framework.py 205.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74 75
global_prog_seed = 0

76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
184
def in_dygraph_mode():
L
lujun 已提交
185
    """
186

187 188 189 190 191 192 193
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
194 195

    Returns:
196
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
197 198 199 200

    Examples:
        .. code-block:: python

201 202 203 204 205 206 207 208
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
209 210

    """
L
lujun 已提交
211
    return _dygraph_tracer_ is not None
212 213


214 215 216
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
217
        ), "We don't support %s in imperative mode" % func.__name__
218 219 220 221 222 223 224 225
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
226 227 228 229 230 231 232 233 234
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
235
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
236 237 238 239 240
        return func(*args, **kwargs)

    return __impl__


241 242 243 244 245 246
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
247
# same base class.
248 249 250
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
251 252 253 254 255
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
256 257 258 259

    return __impl__


T
tangwei12 已提交
260 261
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


279 280
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
281
static_only = wrap_decorator(_static_only_)
282
fake_interface_only = wrap_decorator(_fake_interface_only_)
283 284


L
lujun 已提交
285 286
def _dygraph_tracer():
    return _dygraph_tracer_
287

W
Wu Yi 已提交
288

M
minqiyang 已提交
289
def _current_expected_place():
290 291 292
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
293 294 295 296 297 298 299 300 301 302 303
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
320 321


L
Leo Chen 已提交
322 323 324 325
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
326

L
Leo Chen 已提交
327 328 329 330 331 332 333 334 335 336 337 338
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
339
def _cpu_num():
340
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
341 342 343 344 345 346 347 348
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
349
        os.environ['CPU_NUM'] = str(1)
350
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
351 352 353 354 355 356 357 358 359 360
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
361 362


363 364 365 366 367 368 369 370 371
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
387 388 389 390
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

391
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
392 393 394 395

    Examples:
        .. code-block:: python

396 397
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
398 399 400 401
    """
    return core.is_compiled_with_cuda()


402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
417
def cuda_places(device_ids=None):
L
lujun 已提交
418
    """
419 420 421 422
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
423
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
424 425

    If :code:`device_ids` is None, environment variable of
426
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
427
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
428
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
429
    If :code:`FLAGS_selected_gpus` is not set, all visible
430
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
431 432

    If :code:`device_ids` is not None, it should be the device
433
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
434
    the returned list would be 
C
Chen Weihang 已提交
435
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
436

437
    Parameters:
438
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
439 440

    Returns:
C
Chen Weihang 已提交
441
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
442 443 444 445

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
446 447
            import paddle
            import paddle.static as static
T
tangwei12 已提交
448

449 450
            # required: gpu
            
C
Chen Weihang 已提交
451 452 453
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
454 455

    """
S
sneaxiy 已提交
456 457 458
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
459
        device_ids = _cuda_ids()
S
sneaxiy 已提交
460 461 462 463 464
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
487
        
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
503
def cpu_places(device_count=None):
L
lujun 已提交
504
    """
C
Chen Weihang 已提交
505
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
506

S
add doc  
sneaxiy 已提交
507 508
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
509 510
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
511 512
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
513

514 515
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
516 517

    Returns:
C
Chen Weihang 已提交
518
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
519 520 521 522

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
523 524
            import paddle
            import paddle.static as static
T
tangwei12 已提交
525

C
Chen Weihang 已提交
526 527 528
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
529 530
    """

S
sneaxiy 已提交
531 532 533 534 535 536
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
537
    """
538
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
539 540 541

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
542 543 544 545
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
546

547 548
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
549 550

    Returns:
551
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
552 553 554 555

    Examples:
        .. code-block:: python

556
            import paddle.fluid as fluid
L
lujun 已提交
557 558 559 560 561
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
562 563 564
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
565 566
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
567 568


569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
595
@signature_safe_contextmanager
596 597
def name_scope(prefix=None):
    """
598 599
    :api_attr: Static Graph

600
    Generate hierarchical name prefix for the operators in Static Graph.
601

T
Tao Luo 已提交
602 603 604
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
605
        Don't use it in dygraph, since it will cause memory leak.
606 607

    Args:
T
Tao Luo 已提交
608
        prefix(str, optional): prefix. Default is none.
609 610 611

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
612

613 614 615
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
616
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
617
             b = a + 1
618
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
619
                c = b * 1
620
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
621
                d = c / 1
622 623 624
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
625 626 627
                g = f - 1

          # Op are created in the default main program.  
628
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
644 645
    """
    # TODO(panyx0718): Only [0-9a-z].
646
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
647 648 649
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
650
        assert prefix, "namescope prefix can not be empty."
651 652
        global _name_scope
        _name_scope = _name_scope.child(prefix)
653 654 655 656
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
657 658 659 660 661 662 663 664 665 666 667 668


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
669 670 671
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
672 673 674 675


def grad_var_name(var_name):
    """
676 677
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
678 679 680
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
681

682
def convert_np_dtype_to_dtype_(np_dtype):
683 684
    """
    Convert the data type in numpy to the data type in Paddle
685

686
    Args:
687
        np_dtype(np.dtype): the data type in numpy.
688

689 690
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
691 692

    """
693 694
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
695
        return core.VarDesc.VarType.FP32
696
    elif dtype == np.float64:
697
        return core.VarDesc.VarType.FP64
698
    elif dtype == np.float16:
699
        return core.VarDesc.VarType.FP16
700
    elif dtype == np.int32:
701
        return core.VarDesc.VarType.INT32
702
    elif dtype == np.int16:
703
        return core.VarDesc.VarType.INT16
704
    elif dtype == np.int64:
705
        return core.VarDesc.VarType.INT64
706
    elif dtype == np.bool:
707
        return core.VarDesc.VarType.BOOL
708
    elif dtype == np.uint16:
709 710 711
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
712 713
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
714 715
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
716 717 718 719
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
720
    else:
M
minqiyang 已提交
721
        raise ValueError("Not supported numpy dtype %s" % dtype)
722 723 724


def dtype_is_floating(dtype):
725 726 727
    """
    Check the data type is floating or not.
    Args:
728
        dtype(np.dtype|core.VarDesc.VarType): data type.
729 730 731 732 733
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
734
    if not isinstance(dtype, core.VarDesc.VarType):
735 736
        dtype = convert_np_dtype_to_dtype_(dtype)

737 738 739 740
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
741 742


Y
Yang Yang(Tony) 已提交
743
def _debug_string_(proto, throw_on_error=True):
744 745 746 747 748 749 750 751 752 753 754
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
755
    error_fields = list()
Y
Yang Yang(Tony) 已提交
756
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
757 758
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
759 760 761
    return proto.__str__()


762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
799
class Variable(object):
800
    """
J
Jiabin Yang 已提交
801
    **Notes**:
802
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
803

804 805
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
806 807 808
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
809
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
810 811
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
812

813
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
814
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
815

T
tianshuo78520a 已提交
816
    Most of a Variable's member variables can be set to be None. It mean
817
    it is not available or will be specified later.
818

819
    Examples:
820 821
        In Static Graph Mode:

822 823
        .. code-block:: python

824
            import paddle.fluid as fluid
825
            cur_program = fluid.Program()
826 827 828 829
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
830
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
831 832 833 834 835 836 837 838 839

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

840 841
    """

Y
Yu Yang 已提交
842 843
    def __init__(self,
                 block,
Y
Yu Yang 已提交
844
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
845 846 847 848
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
849
                 capacity=None,
Q
QI JUN 已提交
850
                 persistable=None,
F
fengjiayi 已提交
851
                 error_clip=None,
Y
Yu Yang 已提交
852
                 stop_gradient=False,
F
fengjiayi 已提交
853
                 is_data=False,
H
Huihuang Zheng 已提交
854
                 need_check_feed=False,
H
hong 已提交
855
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
856
                 **kwargs):
Y
Yu Yang 已提交
857 858
        self.block = block
        if name is None:
Y
Yu Yang 已提交
859
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
860

