framework.py 191.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66
_dygraph_tracer_ = None
67
_global_expected_place_ = None
68
_current_device = None
69 70
global_prog_seed = 0

71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
179
def in_dygraph_mode():
L
lujun 已提交
180
    """
181 182 183 184
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
185
    This function checks whether the program runs in dynamic graph mode or not.
186 187 188
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
189 190

    Returns:
Y
Youwei Song 已提交
191
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
192 193 194 195

    Examples:
        .. code-block:: python

196
            import paddle.fluid as fluid
L
lujun 已提交
197

198 199 200 201
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
202
    """
L
lujun 已提交
203
    return _dygraph_tracer_ is not None
204 205


206 207 208
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
209
        ), "We don't support %s in imperative mode" % func.__name__
210 211 212 213 214 215 216 217
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
218
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


240 241
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
242
fake_interface_only = wrap_decorator(_fake_interface_only_)
243 244


L
lujun 已提交
245 246
def _dygraph_tracer():
    return _dygraph_tracer_
247

W
Wu Yi 已提交
248

M
minqiyang 已提交
249
def _current_expected_place():
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
270 271


L
Leo Chen 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
289
def _cpu_num():
290
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
291 292 293 294 295 296 297 298
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
299
        os.environ['CPU_NUM'] = str(1)
300
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
301 302 303 304 305 306 307 308 309 310
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
311 312


C
chengduo 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
328
def cuda_places(device_ids=None):
L
lujun 已提交
329
    """
330 331 332 333 334
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
335 336

    If :code:`device_ids` is None, environment variable of
337
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
338 339 340
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
341
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
342 343

    If :code:`device_ids` is not None, it should be the device
344
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
345 346 347
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
348 349
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
350 351

    Returns:
352
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
353 354 355 356

    Examples:
        .. code-block:: python

357
            import paddle.fluid as fluid
L
lujun 已提交
358 359 360
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
361 362 363
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
364
        device_ids = _cuda_ids()
S
sneaxiy 已提交
365 366 367 368 369 370
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
371
    """
372
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
373 374 375
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
376 377
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
378 379
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
380

381 382
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
383 384

    Returns:
385
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
386 387 388 389

    Examples:
        .. code-block:: python

390
            import paddle.fluid as fluid
L
lujun 已提交
391 392 393
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
394 395 396 397 398 399
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
400
    """
401
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
402 403 404

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
405 406 407 408
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
409

410 411
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
412 413

    Returns:
414
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
415 416 417 418

    Examples:
        .. code-block:: python

419
            import paddle.fluid as fluid
L
lujun 已提交
420 421 422 423 424
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
425 426 427
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
428 429
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
430 431


432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
458
@signature_safe_contextmanager
459 460
def name_scope(prefix=None):
    """
461 462
    :api_attr: Static Graph

463 464
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
465 466 467
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
468 469

    Args:
T
Tao Luo 已提交
470
        prefix(str, optional): prefix. Default is none.
471 472 473

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
474

475
          import paddle.fluid as fluid
476
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
477 478 479 480 481 482
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
483
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
484
                f = fluid.layers.pow(d, 2.0)
485
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
505 506
    """
    # TODO(panyx0718): Only [0-9a-z].
507
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
508 509 510
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
511
        assert prefix, "namescope prefix can not be empty."
512 513
        global _name_scope
        _name_scope = _name_scope.child(prefix)
514 515 516 517
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
518 519 520 521 522 523 524 525 526 527 528 529


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
530 531 532
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
533 534 535 536


def grad_var_name(var_name):
    """
537 538
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
539 540 541
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
542

543
def convert_np_dtype_to_dtype_(np_dtype):
544 545
    """
    Convert the data type in numpy to the data type in Paddle
546

547
    Args:
548
        np_dtype(np.dtype): the data type in numpy.
549

550 551
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
552 553

    """
554 555
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
556
        return core.VarDesc.VarType.FP32
557
    elif dtype == np.float64:
558
        return core.VarDesc.VarType.FP64
559
    elif dtype == np.float16:
560
        return core.VarDesc.VarType.FP16
561
    elif dtype == np.int32:
562
        return core.VarDesc.VarType.INT32
563
    elif dtype == np.int16:
564
        return core.VarDesc.VarType.INT16
565
    elif dtype == np.int64:
566
        return core.VarDesc.VarType.INT64
567
    elif dtype == np.bool:
568
        return core.VarDesc.VarType.BOOL
569 570
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
571 572
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
573 574
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
575
    else:
M
minqiyang 已提交
576
        raise ValueError("Not supported numpy dtype %s" % dtype)
577 578 579


def dtype_is_floating(dtype):
580 581 582
    """
    Check the data type is floating or not.
    Args:
583
        dtype(np.dtype|core.VarDesc.VarType): data type.
584 585 586 587 588
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
589
    if not isinstance(dtype, core.VarDesc.VarType):
590 591
        dtype = convert_np_dtype_to_dtype_(dtype)

592 593 594 595
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
596 597


Y
Yang Yang(Tony) 已提交
598
def _debug_string_(proto, throw_on_error=True):
599 600 601 602 603 604 605 606 607 608 609
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
610
    error_fields = list()
Y
Yang Yang(Tony) 已提交
611
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
612 613
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
614 615 616
    return proto.__str__()


617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
674
    target_block = default_main_program().current_block()
675 676 677 678 679 680 681 682 683 684 685

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
686
            })
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
726
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
727
                fill_constant([1], 1, force_cpu=True, out=temp_1)
728
                temp_end = target_block.create_var(dtype=slice_item.dtype)
729
                target_block.append_op(
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
769

770
    # starts
L
Leo Chen 已提交
771
    if contain_var(slice_start):
772 773 774 775 776 777 778 779
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
780 781 782 783
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
784 785 786 787 788 789 790
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
791 792 793
    else:
        attrs['ends'] = slice_end

794 795
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
796
        if contain_var(slice_step):
797 798 799 800 801 802 803
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
804 805
        else:
            attrs['strides'] = slice_step
806 807 808 809 810 811
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
812
        slice_out_var = target_block.create_var(
813 814 815
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

816
        target_block.append_op(
817 818 819 820 821 822 823
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
824
        strided_slice_out_var = target_block.create_var(
825 826 827
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
828
        target_block.append_op(
829 830 831 832 833 834 835 836
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
837
        reverse_out_var = target_block.create_var(
838 839 840
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
841
        target_block.append_op(
842 843 844 845 846 847 848 849 850 851 852
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
853
class Variable(object):
854
    """
J
Jiabin Yang 已提交
855
    **Notes**:
856
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
857

858 859
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
860 861 862
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
863
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
864 865
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
866

867
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
868
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
869

T
tianshuo78520a 已提交
870
    Most of a Variable's member variables can be set to be None. It mean
871
    it is not available or will be specified later.
872

873
    Examples:
874 875
        In Static Graph Mode:

876 877
        .. code-block:: python

878
            import paddle.fluid as fluid
879
            cur_program = fluid.Program()
880 881 882 883
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
884
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
885 886 887 888 889 890 891 892 893

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

894 895
    """

