framework.py 130.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

70
            import paddle.fluid as fluid
L
lujun 已提交
71 72 73 74
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
75
    return _dygraph_tracer_ is not None
76 77


L
lujun 已提交
78 79
def _dygraph_tracer():
    return _dygraph_tracer_
80

W
Wu Yi 已提交
81

M
minqiyang 已提交
82
def _current_expected_place():
L
lujun 已提交
83
    return _dygraph_current_expected_place_
M
minqiyang 已提交
84 85


S
sneaxiy 已提交
86
def _cpu_num():
87
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
88 89 90 91 92 93 94 95
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
96
        os.environ['CPU_NUM'] = str(1)
97
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
98 99 100 101 102 103 104 105 106 107
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
108 109


C
chengduo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
125
def cuda_places(device_ids=None):
L
lujun 已提交
126
    """
S
add doc  
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
146 147 148 149

    Examples:
        .. code-block:: python

150
            import paddle.fluid as fluid
L
lujun 已提交
151 152 153
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
154 155 156
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
157
        device_ids = _cuda_ids()
S
sneaxiy 已提交
158 159 160 161 162 163
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
164
    """
S
add doc  
sneaxiy 已提交
165 166 167 168
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
169 170
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
171 172 173 174 175 176

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181
            import paddle.fluid as fluid
L
lujun 已提交
182 183 184
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
185 186 187 188 189 190
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
191
    """
S
add doc  
sneaxiy 已提交
192 193 194 195 196 197 198 199 200 201 202 203
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
204 205 206 207

    Examples:
        .. code-block:: python

208
            import paddle.fluid as fluid
L
lujun 已提交
209 210 211 212 213
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
214 215 216 217 218 219 220
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
247
@signature_safe_contextmanager
248 249 250 251 252 253 254 255 256 257 258 259
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
260

261
          import paddle.fluid as fluid
262 263 264 265 266 267 268 269 270 271 272
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
273 274
    """
    # TODO(panyx0718): Only [0-9a-z].
275 276 277 278 279 280 281 282 283
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
284 285 286 287 288 289 290 291 292 293 294 295


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
296 297 298
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
299 300 301 302


def grad_var_name(var_name):
    """
303 304
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
305 306 307
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
308

309
def convert_np_dtype_to_dtype_(np_dtype):
310 311
    """
    Convert the data type in numpy to the data type in Paddle
312

313
    Args:
314
        np_dtype(np.dtype): the data type in numpy.
315

316 317
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
318 319

    """
320 321
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
322
        return core.VarDesc.VarType.FP32
323
    elif dtype == np.float64:
324
        return core.VarDesc.VarType.FP64
325
    elif dtype == np.float16:
326
        return core.VarDesc.VarType.FP16
327
    elif dtype == np.int32:
328
        return core.VarDesc.VarType.INT32
329
    elif dtype == np.int16:
330
        return core.VarDesc.VarType.INT16
331
    elif dtype == np.int64:
332
        return core.VarDesc.VarType.INT64
333
    elif dtype == np.bool:
334
        return core.VarDesc.VarType.BOOL
335 336
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
337 338
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
339 340
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
341
    else:
M
minqiyang 已提交
342
        raise ValueError("Not supported numpy dtype %s" % dtype)
343 344 345


def dtype_is_floating(dtype):
346 347 348
    """
    Check the data type is floating or not.
    Args:
349
        dtype(np.dtype|core.VarDesc.VarType): data type.
350 351 352 353 354
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
355
    if not isinstance(dtype, core.VarDesc.VarType):
356 357
        dtype = convert_np_dtype_to_dtype_(dtype)

358 359 360 361
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
362 363


Y
Yang Yang(Tony) 已提交
364
def _debug_string_(proto, throw_on_error=True):
365 366 367 368 369 370 371 372 373 374 375
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
376
    error_fields = list()
Y
Yang Yang(Tony) 已提交
377
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
378 379
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
380 381 382
    return proto.__str__()


X
Xin Pan 已提交
383
class Variable(object):
384
    """
385 386 387
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
388
    two variables in different blocks could have the same name.
389

390
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
391
    and usages. Please refer to the framework.proto for details.
392

393
    Most of a Variable's member variables can be setted to be None. It mean
394
    it is not available or will be specified later.
395 396

    Args:
397
        block(Block): The block that the variable belongs to.
398 399
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
400 401
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
402
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
403
            Some kinds of variable do not contain shape, just set it to None.
404 405 406
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
407
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
408
            series data.
409
            Default: None
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

427
            import paddle.fluid as fluid
428 429 430 431 432
            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
433 434
    """

Y
Yu Yang 已提交
435 436
    def __init__(self,
                 block,
Y
Yu Yang 已提交
437
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
438 439 440 441
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
442
                 capacity=None,
Q
QI JUN 已提交
443
                 persistable=None,
F
fengjiayi 已提交
444
                 error_clip=None,
Y
Yu Yang 已提交
445
                 stop_gradient=False,
F
fengjiayi 已提交
446
                 is_data=False,
Y
Yu Yang 已提交
447
                 **kwargs):
Y
Yu Yang 已提交
448 449
        self.block = block
        if name is None:
Y
Yu Yang 已提交
450
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
451

Y
Yu Yang 已提交
452
        if dtype is not None:
453
            if not isinstance(dtype, core.VarDesc.VarType):
454
                dtype = convert_np_dtype_to_dtype_(dtype)
455