Y
Yu Yang 已提交
861
        if dtype is not None:
862
            if not isinstance(dtype, core.VarDesc.VarType):
863
                dtype = convert_np_dtype_to_dtype_(dtype)
864

H
hong 已提交
865 866
        self.belong_to_optimizer = belong_to_optimizer

867 868 869 870 871
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
872

873 874 875
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
876

877 878 879
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
880 881
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
882 883
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
884

885
        if shape is not None:
886
            if is_new_var:
887 888 889 890 891 892
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
893 894
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
895 896 897 898 899 900 901
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
902 903
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
904 905 906 907 908 909 910 911 912
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
913 914
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
915 916 917 918 919 920 921 922 923
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
924 925
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
926 927
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
928

929 930
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
931

932 933 934 935 936 937 938
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
939

940 941 942 943
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
944

945
    @fake_interface_only
946 947
    def detach(self):
        """
J
Jiabin Yang 已提交
948
        **Notes**:
T
tianshuo78520a 已提交
949
            **This API is ONLY available in Dygraph mode**
950

951
        Returns a new Variable, detached from the current graph.
952

953
        Returns:
J
Jiabin Yang 已提交
954
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
955

956

957 958 959 960 961
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
962
                from paddle.fluid.dygraph import Linear
963 964 965 966
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
967
                    linear = Linear(32, 64)
968
                    data = to_variable(data)
969
                    x = linear(data)
970 971 972
                    y = x.detach()

        """
973
        pass
974

975
    @fake_interface_only
976
    def numpy(self):
977
        """
J
Jiabin Yang 已提交
978
        **Notes**:
T
tianshuo78520a 已提交
979
            **This API is ONLY available in Dygraph mode**
980

J
Jiabin Yang 已提交
981
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
982 983 984 985 986

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
987
            ndarray: dtype is same as current Variable
988 989 990 991 992 993

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
994
                from paddle.fluid.dygraph import Linear
995 996 997 998
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
999
                    linear = Linear(32, 64)
1000
                    data = to_variable(data)
1001
                    x = linear(data)
1002 1003 1004
                    print(x.numpy())

        """
1005
        pass
1006

1007
    @fake_interface_only
1008
    def backward(self, retain_graph=False):
1009
        """
J
Jiabin Yang 已提交
1010
        **Notes**:
T
tianshuo78520a 已提交
1011
            **This API is ONLY available in Dygraph mode**
1012

1013
        Run backward of current Graph which starts from current Tensor.
1014

J
Jiabin Yang 已提交
1015
        Args:
1016 1017 1018 1019
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1020

J
Jiabin Yang 已提交
1021 1022
        Returns:
            NoneType: None
1023 1024 1025 1026 1027

        Examples:
            .. code-block:: python

                import numpy as np
1028 1029
                import paddle
                paddle.disable_static()
1030 1031

                x = np.ones([2, 2], np.float32)
1032 1033 1034 1035 1036 1037 1038
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1039 1040
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1041
                loss.backward()
1042 1043

        """
1044
        pass
1045

1046
    @fake_interface_only
1047
    def gradient(self):
1048
        """
J
Jiabin Yang 已提交
1049
        **Notes**:
T
tianshuo78520a 已提交
1050
            **This API is ONLY available in Dygraph mode**
1051 1052 1053

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1054
        Returns:
1055
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1056 1057 1058 1059 1060 1061 1062

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1063
                # example1: return ndarray
1064 1065 1066 1067 1068 1069 1070 1071 1072
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1073
                    loss2.backward()
1074 1075
                    print(loss2.gradient())

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1089
        """
1090
        pass
1091

1092
    @fake_interface_only
1093
    def clear_gradient(self):
1094
        """
J
Jiabin Yang 已提交
1095
        **Notes**:
T
tianshuo78520a 已提交
1096
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1097 1098

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1099

J
Jiabin Yang 已提交
1100
        Clear  (set to ``0`` ) the Gradient of Current Variable
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1119
                    loss2.backward()
1120 1121 1122 1123 1124
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1125
        pass
X
Xin Pan 已提交
1126

1127 1128 1129 1130
    @fake_interface_only
    def register_hook(self, hook):
        pass

1131
    def __str__(self):
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1148 1149
                import paddle
                import paddle.static as static
1150

1151 1152 1153
                paddle.enable_static()

                cur_program = static.Program()
1154 1155 1156 1157 1158 1159
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1160 1161
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1162
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1163 1164
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1165 1166
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1167
        else:
1168 1169
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1183

F
update  
fengjiayi 已提交
1184
    def to_string(self, throw_on_error, with_details=False):
1185 1186 1187
        """
        Get debug string.

J
Jiabin Yang 已提交
1188 1189 1190 1191 1192
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1193

1194 1195
        Returns:
            str: The debug string.
1196 1197 1198 1199 1200

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1201
                import paddle
1202

1203
                paddle.enable_static()
1204 1205 1206 1207 1208
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1209
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1210
                print("=============with detail===============")
1211
                print(new_variable.to_string(True, True))
1212
        """
F
update  
fengjiayi 已提交
1213 1214
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1215
        protostr = self.desc.serialize_to_string()
1216
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1217 1218 1219 1220
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1221 1222 1223
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1224
        return res_str
1225 1226 1227

    __repr__ = __str__

1228
    @property
1229
    def stop_gradient(self):
J
Jiabin Yang 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1245 1246
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1247 1248 1249
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1250 1251
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1252 1253 1254 1255
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1256
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1257 1258
                assert (out1.gradient() == 0).all()
        """
1259
        return self._stop_gradient
1260

1261 1262
    @stop_gradient.setter
    def stop_gradient(self, s):
1263
        self._stop_gradient = s
1264

1265 1266
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1288
        return self.desc.persistable()
1289

Y
Yu Yang 已提交
1290 1291
    @persistable.setter
    def persistable(self, p):
1292
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1293

Y
Yu Yang 已提交
1294 1295
    @property
    def name(self):
J
Jiabin Yang 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1312
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1313

1314 1315 1316 1317 1318 1319 1320 1321
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1334 1335
    @name.setter
    def name(self, new_name):
1336
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1337

Y
Yu Yang 已提交
1338 1339
    @property
    def shape(self):
J
Jiabin Yang 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1357
        # convert to tuple, make it as same as numpy API.
1358
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1359 1360

    @property
F
fengjiayi 已提交
1361
    def dtype(self):
J
Jiabin Yang 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1378
        return self.desc.dtype()
Y
Yu Yang 已提交
1379 1380 1381

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1403 1404 1405
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1406
        return self.desc.lod_level()
Y
Yu Yang 已提交
1407

Y
Yu Yang 已提交
1408 1409
    @property
    def type(self):
J
Jiabin Yang 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1426
        return self.desc.type()
Y
Yu Yang 已提交
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1462
    def _set_error_clip(self, error_clip):
1463 1464 1465 1466 1467 1468 1469 1470 1471
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1472 1473
        self.error_clip = error_clip

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1514
            raise ValueError("slice step can not be zero")
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1590
    def _cloneVar(self, copy=False):
1591 1592
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1593 1594
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1595 1596 1597 1598
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1599
        new_var = self._cloneVar()
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1610
        new_var = self._cloneVar()
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1621
                return self._cloneVar(True)
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1640
                return self._cloneVar(True)
1641
            index = int(item)
1642
            if (index > 0 and index >= self.shape[axis]) \
1643 1644 1645 1646 1647 1648 1649
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1650
        return _getitem_impl_(self, item)
1651

1652
    def __setitem__(self, item, value):
1653
        return _setitem_impl_(self, item, value)
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

Y
Yu Yang 已提交
1808

F
fengjiayi 已提交
1809 1810 1811
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1812

1813 1814
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1815 1816 1817 1818
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1819
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1820 1821 1822 1823 1824
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1825 1826 1827 1828
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1838
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1839 1840 1841 1842 1843 1844
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1845 1846 1847 1848 1849 1850 1851 1852
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1853 1854
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1855 1856
        return self.op_proto_map[type]