Y
Yu Yang 已提交
896 897
    def __init__(self,
                 block,
Y
Yu Yang 已提交
898
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
899 900 901 902
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
903
                 capacity=None,
Q
QI JUN 已提交
904
                 persistable=None,
F
fengjiayi 已提交
905
                 error_clip=None,
Y
Yu Yang 已提交
906
                 stop_gradient=False,
F
fengjiayi 已提交
907
                 is_data=False,
H
Huihuang Zheng 已提交
908
                 need_check_feed=False,
H
hong 已提交
909
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
910
                 **kwargs):
Y
Yu Yang 已提交
911 912
        self.block = block
        if name is None:
Y
Yu Yang 已提交
913
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
914

Y
Yu Yang 已提交
915
        if dtype is not None:
916
            if not isinstance(dtype, core.VarDesc.VarType):
917
                dtype = convert_np_dtype_to_dtype_(dtype)
918

H
hong 已提交
919 920
        self.belong_to_optimizer = belong_to_optimizer

921 922 923 924 925
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
926

927 928 929
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
930

931 932 933 934 935 936 937
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
938

939
        if shape is not None:
940
            if is_new_var:
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
982

983 984
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
985

986 987 988 989 990 991 992
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
993

994 995 996 997
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
998

999
    @fake_interface_only
1000 1001
    def detach(self):
        """
J
Jiabin Yang 已提交
1002
        **Notes**:
T
tianshuo78520a 已提交
1003
            **This API is ONLY available in Dygraph mode**
1004

1005
        Returns a new Variable, detached from the current graph.
1006

1007
        Returns:
J
Jiabin Yang 已提交
1008
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1009

1010

1011 1012 1013 1014 1015
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1016
                from paddle.fluid.dygraph import Linear
1017 1018 1019 1020
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1021
                    linear = Linear(32, 64)
1022
                    data = to_variable(data)
1023
                    x = linear(data)
1024 1025 1026
                    y = x.detach()

        """
1027
        pass
1028

1029
    @fake_interface_only
1030
    def numpy(self):
1031
        """
J
Jiabin Yang 已提交
1032
        **Notes**:
T
tianshuo78520a 已提交
1033
            **This API is ONLY available in Dygraph mode**
1034

J
Jiabin Yang 已提交
1035
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1036 1037 1038 1039 1040

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1041
            ndarray: dtype is same as current Variable
1042 1043 1044 1045 1046 1047

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1048
                from paddle.fluid.dygraph import Linear
1049 1050 1051 1052
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1053
                    linear = Linear(32, 64)
1054
                    data = to_variable(data)
1055
                    x = linear(data)
1056 1057 1058
                    print(x.numpy())

        """
1059
        pass
1060

1061
    @fake_interface_only
1062 1063
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1064
        **Notes**:
T
tianshuo78520a 已提交
1065
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1077
                from paddle.fluid.dygraph import Linear
1078 1079
                import numpy as np

1080
                data = np.ones([3, 1024], dtype='float32')
1081
                with fluid.dygraph.guard():
1082
                    linear = fluid.dygraph.Linear(1024, 4)
1083
                    t = to_variable(data)
1084
                    linear(t)  # call with default weight
1085
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1086 1087
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1088 1089

        """
1090
        pass
1091

1092
    @fake_interface_only
1093
    def backward(self, backward_strategy=None):
1094
        """
J
Jiabin Yang 已提交
1095
        **Notes**:
T
tianshuo78520a 已提交
1096
            **This API is ONLY available in Dygraph mode**
1097 1098 1099

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1100 1101
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1102

J
Jiabin Yang 已提交
1103 1104
        Returns:
            NoneType: None
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1117 1118
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1119 1120 1121 1122 1123 1124 1125 1126 1127
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1128
        pass
1129

1130
    @fake_interface_only
1131
    def gradient(self):
1132
        """
J
Jiabin Yang 已提交
1133
        **Notes**:
T
tianshuo78520a 已提交
1134
            **This API is ONLY available in Dygraph mode**
1135 1136 1137

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1138
        Returns:
1139
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1140 1141 1142 1143 1144 1145 1146

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1147
                # example1: return ndarray
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1175
        """
1176
        pass
1177

1178
    @fake_interface_only
1179
    def clear_gradient(self):
1180
        """
J
Jiabin Yang 已提交
1181
        **Notes**:
T
tianshuo78520a 已提交
1182
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1183 1184

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1185

J
Jiabin Yang 已提交
1186
        Clear  (set to ``0`` ) the Gradient of Current Variable
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1213
        pass
X
Xin Pan 已提交
1214

1215
    def __str__(self):
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1260

F
update  
fengjiayi 已提交
1261
    def to_string(self, throw_on_error, with_details=False):
1262 1263 1264
        """
        Get debug string.

J
Jiabin Yang 已提交
1265 1266 1267 1268 1269
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1270

1271 1272
        Returns:
            str: The debug string.
1273 1274 1275 1276 1277

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1278

1279 1280 1281 1282 1283
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1284
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1285
                print("=============with detail===============")
1286
                print(new_variable.to_string(True, True))
1287
        """
F
update  
fengjiayi 已提交
1288 1289
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1290
        protostr = self.desc.serialize_to_string()
1291
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1292 1293 1294 1295
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1296 1297 1298
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1299
        return res_str
1300 1301 1302

    __repr__ = __str__

1303
    @property
1304
    def stop_gradient(self):
J
Jiabin Yang 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1320 1321
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1322 1323 1324
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1325 1326
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1327 1328 1329 1330
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1331
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1332 1333
                assert (out1.gradient() == 0).all()
        """
1334
        return self._stop_gradient
1335

1336 1337
    @stop_gradient.setter
    def stop_gradient(self, s):
1338
        self._stop_gradient = s
1339

1340 1341
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1363
        return self.desc.persistable()
1364

Y
Yu Yang 已提交
1365 1366
    @persistable.setter
    def persistable(self, p):
1367
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1368

Y
Yu Yang 已提交
1369 1370
    @property
    def name(self):
J
Jiabin Yang 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1387
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1409 1410
    @name.setter
    def name(self, new_name):
1411
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1412

Y
Yu Yang 已提交
1413 1414
    @property
    def shape(self):
J
Jiabin Yang 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1432
        # convert to tuple, make it as same as numpy API.
1433
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1434 1435

    @property
F
fengjiayi 已提交
1436
    def dtype(self):
J
Jiabin Yang 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1453
        return self.desc.dtype()
Y
Yu Yang 已提交
1454 1455 1456

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1478 1479 1480
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1481
        return self.desc.lod_level()
Y
Yu Yang 已提交
1482

Y
Yu Yang 已提交
1483 1484
    @property
    def type(self):
J
Jiabin Yang 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1501
        return self.desc.type()
Y
Yu Yang 已提交
1502

W
Wu Yi 已提交
1503
    def _set_error_clip(self, error_clip):
1504 1505 1506 1507 1508 1509 1510 1511 1512
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1513 1514
        self.error_clip = error_clip

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1555
            raise ValueError("slice step can not be zero")
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1631
    def _cloneVar(self, copy=False):
1632 1633
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1634 1635
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1636 1637 1638 1639
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1640
        new_var = self._cloneVar()
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1651
        new_var = self._cloneVar()
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1662
                return self._cloneVar(True)
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1681
                return self._cloneVar(True)
1682
            index = int(item)
1683
            if (index > 0 and index >= self.shape[axis]) \
1684 1685 1686 1687 1688 1689 1690
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1691
        return _getitem_impl_(self, item)
1692