L
lujun 已提交
456
        if in_dygraph_mode():
M
minqiyang 已提交
457
            # record vars in tracer rather than blocks
M
minqiyang 已提交
458 459
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
460
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
461 462 463 464
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [], stop_gradient, True
X
fix  
Xin Pan 已提交
465
                    if persistable else False)
M
minqiyang 已提交
466
            if persistable:
L
lujun 已提交
467
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
468
            self.op = None
M
minqiyang 已提交
469
        else:
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
542
            self.block.vars[name] = self
543
            self.op = None
544
            self._stop_gradient = stop_gradient
545
            self.is_data = is_data
Y
Yu Yang 已提交
546

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
        
        Returns:
            Variable: The detached Variable.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

581
    def numpy(self):
M
minqiyang 已提交
582
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
583
        return np.array(new_ivar.value().get_tensor())
584

585
    def backward(self, backward_strategy=None):
J
Jiabin Yang 已提交
586 587 588 589 590
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
591

J
Jiabin Yang 已提交
592 593 594 595
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
596

597
    def gradient(self):
598 599
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
600

601
    def clear_gradient(self):
X
Xin Pan 已提交
602
        self._ivar._clear_gradient()
X
Xin Pan 已提交
603

604
    def __str__(self):
Y
Yang Yang(Tony) 已提交
605 606
        return self.to_string(True)

F
update  
fengjiayi 已提交
607
    def to_string(self, throw_on_error, with_details=False):
608 609 610 611
        """
        Get debug string.

        Args:
612 613
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
614
            with_details(bool): more details about variables and parameters
615 616
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
617

618 619
        Returns:
            str: The debug string.
620
        """
L
lujun 已提交
621
        if in_dygraph_mode():
L
lujun 已提交
622
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
623 624 625 626 627 628 629
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
630

F
update  
fengjiayi 已提交
631 632
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
633
        protostr = self.desc.serialize_to_string()
634
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
635 636 637 638
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
639 640
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
641
        return res_str
642 643 644

    __repr__ = __str__

645
    def set_desc(self, input):
646 647 648 649 650 651 652 653 654
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
655 656
        self.desc = input

657
    @property
658
    def stop_gradient(self):
L
lujun 已提交
659
        if in_dygraph_mode():
M
minqiyang 已提交
660 661
            return self._ivar.stop_gradient
        else:
662
            return self._stop_gradient
663

664 665
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
666
        if in_dygraph_mode():
M
minqiyang 已提交
667
            self._ivar.stop_gradient = s
668
        else:
669
            self._stop_gradient = s
670

671 672
    @property
    def persistable(self):
L
lujun 已提交
673
        if in_dygraph_mode():
674 675 676
            return self._ivar.persistable
        else:
            return self.desc.persistable()
677

Y
Yu Yang 已提交
678 679
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
680
        if in_dygraph_mode():
681 682 683
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
684

Y
Yu Yang 已提交
685 686
    @property
    def name(self):
L
lujun 已提交
687
        if in_dygraph_mode():
688 689 690
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
691

T
typhoonzero 已提交
692 693
    @name.setter
    def name(self, new_name):
L
lujun 已提交
694
        if in_dygraph_mode():
695 696 697
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
698

Y
Yu Yang 已提交
699 700 701
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
702
        if in_dygraph_mode():
703 704 705
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
706 707

    @property
F
fengjiayi 已提交
708
    def dtype(self):
L
lujun 已提交
709
        if in_dygraph_mode():
710 711 712
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
713 714 715

    @property
    def lod_level(self):
L
lujun 已提交
716
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
717 718
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
719
        return self.desc.lod_level()
Y
Yu Yang 已提交
720

Y
Yu Yang 已提交
721 722
    @property
    def type(self):
L
lujun 已提交
723
        if in_dygraph_mode():
J
Jiabin Yang 已提交
724
            return self._ivar.type
725 726
        else:
            return self.desc.type()
Y
Yu Yang 已提交
727

W
Wu Yi 已提交
728
    def _set_error_clip(self, error_clip):
729 730 731 732 733 734 735 736 737
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
738 739
        self.error_clip = error_clip

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
827
    def _cloneVar(self, copy=False):
828 829
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
830 831
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
832 833 834 835
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
836
        new_var = self._cloneVar()
837 838 839 840 841 842 843 844 845 846
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
847
        new_var = self._cloneVar()
848 849 850 851 852 853 854 855 856 857
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
858
                return self._cloneVar(True)
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
877
                return self._cloneVar(True)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
930
            else:
H
Hongyu Liu 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
974

Y
Yu Yang 已提交
975

F
fengjiayi 已提交
976 977 978
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
979

980 981
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
982 983 984 985
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
986
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
987 988 989 990 991
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
992 993 994 995
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
996 997 998 999 1000 1001 1002 1003 1004
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1005
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1006 1007 1008 1009 1010 1011
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1012 1013 1014 1015 1016 1017 1018 1019
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1020 1021
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1022 1023
        return self.op_proto_map[type]

1024 1025 1026 1027
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1028
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1029 1030
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1031 1032
        }

F
fengjiayi 已提交
1033

X
Xin Pan 已提交
1034
class Operator(object):
1035
    """
1036 1037 1038 1039 1040 1041 1042
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1043
        type(str): The type of operator. Default None.
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1064
        Block.append_op or Block._prepend_op instead.
1065 1066 1067 1068

    Examples:
        .. code-block:: python

1069
            import paddle.fluid as fluid
1070 1071 1072 1073 1074 1075
            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1076
    """
1077
    OP_WITHOUT_KERNEL_SET = {
1078 1079
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1080 1081
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1082
        'c_sync_comm_stream'
1083
    }
1084