1857 1858
    def update_op_proto(self):
        op_protos = get_all_op_protos()
1859
        custom_op_names = []
1860 1861 1862
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
1863 1864 1865
                custom_op_names.append(proto.type)

        return custom_op_names
1866

1867 1868 1869 1870
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1871
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1872
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1873 1874
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1875 1876
        }

F
fengjiayi 已提交
1877

X
Xin Pan 已提交
1878
class Operator(object):
1879
    """
1880 1881 1882 1883 1884 1885 1886
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1887
        type(str): The type of operator. Default None.
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1908
        Block.append_op or Block._prepend_op instead.
1909 1910 1911 1912

    Examples:
        .. code-block:: python

1913
            import paddle.fluid as fluid
1914
            cur_program = fluid.Program()
1915 1916 1917 1918 1919
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1920
    """
1921
    OP_WITHOUT_KERNEL_SET = {
1922 1923
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1924
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
1925 1926
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
1927
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
1928 1929
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
1930
    }
1931

Y
Yu Yang 已提交
1932 1933
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1934
                 desc,
Y
Yu Yang 已提交
1935 1936 1937
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1938
                 attrs=None):
L
lujun 已提交
1939
        if in_dygraph_mode():
1940 1941
            if type is None:
                raise ValueError(
1942
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1943
            self._type = type
M
minqiyang 已提交
1944
            self.attrs = attrs if attrs else {}
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1959
                )] = self.block.program._op_role
1960 1961 1962

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1963 1964
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1965 1966 1967 1968 1969 1970 1971 1972

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1973
                    "`type` to initialized an Operator can not be None.")
1974 1975
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1976 1977 1978 1979 1980 1981 1982
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1983 1984 1985 1986 1987 1988 1989

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2021
                        if not isinstance(in_args, (list, tuple)):
2022 2023 2024 2025 2026 2027
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2028
                        for index, arg in enumerate(in_args):
2029 2030 2031 2032
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2033
                            elif isinstance(arg, (Variable, core.VarBase)):
2034
                                in_arg_names.append(cpt.to_text(arg.name))
2035
                            else:
2036 2037 2038 2039
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2040 2041
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2066 2067 2068 2069
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2070
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2071
                        if not in_dygraph_mode():
2072 2073 2074 2075
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2094
    def _has_kernel(self, op_type):
2095 2096
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2097
    def to_string(self, throw_on_error):
2098
        """
2099 2100
        Get debug string.

2101
        Args:
2102 2103
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2104

2105 2106
        Returns:
            str: The debug string.
2107 2108

        """
2109
        protostr = self.desc.serialize_to_string()
2110
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2111 2112
        return _debug_string_(proto, throw_on_error)

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2145
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2200 2201
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2202 2203 2204 2205 2206
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2207
    def __str__(self):
2208
        return self._to_readable_code()
2209 2210 2211

    __repr__ = __str__

F
fengjiayi 已提交
2212 2213
    @property
    def type(self):
2214
        return self.desc.type()
F
fengjiayi 已提交
2215 2216

    def input(self, name):
2217
        r"""
2218
        Get the input arguments according to the input parameter name.
2219

2220 2221
        Args:
            name(str): The input parameter name.
2222

2223 2224 2225
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2226
        """
F
fengjiayi 已提交
2227 2228
        return self.desc.input(name)

W
Wu Yi 已提交
2229
    def _rename_input(self, old_name, new_name):
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2240
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2241

W
Wu Yi 已提交
2242
    def _rename_output(self, old_name, new_name):
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2253
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2254

F
fengjiayi 已提交
2255 2256 2257 2258
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2259 2260 2261 2262 2263 2264 2265 2266
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2267
    def output(self, name):
2268
        r"""
2269
        Get output arguments by the output parameter name.
2270

2271 2272
        Args:
            name(str): The output parameter name.
2273

2274 2275 2276
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2277
        """
F
fengjiayi 已提交
2278 2279 2280 2281 2282 2283
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2284 2285 2286 2287 2288 2289 2290 2291
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2292
    def has_attr(self, name):
2293
        """
2294 2295
        Whether this Operator has the attribute with name or not.

2296
        Args:
2297
            name(str): the attribute name.
2298

2299 2300
        Returns:
            bool: True if has this attribute.
2301 2302

        """
F
fengjiayi 已提交
2303 2304 2305
        return self.desc.has_attr(name)

    def attr_type(self, name):
2306
        """
2307
        Get the type of attribute by attribute's name.
2308

2309 2310
        Args:
            name(str): the attribute name.
2311

2312 2313
        Returns:
            core.AttrType: the attribute type.
2314
        """
F
fengjiayi 已提交
2315 2316
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2317
    def _set_attr(self, name, val):
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2328 2329
        self._update_desc_attr(name, val)

2330 2331 2332
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2344 2345
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2346 2347
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2348
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2349 2350 2351 2352
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2353
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2354

F
fengjiayi 已提交
2355 2356 2357 2358 2359
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2360
        """
2361 2362
        Get the attribute by name.

2363
        Args:
2364
            name(str): the attribute name.
2365

2366 2367
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2368 2369
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2370
        return self.desc.attr(name)
Y
Yu Yang 已提交
2371

W
Wu Yi 已提交
2372
    def _block_attr_id(self, name):
2373
        """
G
gongweibao 已提交
2374
        Get the block attribute's id by name.
2375

2376 2377
        Args:
            name(str): the attribute name.
2378

2379 2380
        Returns:
            int: the block index.
2381
        """
W
Wu Yi 已提交
2382
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2383

W
Wu Yi 已提交
2384
    def _block_attr(self, name):
G
gongweibao 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2395
        id = self._block_attr_id(name)
G
gongweibao 已提交
2396 2397 2398
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2399
    def _blocks_attr(self, name):
G
gongweibao 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2410
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2411 2412 2413 2414 2415
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2416
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2427
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2428

J
JiayiFeng 已提交
2429
    def all_attrs(self):
F
fengjiayi 已提交
2430
        """
2431 2432 2433
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2434
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2435 2436 2437 2438
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2439 2440
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2441
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2442 2443 2444
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2445
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2446 2447 2448 2449
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2450 2451
        return attr_map

2452 2453 2454
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2455 2456 2457 2458

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2459 2460 2461
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2462 2463 2464 2465 2466 2467 2468 2469

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2470 2471
            return False

2472 2473 2474 2475 2476 2477
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2478

Y
Yu Yang 已提交
2479
class Block(object):
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2494
        use `Program._create_block()` to create a block.
2495 2496 2497 2498

    Examples:
        .. code-block:: python

2499 2500 2501
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2502 2503 2504 2505 2506 2507 2508 2509 2510
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2511
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2512
        self.desc = program.desc.block(idx)
2513
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2514
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2515
        self.program = program
2516
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2517

2518
    def __str__(self):
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2553
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2565

F
fengjiayi 已提交
2566 2567
    def to_string(self, throw_on_error, with_details=False):
        """
2568 2569
        Get debug string.

