framework.py 164.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
62 63
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
64 65


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
173
def in_dygraph_mode():
L
lujun 已提交
174
    """
Y
Youwei Song 已提交
175 176
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
177 178

    Returns:
Y
Youwei Song 已提交
179
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
180 181 182 183

    Examples:
        .. code-block:: python

184
            import paddle.fluid as fluid
L
lujun 已提交
185
            if fluid.in_dygraph_mode():
Y
Youwei Song 已提交
186 187 188
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
189 190

    """
L
lujun 已提交
191
    return _dygraph_tracer_ is not None
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
216 217
def _dygraph_tracer():
    return _dygraph_tracer_
218

W
Wu Yi 已提交
219

M
minqiyang 已提交
220
def _current_expected_place():
L
lujun 已提交
221
    return _dygraph_current_expected_place_
M
minqiyang 已提交
222 223


S
sneaxiy 已提交
224
def _cpu_num():
225
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
226 227 228 229 230 231 232 233
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
234
        os.environ['CPU_NUM'] = str(1)
235
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
236 237 238 239 240 241 242 243 244 245
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
246 247


C
chengduo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


H
hong 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275
def _var_base_to_np(var_base):
    """
    convert VarBase tp numpy
    
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase

    """
    var = var_base._copy_to(core.CPUPlace(), True)
    return np.array(var.value().get_tensor())


S
sneaxiy 已提交
276
def cuda_places(device_ids=None):
L
lujun 已提交
277
    """
278 279 280 281 282
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
283 284

    If :code:`device_ids` is None, environment variable of
285
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
286 287 288
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
289
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
290 291

    If :code:`device_ids` is not None, it should be the device
292
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
293 294 295
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
296 297
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
298 299

    Returns:
300
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
301 302 303 304

    Examples:
        .. code-block:: python

305
            import paddle.fluid as fluid
L
lujun 已提交
306 307 308
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
309 310 311
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
312
        device_ids = _cuda_ids()
S
sneaxiy 已提交
313 314 315 316 317 318
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
319
    """
320
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
321 322 323
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
324 325
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
326 327
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
328

329 330
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
331 332

    Returns:
333
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
334 335 336 337

    Examples:
        .. code-block:: python

338
            import paddle.fluid as fluid
L
lujun 已提交
339 340 341
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
342 343 344 345 346 347
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
348
    """
349
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
350 351 352

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
353 354 355 356
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
357

358 359
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
360 361

    Returns:
362
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
363 364 365 366

    Examples:
        .. code-block:: python

367
            import paddle.fluid as fluid
L
lujun 已提交
368 369 370 371 372
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
373 374 375
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
376 377
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
378 379


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
406
@signature_safe_contextmanager
407 408 409 410
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
411 412 413
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
414 415

    Args:
T
Tao Luo 已提交
416
        prefix(str, optional): prefix. Default is none.
417 418 419

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
420

421
          import paddle.fluid as fluid
422
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
423 424 425 426 427 428
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
429
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
430
                f = fluid.layers.pow(d, 2.0)
431
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
451 452
    """
    # TODO(panyx0718): Only [0-9a-z].
453 454 455 456 457 458 459 460 461
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
462 463 464 465 466 467 468 469 470 471 472 473


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
474 475 476
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
477 478 479 480


def grad_var_name(var_name):
    """
481 482
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
483 484 485
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
486

487
def convert_np_dtype_to_dtype_(np_dtype):
488 489
    """
    Convert the data type in numpy to the data type in Paddle
490

491
    Args:
492
        np_dtype(np.dtype): the data type in numpy.
493

494 495
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
496 497

    """
498 499
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
500
        return core.VarDesc.VarType.FP32
501
    elif dtype == np.float64:
502
        return core.VarDesc.VarType.FP64
503
    elif dtype == np.float16:
504
        return core.VarDesc.VarType.FP16
505
    elif dtype == np.int32:
506
        return core.VarDesc.VarType.INT32
507
    elif dtype == np.int16:
508
        return core.VarDesc.VarType.INT16
509
    elif dtype == np.int64:
510
        return core.VarDesc.VarType.INT64
511
    elif dtype == np.bool:
512
        return core.VarDesc.VarType.BOOL
513 514
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
515 516
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
517 518
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
519
    else:
M
minqiyang 已提交
520
        raise ValueError("Not supported numpy dtype %s" % dtype)
521 522 523


def dtype_is_floating(dtype):
524 525 526
    """
    Check the data type is floating or not.
    Args:
527
        dtype(np.dtype|core.VarDesc.VarType): data type.
528 529 530 531 532
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
533
    if not isinstance(dtype, core.VarDesc.VarType):
534 535
        dtype = convert_np_dtype_to_dtype_(dtype)

536 537 538 539
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
540 541


Y
Yang Yang(Tony) 已提交
542
def _debug_string_(proto, throw_on_error=True):
543 544 545 546 547 548 549 550 551 552 553
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
554
    error_fields = list()
Y
Yang Yang(Tony) 已提交
555
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
556 557
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
558 559 560
    return proto.__str__()


X
Xin Pan 已提交
561
class Variable(object):
562
    """
J
Jiabin Yang 已提交
563
    **Notes**:
564
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
565

566 567
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
568 569 570
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
571
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
572 573
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
574

575
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
576
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
577

578
    Most of a Variable's member variables can be setted to be None. It mean
579
    it is not available or will be specified later.
580

581
    Examples:
582 583
        In Static Graph Mode:

584 585
        .. code-block:: python

586
            import paddle.fluid as fluid
587
            cur_program = fluid.Program()
588 589 590 591
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
592
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
593 594 595 596 597 598 599 600 601

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

602 603
    """

Y
Yu Yang 已提交
604 605
    def __init__(self,
                 block,
Y
Yu Yang 已提交
606
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
607 608 609 610
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
611
                 capacity=None,
Q
QI JUN 已提交
612
                 persistable=None,
F
fengjiayi 已提交
613
                 error_clip=None,
Y
Yu Yang 已提交
614
                 stop_gradient=False,
F
fengjiayi 已提交
615
                 is_data=False,
H
Huihuang Zheng 已提交
616
                 need_check_feed=False,
H
hong 已提交
617
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
618
                 **kwargs):
Y
Yu Yang 已提交
619 620
        self.block = block
        if name is None:
Y
Yu Yang 已提交
621
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
622

Y
Yu Yang 已提交
623
        if dtype is not None:
624
            if not isinstance(dtype, core.VarDesc.VarType):
625
                dtype = convert_np_dtype_to_dtype_(dtype)
626