Y
Yu Yang 已提交
1693

F
fengjiayi 已提交
1694 1695 1696
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1697

1698 1699
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1700 1701 1702 1703
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1704
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1705 1706 1707 1708
        ret_values.append(op_proto)
    return ret_values


1709 1710
class ComplexVariable(object):
    """
1711 1712
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1713 1714 1715
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1716
        **The constructor of ComplexTensor should not be invoked directly.**
1717

1718
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1719 1720

    Args:
1721 1722
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1723 1724 1725 1726
    
    Examples:
        .. code-block:: python

1727
            import paddle
1728 1729
            import numpy as np

1730 1731 1732 1733 1734 1735 1736 1737
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1738 1739
    """

1740 1741 1742 1743 1744
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1791 1792 1793
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1794 1795 1796 1797

    __repr__ = __str__


F
fengjiayi 已提交
1798
class OpProtoHolder(object):
1799 1800 1801 1802
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1812
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1813 1814 1815 1816 1817 1818
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1819 1820 1821 1822 1823 1824 1825 1826
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1827 1828
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1829 1830
        return self.op_proto_map[type]

1831 1832 1833 1834 1835 1836
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1837 1838 1839 1840
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1841
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1842
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1843 1844
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1845 1846
        }

F
fengjiayi 已提交
1847

X
Xin Pan 已提交
1848
class Operator(object):
1849
    """
1850 1851 1852 1853 1854 1855 1856
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1857
        type(str): The type of operator. Default None.
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1878
        Block.append_op or Block._prepend_op instead.
1879 1880 1881 1882

    Examples:
        .. code-block:: python

1883
            import paddle.fluid as fluid
1884
            cur_program = fluid.Program()
1885 1886 1887 1888 1889
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1890
    """
1891
    OP_WITHOUT_KERNEL_SET = {
1892 1893
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1894 1895
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1896
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1897
    }
1898

Y
Yu Yang 已提交
1899 1900
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1901
                 desc,
Y
Yu Yang 已提交
1902 1903 1904
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1905
                 attrs=None):
L
lujun 已提交
1906
        if in_dygraph_mode():
1907 1908
            if type is None:
                raise ValueError(
1909
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1910
            self._type = type
M
minqiyang 已提交
1911
            self.attrs = attrs if attrs else {}
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1926
                )] = self.block.program._op_role
1927 1928 1929

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1930 1931
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1932 1933 1934 1935 1936 1937 1938 1939

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1940
                    "`type` to initialized an Operator can not be None.")
1941 1942
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1943 1944 1945 1946 1947 1948 1949
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1950 1951 1952 1953 1954 1955 1956

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
1988
                        if not isinstance(in_args, (list, tuple)):
1989 1990 1991 1992 1993 1994
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1995
                        for index, arg in enumerate(in_args):
1996 1997 1998 1999
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2000
                            elif isinstance(arg, (Variable, core.VarBase)):
2001
                                in_arg_names.append(cpt.to_text(arg.name))
2002
                            else:
2003 2004 2005 2006
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2007 2008
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2035
                        if not in_dygraph_mode():
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2055
    def _has_kernel(self, op_type):
2056 2057
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2058
    def to_string(self, throw_on_error):
2059
        """
2060 2061
        Get debug string.

2062
        Args:
2063 2064
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2065

2066 2067
        Returns:
            str: The debug string.
2068 2069

        """
2070
        protostr = self.desc.serialize_to_string()
2071
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2072 2073
        return _debug_string_(proto, throw_on_error)

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2167
    def __str__(self):
2168
        return self._to_readable_code()
2169 2170 2171

    __repr__ = __str__

F
fengjiayi 已提交
2172 2173
    @property
    def type(self):
2174
        return self.desc.type()
F
fengjiayi 已提交
2175 2176

    def input(self, name):
2177
        """
2178
        Get the input arguments according to the input parameter name.
2179

2180 2181
        Args:
            name(str): The input parameter name.
2182

2183 2184 2185
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2186
        """
F
fengjiayi 已提交
2187 2188
        return self.desc.input(name)

W
Wu Yi 已提交
2189
    def _rename_input(self, old_name, new_name):
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2200
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2201

W
Wu Yi 已提交
2202
    def _rename_output(self, old_name, new_name):
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2213
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2214

F
fengjiayi 已提交
2215 2216 2217 2218
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2219 2220 2221 2222 2223 2224 2225 2226
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2227
    def output(self, name):
2228
        """
2229
        Get output arguments by the output parameter name.
2230

2231 2232
        Args:
            name(str): The output parameter name.
2233

2234 2235 2236
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2237
        """
F
fengjiayi 已提交
2238 2239 2240 2241 2242 2243
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2244 2245 2246 2247 2248 2249 2250 2251
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2252
    def has_attr(self, name):
2253
        """
2254 2255
        Whether this Operator has the attribute with name or not.

2256
        Args:
2257
            name(str): the attribute name.
2258

2259 2260
        Returns:
            bool: True if has this attribute.
2261 2262

        """
F
fengjiayi 已提交
2263 2264 2265
        return self.desc.has_attr(name)

    def attr_type(self, name):
2266
        """
2267
        Get the type of attribute by attribute's name.
2268

2269 2270
        Args:
            name(str): the attribute name.
2271

2272 2273
        Returns:
            core.AttrType: the attribute type.
2274
        """
F
fengjiayi 已提交
2275 2276
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2277
    def _set_attr(self, name, val):
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2288 2289
        self._update_desc_attr(name, val)

2290 2291 2292
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2304 2305
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2306 2307
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2308
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2309 2310 2311 2312
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2313
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2314

F
fengjiayi 已提交
2315 2316 2317 2318 2319
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2320
        """
2321 2322
        Get the attribute by name.

2323
        Args:
2324
            name(str): the attribute name.
2325

2326 2327
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2328 2329
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2330
        return self.desc.attr(name)
Y
Yu Yang 已提交
2331

W
Wu Yi 已提交
2332
    def _block_attr_id(self, name):
2333
        """
G
gongweibao 已提交
2334
        Get the block attribute's id by name.
2335

2336 2337
        Args:
            name(str): the attribute name.
2338

2339 2340
        Returns:
            int: the block index.
2341
        """
W
Wu Yi 已提交
2342
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2343

W
Wu Yi 已提交
2344
    def _block_attr(self, name):
G
gongweibao 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2355
        id = self._block_attr_id(name)
G
gongweibao 已提交
2356 2357 2358
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2359
    def _blocks_attr(self, name):
G
gongweibao 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2370
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2371 2372 2373 2374 2375
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2376
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2387
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2388

J
JiayiFeng 已提交
2389
    def all_attrs(self):
F
fengjiayi 已提交
2390
        """
2391 2392 2393
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2394
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2395 2396 2397 2398
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2399 2400
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2401
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2402 2403 2404
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2405
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2406 2407 2408 2409
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2410 2411
        return attr_map

2412 2413 2414
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2415 2416 2417 2418

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2419 2420 2421
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2422 2423 2424 2425 2426 2427 2428 2429

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2430 2431
            return False

2432 2433 2434 2435 2436 2437
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2438

Y
Yu Yang 已提交
2439
class Block(object):
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2454
        use `Program._create_block()` to create a block.
2455 2456 2457 2458

    Examples:
        .. code-block:: python

2459 2460 2461
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2462 2463 2464 2465 2466 2467 2468 2469 2470
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2471
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2472
        self.desc = program.desc.block(idx)
2473
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2474
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2475
        self.program = program
2476
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2477

2478
    def __str__(self):
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2525

F
fengjiayi 已提交
2526 2527
    def to_string(self, throw_on_error, with_details=False):
        """
2528 2529
        Get debug string.