F
fengjiayi 已提交
2570 2571
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2572
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2573
            with_details(bool): more details about variables and parameters
2574 2575
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2576

2577 2578
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2579 2580 2581 2582
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2583
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2584 2585
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2586
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2587
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2588
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2589
            for op in self.ops:
F
fengjiayi 已提交
2590 2591
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2592 2593 2594
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2595 2596
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2597 2598
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2599 2600 2601

    __repr__ = __str__

Y
Yu Yang 已提交
2602 2603
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2604
        return self.desc.parent
Y
Yu Yang 已提交
2605

Y
Yu Yang 已提交
2606 2607 2608 2609
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2610
    def _set_forward_block_idx(self, idx):
2611 2612 2613 2614 2615 2616 2617 2618 2619
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2620
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2621

2622 2623 2624 2625 2626 2627 2628 2629
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2630 2631
    @property
    def idx(self):
Y
Yu Yang 已提交
2632
        return self.desc.id
Y
Yu Yang 已提交
2633

Q
Qiao Longfei 已提交
2634
    def var(self, name):
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2648
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2649 2650 2651
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2652 2653
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2654
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2655
        return v
Q
Qiao Longfei 已提交
2656

X
Xin Pan 已提交
2657
    def _find_var_recursive(self, name):
2658 2659 2660 2661 2662 2663 2664
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2665
            Variable: the Variable with the giving name. Or None if not found.
2666
        """
Y
Yu Yang 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2691
        return None
Y
Yu Yang 已提交
2692

X
Xin Pan 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2712

Q
Qiao Longfei 已提交
2713
    def all_parameters(self):
2714
        return list(self.iter_parameters())
2715

2716
    def iter_parameters(self):
M
minqiyang 已提交
2717
        return (item[1] for item in six.iteritems(self.vars)
2718
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2719

Y
Yu Yang 已提交
2720
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2721 2722 2723
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2724 2725 2726
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2727
        return var
Y
Yu Yang 已提交
2728

Q
Qiao Longfei 已提交
2729 2730 2731
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2732
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2733 2734
        """
        Rename variable in vars and ops' inputs and outputs
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2747
        """
M
minqiyang 已提交
2748 2749
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2750

T
typhoonzero 已提交
2751
        if not self.has_var(name):
2752
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2753 2754
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2755
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2756 2757 2758 2759 2760 2761
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2762
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2763 2764 2765 2766
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2767
        orig_var_type = v.type
M
minqiyang 已提交
2768
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2769
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2770
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2771
        if var_type == "Parameter":
L
Leo Chen 已提交
2772 2773
            if in_dygraph_mode():
                var = ParamBase(
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2784 2785
                var = Parameter(
                    self,
2786 2787 2788 2789 2790 2791 2792 2793 2794
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2795
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2796 2797
            var = Variable(
                self,
T
typhoonzero 已提交
2798
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2799 2800 2801 2802
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2803
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2804 2805 2806
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2807
        self._sync_with_cpp()
2808
        return var
T
typhoonzero 已提交
2809

2810 2811 2812
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2813
        self.desc._remove_var(cpt.to_bytes(name))
2814 2815
        del self.vars[name]

Y
Yu Yang 已提交
2816 2817
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2818
        param = None
L
Leo Chen 已提交
2819
        if in_dygraph_mode():
2820
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2821 2822
        else:
            param = Parameter(global_block, *args, **kwargs)
2823 2824 2825 2826 2827 2828
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2829
        if 'initializer' in kwargs:
2830 2831 2832 2833 2834

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2835
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2836
                        # are treated as initialization ops that cause error.
2837
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
2838 2839 2840 2841 2842
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
2843
                            continue
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2855
                # TODO already inited, do nothing, should log a warning
2856 2857 2858
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2859
        return param
Y
Yu Yang 已提交
2860

Y
Yu Yang 已提交
2861
    def append_op(self, *args, **kwargs):
2862 2863 2864 2865 2866 2867
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2868
        if in_dygraph_mode():
2869
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2870
            type = kwargs.get("type", None)
2871 2872 2873
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2874
                type=type,
M
minqiyang 已提交
2875 2876
                inputs=None,
                outputs=None,
2877
                attrs=attrs)
2878

M
minqiyang 已提交
2879 2880 2881
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2882
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2883 2884

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2885
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2886 2887
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2888
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2889
        else:
2890 2891
            from paddle.fluid.dygraph.base import param_guard

2892
            op_desc = self.desc.append_op()
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
2906

M
minqiyang 已提交
2907
            self.ops.append(op)
M
minqiyang 已提交
2908

2909 2910
        return op

W
Wu Yi 已提交
2911
    def _insert_op(self, index, *args, **kwargs):
2912 2913 2914 2915 2916 2917 2918 2919 2920
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2921
        self._sync_with_cpp()
F
fangshuixun007 已提交
2922
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2941 2942 2943 2944 2945 2946 2947 2948 2949
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2950 2951
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2952
        self.desc._remove_op(index, index + 1)
2953 2954
        del self.ops[index]

W
Wu Yi 已提交
2955
    def _slice_ops(self, start, end):
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2966
        return self.ops[start:end]
Y
Yancey1989 已提交
2967

W
Wu Yi 已提交
2968
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2969
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2970 2971
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2972
            op = Operator(
J
Jiabin Yang 已提交
2973
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2974

J
Jiabin Yang 已提交
2975
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2976
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2977 2978
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2979
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2980
        else:
2981 2982 2983 2984 2985 2986 2987 2988
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2989
            self.ops.insert(0, op)
2990

Y
Yu Yang 已提交
2991 2992
        return op

W
Wu Yi 已提交
2993
    def _sync_with_cpp(self):
2994
        """
2995 2996
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2997
        """
Q
Qiao Longfei 已提交
2998 2999 3000 3001 3002
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3003
        # sync variables removed from c++ end
3004
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3005
            if not self.desc.find_var(cpt.to_bytes(var)):
3006 3007
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3008
        # sync operators from cpp
3009 3010 3011 3012
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3029 3030 3031 3032 3033

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3034
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3035 3036 3037 3038 3039 3040 3041

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3055 3056 3057 3058
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3059
    def _copy_param_info_from(self, other):
3060
        """
3061 3062
        Copy the information of parameters from the other block.

3063
        Args:
3064 3065 3066 3067 3068
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3069 3070 3071 3072 3073

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3074 3075
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3076
        for p in other.iter_parameters():
3077 3078 3079
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3080 3081
                # if the Parameter is pruned, v may be None
                continue
3082
            assert isinstance(v, Variable)
3083
            new_p = None
L
Leo Chen 已提交
3084 3085
            if in_dygraph_mode():
                new_p = ParamBase(
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3097 3098
                new_p = Parameter(
                    block=self,
3099 3100 3101
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3102 3103
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3104 3105 3106 3107 3108 3109
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3110 3111
            self.vars[new_p.name] = new_p

3112
    def _clone_variable(self, var, force_persistable=True):
3113 3114
        """
        Clone a variable into current block.
3115

3116 3117
        Args:
            var: the variable to be cloned.
3118 3119 3120
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3121 3122

        Returns:
3123
            Variable: the new  variable cloned from 'var' in current block.
3124 3125
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3126 3127 3128 3129 3130
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3131 3132
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3133
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3134 3135 3136 3137 3138 3139
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3140
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3141 3142
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3143 3144 3145 3146 3147 3148 3149
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3150
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3151 3152
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3153
        return ret_var
3154

Y
Yu Yang 已提交
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3251
    def remove_input_by_id(self, node_id):
3252 3253 3254 3255 3256 3257
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3258
        self.node.remove_input(node_id)
3259

3260
    def remove_input(self, node):
3261 3262 3263 3264
        """
        Remove a node from inputs.

        Args:
3265
            node(IrNode): the node being removed.
3266
        """
3267
        self.node.remove_input(node.node)
3268

3269
    def append_input(self, node):
3270 3271 3272 3273
        """
        Append a node in inputs.

        Args:
3274
            node(IrNode): the node being appended.
3275
        """
3276
        self.node.append_input(node.node)
3277 3278 3279 3280 3281 3282 3283 3284

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3285
    def remove_output_by_id(self, node_id):
3286 3287 3288 3289 3290 3291
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3292
        self.node.remove_output(node_id)
3293

3294
    def remove_output(self, node):
3295 3296 3297 3298
        """
        Remove a node from outputs.

        Args:
3299
            node(IrNode): the node being removed.
3300
        """
3301
        self.node.remove_output(node.node)
3302

3303
    def append_output(self, node):
3304 3305 3306 3307
        """
        Append a node in outputs.