H
hong 已提交
627 628
        self.belong_to_optimizer = belong_to_optimizer

L
lujun 已提交
629
        if in_dygraph_mode():
M
minqiyang 已提交
630
            # record vars in tracer rather than blocks
M
minqiyang 已提交
631
            self._ivar = kwargs.get("ivar", None)
632
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
633
            if not self._ivar:
634
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
635 636 637
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
638
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
639
                    if persistable else False)
M
minqiyang 已提交
640
            if persistable:
L
lujun 已提交
641
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
642
            self.op = None
M
minqiyang 已提交
643
        else:
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
708 709 710
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

711 712 713 714 715 716 717 718
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
719
            self.block.vars[name] = self
720
            self.op = None
721
            self._stop_gradient = stop_gradient
722
            self.is_data = is_data
Y
Yu Yang 已提交
723

724
    @dygraph_only
725 726
    def detach(self):
        """
J
Jiabin Yang 已提交
727 728
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
729

730
        Returns a new Variable, detached from the current graph.
731

732
        Returns:
J
Jiabin Yang 已提交
733
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
734

735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

763
    @dygraph_only
764
    def numpy(self):
765
        """
J
Jiabin Yang 已提交
766 767
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
768

J
Jiabin Yang 已提交
769
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
770 771 772 773 774

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
775
            ndarray: dtype is same as current Variable
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
797
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
798
        return np.array(new_ivar.value().get_tensor())
799

800 801 802
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
803 804 805
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
H
hong 已提交
829 830 831 832
        assert isinstance(value, (Variable, np.ndarray, core.VarBase)), \
                "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
833
        if isinstance(value, Variable):
H
hong 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847
            value_np = value.numpy()
        elif isinstance(value, core.VarBase):
            value_np = _var_base_to_np(value)
        self_tensor = self._ivar.value().get_tensor()

        self_tensor_np = np.array(self_tensor)

        assert self_tensor_np.shape == value_np.shape,  \
                                      "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self._ivar.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype,  \
                                      "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format( self._ivar.name, self_tensor_np.dtype, value_np.dtype)

        self_tensor.set(value_np, _current_expected_place())
848

849
    @dygraph_only
850
    def backward(self, backward_strategy=None):
851
        """
J
Jiabin Yang 已提交
852 853
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
854 855 856

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
857 858
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
859

J
Jiabin Yang 已提交
860 861
        Returns:
            NoneType: None
862 863 864 865 866 867 868 869 870 871 872 873

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
874 875
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
876 877 878 879 880 881 882 883 884
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
885 886 887 888 889
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
890

J
Jiabin Yang 已提交
891 892 893 894
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
895

896
    @dygraph_only
897
    def gradient(self):
898
        """
J
Jiabin Yang 已提交
899 900
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
901 902 903

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
904 905
        Returns:
            ndarray: Numpy value of the gradient of current Variable
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
936 937
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
938

939
    @dygraph_only
940
    def clear_gradient(self):
941
        """
J
Jiabin Yang 已提交
942 943 944 945
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
946

J
Jiabin Yang 已提交
947
        Clear  (set to ``0`` ) the Gradient of Current Variable
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
974
        self._ivar._clear_gradient()
X
Xin Pan 已提交
975

976
    def __str__(self):
Y
Yang Yang(Tony) 已提交
977 978
        return self.to_string(True)

F
update  
fengjiayi 已提交
979
    def to_string(self, throw_on_error, with_details=False):
980 981 982
        """
        Get debug string.

J
Jiabin Yang 已提交
983 984 985 986 987
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
988

989 990
        Returns:
            str: The debug string.
991 992 993 994 995

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
996

997 998 999 1000 1001
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1002
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1003
                print("=============with detail===============")
1004
                print(new_variable.to_string(True, True))
1005
        """
L
lujun 已提交
1006
        if in_dygraph_mode():
L
lujun 已提交
1007
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
1008 1009 1010 1011 1012 1013 1014
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
1015

F
update  
fengjiayi 已提交
1016 1017
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1018
        protostr = self.desc.serialize_to_string()
1019
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1020 1021 1022 1023
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1024 1025 1026
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1027
        return res_str
1028 1029 1030

    __repr__ = __str__

1031
    @property
1032
    def stop_gradient(self):
J
Jiabin Yang 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1062
        if in_dygraph_mode():
M
minqiyang 已提交
1063 1064
            return self._ivar.stop_gradient
        else:
1065
            return self._stop_gradient
1066

1067 1068
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1069
        if in_dygraph_mode():
M
minqiyang 已提交
1070
            self._ivar.stop_gradient = s
1071
        else:
1072
            self._stop_gradient = s
1073

1074 1075
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1097
        if in_dygraph_mode():
1098 1099 1100
            return self._ivar.persistable
        else:
            return self.desc.persistable()
1101

Y
Yu Yang 已提交
1102 1103
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1104
        if in_dygraph_mode():
1105 1106 1107
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1108 1109
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1110

Y
Yu Yang 已提交
1111 1112
    @property
    def name(self):
J
Jiabin Yang 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1129
        if in_dygraph_mode():
1130 1131 1132
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1154 1155
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1156
        if in_dygraph_mode():
1157 1158 1159
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1160

Y
Yu Yang 已提交
1161 1162
    @property
    def shape(self):
J
Jiabin Yang 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1180
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1181
        if in_dygraph_mode():
1182 1183 1184
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1185 1186

    @property
F
fengjiayi 已提交
1187
    def dtype(self):
J
Jiabin Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1204
        if in_dygraph_mode():
1205 1206 1207
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1208 1209

    @property
1210
    @dygraph_not_support
Y
Yu Yang 已提交
1211
    def lod_level(self):
J
Jiabin Yang 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1233
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1234 1235
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1236
        return self.desc.lod_level()
Y
Yu Yang 已提交
1237

Y
Yu Yang 已提交
1238 1239
    @property
    def type(self):
J
Jiabin Yang 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1256
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1257
            return self._ivar.type
1258 1259
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1260

W
Wu Yi 已提交
1261
    def _set_error_clip(self, error_clip):
1262 1263 1264 1265 1266 1267 1268 1269 1270
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1271 1272
        self.error_clip = error_clip

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1360
    def _cloneVar(self, copy=False):
1361 1362
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1363 1364
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1365 1366 1367 1368
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1369
        new_var = self._cloneVar()
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1380
        new_var = self._cloneVar()
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1391
                return self._cloneVar(True)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1410
                return self._cloneVar(True)
1411
            index = int(item)
1412
            if (index > 0 and index >= self.shape[axis]) \
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1429 1430 1431 1432 1433 1434 1435 1436

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
1437 1438
        slice_step = []
        use_strided_slice = False
H
Hongyu Liu 已提交
1439 1440
        reverse_axis = []