Y
Yu Yang 已提交
1085 1086
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1087
                 desc,
Y
Yu Yang 已提交
1088 1089 1090
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1091
                 attrs=None):
L
lujun 已提交
1092
        if in_dygraph_mode():
1093 1094
            if type is None:
                raise ValueError(
1095
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1096
            self._type = type
M
minqiyang 已提交
1097
            self.attrs = attrs if attrs else {}
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1112
                )] = self.block.program._op_role
1113 1114 1115

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1116 1117
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1118 1119 1120 1121 1122 1123 1124 1125

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1126
                    "`type` to initialized an Operator can not be None.")
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1158
                        for index, arg in enumerate(in_args):
1159 1160 1161 1162
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1163
                            elif isinstance(arg, Variable):
1164
                                in_arg_names.append(cpt.to_text(arg.name))
1165 1166 1167 1168
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1195
                        if not in_dygraph_mode():
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1215
    def _has_kernel(self, op_type):
1216 1217
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1218
    def to_string(self, throw_on_error):
1219
        """
1220 1221
        Get debug string.

1222
        Args:
1223 1224
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1225

1226 1227
        Returns:
            str: The debug string.
1228 1229

        """
1230
        protostr = self.desc.serialize_to_string()
1231
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1232 1233 1234 1235
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1236 1237 1238

    __repr__ = __str__

F
fengjiayi 已提交
1239 1240
    @property
    def type(self):
L
lujun 已提交
1241
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1242
            return self._type
1243 1244
        else:
            return self.desc.type()
F
fengjiayi 已提交
1245 1246

    def input(self, name):
1247
        """
1248
        Get the input arguments according to the input parameter name.
1249

1250 1251
        Args:
            name(str): The input parameter name.
1252

1253 1254 1255
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1256
        """
F
fengjiayi 已提交
1257 1258
        return self.desc.input(name)

W
Wu Yi 已提交
1259
    def _rename_input(self, old_name, new_name):
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1270
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1271

W
Wu Yi 已提交
1272
    def _rename_output(self, old_name, new_name):
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1283
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1284

F
fengjiayi 已提交
1285 1286 1287 1288
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1289 1290 1291 1292 1293 1294 1295 1296
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1297
    def output(self, name):
1298
        """
1299
        Get output arguments by the output parameter name.
1300

1301 1302
        Args:
            name(str): The output parameter name.
1303

1304 1305 1306
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1307
        """
F
fengjiayi 已提交
1308 1309 1310 1311 1312 1313
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1314 1315 1316 1317 1318 1319 1320 1321
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1322
    def has_attr(self, name):
1323
        """
1324 1325
        Whether this Operator has the attribute with name or not.

1326
        Args:
1327
            name(str): the attribute name.
1328

1329 1330
        Returns:
            bool: True if has this attribute.
1331 1332

        """
F
fengjiayi 已提交
1333 1334 1335
        return self.desc.has_attr(name)

    def attr_type(self, name):
1336
        """
1337
        Get the type of attribute by attribute's name.
1338

1339 1340
        Args:
            name(str): the attribute name.
1341

1342 1343
        Returns:
            core.AttrType: the attribute type.
1344
        """
F
fengjiayi 已提交
1345 1346
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1347
    def _set_attr(self, name, val):
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1358 1359
        self._update_desc_attr(name, val)

1360 1361 1362
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1374 1375
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1376 1377
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1378
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1379 1380 1381 1382
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1383
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1384

F
fengjiayi 已提交
1385 1386 1387 1388 1389
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1390
        """
1391 1392
        Get the attribute by name.

1393
        Args:
1394
            name(str): the attribute name.
1395

1396 1397
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1398 1399
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1400
        return self.desc.attr(name)
Y
Yu Yang 已提交
1401

W
Wu Yi 已提交
1402
    def _block_attr_id(self, name):
1403
        """
G
gongweibao 已提交
1404
        Get the block attribute's id by name.
1405

1406 1407
        Args:
            name(str): the attribute name.
1408

1409 1410
        Returns:
            int: the block index.
1411
        """
W
Wu Yi 已提交
1412
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1413

W
Wu Yi 已提交
1414
    def _block_attr(self, name):
G
gongweibao 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1425
        id = self._block_attr_id(name)
G
gongweibao 已提交
1426 1427 1428
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1429
    def _blocks_attr(self, name):
G
gongweibao 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1440
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1441 1442 1443 1444 1445
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1446
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1457
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1458

J
JiayiFeng 已提交
1459
    def all_attrs(self):
F
fengjiayi 已提交
1460
        """
1461 1462 1463
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1464
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1465 1466 1467 1468
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1469 1470
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1471
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1472 1473 1474
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1475
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1476 1477 1478 1479
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1480 1481
        return attr_map

Y
Yu Yang 已提交
1482

Y
Yu Yang 已提交
1483
class Block(object):
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1498
        use `Program._create_block()` to create a block.
1499 1500 1501 1502

    Examples:
        .. code-block:: python

1503 1504 1505
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1506 1507 1508 1509 1510 1511 1512 1513 1514
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1515
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1516
        self.desc = program.desc.block(idx)
1517
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1518
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1519
        self.program = program
1520
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1521

1522
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1523 1524
        return self.to_string(True)

F
fengjiayi 已提交
1525 1526
    def to_string(self, throw_on_error, with_details=False):
        """
1527 1528
        Get debug string.