        Args:
3308
            node(IrNode): the node being appended.
3309
        """
3310
        self.node.append_output(node.node)
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3358
            "The node variable description can not be None."
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3369
            "The node variable description can not be None."
3370 3371
        return self.node.var().persistable()

3372 3373 3374 3375 3376 3377 3378 3379
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3380
            "The node variable description can not be None."
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3391
            "The node variable description can not be None."
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3402
            "The node variable description can not be None."
3403 3404
        return self.node.var().shape()

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3452
            "The node operator description can not be None."
3453 3454
        self.node.op()._rename_input(old_input_name, new_input_name)

3455 3456 3457 3458 3459 3460 3461 3462 3463
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3464
            "The node operator description can not be None."
3465 3466
        self.node.op()._rename_output(old_output_name, new_output_name)

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3478
            "The node operator description can not be None."
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3492
            "The node operator description can not be None."
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3503
            "The node operator description can not be None."
3504 3505
        return self.node.op().set_type(new_type)

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3521
            "The node operator description can not be None."
3522 3523 3524 3525
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3526
                all(isinstance(v, Block) for v in val):
3527 3528
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3529
                isinstance(val, core.ProgramDesc):
3530 3531 3532 3533
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3534 3535 3536 3537 3538 3539 3540 3541
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3542
            "The node operator description can not be None."
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3553
            "The node operator description can not be None."
3554 3555
        return self.node.op().output_arg_names()

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3577 3578
class IrGraph(object):
    """
3579
    Python IrGraph. Beneath it is a core.Graph, which is used for
3580
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3581 3582
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3583 3584 3585 3586
    """

    def __init__(self, graph, for_test=False):
        """
3587 3588
        Construct an IrGraph using core.Graph.

3589 3590 3591 3592 3593 3594 3595 3596 3597
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3598 3599 3600 3601
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3602 3603 3604
        Warns:
            The method only clones the graph structure, not its attributes.

3605 3606 3607
        Returns:
            IrGraph: A new and duplicated graph.
        """
3608
        g = self.graph.clone()
3609 3610
        return IrGraph(g, self._for_test)

3611
    def is_test(self):
3612 3613 3614
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3615 3616
        return self._for_test

W
WangZhen 已提交
3617
    def all_nodes(self):
3618 3619 3620
        """
        Return all nodes included in the graph as a set.
        """
3621
        return {IrNode(node) for node in self.graph.nodes()}
3622

3623
    def all_var_nodes(self):
3624 3625 3626
        """
        Return all variable nodes included in the graph as a set.
        """
3627
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3628

3629
    def all_persistable_nodes(self):
3630 3631 3632
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3633 3634 3635 3636 3637
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3638
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3639

3640
    def all_op_nodes(self):
3641 3642 3643
        """
        Return all operator nodes included in the graph as a set.
        """
3644
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3645

3646
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3658
            IrVarNode: the created persistable variable node.
3659
        """
3660 3661 3662 3663 3664
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3665
        return IrVarNode(self.graph.create_var_node(var_desc))
3666 3667

    def create_var_node(self, name, var_type, shape, var_dtype):
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3679
            IrVarNode: the created variable node.
3680 3681
        """

3682 3683 3684 3685
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3686
        return IrVarNode(self.graph.create_var_node(var_desc))
3687

3688 3689 3690 3691 3692 3693
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3694
    def create_var_node_from_desc(self, var_desc):
3695 3696 3697 3698 3699 3700 3701 3702
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3703
            IrVarNode: the created variable node.
3704
        """
3705
        return IrVarNode(self.graph.create_var_node(var_desc))
3706 3707

    def create_op_node(self, op_type, attrs, inputs, outputs):
3708 3709 3710 3711 3712 3713 3714
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3715
            outputs(dict): the outputs of the operator node.
3716 3717

        Returns:
3718
            IrOpNode: the created operator node.
3719
        """
3720 3721
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3722
        for attr, value in six.iteritems(attrs):
3723
            self._update_desc_attr(op_desc, attr, value)
3724
        for input_name, var_nodes in six.iteritems(inputs):
3725 3726 3727 3728
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3729
        for output_name, var_nodes in six.iteritems(outputs):
3730 3731 3732 3733
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3734
        return IrOpNode(self.graph.create_op_node(op_desc))
3735 3736

    def create_op_node_from_desc(self, op_desc):
3737 3738 3739 3740 3741 3742 3743
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3744
            IrOpNode: the created operator node.
3745
        """
3746
        return IrOpNode(self.graph.create_op_node(op_desc))
3747 3748

    def update_input_link(self, old_input_node, new_input_node, op_node):
3749 3750 3751 3752
        """
        Update the input's link of a operator node.

        Args:
3753 3754 3755
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3756
        """
3757
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3758
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3759
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3760 3761 3762 3763
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3764
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3765

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3776
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3777
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3778 3779 3780 3781 3782 3783
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3784
    def link_to(self, node_in, node_out):
3785 3786 3787 3788
        """
        Connect two nodes.

        Args:
3789 3790
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3791
        """
3792
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3793
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3794 3795
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3796 3797

    def safe_remove_nodes(self, remove_nodes):
3798 3799 3800 3801 3802 3803 3804
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3805
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3806 3807 3808 3809
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3810 3811
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3812

Z
Zhen Wang 已提交
3813 3814 3815 3816 3817 3818 3819 3820
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3821
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3822 3823 3824 3825
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3826
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3827 3828 3829
                        ]
                    else:
                        var_nodes[each_var_name].append(
3830 3831
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3832 3833
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3834
    def has_circle(self):
3835 3836 3837 3838 3839 3840
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3841 3842 3843
        return core.has_circle(self.graph)

    def graph_num(self):
3844 3845 3846 3847 3848 3849
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3850 3851 3852
        return core.graph_num(self.graph)

    def topology_sort(self):
3853 3854 3855
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3856
        Notes: the `graph` can not contain a circle.
3857 3858

        Returns:
Z
Zhen Wang 已提交
3859
            list(IrNode): nodes in topology order.
3860
        """
3861
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3862
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3863 3864

    def build_adjacency_list(self):
3865 3866 3867 3868
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3869
            dict{IrNode: set(IrNode)}: the adjacency list.
3870
        """
3871 3872 3873 3874 3875
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3876

3877 3878 3879 3880 3881 3882 3883 3884
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3885
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3886 3887 3888 3889 3890
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3891 3892
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3893 3894 3895
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3896 3897 3898 3899 3900
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3901
        remove_ctr_vars = set()
3902
        if remove_ctr_var:
3903
            for node in self.all_var_nodes():
3904 3905 3906
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3907 3908
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3909 3910
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3911 3912 3913 3914 3915 3916
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3917 3918 3919 3920
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3921 3922
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3923 3924 3925 3926 3927 3928 3929
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3930 3931 3932
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3933
        WARN: When the graph includes backward operator nodes, the
3934 3935 3936 3937 3938 3939
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3940
        convert_pass = core.get_pass('graph_to_program_pass')
3941 3942
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3943 3944 3945 3946
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3974
class Program(object):
D
dzhwinter 已提交
3975
    """
3976
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3977
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3978
    it will contain nested block.
3979

J
Jiabin Yang 已提交
3980 3981 3982
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3983

J
Jiabin Yang 已提交
3984
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3985
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3986 3987 3988 3989 3990 3991 3992
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3993
    **Notes**:
3994 3995 3996
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3997 3998

    Returns:
J
Jiabin Yang 已提交
3999
        Program: An empty Program.
D
dzhwinter 已提交
4000 4001

    Examples:
4002 4003
        .. code-block:: python

4004 4005 4006 4007
            import paddle
            import paddle.static as static

            paddle.enable_static()
4008

4009 4010 4011 4012 4013
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4014
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4015 4016 4017

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4018 4019 4020

    """

4021 4022
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4023 4024
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4025 4026
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4027
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4028
        self.__op_role_var = []
T
tangwei12 已提交
4029

4030 4031
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4032
        self._is_distributed = False
4033
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4034
        self._is_chief = False
4035 4036 4037
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4038
        self._endpoints = []
4039 4040 4041
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4042
        self._trainers_endpoints = []
4043
        # the distributed lookup table names
T
tangwei12 已提交
4044
        self._distributed_lookup_table = None
4045 4046 4047

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4048 4049
        self._use_lamb = False

4050 4051 4052
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4053

4054 4055 4056
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4057
        self._program_config = None
4058

H
hutuxian 已提交
4059 4060 4061
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4062 4063 4064
        # appending gradients times
        self._appending_grad_times = 0