1441
        def fill_constant(shape, value, force_cpu=False, out=None):
1442 1443 1444 1445 1446 1447 1448 1449
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
1450
                    'force_cpu': force_cpu
1451 1452 1453 1454 1455
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1456 1457 1458 1459
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
1460
                step = slice_item.step
H
Hongyu Liu 已提交
1461

1462 1463
                if start is None and end is None and step is None:
                    continue
H
Hongyu Liu 已提交
1464

1465 1466
                if step is None:
                    step = 1
H
Hongyu Liu 已提交
1467 1468

                if start is None and end is None:
1469 1470
                    assert (step == -1)
                    reverse_axis.append(dim)
H
Hongyu Liu 已提交
1471 1472 1473 1474 1475 1476 1477 1478
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

1479 1480 1481
                if step != 1:
                    use_strided_slice = True

H
Hongyu Liu 已提交
1482 1483 1484
                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1485
                slice_step.append(step)
1486
            else:
H
Hongyu Liu 已提交
1487 1488 1489
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1490
                slice_step.append(1)
1491 1492
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
1493
                    fill_constant([1], 1, force_cpu=True, out=temp_1)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
1521
                    fill_constant([1], dim, force_cpu=True, out=temp_out)
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
1532 1533
        if (use_strided_slice == True):
            attrs['strides'] = []
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        infer_flags = list(1 for i in range(len(slice_axis)))
        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        # strides
        if use_strided_slice == True:
            if not contain_var(slice_step):
                attrs['strides'] = slice_step
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
                for i, dim in enumerate(slice_step):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
1569 1570
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1571 1572

        out = self
1573
        if use_strided_slice == False and len(slice_axis) > 0:
H
Hongyu Liu 已提交
1574 1575 1576 1577 1578 1579 1580 1581
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1582
                inputs=inputs,
H
Hongyu Liu 已提交
1583
                outputs={'Out': [slice_out_var]},
1584
                attrs=attrs)
H
Hongyu Liu 已提交
1585 1586

            out = slice_out_var
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        elif use_strided_slice == True and len(slice_axis) > 0:
            strided_slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_strided_slice"),
                dtype=self.dtype)
            self.block.append_op(
                type="strided_slice",
                inputs=inputs,
                outputs={'Out': [strided_slice_out_var]},
                attrs=attrs)

            out = strided_slice_out_var
H
Hongyu Liu 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1614

Y
Yu Yang 已提交
1615

F
fengjiayi 已提交
1616 1617 1618
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1619

1620 1621
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1622 1623 1624 1625
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1626
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1627 1628 1629 1630 1631
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1632 1633 1634 1635
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1645
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1646 1647 1648 1649 1650 1651
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1652 1653 1654 1655 1656 1657 1658 1659
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1660 1661
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1662 1663
        return self.op_proto_map[type]

1664 1665 1666 1667 1668 1669
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1670 1671 1672 1673
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1674
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1675 1676
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1677 1678
        }

F
fengjiayi 已提交
1679

X
Xin Pan 已提交
1680
class Operator(object):
1681
    """
1682 1683 1684 1685 1686 1687 1688
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1689
        type(str): The type of operator. Default None.
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1710
        Block.append_op or Block._prepend_op instead.
1711 1712 1713 1714

    Examples:
        .. code-block:: python

1715
            import paddle.fluid as fluid
1716
            cur_program = fluid.Program()
1717 1718 1719 1720 1721
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1722
    """
1723
    OP_WITHOUT_KERNEL_SET = {
1724 1725
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1726 1727
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1728
        'c_sync_comm_stream'
1729
    }
1730

Y
Yu Yang 已提交
1731 1732
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1733
                 desc,
Y
Yu Yang 已提交
1734 1735 1736
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1737
                 attrs=None):
L
lujun 已提交
1738
        if in_dygraph_mode():
1739 1740
            if type is None:
                raise ValueError(
1741
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1742
            self._type = type
M
minqiyang 已提交
1743
            self.attrs = attrs if attrs else {}
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1758
                )] = self.block.program._op_role
1759 1760 1761

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1762 1763
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1764 1765 1766 1767 1768 1769 1770 1771

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1772
                    "`type` to initialized an Operator can not be None.")
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1804
                        for index, arg in enumerate(in_args):
1805 1806 1807 1808
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1809
                            elif isinstance(arg, Variable):
1810
                                in_arg_names.append(cpt.to_text(arg.name))
1811
                            else:
1812 1813 1814 1815 1816 1817
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
                                    "but received : " % (in_proto.name, type),
                                    arg)
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1844
                        if not in_dygraph_mode():
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1864
    def _has_kernel(self, op_type):
1865 1866
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1867
    def to_string(self, throw_on_error):
1868
        """
1869 1870
        Get debug string.

1871
        Args:
1872 1873
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1874

1875 1876
        Returns:
            str: The debug string.
1877 1878

        """
1879
        protostr = self.desc.serialize_to_string()
1880
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1881 1882 1883 1884
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1885 1886 1887

    __repr__ = __str__

F
fengjiayi 已提交
1888 1889
    @property
    def type(self):
L
lujun 已提交
1890
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1891
            return self._type
1892 1893
        else:
            return self.desc.type()
F
fengjiayi 已提交
1894 1895

    def input(self, name):
1896
        """
1897
        Get the input arguments according to the input parameter name.
1898

1899 1900
        Args:
            name(str): The input parameter name.
1901

1902 1903 1904
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1905
        """
F
fengjiayi 已提交
1906 1907
        return self.desc.input(name)

W
Wu Yi 已提交
1908
    def _rename_input(self, old_name, new_name):
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1919
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1920

W
Wu Yi 已提交
1921
    def _rename_output(self, old_name, new_name):
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1932
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1933

F
fengjiayi 已提交
1934 1935 1936 1937
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1938 1939 1940 1941 1942 1943 1944 1945
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1946
    def output(self, name):
1947
        """
1948
        Get output arguments by the output parameter name.
1949

1950 1951
        Args:
            name(str): The output parameter name.
1952

1953 1954 1955
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1956
        """
F
fengjiayi 已提交
1957 1958 1959 1960 1961 1962
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1963 1964 1965 1966 1967 1968 1969 1970
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1971
    def has_attr(self, name):
1972
        """
1973 1974
        Whether this Operator has the attribute with name or not.