F
fengjiayi 已提交
1529 1530
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1531
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1532
            with_details(bool): more details about variables and parameters
1533 1534
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1535

1536 1537
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1538 1539 1540 1541
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1542
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1543 1544
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1545
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1546
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1547
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1548
            for op in self.ops:
F
fengjiayi 已提交
1549 1550
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1551 1552 1553
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1554 1555
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1556 1557
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1558 1559 1560

    __repr__ = __str__

Y
Yu Yang 已提交
1561 1562
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1563
        return self.desc.parent
Y
Yu Yang 已提交
1564

Y
Yu Yang 已提交
1565 1566 1567 1568
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1569
    def _set_forward_block_idx(self, idx):
1570 1571 1572 1573 1574 1575 1576 1577 1578
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1579
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1580

Y
Yu Yang 已提交
1581 1582
    @property
    def idx(self):
Y
Yu Yang 已提交
1583
        return self.desc.id
Y
Yu Yang 已提交
1584

Q
Qiao Longfei 已提交
1585
    def var(self, name):
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1599
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1600 1601 1602
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1603 1604
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1605
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1606
        return v
Q
Qiao Longfei 已提交
1607

X
Xin Pan 已提交
1608
    def _find_var_recursive(self, name):
1609 1610 1611 1612 1613 1614 1615
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1616
            Variable: the Variable with the giving name. Or None if not found.
1617
        """
Y
Yu Yang 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1642
        return None
Y
Yu Yang 已提交
1643

X
Xin Pan 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1663

Q
Qiao Longfei 已提交
1664
    def all_parameters(self):
1665
        return list(self.iter_parameters())
1666

1667
    def iter_parameters(self):
M
minqiyang 已提交
1668
        return (item[1] for item in six.iteritems(self.vars)
1669
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1670

Y
Yu Yang 已提交
1671
    def create_var(self, *args, **kwargs):
1672
        var = Variable(block=self, *args, **kwargs)
1673 1674
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1675
        return var
Y
Yu Yang 已提交
1676

Q
Qiao Longfei 已提交
1677 1678 1679
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1680
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1681 1682
        """
        Rename variable in vars and ops' inputs and outputs
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1695
        """
M
minqiyang 已提交
1696 1697
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1698

T
typhoonzero 已提交
1699
        if not self.has_var(name):
1700
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1701 1702
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1703
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1704 1705 1706 1707 1708 1709 1710
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1711
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1712 1713 1714 1715
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1716
        orig_var_type = v.type
M
minqiyang 已提交
1717
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1718
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1719
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1720
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1721 1722 1723 1724
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1725
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1726 1727 1728 1729 1730 1731 1732
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1733
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1734 1735
            var = Variable(
                self,
T
typhoonzero 已提交
1736
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1737 1738 1739 1740
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1741
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1742 1743 1744
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1745
        self._sync_with_cpp()
1746
        return var
T
typhoonzero 已提交
1747

W
Wu Yi 已提交
1748 1749
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1750
        self.desc._remove_var(cpt.to_bytes(name))
1751 1752
        del self.vars[name]

Y
Yu Yang 已提交
1753 1754
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1755
        param = Parameter(global_block, *args, **kwargs)
1756
        if 'initializer' in kwargs:
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1777
        return param
Y
Yu Yang 已提交
1778

Y
Yu Yang 已提交
1779
    def append_op(self, *args, **kwargs):
1780 1781 1782 1783 1784 1785
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1786
        if in_dygraph_mode():
1787 1788 1789
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1790 1791 1792 1793 1794
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1795

J
Jiabin Yang 已提交
1796 1797
            type = kwargs.get("type", None)

1798 1799 1800
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
1801
                type=type,
M
minqiyang 已提交
1802 1803
                inputs=None,
                outputs=None,
1804
                attrs=attrs)
1805

M
minqiyang 已提交
1806 1807 1808
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1809
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
1810 1811

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
1812
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
1813 1814
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
1815
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1816
        else:
1817 1818 1819 1820 1821 1822 1823 1824 1825
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1826
            self.ops.append(op)
M
minqiyang 已提交
1827

1828 1829
        return op

W
Wu Yi 已提交
1830
    def _insert_op(self, index, *args, **kwargs):
1831 1832 1833 1834 1835 1836 1837 1838 1839
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1840 1841
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1842 1843 1844 1845
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1846
    def _remove_op(self, index):
1847 1848 1849 1850 1851 1852 1853 1854 1855
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1856 1857
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1858 1859
        del self.ops[index]

W
Wu Yi 已提交
1860
    def _slice_ops(self, start, end):
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1871
        return self.ops[start:end]
Y
Yancey1989 已提交
1872

W
Wu Yi 已提交
1873
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1874
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1875 1876
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
1877
            op = Operator(
J
Jiabin Yang 已提交
1878
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
1879

J
Jiabin Yang 已提交
1880
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
1881
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
1882 1883
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
1884
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1885
        else:
1886 1887 1888 1889 1890 1891 1892 1893
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1894
            self.ops.insert(0, op)
1895

Y
Yu Yang 已提交
1896 1897
        return op

W
Wu Yi 已提交
1898
    def _sync_with_cpp(self):
1899
        """
1900 1901
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1902
        """
Q
Qiao Longfei 已提交
1903 1904 1905 1906 1907
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1908
        # sync variables removed from c++ end
1909
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1910
            if not self.desc.find_var(cpt.to_bytes(var)):
1911 1912
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1913
        # sync operators from cpp
1914 1915 1916 1917
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1934 1935 1936 1937 1938

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1939
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1940 1941 1942 1943 1944 1945 1946

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1960 1961 1962 1963
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1964
    def _copy_param_info_from(self, other):
1965
        """
1966 1967
        Copy the information of parameters from the other block.

