Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
af9dcb2d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
af9dcb2d
编写于
6月 24, 2021
作者:
C
CtfGo
提交者:
GitHub
6月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
supplet several interface of static Variable to consistent with dygraph Tensor (#33330)
As the title
上级
ba7e2a9f
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
387 addition
and
28 deletion
+387
-28
paddle/fluid/operators/share_data_op.cc
paddle/fluid/operators/share_data_op.cc
+72
-0
paddle/fluid/operators/share_data_op.cu
paddle/fluid/operators/share_data_op.cu
+25
-0
paddle/fluid/operators/share_data_op.h
paddle/fluid/operators/share_data_op.h
+41
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+53
-16
python/paddle/fluid/layers/math_op_patch.py
python/paddle/fluid/layers/math_op_patch.py
+32
-4
python/paddle/fluid/tests/unittests/test_detach.py
python/paddle/fluid/tests/unittests/test_detach.py
+0
-6
python/paddle/fluid/tests/unittests/test_math_op_patch.py
python/paddle/fluid/tests/unittests/test_math_op_patch.py
+22
-1
python/paddle/fluid/tests/unittests/test_share_data_op.py
python/paddle/fluid/tests/unittests/test_share_data_op.py
+87
-0
python/paddle/fluid/tests/unittests/test_variable.py
python/paddle/fluid/tests/unittests/test_variable.py
+54
-1
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/operators/share_data_op.cc
0 → 100644
浏览文件 @
af9dcb2d
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/share_data_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
ShareDataOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"ShareData"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"ShareData"
);
auto
in_type
=
ctx
->
GetInputsVarType
(
"X"
)[
0
];
auto
out_type
=
ctx
->
GetOutputsVarType
(
"Out"
)[
0
];
PADDLE_ENFORCE_EQ
(
in_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
||
in_type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
,
true
,
platform
::
errors
::
InvalidArgument
(
"Type of Variable[X] must be LoDTensor or SelectedRows!"
));
PADDLE_ENFORCE_EQ
(
in_type
,
out_type
,
platform
::
errors
::
InvalidArgument
(
"The type of input (X) and output (Out) are inconsistent."
));
ctx
->
ShareDim
(
"X"
,
"Out"
);
}
};
class
ShareDataOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), The input tensor of share_data op"
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of share_data op"
);
AddComment
(
R"DOC(
ShareData Operator.
Return a tensor $Out$ that shares data with the input tensor $X$ and without tensor copy.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
share_data
,
ops
::
ShareDataOp
,
ops
::
ShareDataOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
share_data
,
ops
::
ShareDataKernel
<
bool
>
,
ops
::
ShareDataKernel
<
int
>
,
ops
::
ShareDataKernel
<
int8_t
>
,
ops
::
ShareDataKernel
<
uint8_t
>
,
ops
::
ShareDataKernel
<
paddle
::
platform
::
float16
>
,
ops
::
ShareDataKernel
<
int64_t
>
,
ops
::
ShareDataKernel
<
float
>
,
ops
::
ShareDataKernel
<
double
>
)
paddle/fluid/operators/share_data_op.cu
0 → 100644
浏览文件 @
af9dcb2d
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/share_data_op.h"
REGISTER_OP_CUDA_KERNEL
(
share_data
,
paddle
::
operators
::
ShareDataKernel
<
bool
>
,
paddle
::
operators
::
ShareDataKernel
<
int
>
,
paddle
::
operators
::
ShareDataKernel
<
int8_t
>
,
paddle
::
operators
::
ShareDataKernel
<
uint8_t
>
,
paddle
::
operators
::
ShareDataKernel
<
paddle
::
platform
::
float16
>
,
paddle
::
operators
::
ShareDataKernel
<
int64_t
>
,
paddle
::
operators
::
ShareDataKernel
<
float
>
,
paddle
::
operators
::
ShareDataKernel
<
double
>
);
paddle/fluid/operators/share_data_op.h
0 → 100644
浏览文件 @
af9dcb2d
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ShareDataKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_var
=
ctx
.
InputVar
(
"X"
);
auto
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
if
(
in_var
->
IsType
<
framework
::
LoDTensor
>
())
{
const
auto
&
origin_tensor
=
in_var
->
Get
<
framework
::
LoDTensor
>
();
auto
*
detach_tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
detach_tensor
->
ShareDataWith
(
origin_tensor
);
}
else
{
const
auto
&
origin_selected_rows
=
in_var
->
Get
<
framework
::
SelectedRows
>
();
auto
*
detach_selected_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
detach_selected_rows
->
mutable_value
()
->
ShareDataWith
(
origin_selected_rows
.
value
());
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/framework.py
浏览文件 @
af9dcb2d
...
...
@@ -947,35 +947,43 @@ class Variable(object):
self
.