1975
        Args:
1976
            name(str): the attribute name.
1977

1978 1979
        Returns:
            bool: True if has this attribute.
1980 1981

        """
F
fengjiayi 已提交
1982 1983 1984
        return self.desc.has_attr(name)

    def attr_type(self, name):
1985
        """
1986
        Get the type of attribute by attribute's name.
1987

1988 1989
        Args:
            name(str): the attribute name.
1990

1991 1992
        Returns:
            core.AttrType: the attribute type.
1993
        """
F
fengjiayi 已提交
1994 1995
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1996
    def _set_attr(self, name, val):
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2007 2008
        self._update_desc_attr(name, val)

2009 2010 2011
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2023 2024
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2025 2026
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2027
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2028 2029 2030 2031
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2032
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2033

F
fengjiayi 已提交
2034 2035 2036 2037 2038
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2039
        """
2040 2041
        Get the attribute by name.

2042
        Args:
2043
            name(str): the attribute name.
2044

2045 2046
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2047 2048
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2049
        return self.desc.attr(name)
Y
Yu Yang 已提交
2050

W
Wu Yi 已提交
2051
    def _block_attr_id(self, name):
2052
        """
G
gongweibao 已提交
2053
        Get the block attribute's id by name.
2054

2055 2056
        Args:
            name(str): the attribute name.
2057

2058 2059
        Returns:
            int: the block index.
2060
        """
W
Wu Yi 已提交
2061
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2062

W
Wu Yi 已提交
2063
    def _block_attr(self, name):
G
gongweibao 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2074
        id = self._block_attr_id(name)
G
gongweibao 已提交
2075 2076 2077
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2078
    def _blocks_attr(self, name):
G
gongweibao 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2089
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2090 2091 2092 2093 2094
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2095
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2106
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2107

J
JiayiFeng 已提交
2108
    def all_attrs(self):
F
fengjiayi 已提交
2109
        """
2110 2111 2112
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2113
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2114 2115 2116 2117
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2118 2119
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2120
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2121 2122 2123
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2124
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2125 2126 2127 2128
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2129 2130
        return attr_map

Y
Yu Yang 已提交
2131

Y
Yu Yang 已提交
2132
class Block(object):
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2147
        use `Program._create_block()` to create a block.
2148 2149 2150 2151

    Examples:
        .. code-block:: python

2152 2153 2154
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2155 2156 2157 2158 2159 2160 2161 2162 2163
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2164
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2165
        self.desc = program.desc.block(idx)
2166
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2167
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2168
        self.program = program
2169
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2170

2171
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2172 2173
        return self.to_string(True)

F
fengjiayi 已提交
2174 2175
    def to_string(self, throw_on_error, with_details=False):
        """
2176 2177
        Get debug string.

F
fengjiayi 已提交
2178 2179
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2180
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2181
            with_details(bool): more details about variables and parameters
2182 2183
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2184

2185 2186
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2187 2188 2189 2190
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2191
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2192 2193
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2194
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2195
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2196
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2197
            for op in self.ops:
F
fengjiayi 已提交
2198 2199
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2200 2201 2202
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2203 2204
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2205 2206
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2207 2208 2209

    __repr__ = __str__

Y
Yu Yang 已提交
2210 2211
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2212
        return self.desc.parent
Y
Yu Yang 已提交
2213

Y
Yu Yang 已提交
2214 2215 2216 2217
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2218
    def _set_forward_block_idx(self, idx):
2219 2220 2221 2222 2223 2224 2225 2226 2227
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2228
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2229

Y
Yu Yang 已提交
2230 2231
    @property
    def idx(self):
Y
Yu Yang 已提交
2232
        return self.desc.id
Y
Yu Yang 已提交
2233

Q
Qiao Longfei 已提交
2234
    def var(self, name):
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2248
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2249 2250 2251
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2252 2253
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2254
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2255
        return v
Q
Qiao Longfei 已提交
2256

X
Xin Pan 已提交
2257
    def _find_var_recursive(self, name):
2258 2259 2260 2261 2262 2263 2264
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2265
            Variable: the Variable with the giving name. Or None if not found.
2266
        """
Y
Yu Yang 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2291
        return None
Y
Yu Yang 已提交
2292

X
Xin Pan 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2312

Q
Qiao Longfei 已提交
2313
    def all_parameters(self):
2314
        return list(self.iter_parameters())
2315

2316
    def iter_parameters(self):
M
minqiyang 已提交
2317
        return (item[1] for item in six.iteritems(self.vars)
2318
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2319

Y
Yu Yang 已提交
2320
    def create_var(self, *args, **kwargs):
2321
        var = Variable(block=self, *args, **kwargs)
2322 2323
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2324
        return var
Y
Yu Yang 已提交
2325

Q
Qiao Longfei 已提交
2326 2327 2328
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2329
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2330 2331
        """
        Rename variable in vars and ops' inputs and outputs
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2344
        """
M
minqiyang 已提交
2345 2346
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2347

T
typhoonzero 已提交
2348
        if not self.has_var(name):
2349
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2350 2351
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2352
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2353 2354 2355 2356 2357 2358 2359
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2360
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2361 2362 2363 2364
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2365
        orig_var_type = v.type
M
minqiyang 已提交
2366
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2367
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2368
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2369
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2370 2371 2372 2373
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2374
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2375 2376 2377 2378 2379 2380 2381
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2382
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2383 2384
            var = Variable(
                self,
T
typhoonzero 已提交
2385
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2386 2387 2388 2389
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2390
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2391 2392 2393
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2394
        self._sync_with_cpp()
2395
        return var
T
typhoonzero 已提交
2396

W
Wu Yi 已提交
2397 2398
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2399
        self.desc._remove_var(cpt.to_bytes(name))
2400 2401
        del self.vars[name]

Y
Yu Yang 已提交
2402 2403
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2404
        param = Parameter(global_block, *args, **kwargs)
2405
        if 'initializer' in kwargs:
2406 2407 2408 2409 2410

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2411 2412 2413 2414 2415
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2431
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2432
        return param
Y
Yu Yang 已提交
2433

Y
Yu Yang 已提交
2434
    def append_op(self, *args, **kwargs):
2435 2436 2437 2438 2439 2440
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2441
        if in_dygraph_mode():
2442 2443 2444
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2445 2446 2447 2448 2449
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2450

J
Jiabin Yang 已提交
2451 2452
            type = kwargs.get("type", None)

2453 2454 2455
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2456
                type=type,
M
minqiyang 已提交
2457 2458
                inputs=None,
                outputs=None,
2459
                attrs=attrs)
2460

M
minqiyang 已提交
2461 2462 2463
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2464
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2465 2466

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2467
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2468 2469
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2470
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2471
        else:
2472 2473 2474 2475 2476 2477 2478 2479 2480
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2481
            self.ops.append(op)
M
minqiyang 已提交
2482