1968
        Args:
1969 1970 1971 1972 1973
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1974 1975 1976 1977 1978

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1979 1980
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1981
        for p in other.iter_parameters():
1982 1983 1984
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1985
                raise ValueError("_copy_param_info_from should be invoked with "
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1998
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1999
                error_clip=p.error_clip,
2000 2001 2002
                name=v.name)
            self.vars[new_p.name] = new_p

2003
    def _clone_variable(self, var, force_persistable=True):
2004 2005
        """
        Clone a variable into current block.
2006

2007 2008
        Args:
            var: the variable to be cloned.
2009 2010 2011
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2012 2013

        Returns:
2014
            Variable: the new  variable cloned from 'var' in current block.
2015 2016
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2017 2018 2019 2020 2021
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2022 2023
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2024
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2025 2026 2027 2028 2029 2030
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2031
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
2032
                is_data=var.is_data)
T
update  
typhoonzero 已提交
2033 2034 2035 2036 2037 2038 2039
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2040
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
2041
                is_data=var.is_data)
T
update  
typhoonzero 已提交
2042
        return ret_var
2043

Y
Yu Yang 已提交
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2140
    def remove_input_by_id(self, node_id):
2141 2142 2143 2144 2145 2146
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2147
        self.node.remove_input(node_id)
2148

2149
    def remove_input(self, node):
2150 2151 2152 2153
        """
        Remove a node from inputs.

        Args:
2154
            node(IrNode): the node being removed.
2155
        """
2156
        self.node.remove_input(node.node)
2157

2158
    def append_input(self, node):
2159 2160 2161 2162
        """
        Append a node in inputs.

        Args:
2163
            node(IrNode): the node being appended.
2164
        """
2165
        self.node.append_input(node.node)
2166 2167 2168 2169 2170 2171 2172 2173

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2174
    def remove_output_by_id(self, node_id):
2175 2176 2177 2178 2179 2180
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2181
        self.node.remove_output(node_id)
2182

2183
    def remove_output(self, node):
2184 2185 2186 2187
        """
        Remove a node from outputs.

        Args:
2188
            node(IrNode): the node being removed.
2189
        """
2190
        self.node.remove_output(node.node)
2191

2192
    def append_output(self, node):
2193 2194 2195 2196
        """
        Append a node in outputs.

        Args:
2197
            node(IrNode): the node being appended.
2198
        """
2199
        self.node.append_output(node.node)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2454 2455
class IrGraph(object):
    """
2456
    Python IrGraph. Beneath it is a core.Graph, which is used for
2457
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2458 2459
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2460 2461 2462 2463
    """

    def __init__(self, graph, for_test=False):
        """
2464 2465
        Construct an IrGraph using core.Graph.

2466 2467 2468 2469 2470 2471 2472 2473 2474
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2475 2476 2477 2478
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2479 2480 2481
        Warns:
            The method only clones the graph structure, not its attributes.

2482 2483 2484
        Returns:
            IrGraph: A new and duplicated graph.
        """
2485
        g = self.graph.clone()
2486 2487
        return IrGraph(g, self._for_test)

2488
    def is_test(self):
2489 2490 2491
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2492 2493
        return self._for_test

W
WangZhen 已提交
2494
    def all_nodes(self):
2495 2496 2497
        """
        Return all nodes included in the graph as a set.
        """
2498
        return {IrNode(node) for node in self.graph.nodes()}
2499

2500
    def all_var_nodes(self):
2501 2502 2503
        """
        Return all variable nodes included in the graph as a set.
        """
2504
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2505

2506
    def all_persistable_nodes(self):
2507 2508 2509
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2510 2511 2512 2513 2514
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2515
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2516

2517
    def all_op_nodes(self):
2518 2519 2520
        """
        Return all operator nodes included in the graph as a set.
        """
2521
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2522

2523
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2535
            IrVarNode: the created persistable variable node.
2536
        """
2537 2538 2539 2540 2541
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2542
        return IrVarNode(self.graph.create_var_node(var_desc))
2543 2544

    def create_var_node(self, name, var_type, shape, var_dtype):
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2556
            IrVarNode: the created variable node.
2557 2558
        """

2559 2560 2561 2562
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2563
        return IrVarNode(self.graph.create_var_node(var_desc))
2564 2565

    def create_var_node_from_desc(self, var_desc):
2566 2567 2568 2569 2570 2571 2572 2573
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2574
            IrVarNode: the created variable node.
2575
        """
2576
        return IrVarNode(self.graph.create_var_node(var_desc))
2577 2578

    def create_op_node(self, op_type, attrs, inputs, outputs):
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2589
            IrOpNode: the created operator node.
2590
        """
2591 2592
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2593
        for attr, value in six.iteritems(attrs):
2594
            self._update_desc_attr(op_desc, attr, value)
2595
        for input_name, var_nodes in six.iteritems(inputs):
2596 2597 2598 2599
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2600
        for output_name, var_nodes in six.iteritems(outputs):
2601 2602 2603 2604
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2605
        return IrOpNode(self.graph.create_op_node(op_desc))
2606 2607

    def create_op_node_from_desc(self, op_desc):
2608 2609 2610 2611 2612 2613 2614
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2615
            IrOpNode: the created operator node.
2616
        """
2617
        return IrOpNode(self.graph.create_op_node(op_desc))
2618 2619

    def update_input_link(self, old_input_node, new_input_node, op_node):
2620 2621 2622 2623
        """
        Update the input's link of a operator node.