_stop_gradient
=
stop_gradient
self
.
is_data
=
is_data
@
fake_interface_only
def
detach
(
self
):
"""
**Notes**:
**This API is ONLY available in Dygraph mode**
Returns a new Variable, detached from the current graph.
It will share data with origin Variable and without tensor copy.
In addition, the detached Variable doesn't provide gradient propagation.
Returns:
( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph import Linear
import numpy as np
import paddle
data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
with fluid.dygraph.guard():
linear = Linear(32, 64)
data = to_variable(data)
x = linear(data)
y = x.detach()
paddle.enable_static()
# create a static Variable
x = paddle.static.data(name='x', shape=[3, 2, 1])
# create a detached Variable
y = x.detach()
"""
pass
assert
self
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
or
\
self
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
\
"only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
output
=
self
.
block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
"detach_"
+
self
.
name
),
dtype
=
self
.
dtype
,
type
=
self
.
type
,
persistable
=
self
.
persistable
,
stop_gradient
=
True
)
self
.
block
.
append_op
(
type
=
'share_data'
,
inputs
=
{
'X'
:
[
self
]},
outputs
=
{
'Out'
:
[
output
]})
return
output
@
fake_interface_only
def
numpy
(
self
):
...
...
@@ -1810,6 +1818,35 @@ class Variable(object):
t
.
set
(
value
,
place
)
def
size
(
self
):
"""
Returns the number of elements for current Variable, which is a int64 Variable with shape [1]
Returns:
Variable: the number of elements for current Variable
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
# create a static Variable
x = paddle.static.data(name='x', shape=[3, 2, 1])
# get the number of elements of the Variable
y = x.size()
"""
output
=
self
.
block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
self
.
name
+
"_size"
),
dtype
=
core
.
VarDesc
.
VarType
.
INT64
)
self
.
block
.
append_op
(
type
=
'size'
,
inputs
=
{
'Input'
:
[
self
]},
outputs
=
{
'Out'
:
[
output
]})
return
output
def
get_all_op_protos
():
"""
...
...
python/paddle/fluid/layers/math_op_patch.py
浏览文件 @
af9dcb2d
...
...
@@ -45,6 +45,7 @@ EXPRESSION_MAP = {
"__rpow__"
:
"A **= B"
,
"__floordiv__"
:
"A //B"
,
"__mod__"
:
"A % B"
,
"__matmul__"
:
"A @ B"
,
"__eq__"
:
"A == B"
,
"__ne__"
:
"A != B"
,
"__lt__"
:
"A < B"
,
...
...
@@ -195,6 +196,28 @@ def monkey_patch_variable():
def
_neg_
(
var
):
return
_scalar_op_
(
var
,
-
1.0
,
0.0
)
@
property
def
_ndim_
(
self
):
"""
Returns the dimension of current Variable
Returns:
the dimension
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
# create a static Variable
x = paddle.static.data(name='x', shape=[3, 2, 1])
# print the dimension of the Variable
print(x.ndim)
"""
return
len
(
self
.
shape
)
def
_scalar_add_
(
var
,
value
):
return
_scalar_op_
(
var
,
1.0
,
value
)
...
...
@@ -228,9 +251,9 @@ def monkey_patch_variable():
other_var
=
float
(
other_var
)
# division is a special case
# NOTE(chenweihang): because we cast tensor to float32 instead float64,
# the division result can only guarantee the numerical accuracy of 6 digits
# after the decimal point. The result of numpy calculation is of float64 type,
# so the calculation result here and the calculation result of numpy are
# the division result can only guarantee the numerical accuracy of 6 digits
# after the decimal point. The result of numpy calculation is of float64 type,
# so the calculation result here and the calculation result of numpy are
# different after 6 decimal point. If necessary, we can also use float64 here.
# torch's behavior here is consistent with ours
if
op_type
==
'elementwise_div'
and
self
.
dtype
in
_supported_int_dtype_
:
...
...
@@ -238,7 +261,7 @@ def monkey_patch_variable():
# here use `scale` replace `elementwise` to get better performance
# but only +, -, * can use this method
# NOTE(chentianyu03): / can not use `scale` method,because the result of
# `scale` method (self*(1/other_var)) do not exactly equal with the result
# `scale` method (self*(1/other_var)) do not exactly equal with the result
# of `elementwise_div` method.
if
scalar_method
is
not
None
:
return
scalar_method
(
self
,
other_var
)
...
...
@@ -321,6 +344,9 @@ def monkey_patch_variable():
# b=-a
(
'__neg__'
,
_neg_
),
(
'astype'
,
astype
),
(
'dim'
,
lambda
x
:
len
(
x
.
shape
)),
(
'ndimension'
,
lambda
x
:
len
(
x
.
shape
)),
(
'ndim'
,
_ndim_
),
(
'__add__'
,
_binary_creator_
(
'__add__'
,
'elementwise_add'
,
False
,
_scalar_add_
)),
# a+b == b+a. Do not need to reverse explicitly
...