4065 4066 4067 4068
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4069 4070 4071
        # compiled program, i.e. Graph
        self._graph = None

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4082 4083
                import paddle
                import paddle.static as static
4084

4085 4086 4087
                paddle.enable_static()

                prog = static.default_main_program()
4088 4089 4090 4091 4092
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4093
                prog1 = static.default_main_program()
4094 4095 4096 4097 4098 4099 4100 4101
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4102
    @property
4103
    def _op_role(self):
Y
yuyang18 已提交
4104 4105 4106 4107 4108 4109 4110 4111
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4112
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4113 4114 4115 4116
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4117 4118
        return self._current_role

4119 4120
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4121 4122 4123
        self._current_role = role

    @property
4124
    def _op_role_var(self):
Y
yuyang18 已提交
4125
        """
4126
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4127

4128
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4129 4130 4131

        Notes: This is a very low-level API. Users should not use it directly.
        """
4132
        return self.__op_role_var
Y
yuyang18 已提交
4133

4134
    @signature_safe_contextmanager
4135 4136 4137 4138 4139
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4140 4141 4142 4143
        try:
            yield
        finally:
            self._current_role = tmp_role
4144

S
rename  
sneaxiy 已提交
4145
    @signature_safe_contextmanager
W
Wu Yi 已提交
4146
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4147 4148 4149 4150 4151 4152 4153
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4154
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4155 4156 4157

        Examples:

4158
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4159
            >>> p, g = backward(...)
W
Wu Yi 已提交
4160
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4161 4162
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4163
        tmp_role = self._current_role
4164
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4165

Y
yuyang18 已提交
4166 4167
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4168
        self.__op_role_var = [
4169 4170 4171
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4172 4173 4174 4175 4176
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4177

S
rename  
sneaxiy 已提交
4178
    @signature_safe_contextmanager
X
Xin Pan 已提交
4179
    def _lr_schedule_guard(self, is_with_opt=False):
4180 4181 4182 4183 4184 4185 4186
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4187 4188 4189 4190
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4191 4192 4193

        Examples:

4194
            >>> import paddle.fluid as fluid
4195 4196 4197 4198
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4199 4200

        tmp_role = self._current_role
4201
        tmp_var = self.__op_role_var
4202

4203 4204
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4205 4206
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4207
        # TODO(typhoonzero): how to set target learning rate var
4208
        self.__op_role_var = []
4209 4210 4211 4212 4213
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4214

4215
    def __str__(self):
Y
yuyang18 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4245 4246
            import paddle
            import paddle.static as static
4247

4248 4249 4250
            paddle.enable_static()

            cur_program = static.Program()
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4262
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4263 4264 4265 4266
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4267
            program_str += '\n'
4268
        return program_str
Y
Yang Yang(Tony) 已提交
4269

F
fengjiayi 已提交
4270 4271 4272
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4273

J
Jiabin Yang 已提交
4274 4275 4276
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4277

J
Jiabin Yang 已提交
4278
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4279

H
haowang101779990 已提交
4280
        Returns:
J
Jiabin Yang 已提交
4281
            str: The debug string describe current Program.
Y
yuyang18 已提交
4282 4283

        Raises:
J
Jiabin Yang 已提交
4284
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4285

4286 4287 4288
        Examples:
            .. code-block:: python

4289 4290 4291 4292
                import paddle
                import paddle.static as static

                paddle.enable_static()
4293

4294 4295 4296
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4297
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4298
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4299
                print("program string without detail: {}".format(prog_string))
4300
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4301
        """
4302 4303 4304 4305 4306 4307 4308 4309 4310
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4311 4312 4313 4314 4315 4316
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4317 4318
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4319 4320
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4321

W
Wu Yi 已提交
4322
    def _get_desc(self):
Y
yuyang18 已提交
4323 4324 4325 4326 4327 4328 4329
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4330 4331
        return self.desc

X
version  
Xin Pan 已提交
4332 4333 4334
    def _version(self):
        return self.desc._version()

4335
    def clone(self, for_test=False):
Y
yuyang18 已提交
4336
        """
4337 4338 4339 4340
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4341

4342
        Create a new Program with forward content of original one when ``for_test=True``.
4343
        Create a new Program as same as the original one when ``for_test=False``.
4344

4345
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4346 4347 4348
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4349

4350 4351
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4352 4353
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4354
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4355

J
Jiabin Yang 已提交
4356
        For Example:
4357
          ::
L
Luo Tao 已提交
4358

4359 4360 4361 4362 4363 4364
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4365
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4366
            loss = paddle.mean(pred)
4367
            # Here we use clone before Momentum
4368 4369
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4370
            optimizer.minimize(loss)
4371

J
Jiabin Yang 已提交
4372
        Args:
4373

4374 4375
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4376

J
Jiabin Yang 已提交
4377
        Returns:
4378
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4379

Y
yuyang18 已提交
4380 4381 4382

        Examples:

4383 4384 4385 4386 4387 4388 4389
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4406
            1. To clone a test program, the sample code is:
4407 4408 4409
                .. code-block:: python

                    import six
4410 4411 4412 4413 4414 4415
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4428 4429
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4430 4431 4432

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4433 4434 4435
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4436
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4437 4438
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4439
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4440 4441
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4442
                            test_program = train_program.clone(for_test=True)
4443
                    print_prog(test_program)
J
Jiabin Yang 已提交
4444 4445 4446 4447

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4448
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4449 4450 4451 4452
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4453 4454 4455
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4456 4457 4458
                            sgd.minimize(avg_loss)


4459
            2. The clone method can be avoid if you create program for training and program for testing individually.
4460 4461 4462
                .. code-block:: python

                    import six
4463 4464 4465 4466 4467 4468
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4480

4481
                    def network():
4482
                        img = static.data(name='image', shape=[None, 784])
4483
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4484 4485
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4486
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4487 4488
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4489 4490
                        return avg_loss

4491 4492 4493 4494 4495
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4496
                            avg_loss = network()
4497
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4498
                            sgd.minimize(avg_loss)
4499
                    # the test startup program is not used.
4500 4501
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4502 4503
                            avg_loss = network()
                    print_prog(test_program_2)
4504

4505
            The two code snippets above will generate and print same programs.
4506
        """
4507

T
tangwei12 已提交
4508
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4509 4510 4511
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4512
        pruned_origin_block_id_map = None
4513
        if for_test:
4514 4515 4516 4517 4518 4519 4520 4521 4522
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4523
        else:
4524
            p = Program()
G
gongweibao 已提交
4525 4526
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4527
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4528 4529 4530
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4531 4532

            p._current_role = self._current_role
4533
            p.__op_role_var = self.__op_role_var
4534
            p._appending_grad_times = self._appending_grad_times
4535 4536
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4537

T
tangwei12 已提交
4538
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4539
            # its desc.
W
Wu Yi 已提交
4540
            p._sync_with_cpp()
4541

W
Wu Yi 已提交
4542
        p._copy_param_info_from(self)
4543
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4544
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4545
        return p
4546

4547
    def _prune(self, targets):
Y
yuyang18 已提交
4548 4549 4550 4551 4552 4553 4554 4555
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4556
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4557 4558 4559 4560
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4561
        """
4562
        return self._prune_with_input([], targets)
4563 4564

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4565
        """
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4576
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4577 4578 4579 4580 4581 4582
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4583
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4584 4585 4586
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4587 4588
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4589 4590
        if not isinstance(targets, list):
            targets = [targets]
4591 4592 4593

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4594 4595 4596
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4597

4598 4599 4600 4601
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4602 4603 4604
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4605
                else:
4606 4607 4608
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4609 4610 4611 4612 4613 4614 4615 4616

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4617 4618 4619 4620 4621 4622 4623 4624 4625
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4626
                        # Skip optimize op except for optimize op in targets,
4627 4628 4629 4630 4631 4632
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4633 4634 4635 4636 4637 4638 4639 4640
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4641

4642
        res = Program()
4643 4644 4645
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4646 4647 4648
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4649
        res._sync_with_cpp()
4650 4651 4652 4653 4654