        Args:
2624 2625 2626
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2627
        """
2628 2629
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2630
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2631 2632 2633 2634
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2635
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2636 2637

    def link_to(self, node_in, node_out):
2638 2639 2640 2641
        """
        Connect two nodes.

        Args:
2642 2643
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2644
        """
2645
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2646
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2647 2648
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2649 2650

    def safe_remove_nodes(self, remove_nodes):
2651 2652 2653 2654 2655 2656 2657
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2658
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2659 2660 2661 2662
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2663 2664
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2665

Z
Zhen Wang 已提交
2666 2667 2668 2669 2670 2671 2672 2673
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2674
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2675 2676 2677 2678
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2679
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2680 2681 2682
                        ]
                    else:
                        var_nodes[each_var_name].append(
2683 2684
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2685 2686
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2687
    def has_circle(self):
2688 2689 2690 2691 2692 2693
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2694 2695 2696
        return core.has_circle(self.graph)

    def graph_num(self):
2697 2698 2699 2700 2701 2702
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2703 2704 2705
        return core.graph_num(self.graph)

    def topology_sort(self):
2706 2707 2708 2709 2710 2711
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2712
            list(IrNode): nodes in topology order.
2713
        """
2714
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2715
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2716 2717

    def build_adjacency_list(self):
2718 2719 2720 2721
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2722
            dict{IrNode: set(IrNode)}: the adjacency list.
2723
        """
2724 2725 2726 2727 2728
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2729

2730 2731 2732 2733 2734 2735 2736 2737
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2738
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2739 2740 2741 2742 2743
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2744 2745 2746 2747 2748 2749 2750 2751 2752
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2753
        remove_ctr_vars = set()
2754
        if remove_ctr_var:
2755
            for node in self.all_var_nodes():
2756 2757 2758
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2759 2760
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2761 2762
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2763 2764 2765 2766 2767 2768
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2769 2770 2771 2772
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
2773 2774
        if not os.path.exists(save_path):
            os.makedirs(save_path)
2775 2776 2777 2778 2779 2780 2781
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2782 2783 2784
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2785
        WARN: When the graph includes backward operator nodes, the
2786 2787 2788 2789 2790 2791
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2792
        convert_pass = core.get_pass('graph_to_program_pass')
2793 2794
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2795 2796 2797 2798
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2826
class Program(object):
D
dzhwinter 已提交
2827 2828 2829 2830 2831
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
J
Jiabin Yang 已提交
2832
    it will contain nested block.
D
dzhwinter 已提交
2833 2834
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
2844 2845 2846
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2847
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2848 2849

    Returns:
Y
yuyang18 已提交
2850
        A empty program.
D
dzhwinter 已提交
2851 2852

    Examples:
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2866 2867 2868

    """

2869 2870
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2871 2872
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2873
        self._seed = 0
Y
yuyang18 已提交
2874
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2875
        self.__op_role_var = []
T
tangwei12 已提交
2876

2877 2878
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2879
        self._is_distributed = False
2880
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2881
        self._is_chief = False
2882 2883 2884
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2885
        self._endpoints = []
2886 2887 2888
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2889
        self._trainers_endpoints = []
2890
        # the distributed lookup table names
T
tangwei12 已提交
2891
        self._distributed_lookup_table = None
2892 2893 2894

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2895 2896
        self._use_lamb = False

2897 2898 2899
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
2900

2901 2902 2903
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2904
        self._program_config = None
2905

H
hutuxian 已提交
2906 2907 2908
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2909 2910 2911
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
2912
    @property
2913
    def _op_role(self):
Y
yuyang18 已提交
2914 2915 2916 2917 2918 2919 2920 2921
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2922
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2923 2924 2925 2926
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2927 2928
        return self._current_role

2929 2930
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2931 2932 2933
        self._current_role = role

    @property
2934
    def _op_role_var(self):
Y
yuyang18 已提交
2935
        """
2936
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2937

2938
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2939 2940 2941

        Notes: This is a very low-level API. Users should not use it directly.
        """
2942
        return self.__op_role_var
Y
yuyang18 已提交
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2953
    @signature_safe_contextmanager
W
Wu Yi 已提交
2954
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2955 2956 2957 2958 2959 2960 2961
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2962
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2963 2964 2965

        Examples:

2966
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
2967
            >>> p, g = backward(...)
W
Wu Yi 已提交
2968
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2969 2970
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2971
        tmp_role = self._current_role
2972
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2973

Y
yuyang18 已提交
2974 2975
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2976
        self.__op_role_var = [
2977 2978 2979
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2980
        yield
2981
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2982
        self._current_role = tmp_role
Y
Yu Yang 已提交
2983

S
rename  
sneaxiy 已提交
2984
    @signature_safe_contextmanager
X
Xin Pan 已提交
2985
    def _lr_schedule_guard(self, is_with_opt=False):
2986 2987 2988 2989 2990 2991 2992
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2993 2994 2995 2996
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2997 2998 2999

        Examples:

3000
            >>> import paddle.fluid as fluid
3001 3002 3003 3004
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3005 3006

        tmp_role = self._current_role
3007
        tmp_var = self.__op_role_var
3008

3009 3010
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3011 3012
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3013
        # TODO(typhoonzero): how to set target learning rate var
3014
        self.__op_role_var = []
3015
        yield
3016
        self.__op_role_var = tmp_var
3017
        self._current_role = tmp_role
3018

3019
    def __str__(self):
Y
yuyang18 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3029 3030
        return self.to_string(True)

F
fengjiayi 已提交
3031 3032 3033
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3034

F
fengjiayi 已提交
3035
        Args:
Y
yuyang18 已提交
3036 3037
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
3038

Y
yuyang18 已提交
3039 3040 3041 3042
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3043 3044
        Returns:
            str : The debug string.
Y
yuyang18 已提交
3045 3046 3047 3048

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3068 3069
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3070 3071
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3072

W
Wu Yi 已提交
3073
    def _get_desc(self):
Y
yuyang18 已提交
3074 3075 3076 3077 3078 3079 3080
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3081 3082
        return self.desc

X
version  
Xin Pan 已提交
3083 3084 3085
    def _version(self):
        return self.desc._version()

3086
    def clone(self, for_test=False):
Y
yuyang18 已提交
3087 3088 3089
        """
        Create a new, duplicated program.