...
@@ -347,6 +373,8 @@ def monkey_patch_variable():
'elementwise_floordiv'
,
False
,
None
)),
(
'__mod__'
,
_binary_creator_
(
'__mod__'
,
'elementwise_mod'
,
False
,
None
)),
(
'__matmul__'
,
_binary_creator_
(
'__matmul__'
,
"matmul_v2"
,
False
,
None
)),
# for logical compare
(
'__eq__'
,
_binary_creator_
(
'__eq__'
,
'equal'
,
False
,
None
)),
(
'__ne__'
,
_binary_creator_
(
'__ne__'
,
'not_equal'
,
False
,
None
)),
...
...
python/paddle/fluid/tests/unittests/test_detach.py
浏览文件 @
af9dcb2d
...
...
@@ -149,12 +149,6 @@ class Test_Detach(unittest.TestCase):
array_detach_multi
=
self
.
detach_multi
()
assert
np
.
array_equal
(
array_no_detach_single
,
array_detach_multi
)
def
test_detach_exception
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
3
,
4
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
10
,
bias_attr
=
True
)
with
self
.
assertRaises
(
AssertionError
):
y_detach
=
y
.
detach
()
class
TestInplace
(
unittest
.
TestCase
):
def
test_forward_version
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_math_op_patch.py
浏览文件 @
af9dcb2d
...
...
@@ -271,7 +271,6 @@ class TestMathOpPatches(unittest.TestCase):
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
.
astype
(
'float32'
),
b_np
))
@
prog_scope
()
def
test_bitwise_and
(
self
):
x_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
y_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
...
...
@@ -336,6 +335,28 @@ class TestMathOpPatches(unittest.TestCase):
fetch_list
=
[
z
])
self
.
assertTrue
(
np
.
array_equal
(
out
[
0
],
out_np
))
@
prog_scope
()
def
test_ndim
(
self
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
10
,
1
])
self
.
assertEqual
(
a
.
dim
(),
2
)
self
.
assertEqual
(
a
.
ndimension
(),
2
)
self
.
assertEqual
(
a
.
ndim
,
2
)
@
prog_scope
()
def
test_matmul
(
self
):
a
=
paddle
.
static
.
data
(
name
=
'a'
,
shape
=
[
2
,
3
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
'b'
,
shape
=
[
3
,
5
],
dtype
=
'float32'
)
c
=
a
@
b
# __matmul__
a_np
=
numpy
.
random
.
uniform
(
-
1
,
1
,
size
=
[
2
,
3
]).
astype
(
'float32'
)
b_np
=
numpy
.
random
.
uniform
(
-
1
,
1
,
size
=
[
3
,
5
]).
astype
(
'float32'
)
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
c_np
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
},
fetch_list
=
[
c
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
@
b_np
,
c_np
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_share_data_op.py
0 → 100644
浏览文件 @
af9dcb2d
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
core
from
paddle.fluid.op
import
Operator
class
TestShareDataOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"share_data"
input
=
np
.
random
.
rand
(
2
,
3
,
5
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
}
self
.
outputs
=
{
'Out'
:
input
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestShareDataOpOnDifferentPlaces
(
unittest
.
TestCase
):
def
get_places
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
def
check_with_tensor
(
self
,
place
):
scope
=
core
.
Scope
()
np_array
=
np
.
random
.
rand
(
2
,
3
,
5
).
astype
(
"float32"
)
# initialize input and output variable
x
=
scope
.
var
(
'X'
).
get_tensor
()
x
.
set
(
np_array
,
place
)
out
=
scope
.
var
(
"Out"
).
get_tensor
()
op
=
Operator
(
"share_data"
,
X
=
"X"
,
Out
=
"Out"
)
op
.
run
(
scope
,
place
)
self
.
assertTrue
(
np
.
allclose
(
np_array
,
out
))
def
check_with_selected_rows
(
self
,
place
):
scope
=
core
.
Scope
()
x_rows
=
[
0
,
1
,
5
,
4
,
19
]
x_height
=
20
row_numel
=
2
np_array
=
np
.
ones
((
len
(
x_rows
),
row_numel
)).
astype
(
"float32"
)
# initialize input variable
x
=
scope
.
var
(
'X'
).
get_selected_rows
()
x
.
set_rows
(
x_rows
)
x
.
set_height
(
x_height
)
x_tensor
=
x
.
get_tensor
()
x_tensor
.
set
(
np_array
,
place
)
# initialize the Out variable
out
=
scope
.
var
(
"Out"
).
get_selected_rows
()
out_tensor
=
out
.
get_tensor
()
op
=
Operator
(
"share_data"
,
X
=
"X"
,
Out
=
"Out"
)
op
.
run
(
scope
,
place
)
out_height
=
out
.
height
()
out_rows
=
out
.
rows
()
self
.
assertTrue
(
np
.
allclose
(
np_array
,
out_tensor
))
self
.
assertEqual
(
x_height
,
out_height
)
self
.
assertEqual
(
x_rows
,
out_rows
)
def
test_check_output
(
self
):
for
place
in
self
.
get_places
():
self
.
check_with_selected_rows
(
place
)
self
.
check_with_tensor
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_variable.py
浏览文件 @
af9dcb2d
...
...
@@ -305,7 +305,6 @@ class TestVariable(unittest.TestCase):
b
=
default_main_program
().
current_block
()
var
=
b
.
create_var
(
dtype
=
"float64"
,
lod_level
=
0
)
with
fluid
.
dygraph
.
guard
():
self
.
assertRaises
(
AssertionError
,
var
.
detach
)
self
.
assertRaises
(
AssertionError
,
var
.
numpy
)
self
.
assertRaises
(
AssertionError
,
var
.
backward
)
self
.
assertRaises
(
AssertionError
,
var
.
gradient
)
...
...
@@ -345,6 +344,60 @@ class TestVariable(unittest.TestCase):
self
.
assertRaises
(
Exception
,
_test
)
def
test_size
(
self
):
prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
prog
):
x
=
paddle
.
assign
(
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
"float32"
))
exe
=
paddle
.
static
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
paddle
.
static
.
default_startup_program
())
output
=
exe
.
run
(
prog
,
fetch_list
=
[
x
.
size
()])
self
.
assertEqual
(
output
[
0
],
[
24
])
def
test_detach
(
self
):
b
=
default_main_program
().
current_block
()
x
=
b
.
create_var
(
shape
=
[
2
,
3
,
5
],
dtype
=
"float64"
,
lod_level
=
0
)
detach_x
=
x
.
detach
()
self
.
assertEqual
(
x
.
persistable
,
detach_x
.
persistable
)
self
.
assertEqual
(
x
.
shape
,
detach_x
.
shape
)
self
.
assertEqual
(
x
.
dtype
,
detach_x
.
dtype
)
self
.
assertEqual
(
x
.
type
,
detach_x
.
type
)
self
.
assertTrue
(
detach_x
.
stop_gradient
)
xx
=
b
.
create_var
(
name
=
'xx'
,
type
=
core
.
VarDesc
.
VarType
.
STEP_SCOPES
)
self
.
assertRaises
(
AssertionError
,
xx
.
detach
)
startup
=
paddle
.
static
.
Program
()
main
=
paddle
.
static
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main
,
startup
):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
3
,
2
,
1
],
dtype
=
'float32'
)
x
.
persistable
=
True
feed_data
=
np
.
ones
(
shape
=
[
3
,
2
,
1
],
dtype
=
np
.
float32
)
detach_x
=
x
.
detach
()
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
exe
.
run
(
startup
)
result
=
exe
.
run
(
main
,
feed
=
{
'x'
:
feed_data
},
fetch_list
=
[
x
,
detach_x
])
self
.
assertTrue
((
result
[
1
]
==
feed_data
).
all
())
self
.
assertTrue
((
result
[
0
]
==
result
[
1
]).
all
())
modified_value
=
np
.
zeros
(
shape
=
[
3
,
2
,
1
],
dtype
=
np
.
float32
)
detach_x
.
set_value
(
modified_value
,
scope
)
result
=
exe
.
run
(
main
,
fetch_list
=
[
x
,
detach_x
])
self
.
assertTrue
((
result
[
1
]
==
modified_value
).
all
())
self
.
assertTrue
((
result
[
0
]
==
result
[
1
]).
all
())
modified_value
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
[
3
,
2
,
1
]).
astype
(
'float32'
)
x
.
set_value
(
modified_value
,
scope
)
result
=
exe
.
run
(
main
,
fetch_list
=
[
x
,
detach_x
])
self
.
assertTrue
((
result
[
1
]
==
modified_value
).
all
())
self
.
assertTrue
((
result
[
0
]
==
result
[
1
]).
all
())
class
TestVariableSlice
(
unittest
.
TestCase
):
def
_test_item_none
(
self
,
place
):
...
...
tools/static_mode_white_list.py
浏览文件 @
af9dcb2d
...
...
@@ -468,6 +468,7 @@ STATIC_MODE_TESTING_LIST = [
'test_sign_op'
,
'test_similarity_focus_op'
,
'test_size_op'
,
'test_share_data_op'
,
'test_smooth_l1_loss'
,
'test_smooth_l1_loss_op'
,
'test_softmax_with_cross_entropy_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录