F
fengjiayi 已提交
2530 2531
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2532
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2533
            with_details(bool): more details about variables and parameters
2534 2535
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2536

2537 2538
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2539 2540 2541 2542
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2543
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2544 2545
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2546
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2547
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2548
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2549
            for op in self.ops:
F
fengjiayi 已提交
2550 2551
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2552 2553 2554
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2555 2556
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2557 2558
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2559 2560 2561

    __repr__ = __str__

Y
Yu Yang 已提交
2562 2563
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2564
        return self.desc.parent
Y
Yu Yang 已提交
2565

Y
Yu Yang 已提交
2566 2567 2568 2569
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2570
    def _set_forward_block_idx(self, idx):
2571 2572 2573 2574 2575 2576 2577 2578 2579
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2580
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2581

2582 2583 2584 2585 2586 2587 2588 2589
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2590 2591
    @property
    def idx(self):
Y
Yu Yang 已提交
2592
        return self.desc.id
Y
Yu Yang 已提交
2593

Q
Qiao Longfei 已提交
2594
    def var(self, name):
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2608
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2609 2610 2611
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2612 2613
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2614
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2615
        return v
Q
Qiao Longfei 已提交
2616

X
Xin Pan 已提交
2617
    def _find_var_recursive(self, name):
2618 2619 2620 2621 2622 2623 2624
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2625
            Variable: the Variable with the giving name. Or None if not found.
2626
        """
Y
Yu Yang 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2651
        return None
Y
Yu Yang 已提交
2652

X
Xin Pan 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2672

Q
Qiao Longfei 已提交
2673
    def all_parameters(self):
2674
        return list(self.iter_parameters())
2675

2676
    def iter_parameters(self):
M
minqiyang 已提交
2677
        return (item[1] for item in six.iteritems(self.vars)
2678
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2679

Y
Yu Yang 已提交
2680
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2681 2682 2683
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2684 2685 2686
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2687
        return var
Y
Yu Yang 已提交
2688

Q
Qiao Longfei 已提交
2689 2690 2691
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2692
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2693 2694
        """
        Rename variable in vars and ops' inputs and outputs
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2707
        """
M
minqiyang 已提交
2708 2709
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2710

T
typhoonzero 已提交
2711
        if not self.has_var(name):
2712
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2713 2714
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2715
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2716 2717 2718 2719 2720 2721
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2722
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2723 2724 2725 2726
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2727
        orig_var_type = v.type
M
minqiyang 已提交
2728
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2729
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2730
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2731
        if var_type == "Parameter":
L
Leo Chen 已提交
2732 2733
            if in_dygraph_mode():
                var = ParamBase(
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2744 2745
                var = Parameter(
                    self,
2746 2747 2748 2749 2750 2751 2752 2753 2754
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2755
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2756 2757
            var = Variable(
                self,
T
typhoonzero 已提交
2758
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2759 2760 2761 2762
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2763
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2764 2765 2766
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2767
        self._sync_with_cpp()
2768
        return var
T
typhoonzero 已提交
2769

W
Wu Yi 已提交
2770 2771
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2772
        self.desc._remove_var(cpt.to_bytes(name))
2773 2774
        del self.vars[name]

Y
Yu Yang 已提交
2775 2776
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2777
        param = None
L
Leo Chen 已提交
2778
        if in_dygraph_mode():
2779
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2780 2781
        else:
            param = Parameter(global_block, *args, **kwargs)
2782
        if 'initializer' in kwargs:
2783 2784 2785 2786 2787

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2788 2789 2790 2791 2792
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2804
                # TODO already inited, do nothing, should log a warning
2805 2806 2807
                pass
            else:
                initializer(param, self)
2808
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2809
        return param
Y
Yu Yang 已提交
2810

Y
Yu Yang 已提交
2811
    def append_op(self, *args, **kwargs):
2812 2813 2814 2815 2816 2817
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2818
        if in_dygraph_mode():
2819
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2820
            type = kwargs.get("type", None)
2821 2822 2823
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2824
                type=type,
M
minqiyang 已提交
2825 2826
                inputs=None,
                outputs=None,
2827
                attrs=attrs)
2828

M
minqiyang 已提交
2829 2830 2831
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2832
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2833 2834

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2835
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2836 2837
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2838
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2839
        else:
2840 2841 2842 2843 2844 2845 2846 2847 2848
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2849
            self.ops.append(op)
M
minqiyang 已提交
2850

2851 2852
        return op

W
Wu Yi 已提交
2853
    def _insert_op(self, index, *args, **kwargs):
2854 2855 2856 2857 2858 2859 2860 2861 2862
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2863 2864
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2865 2866 2867 2868
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2869
    def _remove_op(self, index):
2870 2871 2872 2873 2874 2875 2876 2877 2878
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2879 2880
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2881 2882
        del self.ops[index]

W
Wu Yi 已提交
2883
    def _slice_ops(self, start, end):
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2894
        return self.ops[start:end]
Y
Yancey1989 已提交
2895

W
Wu Yi 已提交
2896
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2897
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2898 2899
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2900
            op = Operator(
J
Jiabin Yang 已提交
2901
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2902

J
Jiabin Yang 已提交
2903
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2904
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2905 2906
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2907
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2908
        else:
2909 2910 2911 2912 2913 2914 2915 2916
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2917
            self.ops.insert(0, op)
2918

Y
Yu Yang 已提交
2919 2920
        return op

W
Wu Yi 已提交
2921
    def _sync_with_cpp(self):
2922
        """
2923 2924
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2925
        """
Q
Qiao Longfei 已提交
2926 2927 2928 2929 2930
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2931
        # sync variables removed from c++ end
2932
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2933
            if not self.desc.find_var(cpt.to_bytes(var)):
2934 2935
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2936
        # sync operators from cpp
2937 2938 2939 2940
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2957 2958 2959 2960 2961

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2962
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2963 2964 2965 2966 2967 2968 2969

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2983 2984 2985 2986
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2987
    def _copy_param_info_from(self, other):
2988
        """
2989 2990
        Copy the information of parameters from the other block.

2991
        Args:
2992 2993 2994 2995 2996
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2997 2998 2999 3000 3001

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3002 3003
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3004
        for p in other.iter_parameters():
3005 3006 3007
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3008 3009
                # if the Parameter is pruned, v may be None
                continue
3010
            assert isinstance(v, Variable)
3011
            new_p = None
L
Leo Chen 已提交
3012 3013
            if in_dygraph_mode():
                new_p = ParamBase(
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3025 3026
                new_p = Parameter(
                    block=self,
3027 3028 3029
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3030 3031
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3032 3033 3034 3035 3036 3037
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3038 3039
            self.vars[new_p.name] = new_p

3040
    def _clone_variable(self, var, force_persistable=True):
3041 3042
        """
        Clone a variable into current block.
3043

3044 3045
        Args:
            var: the variable to be cloned.
3046 3047 3048
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3049 3050

        Returns:
3051
            Variable: the new  variable cloned from 'var' in current block.
3052 3053
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3054 3055 3056 3057 3058
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3059 3060
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3061
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3062 3063 3064 3065 3066 3067
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3068
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3069 3070
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3071 3072 3073 3074 3075 3076 3077
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3078
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3079 3080
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3081
        return ret_var
3082

Y
Yu Yang 已提交
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3179
    def remove_input_by_id(self, node_id):
3180 3181 3182 3183 3184 3185
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3186
        self.node.remove_input(node_id)
3187

3188
    def remove_input(self, node):
3189 3190 3191 3192
        """
        Remove a node from inputs.