2483 2484
        return op

W
Wu Yi 已提交
2485
    def _insert_op(self, index, *args, **kwargs):
2486 2487 2488 2489 2490 2491 2492 2493 2494
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2495 2496
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2497 2498 2499 2500
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2501
    def _remove_op(self, index):
2502 2503 2504 2505 2506 2507 2508 2509 2510
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2511 2512
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2513 2514
        del self.ops[index]

W
Wu Yi 已提交
2515
    def _slice_ops(self, start, end):
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2526
        return self.ops[start:end]
Y
Yancey1989 已提交
2527

W
Wu Yi 已提交
2528
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2529
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2530 2531
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2532
            op = Operator(
J
Jiabin Yang 已提交
2533
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2534

J
Jiabin Yang 已提交
2535
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2536
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2537 2538
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2539
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2540
        else:
2541 2542 2543 2544 2545 2546 2547 2548
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2549
            self.ops.insert(0, op)
2550

Y
Yu Yang 已提交
2551 2552
        return op

W
Wu Yi 已提交
2553
    def _sync_with_cpp(self):
2554
        """
2555 2556
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2557
        """
Q
Qiao Longfei 已提交
2558 2559 2560 2561 2562
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2563
        # sync variables removed from c++ end
2564
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2565
            if not self.desc.find_var(cpt.to_bytes(var)):
2566 2567
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2568
        # sync operators from cpp
2569 2570 2571 2572
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2589 2590 2591 2592 2593

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2594
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2595 2596 2597 2598 2599 2600 2601

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2615 2616 2617 2618
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2619
    def _copy_param_info_from(self, other):
2620
        """
2621 2622
        Copy the information of parameters from the other block.

2623
        Args:
2624 2625 2626 2627 2628
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2629 2630 2631 2632 2633

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2634 2635
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2636
        for p in other.iter_parameters():
2637 2638 2639
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2640
                raise ValueError("_copy_param_info_from should be invoked with "
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2653
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2654
                error_clip=p.error_clip,
2655 2656 2657
                name=v.name)
            self.vars[new_p.name] = new_p

2658
    def _clone_variable(self, var, force_persistable=True):
2659 2660
        """
        Clone a variable into current block.
2661

2662 2663
        Args:
            var: the variable to be cloned.
2664 2665 2666
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2667 2668

        Returns:
2669
            Variable: the new  variable cloned from 'var' in current block.
2670 2671
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2672 2673 2674 2675 2676
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2677 2678
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2679
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2680 2681 2682 2683 2684 2685
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2686
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2687 2688
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2689 2690 2691 2692 2693 2694 2695
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2696
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2697 2698
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2699
        return ret_var
2700

Y
Yu Yang 已提交
2701

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2797
    def remove_input_by_id(self, node_id):
2798 2799 2800 2801 2802 2803
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2804
        self.node.remove_input(node_id)
2805

2806
    def remove_input(self, node):
2807 2808 2809 2810
        """
        Remove a node from inputs.

        Args:
2811
            node(IrNode): the node being removed.
2812
        """
2813
        self.node.remove_input(node.node)
2814

2815
    def append_input(self, node):
2816 2817 2818 2819
        """
        Append a node in inputs.

        Args:
2820
            node(IrNode): the node being appended.
2821
        """
2822
        self.node.append_input(node.node)
2823 2824 2825 2826 2827 2828 2829 2830

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2831
    def remove_output_by_id(self, node_id):
2832 2833 2834 2835 2836 2837
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2838
        self.node.remove_output(node_id)
2839

2840
    def remove_output(self, node):
2841 2842 2843 2844
        """
        Remove a node from outputs.

        Args:
2845
            node(IrNode): the node being removed.
2846
        """
2847
        self.node.remove_output(node.node)
2848

2849
    def append_output(self, node):
2850 2851 2852 2853
        """
        Append a node in outputs.

        Args:
2854
            node(IrNode): the node being appended.
2855
        """
2856
        self.node.append_output(node.node)
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3074
                all(isinstance(v, Block) for v in val):
3075 3076
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3077
                isinstance(val, core.ProgramDesc):
3078 3079 3080 3081
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3125 3126
class IrGraph(object):
    """
3127
    Python IrGraph. Beneath it is a core.Graph, which is used for
3128
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3129 3130
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3131 3132 3133 3134
    """

    def __init__(self, graph, for_test=False):
        """
3135 3136
        Construct an IrGraph using core.Graph.

3137 3138 3139 3140 3141 3142 3143 3144 3145
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3146 3147 3148 3149
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3150 3151 3152
        Warns:
            The method only clones the graph structure, not its attributes.

3153 3154 3155
        Returns:
            IrGraph: A new and duplicated graph.
        """
3156
        g = self.graph.clone()
3157 3158
        return IrGraph(g, self._for_test)

3159
    def is_test(self):
3160 3161 3162
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3163 3164
        return self._for_test

W
WangZhen 已提交
3165
    def all_nodes(self):
3166 3167 3168
        """
        Return all nodes included in the graph as a set.
        """
3169
        return {IrNode(node) for node in self.graph.nodes()}
3170

3171
    def all_var_nodes(self):
3172 3173 3174
        """
        Return all variable nodes included in the graph as a set.
        """
3175
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3176

3177
    def all_persistable_nodes(self):
3178 3179 3180
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3181 3182 3183 3184 3185
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3186
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3187

3188
    def all_op_nodes(self):
3189 3190 3191
        """
        Return all operator nodes included in the graph as a set.
        """
3192
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3193

3194
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3206
            IrVarNode: the created persistable variable node.
3207
        """
3208 3209 3210 3211 3212
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3213
        return IrVarNode(self.graph.create_var_node(var_desc))
3214 3215

    def create_var_node(self, name, var_type, shape, var_dtype):
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3227
            IrVarNode: the created variable node.
3228 3229
        """

3230 3231 3232 3233
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3234
        return IrVarNode(self.graph.create_var_node(var_desc))
3235 3236

    def create_var_node_from_desc(self, var_desc):
3237 3238 3239 3240 3241 3242 3243 3244
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3245
            IrVarNode: the created variable node.
3246
        """
3247
        return IrVarNode(self.graph.create_var_node(var_desc))
3248 3249

    def create_op_node(self, op_type, attrs, inputs, outputs):
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3260
            IrOpNode: the created operator node.
3261
        """
3262 3263
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3264
        for attr, value in six.iteritems(attrs):
3265
            self._update_desc_attr(op_desc, attr, value)
3266
        for input_name, var_nodes in six.iteritems(inputs):
3267 3268 3269 3270
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3271
        for output_name, var_nodes in six.iteritems(outputs):
3272 3273 3274 3275
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3276
        return IrOpNode(self.graph.create_op_node(op_desc))
3277 3278

    def create_op_node_from_desc(self, op_desc):
3279 3280 3281 3282 3283 3284 3285
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3286
            IrOpNode: the created operator node.
3287
        """
3288
        return IrOpNode(self.graph.create_op_node(op_desc))
3289 3290

    def update_input_link(self, old_input_node, new_input_node, op_node):
3291 3292 3293 3294
        """
        Update the input's link of a operator node.