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4655 4656
        return res

X
Xin Pan 已提交
4657
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4658
        """
F
fengjiayi 已提交
4659 4660 4661 4662 4663
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4664
        3. change the :code:`is_test`
Y
yuyang18 已提交
4665 4666 4667
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4668
        Args:
X
Xin Pan 已提交
4669 4670
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4671

Y
yuyang18 已提交
4672 4673 4674 4675 4676 4677
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4678
        res = Program()
4679
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4680 4681 4682 4683

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4684
        if prune_read_op:
4685 4686 4687 4688 4689 4690 4691 4692 4693
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4694
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4695 4696

        # change all `is_test` attributes to True
M
minqiyang 已提交
4697
        for i in six.moves.range(res.desc.num_blocks()):
4698
            block = res.desc.block(i)
M
minqiyang 已提交
4699
            for j in six.moves.range(block.op_size()):
4700 4701
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4702
                    op._set_attr('is_test', True)
4703 4704 4705
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
4706 4707 4708
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4709
        res._sync_with_cpp()
4710 4711
        return res

4712 4713
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4714
        """
4715 4716 4717
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4718

4719 4720
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4721

J
Jiabin Yang 已提交
4722
        Args:
Y
yuyang18 已提交
4723

J
Jiabin Yang 已提交
4724
            binary_str_type (str): the binary prootbuf string.
4725

J
Jiabin Yang 已提交
4726 4727
        Returns:
            Program: A deserialized Program.
4728 4729 4730 4731

        Examples:
            .. code-block:: python

4732 4733 4734 4735
                import paddle
                import paddle.static as static

                paddle.enable_static()
4736

4737 4738 4739 4740
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4741

4742
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4743

4744
                    z = paddle.matmul(x=x, y=y)
4745

4746 4747
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4748

4749
                    print(static.default_main_program())
4750
                    print(prog_restored)
Y
yuyang18 已提交
4751
        """
4752 4753
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4754
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4755
        p._sync_with_cpp()
4756
        return p
Y
Yu Yang 已提交
4757

4758
    @staticmethod
4759
    def _construct_from_desc(desc):
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4775 4776
    @property
    def random_seed(self):
Y
yuyang18 已提交
4777
        """
J
Jiabin Yang 已提交
4778
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4779 4780
        the random seed from random device.

4781 4782
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4783 4784 4785

        Returns:
            int64: Random seed in current Program
4786

4787 4788 4789 4790

        Examples:
            .. code-block:: python

4791 4792 4793
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4794

4795 4796 4797
                paddle.enable_static()

                prog = static.default_main_program()
4798
                random_seed = prog.random_seed
4799
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4800 4801 4802
                print(random_seed)
                ## 0
                ## the default random seed is 0
4803

4804
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4805
                prog.random_seed = 1
4806
                z_var = F.dropout(x_var, 0.7)
4807

4808
                print(prog.random_seed)
4809 4810
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4811
        """
D
dzhwinter 已提交
4812 4813
        return self._seed

Q
qiaolongfei 已提交
4814 4815
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4816
        """
4817 4818
        The number of :ref:`api_guide_Block_en`  in this Program.

4819 4820
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4821 4822 4823

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4824

4825 4826 4827 4828

        Examples:
            .. code-block:: python

4829 4830 4831 4832
                import paddle
                import paddle.static as static

                paddle.enable_static()
4833

4834
                prog = static.default_main_program()
4835 4836
                num_blocks = prog.num_blocks
                print(num_blocks)
4837

4838 4839
                # print result:
                # 1
Y
yuyang18 已提交
4840
        """
Q
qiaolongfei 已提交
4841 4842
        return self.desc.num_blocks()

D
dzhwinter 已提交
4843 4844 4845
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4846 4847 4848
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4849 4850
        self._seed = seed

Y
Yu Yang 已提交
4851
    def __repr__(self):
4852
        return self.__str__()
4853

Y
Yu Yang 已提交
4854
    def global_block(self):
Y
yuyang18 已提交
4855
        """
4856 4857
        .. note::
            This API has no effect in Dygraph mode.
4858 4859 4860

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4861 4862
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4863

4864 4865 4866 4867

        Examples:
            .. code-block:: python

4868 4869 4870 4871
                import paddle
                import paddle.static as static

                paddle.enable_static()
4872

4873
                prog = static.default_main_program()
4874 4875
                gb_block = prog.global_block()
                print(gb_block)
4876

Y
yuyang18 已提交
4877
        """
Y
Yu Yang 已提交
4878 4879
        return self.blocks[0]

Q
Qiao Longfei 已提交
4880
    def block(self, index):
Y
yuyang18 已提交
4881
        """
4882 4883
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4884

4885 4886
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4887 4888
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4889

J
Jiabin Yang 已提交
4890 4891
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4892 4893 4894 4895

        Examples:
            .. code-block:: python

4896 4897 4898 4899
                import paddle
                import paddle.static as static

                paddle.enable_static()
4900

4901
                prog = static.default_main_program()
4902 4903
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4904
        """
Q
Qiao Longfei 已提交
4905 4906
        return self.blocks[index]

Y
Yu Yang 已提交
4907
    def current_block(self):
Y
yuyang18 已提交
4908
        """
4909 4910
        .. note::
            This API has no effect in Dygraph mode.
4911

J
Jiabin Yang 已提交
4912 4913
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4914

J
Jiabin Yang 已提交
4915 4916
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4917

4918 4919 4920
        Examples:
            .. code-block:: python

4921 4922 4923 4924
                import paddle
                import paddle.static as static

                paddle.enable_static()
4925

4926
                prog = static.default_main_program()
4927 4928
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4929
        """
Y
Yu Yang 已提交
4930 4931
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4932
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4933 4934 4935 4936 4937
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4938

Y
yuyang18 已提交
4939 4940 4941 4942 4943
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4944
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4945 4946 4947
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4948 4949 4950 4951
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4952
    def _rollback(self):
Y
yuyang18 已提交
4953 4954 4955 4956 4957
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4958 4959
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4960
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4971 4972 4973
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4974
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4975

W
Wu Yi 已提交
4976
    def _copy_param_info_from(self, other):
4977
        """
4978
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4979

Y
yuyang18 已提交
4980 4981 4982
        Notes: This is a very low level API. Users should not invoke it
        directly.

4983 4984 4985 4986 4987 4988 4989
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4990 4991 4992
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4993

W
Wu Yi 已提交
4994
        self.global_block()._copy_param_info_from(other.global_block())
4995

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5007 5008 5009
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5010 5011
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5012
        self._parameters_on_pservers = other._parameters_on_pservers
5013
        self._endpoints = other._endpoints
5014
        self._ps_endpoint = other._ps_endpoint
5015 5016
        self._distributed_lookup_table = other._distributed_lookup_table

5017
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5018 5019
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5020

Y
yuyang18 已提交
5021 5022 5023
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5024 5025
        Args:
            other(Program): Other program
5026 5027 5028 5029
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5030 5031 5032 5033 5034

        Returns:
            None
        """
        if not isinstance(other, Program):
5035 5036 5037
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5038

5039 5040 5041 5042 5043
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5044 5045 5046

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5047 5048
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5049
            for var in list(block.vars.values()):
5050 5051 5052 5053 5054 5055 5056
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5057

5058
    def list_vars(self):
Y
yuyang18 已提交
5059
        """
5060
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5061

J
Jiabin Yang 已提交
5062
        Returns:
5063
            iterable Tensors: The Generator will yield every Tensor in this program.
5064 5065 5066 5067

        Examples:
            .. code-block:: python

5068 5069
                import paddle
                import paddle.static as static
5070

5071 5072 5073 5074 5075
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5076 5077
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5078

5079 5080
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5081
        """
5082
        for each_block in self.blocks:
5083
            for each_var in list(each_block.vars.values()):
5084 5085
                yield each_var

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5096 5097 5098 5099
                import paddle
                import paddle.static as static

                paddle.enable_static()
5100

5101 5102
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5103
                hidden = static.nn.fc(x=data, size=10)
5104 5105
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5106 5107 5108 5109 5110 5111 5112

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5113 5114
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5292

5293
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5294
class Parameter(Variable):
5295
    """
5296
    Parameter is derived from Variable. A parameter is a persistable
5297
    Variable, and will be updated by optimizers after each iteration.
5298
    The training of a neural network is essentially the updating of
5299 5300
    its parameters.