        Args:
3193
            node(IrNode): the node being removed.
3194
        """
3195
        self.node.remove_input(node.node)
3196

3197
    def append_input(self, node):
3198 3199 3200 3201
        """
        Append a node in inputs.

        Args:
3202
            node(IrNode): the node being appended.
3203
        """
3204
        self.node.append_input(node.node)
3205 3206 3207 3208 3209 3210 3211 3212

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3213
    def remove_output_by_id(self, node_id):
3214 3215 3216 3217 3218 3219
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3220
        self.node.remove_output(node_id)
3221

3222
    def remove_output(self, node):
3223 3224 3225 3226
        """
        Remove a node from outputs.

        Args:
3227
            node(IrNode): the node being removed.
3228
        """
3229
        self.node.remove_output(node.node)
3230

3231
    def append_output(self, node):
3232 3233 3234 3235
        """
        Append a node in outputs.

        Args:
3236
            node(IrNode): the node being appended.
3237
        """
3238
        self.node.append_output(node.node)
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3286
            "The node variable description can not be None."
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3297
            "The node variable description can not be None."
3298 3299
        return self.node.var().persistable()

3300 3301 3302 3303 3304 3305 3306 3307
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3308
            "The node variable description can not be None."
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3319
            "The node variable description can not be None."
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3330
            "The node variable description can not be None."
3331 3332
        return self.node.var().shape()

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3380
            "The node operator description can not be None."
3381 3382
        self.node.op()._rename_input(old_input_name, new_input_name)

3383 3384 3385 3386 3387 3388 3389 3390 3391
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3392
            "The node operator description can not be None."
3393 3394
        self.node.op()._rename_output(old_output_name, new_output_name)

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3406
            "The node operator description can not be None."
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3420
            "The node operator description can not be None."
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3431
            "The node operator description can not be None."
3432 3433
        return self.node.op().set_type(new_type)

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3449
            "The node operator description can not be None."
3450 3451 3452 3453
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3454
                all(isinstance(v, Block) for v in val):
3455 3456
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3457
                isinstance(val, core.ProgramDesc):
3458 3459 3460 3461
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3462 3463 3464 3465 3466 3467 3468 3469
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3470
            "The node operator description can not be None."
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3481
            "The node operator description can not be None."
3482 3483
        return self.node.op().output_arg_names()

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3505 3506
class IrGraph(object):
    """
3507
    Python IrGraph. Beneath it is a core.Graph, which is used for
3508
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3509 3510
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3511 3512 3513 3514
    """

    def __init__(self, graph, for_test=False):
        """
3515 3516
        Construct an IrGraph using core.Graph.

3517 3518 3519 3520 3521 3522 3523 3524 3525
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3526 3527 3528 3529
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3530 3531 3532
        Warns:
            The method only clones the graph structure, not its attributes.

3533 3534 3535
        Returns:
            IrGraph: A new and duplicated graph.
        """
3536
        g = self.graph.clone()
3537 3538
        return IrGraph(g, self._for_test)

3539
    def is_test(self):
3540 3541 3542
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3543 3544
        return self._for_test

W
WangZhen 已提交
3545
    def all_nodes(self):
3546 3547 3548
        """
        Return all nodes included in the graph as a set.
        """
3549
        return {IrNode(node) for node in self.graph.nodes()}
3550

3551
    def all_var_nodes(self):
3552 3553 3554
        """
        Return all variable nodes included in the graph as a set.
        """
3555
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3556

3557
    def all_persistable_nodes(self):
3558 3559 3560
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3561 3562 3563 3564 3565
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3566
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3567

3568
    def all_op_nodes(self):
3569 3570 3571
        """
        Return all operator nodes included in the graph as a set.
        """
3572
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3573

3574
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3586
            IrVarNode: the created persistable variable node.
3587
        """
3588 3589 3590 3591 3592
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3593
        return IrVarNode(self.graph.create_var_node(var_desc))
3594 3595

    def create_var_node(self, name, var_type, shape, var_dtype):
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3607
            IrVarNode: the created variable node.
3608 3609
        """

3610 3611 3612 3613
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3614
        return IrVarNode(self.graph.create_var_node(var_desc))
3615

3616 3617 3618 3619 3620 3621
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3622
    def create_var_node_from_desc(self, var_desc):
3623 3624 3625 3626 3627 3628 3629 3630
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3631
            IrVarNode: the created variable node.
3632
        """
3633
        return IrVarNode(self.graph.create_var_node(var_desc))
3634 3635

    def create_op_node(self, op_type, attrs, inputs, outputs):
3636 3637 3638 3639 3640 3641 3642
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3643
            outputs(dict): the outputs of the operator node.
3644 3645

        Returns:
3646
            IrOpNode: the created operator node.
3647
        """
3648 3649
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3650
        for attr, value in six.iteritems(attrs):
3651
            self._update_desc_attr(op_desc, attr, value)
3652
        for input_name, var_nodes in six.iteritems(inputs):
3653 3654 3655 3656
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3657
        for output_name, var_nodes in six.iteritems(outputs):
3658 3659 3660 3661
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3662
        return IrOpNode(self.graph.create_op_node(op_desc))
3663 3664

    def create_op_node_from_desc(self, op_desc):
3665 3666 3667 3668 3669 3670 3671
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3672
            IrOpNode: the created operator node.
3673
        """
3674
        return IrOpNode(self.graph.create_op_node(op_desc))
3675 3676

    def update_input_link(self, old_input_node, new_input_node, op_node):
3677 3678 3679 3680
        """
        Update the input's link of a operator node.

        Args:
3681 3682 3683
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3684
        """
3685
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3686 3687
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3688 3689 3690 3691
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3692
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3693

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3704 3705
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3706 3707 3708 3709 3710 3711
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3712
    def link_to(self, node_in, node_out):
3713 3714 3715 3716
        """
        Connect two nodes.