3090

Y
yuyang18 已提交
3091 3092 3093 3094
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3095

Y
yuyang18 已提交
3096
        * Set for_test to False when we want to clone the program for training.
3097
        * Set for_test to True when we want to clone the program for testing.
3098 3099 3100
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3101

3102 3103
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
3104 3105
        2. We recommend you to use :code:`clone(for_test=True)` before backward
           and optimization. E.g.
L
Luo Tao 已提交
3106

3107 3108 3109 3110 3111
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3112 3113

        Args:
Y
yuyang18 已提交
3114 3115
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3116

D
dzhwinter 已提交
3117
        Returns:
Y
yuyang18 已提交
3118 3119 3120 3121
            Program: The new, duplicated Program object.

        Examples:

3122 3123 3124 3125 3126 3127
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3165 3166 3167

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3235 3236
        """
        if for_test:
3237
            if self._appending_grad_times > 0:
3238 3239 3240 3241 3242 3243 3244
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3245 3246 3247
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3248
        else:
3249
            p = Program()
G
gongweibao 已提交
3250 3251
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3252
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3253 3254 3255
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3256 3257

            p._current_role = self._current_role
3258
            p.__op_role_var = self.__op_role_var
3259
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3260

W
Wu Yi 已提交
3261
            p._sync_with_cpp()
3262

W
Wu Yi 已提交
3263
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3264
        p._copy_data_info_from(self)
3265
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3266
        return p
3267

3268
    def _prune(self, feeded_var_names, targets):
Y
yuyang18 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3284 3285
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3286 3287
        if not isinstance(targets, list):
            targets = [targets]
3288 3289 3290 3291 3292 3293

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3294 3295 3296 3297
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3298 3299
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3300
                    # and we need to find the current op that generate this
3301 3302 3303 3304 3305 3306 3307 3308
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3309
                    t = t.op
3310 3311 3312 3313
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3314
                else:
3315 3316
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3317 3318 3319

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3320
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3321 3322 3323
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3324
        res._sync_with_cpp()
3325 3326
        return res

X
Xin Pan 已提交
3327
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3328
        """
F
fengjiayi 已提交
3329 3330 3331 3332 3333
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3334
        3. change the :code:`is_test`
Y
yuyang18 已提交
3335 3336 3337
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3338
        Args:
X
Xin Pan 已提交
3339 3340
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3341

Y
yuyang18 已提交
3342 3343 3344 3345 3346 3347
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3348
        res = Program()
3349
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3350 3351 3352 3353

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3354
        if prune_read_op:
3355 3356 3357 3358 3359 3360 3361 3362 3363
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3364
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3365 3366

        # change all `is_test` attributes to True
M
minqiyang 已提交
3367
        for i in six.moves.range(res.desc.num_blocks()):
3368
            block = res.desc.block(i)
M
minqiyang 已提交
3369
            for j in six.moves.range(block.op_size()):
3370 3371
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3372
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3373 3374 3375
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3376
        res._sync_with_cpp()
3377 3378
        return res

3379 3380
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3381 3382 3383 3384 3385 3386 3387
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3388
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3389 3390 3391 3392

        Returns:
            Program: A deserialized program desc.
        """
3393 3394
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3395
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3396
        p._sync_with_cpp()
3397
        return p
Y
Yu Yang 已提交
3398

3399
    @staticmethod
3400
    def _construct_from_desc(desc):
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3416 3417
    @property
    def random_seed(self):
Y
yuyang18 已提交
3418 3419 3420 3421 3422
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3434
        """
D
dzhwinter 已提交
3435 3436
        return self._seed

Q
qiaolongfei 已提交
3437 3438
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3439 3440
        """
        The number of blocks in this program.
3441 3442 3443 3444 3445 3446 3447 3448 3449

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3450
        """
Q
qiaolongfei 已提交
3451 3452
        return self.desc.num_blocks()

D
dzhwinter 已提交
3453 3454 3455 3456 3457 3458
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3459
    def __repr__(self):
3460
        return self.__str__()
3461

Y
Yu Yang 已提交
3462
    def global_block(self):
Y
yuyang18 已提交
3463 3464
        """
        Get the first block of this program.
3465 3466 3467 3468 3469 3470 3471 3472 3473

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3474
        """
Y
Yu Yang 已提交
3475 3476
        return self.blocks[0]

Q
Qiao Longfei 已提交
3477
    def block(self, index):
Y
yuyang18 已提交
3478 3479 3480 3481 3482 3483 3484
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3485 3486 3487 3488 3489 3490 3491 3492 3493

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3494
        """
Q
Qiao Longfei 已提交
3495 3496
        return self.blocks[index]

Y
Yu Yang 已提交
3497
    def current_block(self):
Y
yuyang18 已提交
3498 3499 3500
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3501 3502 3503 3504 3505 3506 3507 3508 3509

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3510
        """
Y
Yu Yang 已提交
3511 3512
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3513
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3524
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3525 3526 3527
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3528 3529 3530 3531
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3532
    def _rollback(self):
Y
yuyang18 已提交
3533 3534 3535 3536 3537
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3538 3539
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3540
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3551 3552 3553
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3554
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3555

W
Wu Yi 已提交
3556
    def _copy_param_info_from(self, other):
3557
        """
3558
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3559

Y
yuyang18 已提交
3560 3561 3562
        Notes: This is a very low level API. Users should not invoke it
        directly.

3563 3564 3565 3566 3567 3568 3569
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3570
            raise TypeError("_copy_param_info_from should be invoked with "
3571 3572 3573
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3574
            raise ValueError("_copy_param_info_from should be invoked with two "
3575
                             "program, with represent the same topology")
W
Wu Yi 已提交
3576
        self.global_block()._copy_param_info_from(other.global_block())
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3593
        self._parameters_on_pservers = other._parameters_on_pservers
3594
        self._endpoints = other._endpoints
3595
        self._ps_endpoint = other._ps_endpoint
3596 3597
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3598
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3599 3600
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3601

Y
yuyang18 已提交
3602 3603 3604
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3605 3606 3607 3608 3609 3610 3611
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3612
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3613 3614 3615
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3616
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3617
                             "program, with represent the same topology")
3618
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3619 3620 3621
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3622
    def list_vars(self):
Y
yuyang18 已提交
3623 3624 3625 3626 3627
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3639
        """
3640
        for each_block in self.blocks:
3641
            for each_var in list(each_block.vars.values()):
3642 3643
                yield each_var

Y
Yu Yang 已提交
3644

Y
Yu Yang 已提交
3645
class Parameter(Variable):
3646
    """
3647
    Parameter is derived from Variable. A parameter is a persistable
3648
    Variable, and will be updated by optimizers after each iteration.
3649
    The training of a neural network is essentially the updating of
3650 3651
    its parameters.

3652
    Relative to a general Variable, a Parameter has several its own
3653 3654
    member variables:

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3667 3668
    """

Y
Yu Yang 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3679 3680 3681

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3682 3683 3684 3685
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3686 3687
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3688
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3689

W
wanghaoshuang 已提交
3690
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3691

3692 3693
        self.is_distributed = False

F
fengjiayi 已提交
3694 3695 3696
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3697 3698 3699
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3700

F
update  
fengjiayi 已提交
3701 3702 3703 3704 3705 3706 3707 3708
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3709 3710 3711 3712 3713 3714 3715 3716 3717
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3718 3719 3720 3721 3722 3723
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3724
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3725
            for attr_name in additional_attr:
3726 3727
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3728 3729
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3730 3731 3732 3733
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3734

Y
Yu Yang 已提交
3735
# program is a global instance.
Y
Yu Yang 已提交
3736 3737
_main_program_ = Program()
_startup_program_ = Program()
3738

3739

3740
def default_startup_program():
Y
Yu Yang 已提交
3741
    """
Y
yuyang18 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3751

Y
Yu Yang 已提交
3752 3753
    Returns:
        Program: startup program
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3769
    """
Y
Yu Yang 已提交
3770
    return _startup_program_
3771

3772

3773
def default_main_program():
Y
Yu Yang 已提交
3774
    """
Y
yuyang18 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3784

Y
Yu Yang 已提交
3785 3786
    Returns:
        Program: main program
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
3815 3816
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
3817
    """
Y
Yu Yang 已提交
3818
    return _main_program_
Y
Yu Yang 已提交
3819 3820 3821 3822 3823


def switch_main_program(program):
    """
    Switch the main program to a new program.
3824

Y
Yu Yang 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3839
    Switch the startup program to a new program
Y
Yu Yang 已提交
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3852
@signature_safe_contextmanager
Y
Yu Yang 已提交
3853 3854
def program_guard(main_program, startup_program=None):
    """
3855 3856
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3857
    variables to the new main programs.
3858

Y
Yu Yang 已提交
3859
    Examples:
3860 3861 3862
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3863

3864 3865 3866 3867 3868
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3869 3870 3871

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3872

Y
Yu Yang 已提交
3873
    Examples:
3874
       .. code-block:: python
Y
yuyang18 已提交
3875

3876 3877 3878 3879 3880 3881
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3882

Y
Yu Yang 已提交
3883
    Args:
3884 3885 3886
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3899 3900


W
Wu Yi 已提交
3901
def _get_var(name, program=None):
X
xuwei06 已提交
3902
    """
Y
yuyang18 已提交
3903
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3904

X
xuwei06 已提交
3905 3906 3907
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3908
        If None, default_global_program() will be used.
X
xuwei06 已提交
3909 3910 3911 3912 3913 3914 3915

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3916
    assert isinstance(program, Program)
X
xuwei06 已提交
3917 3918

    return program.global_block().var(name)
3919 3920


S
rename  
sneaxiy 已提交
3921
@signature_safe_contextmanager
L
lujun 已提交
3922 3923 3924 3925
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3926

3927
    yield
P
Paddle CI 已提交
3928

L
lujun 已提交
3929
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3930 3931


S
rename  
sneaxiy 已提交
3932
@signature_safe_contextmanager
L
lujun 已提交
3933 3934 3935 3936
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3937

3938
    yield
M
minqiyang 已提交
3939

L
lujun 已提交
3940
    _dygraph_current_expected_place_ = tmp_place