        Args:
3295 3296 3297
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3298
        """
3299
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3300 3301
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3302 3303 3304 3305
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3306
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3307

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3326
    def link_to(self, node_in, node_out):
3327 3328 3329 3330
        """
        Connect two nodes.

        Args:
3331 3332
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3333
        """
3334
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3335
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3336 3337
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3338 3339

    def safe_remove_nodes(self, remove_nodes):
3340 3341 3342 3343 3344 3345 3346
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3347
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3348 3349 3350 3351
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3352 3353
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3354

Z
Zhen Wang 已提交
3355 3356 3357 3358 3359 3360 3361 3362
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3363
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3364 3365 3366 3367
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3368
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3369 3370 3371
                        ]
                    else:
                        var_nodes[each_var_name].append(
3372 3373
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3374 3375
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3376
    def has_circle(self):
3377 3378 3379 3380 3381 3382
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3383 3384 3385
        return core.has_circle(self.graph)

    def graph_num(self):
3386 3387 3388 3389 3390 3391
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3392 3393 3394
        return core.graph_num(self.graph)

    def topology_sort(self):
3395 3396 3397 3398 3399 3400
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3401
            list(IrNode): nodes in topology order.
3402
        """
3403
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3404
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3405 3406

    def build_adjacency_list(self):
3407 3408 3409 3410
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3411
            dict{IrNode: set(IrNode)}: the adjacency list.
3412
        """
3413 3414 3415 3416 3417
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3418

3419 3420 3421 3422 3423 3424 3425 3426
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3427
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3428 3429 3430 3431 3432
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3433 3434 3435
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3436
                                          + ' -o ' + pdf_save_path, shell=True)
3437 3438 3439 3440 3441
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3442
        remove_ctr_vars = set()
3443
        if remove_ctr_var:
3444
            for node in self.all_var_nodes():
3445 3446 3447
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3448 3449
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3450 3451
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3452 3453 3454 3455 3456 3457
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3458 3459 3460 3461
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3462 3463
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3464 3465 3466 3467 3468 3469 3470
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3471 3472 3473
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3474
        WARN: When the graph includes backward operator nodes, the
3475 3476 3477 3478 3479 3480
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3481
        convert_pass = core.get_pass('graph_to_program_pass')
3482 3483
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3484 3485 3486 3487
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3515
class Program(object):
D
dzhwinter 已提交
3516
    """
3517 3518
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3519
    it will contain nested block.
3520

J
Jiabin Yang 已提交
3521 3522 3523
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3524

J
Jiabin Yang 已提交
3525
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3526
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3527 3528 3529 3530 3531 3532 3533
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3534 3535 3536 3537
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3538 3539

    Returns:
J
Jiabin Yang 已提交
3540
        Program: An empty Program.
D
dzhwinter 已提交
3541 3542

    Examples:
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3556 3557 3558

    """

3559 3560
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3561 3562
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3563
        self._seed = 0
Y
yuyang18 已提交
3564
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3565
        self.__op_role_var = []
T
tangwei12 已提交
3566

3567 3568
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3569
        self._is_distributed = False
3570
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3571
        self._is_chief = False
3572 3573 3574
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3575
        self._endpoints = []
3576 3577 3578
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3579
        self._trainers_endpoints = []
3580
        # the distributed lookup table names
T
tangwei12 已提交
3581
        self._distributed_lookup_table = None
3582 3583 3584

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3585 3586
        self._use_lamb = False

3587 3588 3589
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3590

3591 3592 3593
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3594
        self._program_config = None
3595

H
hutuxian 已提交
3596 3597 3598
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3599 3600 3601
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3602
    @property
3603
    def _op_role(self):
Y
yuyang18 已提交
3604 3605 3606 3607 3608 3609 3610 3611
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3612
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3613 3614 3615 3616
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3617 3618
        return self._current_role

3619 3620
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3621 3622 3623
        self._current_role = role

    @property
3624
    def _op_role_var(self):
Y
yuyang18 已提交
3625
        """
3626
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3627

3628
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3629 3630 3631

        Notes: This is a very low-level API. Users should not use it directly.
        """
3632
        return self.__op_role_var
Y
yuyang18 已提交
3633

3634 3635 3636 3637 3638 3639 3640 3641 3642
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3643
    @signature_safe_contextmanager
W
Wu Yi 已提交
3644
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3645 3646 3647 3648 3649 3650 3651
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3652
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3653 3654 3655

        Examples:

3656
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3657
            >>> p, g = backward(...)
W
Wu Yi 已提交
3658
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3659 3660
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3661
        tmp_role = self._current_role
3662
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3663

Y
yuyang18 已提交
3664 3665
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3666
        self.__op_role_var = [
3667 3668 3669
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3670
        yield
3671
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3672
        self._current_role = tmp_role
Y
Yu Yang 已提交
3673

S
rename  
sneaxiy 已提交
3674
    @signature_safe_contextmanager
X
Xin Pan 已提交
3675
    def _lr_schedule_guard(self, is_with_opt=False):
3676 3677 3678 3679 3680 3681 3682
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3683 3684 3685 3686
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3687 3688 3689

        Examples:

3690
            >>> import paddle.fluid as fluid
3691 3692 3693 3694
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3695 3696

        tmp_role = self._current_role
3697
        tmp_var = self.__op_role_var
3698

3699 3700
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3701 3702
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3703
        # TODO(typhoonzero): how to set target learning rate var
3704
        self.__op_role_var = []
3705
        yield
3706
        self.__op_role_var = tmp_var
3707
        self._current_role = tmp_role
3708

3709
    def __str__(self):
Y
yuyang18 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3719 3720
        return self.to_string(True)

F
fengjiayi 已提交
3721 3722 3723
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3724

J
Jiabin Yang 已提交
3725 3726 3727
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3728

J
Jiabin Yang 已提交
3729
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3730

H
haowang101779990 已提交
3731
        Returns:
J
Jiabin Yang 已提交
3732
            str: The debug string describe current Program.
Y
yuyang18 已提交
3733 3734

        Raises:
J
Jiabin Yang 已提交
3735
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3736

3737 3738 3739 3740 3741 3742 3743
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
J
Jiabin Yang 已提交
3744 3745 3746
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3756 3757
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3758 3759
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3760

W
Wu Yi 已提交
3761
    def _get_desc(self):
Y
yuyang18 已提交
3762 3763 3764 3765 3766 3767 3768
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3769 3770
        return self.desc