        Args:
3717 3718
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3719
        """
3720
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3721
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3722 3723
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3724 3725

    def safe_remove_nodes(self, remove_nodes):
3726 3727 3728 3729 3730 3731 3732
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3733
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3734 3735 3736 3737
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3738 3739
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3740

Z
Zhen Wang 已提交
3741 3742 3743 3744 3745 3746 3747 3748
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3749
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3750 3751 3752 3753
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3754
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3755 3756 3757
                        ]
                    else:
                        var_nodes[each_var_name].append(
3758 3759
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3760 3761
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3762
    def has_circle(self):
3763 3764 3765 3766 3767 3768
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3769 3770 3771
        return core.has_circle(self.graph)

    def graph_num(self):
3772 3773 3774 3775 3776 3777
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3778 3779 3780
        return core.graph_num(self.graph)

    def topology_sort(self):
3781 3782 3783
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3784
        Notes: the `graph` can not contain a circle.
3785 3786

        Returns:
Z
Zhen Wang 已提交
3787
            list(IrNode): nodes in topology order.
3788
        """
3789
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3790
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3791 3792

    def build_adjacency_list(self):
3793 3794 3795 3796
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3797
            dict{IrNode: set(IrNode)}: the adjacency list.
3798
        """
3799 3800 3801 3802 3803
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3804

3805 3806 3807 3808 3809 3810 3811 3812
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3813
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3814 3815 3816 3817 3818
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3819 3820 3821
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3822
                                          + ' -o ' + pdf_save_path, shell=True)
3823 3824 3825 3826 3827
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3828
        remove_ctr_vars = set()
3829
        if remove_ctr_var:
3830
            for node in self.all_var_nodes():
3831 3832 3833
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3834 3835
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3836 3837
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3838 3839 3840 3841 3842 3843
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3844 3845 3846 3847
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3848 3849
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3850 3851 3852 3853 3854 3855 3856
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3857 3858 3859
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3860
        WARN: When the graph includes backward operator nodes, the
3861 3862 3863 3864 3865 3866
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3867
        convert_pass = core.get_pass('graph_to_program_pass')
3868 3869
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3870 3871 3872 3873
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3901
class Program(object):
D
dzhwinter 已提交
3902
    """
3903 3904
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3905
    it will contain nested block.
3906

J
Jiabin Yang 已提交
3907 3908 3909
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3910

J
Jiabin Yang 已提交
3911
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3912
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3913 3914 3915 3916 3917 3918 3919
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3920 3921 3922 3923
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3924 3925

    Returns:
J
Jiabin Yang 已提交
3926
        Program: An empty Program.
D
dzhwinter 已提交
3927 3928

    Examples:
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3942 3943 3944

    """

3945 3946
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3947 3948
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3949 3950
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3951
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3952
        self.__op_role_var = []
T
tangwei12 已提交
3953

3954 3955
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3956
        self._is_distributed = False
3957
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3958
        self._is_chief = False
3959 3960 3961
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3962
        self._endpoints = []
3963 3964 3965
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3966
        self._trainers_endpoints = []
3967
        # the distributed lookup table names
T
tangwei12 已提交
3968
        self._distributed_lookup_table = None
3969 3970 3971

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3972 3973
        self._use_lamb = False

3974 3975 3976
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3977

3978 3979 3980
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3981
        self._program_config = None
3982

H
hutuxian 已提交
3983 3984 3985
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3986 3987 3988
        # appending gradients times
        self._appending_grad_times = 0

3989 3990 3991 3992
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

3993 3994 3995
        # compiled program, i.e. Graph
        self._graph = None

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4023
    @property
4024
    def _op_role(self):
Y
yuyang18 已提交
4025 4026 4027 4028 4029 4030 4031 4032
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4033
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4034 4035 4036 4037
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4038 4039
        return self._current_role

4040 4041
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4042 4043 4044
        self._current_role = role

    @property
4045
    def _op_role_var(self):
Y
yuyang18 已提交
4046
        """
4047
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4048

4049
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4050 4051 4052

        Notes: This is a very low-level API. Users should not use it directly.
        """
4053
        return self.__op_role_var
Y
yuyang18 已提交
4054

4055
    @signature_safe_contextmanager
4056 4057 4058 4059 4060
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4061 4062 4063 4064
        try:
            yield
        finally:
            self._current_role = tmp_role
4065

S
rename  
sneaxiy 已提交
4066
    @signature_safe_contextmanager
W
Wu Yi 已提交
4067
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4068 4069 4070 4071 4072 4073 4074
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4075
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4076 4077 4078

        Examples:

4079
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4080
            >>> p, g = backward(...)
W
Wu Yi 已提交
4081
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4082 4083
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4084
        tmp_role = self._current_role
4085
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4086

Y
yuyang18 已提交
4087 4088
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4089
        self.__op_role_var = [
4090 4091 4092
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4093 4094 4095 4096 4097
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4098

S
rename  
sneaxiy 已提交
4099
    @signature_safe_contextmanager
X
Xin Pan 已提交
4100
    def _lr_schedule_guard(self, is_with_opt=False):
4101 4102 4103 4104 4105 4106 4107
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4108 4109 4110 4111
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4112 4113 4114

        Examples:

4115
            >>> import paddle.fluid as fluid
4116 4117 4118 4119
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4120 4121

        tmp_role = self._current_role
4122
        tmp_var = self.__op_role_var
4123

4124 4125
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4126 4127
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4128
        # TODO(typhoonzero): how to set target learning rate var
4129
        self.__op_role_var = []
4130 4131 4132 4133 4134
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4135

4136
    def __str__(self):
Y
yuyang18 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4185
            program_str += '\n'
4186
        return program_str
Y
Yang Yang(Tony) 已提交
4187

F
fengjiayi 已提交
4188 4189 4190
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4191

J
Jiabin Yang 已提交
4192 4193 4194
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4195

J
Jiabin Yang 已提交
4196
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4197

H
haowang101779990 已提交
4198
        Returns:
J
Jiabin Yang 已提交
4199
            str: The debug string describe current Program.
Y
yuyang18 已提交
4200 4201

        Raises:
J
Jiabin Yang 已提交
4202
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4203

4204 4205 4206 4207 4208 4209
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4210 4211
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4212
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4213
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4214
                print("program string without detail: {}".format(prog_string))
4215
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4216
        """
4217 4218 4219 4220 4221 4222 4223 4224 4225
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4226 4227 4228 4229 4230 4231
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4232 4233
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4234 4235
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4236

W
Wu Yi 已提交
4237
    def _get_desc(self):
Y
yuyang18 已提交
4238 4239 4240 4241 4242 4243 4244
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4245 4246
        return self.desc

X
version  
Xin Pan 已提交
4247 4248 4249
    def _version(self):
        return self.desc._version()

4250
    def clone(self, for_test=False):
Y
yuyang18 已提交
4251
        """
4252
        **Notes**:
J
Jiabin Yang 已提交
4253 4254 4255 4256
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4257
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4258

4259
        Create a new Program with forward content of original one when ``for_test=True``.
4260
        Create a new Program as same as the original one when ``for_test=False``.
4261

J
Jiabin Yang 已提交
4262
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4263 4264 4265
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4266

4267 4268
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4269 4270
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4271
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4272

J
Jiabin Yang 已提交
4273
        For Example:
4274
          ::
L
Luo Tao 已提交
4275

4276 4277 4278 4279 4280 4281 4282 4283
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4284

J
Jiabin Yang 已提交
4285
        Args:
4286

4287 4288
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4289

J
Jiabin Yang 已提交
4290
        Returns:
4291
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4292

Y
yuyang18 已提交
4293 4294 4295

        Examples:

J
Jiabin Yang 已提交
4296
        **Notes: The Program's order maybe different after** :code:`clone` **and
4297
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4298
        example we give you an simple method** :code:`print_prog(program)` **to
4299
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4300
        after** :code:`clone`:
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4337 4338 4339

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4340 4341 4342 4343 4344 4345 4346 4347 4348
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4349
                            test_program = train_program.clone(for_test=True)
4350
                    print_prog(test_program)
J
Jiabin Yang 已提交
4351 4352 4353 4354 4355 4356 4357 4358 4359

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4382 4383
                    
                    def network():
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4398 4399 4400
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4401
                    # the test startup program is not used.
4402
                    with fluid.program_guard(test_program_2, startup_program_2):
4403
                        with fluid.unique_name.guard():
4404 4405
                            avg_loss = network()
                    print_prog(test_program_2)
4406 4407

        The two code snippets above will generate and print same programs.
4408
        """
4409 4410 4411 4412 4413

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4414
        pruned_origin_block_id_map = None
4415
        if for_test:
4416 4417 4418 4419 4420 4421 4422 4423 4424
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4425
        else:
4426
            p = Program()
G
gongweibao 已提交
4427 4428
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4429
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4430 4431 4432
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4433 4434

            p._current_role = self._current_role
4435
            p.__op_role_var = self.__op_role_var
4436
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4437

4438 4439
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4440
            p._sync_with_cpp()
4441

W
Wu Yi 已提交
4442
        p._copy_param_info_from(self)
4443
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4444
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4445
        return p
4446

4447
    def _prune(self, targets):
Y
yuyang18 已提交
4448 4449 4450 4451 4452 4453 4454 4455
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4456
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4457 4458 4459 4460
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4461
        """
4462
        return self._prune_with_input([], targets)
4463 4464

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4465
        """
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4476
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4477 4478 4479 4480 4481 4482
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4483 4484 4485 4486
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4487 4488
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4489 4490
        if not isinstance(targets, list):
            targets = [targets]
4491 4492 4493

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4494 4495 4496
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4497

4498 4499 4500 4501
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4502 4503 4504
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4505
                else:
4506 4507 4508
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4509 4510 4511 4512 4513 4514 4515 4516

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4533 4534 4535 4536 4537 4538 4539 4540
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4541

4542
        res = Program()
4543 4544 4545
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4546 4547 4548
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4549
        res._sync_with_cpp()
4550 4551 4552 4553 4554

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4555 4556
        return res

X
Xin Pan 已提交
4557
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4558
        """
F
fengjiayi 已提交
4559 4560 4561 4562 4563
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4564
        3. change the :code:`is_test`
Y
yuyang18 已提交
4565 4566 4567
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4568
        Args:
X
Xin Pan 已提交
4569 4570
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4571

Y
yuyang18 已提交
4572 4573 4574 4575 4576 4577
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4578
        res = Program()
4579
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4580 4581 4582 4583

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4584
        if prune_read_op:
4585 4586 4587 4588 4589 4590 4591 4592 4593
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4594
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4595 4596

        # change all `is_test` attributes to True
M
minqiyang 已提交
4597
        for i in six.moves.range(res.desc.num_blocks()):
4598
            block = res.desc.block(i)
M
minqiyang 已提交
4599
            for j in six.moves.range(block.op_size()):
4600 4601
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4602
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4603 4604 4605
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4606
        res._sync_with_cpp()
4607 4608
        return res

4609 4610
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4611
        """
J
Jiabin Yang 已提交
4612 4613 4614 4615
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4616

4617 4618
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4619

J
Jiabin Yang 已提交
4620
        Args:
Y
yuyang18 已提交
4621

J
Jiabin Yang 已提交
4622
            binary_str_type (str): the binary prootbuf string.
4623

J
Jiabin Yang 已提交
4624 4625
        Returns:
            Program: A deserialized Program.
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4648
        """
4649 4650
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4651
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4652
        p._sync_with_cpp()
4653
        return p
Y
Yu Yang 已提交
4654

4655
    @staticmethod
4656
    def _construct_from_desc(desc):
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4672 4673
    @property
    def random_seed(self):
Y
yuyang18 已提交
4674
        """
J
Jiabin Yang 已提交
4675
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4676 4677
        the random seed from random device.

J
Jiabin Yang 已提交
4678 4679 4680 4681
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4682

4683 4684 4685 4686 4687 4688 4689 4690

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4691
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4692 4693 4694
                print(random_seed)
                ## 0
                ## the default random seed is 0
4695 4696

                # Here we need to set random seed before we use fluid.layers.dropout
4697
                prog.random_seed = 1
4698 4699
                z_var = fluid.layers.dropout(x_var, 0.7)

4700
                print(prog.random_seed)
4701 4702
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4703
        """
D
dzhwinter 已提交
4704 4705
        return self._seed

Q
qiaolongfei 已提交
4706 4707
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4708
        """
4709 4710
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4711 4712 4713 4714
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4725 4726


Y
yuyang18 已提交
4727
        """
Q
qiaolongfei 已提交
4728 4729
        return self.desc.num_blocks()

D
dzhwinter 已提交
4730 4731 4732
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4733 4734 4735
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4736 4737
        self._seed = seed

Y
Yu Yang 已提交
4738
    def __repr__(self):
4739
        return self.__str__()
4740

Y
Yu Yang 已提交
4741
    def global_block(self):
Y
yuyang18 已提交
4742
        """
J
Jiabin Yang 已提交
4743 4744
        **Notes**:
            **This API has no effect in Dygraph mode**
4745 4746 4747

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4748 4749
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4750

4751 4752 4753 4754 4755 4756 4757 4758 4759

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4760

Y
yuyang18 已提交
4761
        """
Y
Yu Yang 已提交
4762 4763
        return self.blocks[0]

Q
Qiao Longfei 已提交
4764
    def block(self, index):
Y
yuyang18 已提交
4765
        """
J
Jiabin Yang 已提交
4766 4767
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4768

4769 4770
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4771 4772
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4773

J
Jiabin Yang 已提交
4774 4775
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4776 4777 4778 4779 4780 4781 4782 4783 4784

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4785
        """
Q
Qiao Longfei 已提交
4786 4787
        return self.blocks[index]

Y
Yu Yang 已提交
4788
    def current_block(self):
Y
yuyang18 已提交
4789
        """
J
Jiabin Yang 已提交
4790 4791
        **Notes**:
            **This API has no effect in Dygraph mode**
4792

J
Jiabin Yang 已提交
4793 4794
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4795

J
Jiabin Yang 已提交
4796 4797
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4798

4799 4800 4801 4802 4803 4804 4805 4806
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4807
        """
Y
Yu Yang 已提交
4808 4809
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4810
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4811 4812 4813 4814 4815
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4816

Y
yuyang18 已提交
4817 4818 4819 4820 4821
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4822
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4823 4824 4825
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4826 4827 4828 4829
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4830
    def _rollback(self):
Y
yuyang18 已提交
4831 4832 4833 4834 4835
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4836 4837
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4838
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4849 4850 4851
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4852
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4853

W
Wu Yi 已提交
4854
    def _copy_param_info_from(self, other):
4855
        """
4856
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4857

Y
yuyang18 已提交
4858 4859 4860
        Notes: This is a very low level API. Users should not invoke it
        directly.

4861 4862 4863 4864 4865 4866 4867
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4868 4869 4870
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4871

W
Wu Yi 已提交
4872
        self.global_block()._copy_param_info_from(other.global_block())
4873

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4885 4886 4887
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4888 4889
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4890
        self._parameters_on_pservers = other._parameters_on_pservers
4891
        self._endpoints = other._endpoints
4892
        self._ps_endpoint = other._ps_endpoint
4893 4894
        self._distributed_lookup_table = other._distributed_lookup_table

4895
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4896 4897
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4898

Y
yuyang18 已提交
4899 4900 4901
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4902 4903
        Args:
            other(Program): Other program
4904 4905 4906 4907
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4908 4909 4910 4911 4912

        Returns:
            None
        """
        if not isinstance(other, Program):
4913 4914 4915
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4916

4917 4918 4919 4920 4921
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4922 4923 4924

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4925 4926
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4927
            for var in list(block.vars.values()):
4928 4929 4930 4931 4932 4933 4934
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4935

4936
    def list_vars(self):
Y
yuyang18 已提交
4937
        """
J
Jiabin Yang 已提交
4938
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4939

J
Jiabin Yang 已提交
4940 4941
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4953
        """
4954
        for each_block in self.blocks:
4955
            for each_var in list(each_block.vars.values()):
4956 4957
                yield each_var

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5016

5017
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5018
class Parameter(Variable):
5019
    """
5020
    Parameter is derived from Variable. A parameter is a persistable
5021
    Variable, and will be updated by optimizers after each iteration.
5022
    The training of a neural network is essentially the updating of
5023 5024
    its parameters.

5025
    Relative to a general Variable, a Parameter has several its own
5026 5027
    member variables:

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5038 5039
    """

5040 5041 5042 5043 5044 5045
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5046 5047 5048 5049 5050
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5051
        if len(shape) == 0:
5052 5053
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5054 5055 5056

        for each in shape:
            if each < 0:
5057 5058 5059
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5060 5061

        Variable.__init__(
5062 5063 5064 5065 5066 5067 5068
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5069 5070 5071 5072
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5073 5074
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5075
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5076

5077 5078
        self.is_distributed = False

F
fengjiayi 已提交
5079
    def __str__(self):
5080
        return self._to_readable_code()
F
fengjiayi 已提交
5081

F
update  
fengjiayi 已提交
5082 5083 5084
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5085

F
update  
fengjiayi 已提交
5086 5087 5088 5089 5090 5091 5092 5093
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5094 5095 5096 5097 5098 5099 5100 5101 5102
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5103 5104 5105 5106 5107 5108
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5109
                               "do_model_average")
F
update  
fengjiayi 已提交
5110
            for attr_name in additional_attr:
5111 5112
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5113 5114
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5115 5116 5117 5118
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5119

5120 5121
class ParamBase(core.VarBase):
    """
5122 5123 5124
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5125 5126 5127
    The training of a neural network is essentially the updating of
    its ParamBase.

5128
    Relative to a general Tensor, a ParamBase has several its own
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5171 5172
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5173 5174 5175 5176 5177 5178 5179 5180

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5181
        # self.block = default_main_program().global_block()
5182

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5196
    def __str__(self):
5197
        """
5198
        Convert a ParamBase object to a readable string.
5199

5200
        Returns(str): A readable string.
5201 5202 5203 5204

        Examples:
            .. code-block:: python

5205
                import paddle
5206
                paddle.disable_static()
5207 5208 5209 5210 5211 5212 5213 5214
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5215
                paddle.enable_static()
5216
        """
5217 5218
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5219 5220 5221 5222

    __repr__ = __str__


Y
Yu Yang 已提交
5223
# program is a global instance.
Y
Yu Yang 已提交
5224 5225
_main_program_ = Program()
_startup_program_ = Program()
5226

5227

5228
def default_startup_program():
Y
Yu Yang 已提交
5229
    """
Y
yuyang18 已提交
5230 5231
    Get default/global startup program.

J
Jiabin Yang 已提交
5232 5233 5234
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5235 5236 5237
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5238
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5239

J
Jiabin Yang 已提交
5240
    Returns: current default startup :ref:`api_fluid_Program`
5241

J
Jiabin Yang 已提交
5242
    Returns type: :ref:`api_fluid_Program`
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5258
    """
Y
Yu Yang 已提交
5259
    return _startup_program_
5260

5261

5262
def default_main_program():
Y
Yu Yang 已提交
5263
    """
5264 5265 5266 5267 5268
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5269

5270 5271
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5272
    :code:`default_main_program` when the program is not specified.
5273

5274 5275
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5276
    Returns:
5277
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5278 5279 5280 5281 5282

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5283

5284
            # Sample Network:
5285 5286
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5306
            #print the number of blocks in the program, 1 in this case
5307
            print(fluid.default_main_program().num_blocks)
5308 5309

            #print the description of variable 'image'
5310
            print(fluid.default_main_program().blocks[0].var('image'))
5311

Y
Yu Yang 已提交
5312
    """
Y
Yu Yang 已提交
5313
    return _main_program_
Y
Yu Yang 已提交
5314 5315 5316 5317 5318


def switch_main_program(program):
    """
    Switch the main program to a new program.
5319

Y
Yu Yang 已提交
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5334
    Switch the startup program to a new program
Y
Yu Yang 已提交
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5347
@signature_safe_contextmanager
Y
Yu Yang 已提交
5348 5349
def program_guard(main_program, startup_program=None):
    """
5350 5351
    :api_attr: Static Graph

5352 5353
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5354
    variables to the new main programs.
5355

G
guofei 已提交
5356 5357 5358 5359 5360 5361 5362
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5363
    Examples:
5364 5365 5366
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5367

5368 5369 5370
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5371
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5372
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5373 5374 5375

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5376

Y
Yu Yang 已提交
5377
    Examples:
5378
       .. code-block:: python
Y
yuyang18 已提交
5379

5380 5381 5382 5383 5384
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5385 5386
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5387
    """
5388 5389
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5390 5391
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5392 5393
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5394
        startup_program = switch_startup_program(startup_program)
5395 5396 5397 5398 5399 5400
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5401 5402


W
Wu Yi 已提交
5403
def _get_var(name, program=None):
X
xuwei06 已提交
5404
    """
Y
yuyang18 已提交
5405
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5406

X
xuwei06 已提交
5407 5408 5409
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5410
        If None, default_global_program() will be used.
X
xuwei06 已提交
5411 5412 5413 5414 5415 5416 5417

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5418
    assert isinstance(program, Program)
X
xuwei06 已提交
5419 5420

    return program.global_block().var(name)
5421 5422


S
rename  
sneaxiy 已提交
5423
@signature_safe_contextmanager
L
lujun 已提交
5424 5425 5426 5427
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5428
    core._switch_tracer(tracer)
M
minqiyang 已提交
5429

5430 5431 5432 5433 5434
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5435 5436


S
rename  
sneaxiy 已提交
5437
@signature_safe_contextmanager
L
lujun 已提交
5438
def _dygraph_place_guard(place):
5439 5440 5441
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5442

5443 5444 5445
    try:
        yield
    finally:
5446
        _global_expected_place_ = tmp_place
5447 5448 5449 5450


def load_op_library(lib_filename):
    """
5451 5452
    :api_attr: Static Graph
    
5453 5454 5455
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5456
    Please note, the type of custom operators can't have the same type
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5523 5524 5525 5526 5527
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5528 5529 5530 5531
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5532 5533
    if index:
        device = ":".join([device, index])
5534
    pre_device = switch_device(device)
5535 5536 5537 5538
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value