5301
    Relative to a general Variable, a Parameter has several its own
5302 5303
    member variables:

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5314 5315
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5316 5317
    """

5318 5319 5320 5321 5322 5323
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5324 5325 5326 5327 5328
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5329
        if len(shape) == 0:
5330 5331
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5332 5333 5334

        for each in shape:
            if each < 0:
5335 5336 5337
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5338 5339

        Variable.__init__(
5340 5341 5342 5343 5344 5345 5346
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5347 5348 5349 5350
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5351 5352
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5353
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5354

5355 5356
        self.need_clip = kwargs.get('need_clip', True)

5357 5358
        self.is_distributed = False

F
fengjiayi 已提交
5359
    def __str__(self):
5360
        return self._to_readable_code()
F
fengjiayi 已提交
5361

F
update  
fengjiayi 已提交
5362 5363 5364
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5365

F
update  
fengjiayi 已提交
5366 5367 5368 5369 5370 5371 5372 5373
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5374 5375 5376 5377 5378 5379 5380 5381 5382
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5383 5384 5385 5386 5387 5388
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5389
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5390
            for attr_name in additional_attr:
5391 5392
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5393 5394
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5395 5396 5397 5398
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5399

5400 5401
class ParamBase(core.VarBase):
    """
5402 5403 5404
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5405 5406 5407
    The training of a neural network is essentially the updating of
    its ParamBase.

5408
    Relative to a general Tensor, a ParamBase has several its own
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5421 5422
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5453 5454
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5455 5456 5457 5458 5459 5460 5461

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5462 5463
        self.need_clip = kwargs.get('need_clip', True)

5464
        self.is_distributed = False
5465
        # self.block = default_main_program().global_block()
5466

5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5480
    def __str__(self):
5481
        """
5482
        Convert a ParamBase object to a readable string.
5483

5484
        Returns(str): A readable string.
5485 5486 5487 5488

        Examples:
            .. code-block:: python

5489
                import paddle
5490 5491 5492 5493 5494 5495 5496
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5497
        """
5498 5499
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5500

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5512

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5531 5532 5533 5534 5535 5536 5537
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5538 5539 5540
    __repr__ = __str__


Y
Yu Yang 已提交
5541
# program is a global instance.
Y
Yu Yang 已提交
5542 5543
_main_program_ = Program()
_startup_program_ = Program()
5544

5545

5546
def default_startup_program():
Y
Yu Yang 已提交
5547
    """
Y
yuyang18 已提交
5548 5549
    Get default/global startup program.

5550 5551
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5552

5553 5554
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5555

5556 5557
    Returns:
        Program: current default startup program.
5558

5559
    Returns type: 
5560 5561 5562 5563

    Examples:
        .. code-block:: python

5564
            import paddle
5565

5566
            paddle.enable_static()
5567 5568 5569 5570
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5571
    """
Y
Yu Yang 已提交
5572
    return _startup_program_
5573

5574

5575
def default_main_program():
Y
Yu Yang 已提交
5576
    """
5577
    This API can be used to get ``default main program`` which store the 
5578
    descriptions of Ops and tensors.
T
tangwei12 已提交
5579

5580
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5581
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5582

5583 5584
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5585
    :code:`default_main_program` when the program is not specified.
5586

5587
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5588

Y
Yu Yang 已提交
5589
    Returns:
5590
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5591 5592 5593 5594

    Examples:
        ..  code-block:: python

5595
            import paddle
5596

5597
            paddle.enable_static()
5598
            # Sample Network:
5599 5600 5601
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5602

5603 5604 5605
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5606
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5607
    """
Y
Yu Yang 已提交
5608
    return _main_program_
Y
Yu Yang 已提交
5609 5610 5611 5612 5613


def switch_main_program(program):
    """
    Switch the main program to a new program.
5614

Y
Yu Yang 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5629
    Switch the startup program to a new program
Y
Yu Yang 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5642
@signature_safe_contextmanager
Y
Yu Yang 已提交
5643 5644
def program_guard(main_program, startup_program=None):
    """
5645 5646
    :api_attr: Static Graph

5647 5648 5649
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5650

G
guofei 已提交
5651
    Args:
5652 5653
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5654 5655 5656 5657
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5658
    Examples:
5659
       .. code-block:: python
T
tangwei12 已提交
5660

5661
          import paddle
Y
yuyang18 已提交
5662

5663 5664 5665 5666 5667
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5668
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5669 5670 5671

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5672

Y
Yu Yang 已提交
5673
    Examples:
5674
       .. code-block:: python
Y
yuyang18 已提交
5675

5676
          import paddle
5677

5678 5679 5680 5681 5682
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5683

Y
Yu Yang 已提交
5684
    """
5685
    from .data_feeder import check_type
5686 5687
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5688 5689
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5690
        check_type(startup_program, 'startup_program', Program,
5691
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5692
        startup_program = switch_startup_program(startup_program)
5693 5694 5695 5696 5697 5698
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5699 5700


W
Wu Yi 已提交
5701
def _get_var(name, program=None):
X
xuwei06 已提交
5702
    """
Y
yuyang18 已提交
5703
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5704

X
xuwei06 已提交
5705 5706 5707
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5708
        If None, default_global_program() will be used.
X
xuwei06 已提交
5709 5710 5711 5712 5713 5714 5715

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5716
    assert isinstance(program, Program)
X
xuwei06 已提交
5717 5718

    return program.global_block().var(name)
5719 5720


S
rename  
sneaxiy 已提交
5721
@signature_safe_contextmanager
L
lujun 已提交
5722 5723
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5724
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5725
    _dygraph_tracer_ = tracer
5726
    core._switch_tracer(tracer)
M
minqiyang 已提交
5727

5728 5729 5730
    try:
        yield
    finally:
5731 5732
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5733 5734


S
rename  
sneaxiy 已提交
5735
@signature_safe_contextmanager
L
lujun 已提交
5736
def _dygraph_place_guard(place):
5737 5738 5739
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5740

5741 5742
    _set_dygraph_tracer_expected_place(place)

5743 5744 5745
    try:
        yield
    finally:
5746
        _global_expected_place_ = tmp_place
5747
        _set_dygraph_tracer_expected_place(tmp_place)
5748 5749


5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
5766 5767
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
5768 5769 5770 5771 5772 5773 5774 5775 5776
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
5777
            import paddle
5778

Z
Zhang Ting 已提交
5779 5780 5781
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
5782
            if support_gpu:
Z
Zhang Ting 已提交
5783
                place = paddle.CUDAPlace(0)
5784 5785

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
5786 5787 5788
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
5789

Z
Zhang Ting 已提交
5790
            with paddle.static.device_guard("cpu"):
5791
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
5792 5793
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
5794
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
5795
                out = paddle.reshape(data1, shape=shape)
5796

Z
Zhang Ting 已提交
5797 5798
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
5799 5800 5801
            result = exe.run(fetch_list=[out])
    """

5802 5803 5804 5805 5806
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5807
    if device not in ['cpu', 'gpu', 'npu', '', None]:
5808
        raise ValueError(
5809
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
5810
            "when there is no need to specify device. But received %s" % device)
5811 5812
    if index:
        device = ":".join([device, index])
5813
    pre_device = switch_device(device)
5814 5815 5816 5817
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5885 5886 5887 5888 5889 5890 5891


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
5892
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
5893 5894 5895 5896 5897 5898 5899 5900 5901
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
5902

5903 5904 5905
    if (place == "device"):
        return core.Place()

5906
    # GPU
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
5922 5923

    # XPU
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

5947
    raise ValueError(
5948 5949
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret