
1745

Y
Yu Yang 已提交
1746
    def global_block(self):
Y
yuyang18 已提交
1747 1748 1749
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1750 1751
        return self.blocks[0]

Q
Qiao Longfei 已提交
1752
    def block(self, index):
Y
yuyang18 已提交
1753 1754 1755 1756 1757 1758 1759 1760
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1761 1762
        return self.blocks[index]

Y
Yu Yang 已提交
1763
    def current_block(self):
Y
yuyang18 已提交
1764 1765 1766 1767
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1768 1769
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1770
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1781
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1782 1783 1784
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1785 1786 1787 1788 1789
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1790 1791 1792 1793 1794
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1795 1796
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1797
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1808 1809 1810
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1811
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1812

W
Wu Yi 已提交
1813
    def _copy_param_info_from(self, other):
1814
        """
1815
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1816

Y
yuyang18 已提交
1817 1818 1819
        Notes: This is a very low level API. Users should not invoke it
        directly.

1820 1821 1822 1823 1824 1825 1826
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1827
            raise TypeError("_copy_param_info_from should be invoked with "
1828 1829 1830
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1831
            raise ValueError("_copy_param_info_from should be invoked with two "
1832
                             "program, with represent the same topology")
W
Wu Yi 已提交
1833
        self.global_block()._copy_param_info_from(other.global_block())
1834

F
fengjiayi 已提交
1835 1836 1837
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1838

Y
yuyang18 已提交
1839 1840 1841
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1842 1843 1844 1845 1846 1847 1848
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1849
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1850 1851 1852
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1853
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1854
                             "program, with represent the same topology")
1855
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1856 1857 1858
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1859
    def list_vars(self):
Y
yuyang18 已提交
1860 1861 1862 1863 1864 1865
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1866
        for each_block in self.blocks:
1867
            for each_var in list(each_block.vars.values()):
1868 1869
                yield each_var

Y
Yu Yang 已提交
1870

Y
Yu Yang 已提交
1871
class Parameter(Variable):
1872
    """
1873
    Parameter is derived from Variable. A parameter is a persistable
1874
    Variable, and will be updated by optimizers after each iteration.
1875
    The training of a neural network is essentially the updating of
1876 1877
    its parameters.

1878
    Relative to a general Variable, a Parameter has several its own
1879 1880
    member variables:

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1893 1894
    """

Y
Yu Yang 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1905 1906 1907

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1908 1909 1910 1911
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1912 1913
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1914
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1915

W
wanghaoshuang 已提交
1916
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1917

F
fengjiayi 已提交
1918 1919 1920
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1921 1922 1923
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1924

F
update  
fengjiayi 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1939
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1940
            for attr_name in additional_attr:
1941 1942
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1943 1944
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1945 1946 1947 1948
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1949

Y
Yu Yang 已提交
1950
# program is a global instance.
Y
Yu Yang 已提交
1951 1952
_main_program_ = Program()
_startup_program_ = Program()
1953

1954

1955
def default_startup_program():
Y
Yu Yang 已提交
1956
    """
Y
yuyang18 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1966

Y
Yu Yang 已提交
1967 1968 1969
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1970
    return _startup_program_
1971

1972

1973
def default_main_program():
Y
Yu Yang 已提交
1974
    """
Y
yuyang18 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1984

Y
Yu Yang 已提交
1985 1986 1987
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1988
    return _main_program_
Y
Yu Yang 已提交
1989 1990 1991 1992 1993


def switch_main_program(program):
    """
    Switch the main program to a new program.
1994

Y
Yu Yang 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2009
    Switch the startup program to a new program
Y
Yu Yang 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2025 2026 2027
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2028

Y
Yu Yang 已提交
2029
    Examples:
Y
yuyang18 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2040

Y
Yu Yang 已提交
2041
    Examples:
Y
yuyang18 已提交
2042 2043 2044 2045 2046 2047

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2048

Y
Yu Yang 已提交
2049
    Args:
Y
yuyang18 已提交
2050
        main_program(Program): New main program inside `with` statement.
2051
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2065 2066 2067 2068


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2069
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2070

X
xuwei06 已提交
2071 2072 2073
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2074
        If None, default_global_program() will be used.
X
xuwei06 已提交
2075 2076 2077 2078 2079 2080 2081

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2082
    assert isinstance(program, Program)
X
xuwei06 已提交
2083 2084

    return program.global_block().var(name)