X
version  
Xin Pan 已提交
3771 3772 3773
    def _version(self):
        return self.desc._version()

3774
    @dygraph_not_support
3775
    def clone(self, for_test=False):
Y
yuyang18 已提交
3776
        """
3777
        **Notes**:
J
Jiabin Yang 已提交
3778 3779 3780 3781
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3782
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3783

3784 3785
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3786

3787

J
Jiabin Yang 已提交
3788
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3789 3790 3791
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3792

Y
yuyang18 已提交
3793
        * Set for_test to False when we want to clone the program for training.
3794
        * Set for_test to True when we want to clone the program for testing.
3795 3796
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3797
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3798

J
Jiabin Yang 已提交
3799 3800
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3801

J
Jiabin Yang 已提交
3802 3803 3804 3805
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3806

J
Jiabin Yang 已提交
3807
        Args:
3808

J
Jiabin Yang 已提交
3809
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3810

J
Jiabin Yang 已提交
3811 3812
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3813

Y
yuyang18 已提交
3814 3815 3816

        Examples:

J
Jiabin Yang 已提交
3817
        **Notes: The Program's order maybe different after** :code:`clone` **and
3818
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3819
        example we give you an simple method** :code:`print_prog(program)` **to
3820
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3821
        after** :code:`clone`:
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3859 3860 3861

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3929 3930
        """
        if for_test:
3931
            if self._appending_grad_times > 0:
3932 3933 3934 3935 3936 3937 3938
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3939 3940 3941
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3942
        else:
3943
            p = Program()
G
gongweibao 已提交
3944 3945
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3946
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3947 3948 3949
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3950 3951

            p._current_role = self._current_role
3952
            p.__op_role_var = self.__op_role_var
3953
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3954

W
Wu Yi 已提交
3955
            p._sync_with_cpp()
3956

W
Wu Yi 已提交
3957
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3958
        p._copy_data_info_from(self)
3959
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3960
        return p
3961

3962
    def _prune(self, targets):
Y
yuyang18 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3976 3977 3978 3979
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4015
        """
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4033 4034
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4035 4036
        if not isinstance(targets, list):
            targets = [targets]
4037 4038 4039 4040 4041 4042

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4043 4044 4045 4046
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4047 4048
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
4049
                    # and we need to find the current op that generate this
4050 4051 4052 4053 4054 4055 4056 4057
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4058
                    t = t.op
4059 4060 4061 4062
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4063
                else:
4064 4065
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4066 4067 4068

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4069
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4070 4071 4072
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4073
        res._sync_with_cpp()
4074 4075
        return res

X
Xin Pan 已提交
4076
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4077
        """
F
fengjiayi 已提交
4078 4079 4080 4081 4082
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4083
        3. change the :code:`is_test`
Y
yuyang18 已提交
4084 4085 4086
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4087
        Args:
X
Xin Pan 已提交
4088 4089
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4090

Y
yuyang18 已提交
4091 4092 4093 4094 4095 4096
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4097
        res = Program()
4098
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4099 4100 4101 4102

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4103
        if prune_read_op:
4104 4105 4106 4107 4108 4109 4110 4111 4112
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4113
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4114 4115

        # change all `is_test` attributes to True
M
minqiyang 已提交
4116
        for i in six.moves.range(res.desc.num_blocks()):
4117
            block = res.desc.block(i)
M
minqiyang 已提交
4118
            for j in six.moves.range(block.op_size()):
4119 4120
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4121
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4122 4123 4124
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4125
        res._sync_with_cpp()
4126 4127
        return res

4128 4129
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4130
        """
J
Jiabin Yang 已提交
4131 4132 4133 4134
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4135

4136 4137
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4138

J
Jiabin Yang 已提交
4139
        Args:
Y
yuyang18 已提交
4140

J
Jiabin Yang 已提交
4141
            binary_str_type (str): the binary prootbuf string.
4142

J
Jiabin Yang 已提交
4143 4144
        Returns:
            Program: A deserialized Program.
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4167
        """
4168 4169
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4170
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4171
        p._sync_with_cpp()
4172
        return p
Y
Yu Yang 已提交
4173

4174
    @staticmethod
4175
    def _construct_from_desc(desc):
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4191 4192
    @property
    def random_seed(self):
Y
yuyang18 已提交
4193
        """
J
Jiabin Yang 已提交
4194
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4195 4196
        the random seed from random device.

J
Jiabin Yang 已提交
4197 4198 4199 4200
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4201

4202 4203 4204 4205 4206 4207 4208 4209

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4210 4211 4212
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4213 4214
                print(random_seed)
                prog.random_seed = 1
4215 4216
                z_var = fluid.layers.dropout(x_var, 0.7)

4217
                print(prog.random_seed)
Y
yuyang18 已提交
4218
        """
D
dzhwinter 已提交
4219 4220
        return self._seed

Q
qiaolongfei 已提交
4221 4222
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4223
        """
4224 4225
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4226 4227 4228 4229
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4230

4231 4232 4233 4234 4235 4236 4237 4238 4239

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4240 4241


Y
yuyang18 已提交
4242
        """
Q
qiaolongfei 已提交
4243 4244
        return self.desc.num_blocks()

D
dzhwinter 已提交
4245 4246 4247 4248 4249 4250
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4251
    def __repr__(self):
4252
        return self.__str__()
4253

Y
Yu Yang 已提交
4254
    def global_block(self):
Y
yuyang18 已提交
4255
        """
J
Jiabin Yang 已提交
4256 4257
        **Notes**:
            **This API has no effect in Dygraph mode**
4258 4259 4260

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4261 4262
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4263

4264 4265 4266 4267 4268 4269 4270 4271 4272

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4273

Y
yuyang18 已提交
4274
        """
Y
Yu Yang 已提交
4275 4276
        return self.blocks[0]

Q
Qiao Longfei 已提交
4277
    def block(self, index):
Y
yuyang18 已提交
4278
        """
J
Jiabin Yang 已提交
4279 4280
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4281

4282 4283
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4284 4285
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4286

J
Jiabin Yang 已提交
4287 4288
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4289 4290 4291 4292 4293 4294 4295 4296 4297

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4298
        """
Q
Qiao Longfei 已提交
4299 4300
        return self.blocks[index]

Y
Yu Yang 已提交
4301
    def current_block(self):
Y
yuyang18 已提交
4302
        """
J
Jiabin Yang 已提交
4303 4304
        **Notes**:
            **This API has no effect in Dygraph mode**
4305

J
Jiabin Yang 已提交
4306 4307
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4308

J
Jiabin Yang 已提交
4309 4310
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4311

4312 4313 4314 4315 4316 4317 4318 4319
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4320
        """
Y
Yu Yang 已提交
4321 4322
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4323
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4324 4325 4326 4327 4328
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4329

Y
yuyang18 已提交
4330 4331 4332 4333 4334
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4335
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4336 4337 4338
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4339 4340 4341 4342
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4343
    def _rollback(self):
Y
yuyang18 已提交
4344 4345 4346 4347 4348
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4349 4350
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4351
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4362 4363 4364
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4365
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4366

W
Wu Yi 已提交
4367
    def _copy_param_info_from(self, other):
4368
        """
4369
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4370

Y
yuyang18 已提交
4371 4372 4373
        Notes: This is a very low level API. Users should not invoke it
        directly.

4374 4375 4376 4377 4378 4379 4380
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4381
            raise TypeError("_copy_param_info_from should be invoked with "
4382 4383 4384
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4385
            raise ValueError("_copy_param_info_from should be invoked with two "
4386
                             "program, with represent the same topology")
W
Wu Yi 已提交
4387
        self.global_block()._copy_param_info_from(other.global_block())
4388

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4404
        self._parameters_on_pservers = other._parameters_on_pservers
4405
        self._endpoints = other._endpoints
4406
        self._ps_endpoint = other._ps_endpoint
4407 4408
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4409
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4410 4411
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4412

Y
yuyang18 已提交
4413 4414 4415
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4416 4417 4418 4419 4420 4421 4422
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4423
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4424 4425 4426
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4427
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4428
                             "program, with represent the same topology")
4429
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4430 4431
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4432 4433
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4434

4435
    @dygraph_not_support
4436
    def list_vars(self):
Y
yuyang18 已提交
4437
        """
J
Jiabin Yang 已提交
4438
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4439

J
Jiabin Yang 已提交
4440 4441
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4453
        """
4454
        for each_block in self.blocks:
4455
            for each_var in list(each_block.vars.values()):
4456 4457
                yield each_var

Y
Yu Yang 已提交
4458

Y
Yu Yang 已提交
4459
class Parameter(Variable):
4460
    """
4461
    Parameter is derived from Variable. A parameter is a persistable
4462
    Variable, and will be updated by optimizers after each iteration.
4463
    The training of a neural network is essentially the updating of
4464 4465
    its parameters.

4466
    Relative to a general Variable, a Parameter has several its own
4467 4468
    member variables:

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4481 4482
    """

Y
Yu Yang 已提交
4483
    def __init__(self, block, shape, dtype, **kwargs):
4484 4485 4486 4487 4488
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4489
        if len(shape) == 0:
4490 4491
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4492 4493 4494

        for each in shape:
            if each < 0:
4495 4496 4497
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4498 4499 4500

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4501 4502 4503 4504
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4505 4506
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4507
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4508

W
wanghaoshuang 已提交
4509
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4510

4511 4512
        self.is_distributed = False

F
fengjiayi 已提交
4513 4514 4515
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4516 4517 4518
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4519

F
update  
fengjiayi 已提交
4520 4521 4522 4523 4524 4525 4526 4527
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4528 4529 4530 4531 4532 4533 4534 4535 4536
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4537 4538 4539 4540 4541 4542
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4543
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4544
            for attr_name in additional_attr:
4545 4546
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4547 4548
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4549 4550 4551 4552
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4553

Y
Yu Yang 已提交
4554
# program is a global instance.
Y
Yu Yang 已提交
4555 4556
_main_program_ = Program()
_startup_program_ = Program()
4557

4558

4559
def default_startup_program():
Y
Yu Yang 已提交
4560
    """
Y
yuyang18 已提交
4561 4562
    Get default/global startup program.

J
Jiabin Yang 已提交
4563 4564 4565
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4566 4567 4568
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4569
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4570

J
Jiabin Yang 已提交
4571
    Returns: current default startup :ref:`api_fluid_Program`
4572

J
Jiabin Yang 已提交
4573
    Returns type: :ref:`api_fluid_Program`
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4589
    """
Y
Yu Yang 已提交
4590
    return _startup_program_
4591

4592

4593
def default_main_program():
Y
Yu Yang 已提交
4594
    """
4595 4596 4597 4598 4599
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4600

4601 4602
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4603
    :code:`default_main_program` when the program is not specified.
4604

4605 4606
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4607
    Returns:
4608
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4609 4610 4611 4612 4613

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4614

4615
            # Sample Network:
4616 4617
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4637
            #print the number of blocks in the program, 1 in this case
4638
            print(fluid.default_main_program().num_blocks)
4639 4640

            #print the description of variable 'image'
4641
            print(fluid.default_main_program().blocks[0].var('image'))
4642

Y
Yu Yang 已提交
4643
    """
Y
Yu Yang 已提交
4644
    return _main_program_
Y
Yu Yang 已提交
4645 4646 4647 4648 4649


def switch_main_program(program):
    """
    Switch the main program to a new program.
4650

Y
Yu Yang 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4665
    Switch the startup program to a new program
Y
Yu Yang 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4678
@signature_safe_contextmanager
Y
Yu Yang 已提交
4679 4680
def program_guard(main_program, startup_program=None):
    """
4681 4682
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4683
    variables to the new main programs.
4684

G
guofei 已提交
4685 4686 4687 4688 4689 4690 4691
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4692
    Examples:
4693 4694 4695
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4696

4697 4698 4699
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4700
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4701
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4702 4703 4704

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4705

Y
Yu Yang 已提交
4706
    Examples:
4707
       .. code-block:: python
Y
yuyang18 已提交
4708

4709 4710 4711 4712 4713
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4714 4715
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4728 4729


W
Wu Yi 已提交
4730
def _get_var(name, program=None):
X
xuwei06 已提交
4731
    """
Y
yuyang18 已提交
4732
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4733

X
xuwei06 已提交
4734 4735 4736
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4737
        If None, default_global_program() will be used.
X
xuwei06 已提交
4738 4739 4740 4741 4742 4743 4744

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4745
    assert isinstance(program, Program)
X
xuwei06 已提交
4746 4747

    return program.global_block().var(name)
4748 4749


S
rename  
sneaxiy 已提交
4750
@signature_safe_contextmanager
L
lujun 已提交
4751 4752 4753 4754
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4755

4756
    yield
P
Paddle CI 已提交
4757

L
lujun 已提交
4758
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4759 4760


S
rename  
sneaxiy 已提交
4761
@signature_safe_contextmanager
L
lujun 已提交
4762 4763 4764 4765
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4766

4767
    yield
M
minqiyang 已提交
4768

L
lujun 已提交
4769
    _dygraph_current_expected_place_ = tmp_place
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()