Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
08995ac9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08995ac9
编写于
6月 17, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add program
上级
958ab99e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
244 addition
and
34 deletion
+244
-34
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+2
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+240
-30
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+1
-1
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+1
-1
未找到文件。
python/paddle/fluid/clip.py
浏览文件 @
08995ac9
...
...
@@ -215,7 +215,7 @@ def set_gradient_clip(clip, param_list=None, program=None):
def
append_gradient_clip_ops
(
param_grad
):
context
=
dict
()
for
p
,
g
in
param_grad
:
with
p
.
block
.
program
.
optimiz
ed
_guard
(
p
):
with
p
.
block
.
program
.
optimiz
ation
_guard
(
p
):
clip_attr
=
getattr
(
p
,
'gradient_clip_attr'
,
NullGradientClipAttr
())
if
clip_attr
is
None
:
clip_attr
=
NullGradientClipAttr
()
...
...
@@ -228,7 +228,7 @@ def append_gradient_clip_ops(param_grad):
res
=
[]
for
p
,
g
in
param_grad
:
with
p
.
block
.
program
.
optimiz
ed
_guard
(
p
):
with
p
.
block
.
program
.
optimiz
ation
_guard
(
p
):
res
.
append
(
clip_attr
.
create_operators
(
param
=
p
,
grad
=
g
))
return
res
...
...
python/paddle/fluid/framework.py
浏览文件 @
08995ac9
...
...
@@ -1045,23 +1045,18 @@ class Program(object):
Notes: we have default_startup_program and default_main_program
by default, a pair of them will shared the parameters.
The default_startup_program only run once to initialize parameters,
default_main_program run in every minibatch and adjust the weights.
Args:
None
default_main_program run in every mini batch and adjust the weights.
Returns:
Python Program
A empty program.
Examples:
.. code-block:: python
main_program = Program()
startup_program = Program()
with fluid.program_guard(main_program=main_program, startup_program=startup_program):
fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
>>> main_program = fluid.Program()
>>> startup_program = fluid.Program()
>>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
>>> fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
>>> fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
>>> fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
"""
...
...
@@ -1075,6 +1070,19 @@ class Program(object):
@
property
def
op_role
(
self
):
"""
The operator role. In a enum {Forward, Backward, Optimize}.
Notes: this is a low level API. It is used only for ParallelExecutor to
duplicate or schedule operator to devices.
For example, the forward operator should be executed on every device.
The backward operator should be executed on every device and the
parameter gradient of backward (use :code:`op_role_var` to get this
variable) operator should be merged to one device. The optimization
operators should be executed on only one device and broadcast the
optimization result, i.e., the new parameter, to every other device.
"""
return
self
.
_current_role
@
op_role
.
setter
...
...
@@ -1083,6 +1091,13 @@ class Program(object):
@
property
def
op_role_var
(
self
):
"""
The auxiliary variables for :code:`op_role` property.
See Also: :code:`Program.op_role`'s documentation for details.
Notes: This is a very low-level API. Users should not use it directly.
"""
return
self
.
_op_role_var
@
op_role_var
.
setter
...
...
@@ -1090,7 +1105,22 @@ class Program(object):
self
.
_op_role_var
=
[
var_name
]
@
contextlib
.
contextmanager
def
optimized_guard
(
self
,
var
):
def
optimization_guard
(
self
,
var
):
"""
A with guard to set :code:`Optimization` :code:`OpRole` and
:code:`OpRoleVar` automatically.
Notes: This is a very low level API. Users should not use it directly.
Args:
var(Variable|str): The variable (name) to be optimized.
Examples:
>>> p, g = backward(...)
>>> with program.optimization_guard(p):
>>> p = p - 0.001 * g
"""
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
self
.
_current_role
=
OpRole
.
Optimize
self
.
_op_role_var
=
[
var
.
name
if
isinstance
(
var
,
Variable
)
else
var
]
...
...
@@ -1099,18 +1129,35 @@ class Program(object):
self
.
_current_role
=
OpRole
.
Forward
def
__str__
(
self
):
"""
Get the protobuf debug string of this Program.
Returns:
(str): The protobuf debug string.
Raises:
ValueError: If any of required fields is not set.
"""
return
self
.
to_string
(
True
)
def
to_string
(
self
,
throw_on_error
,
with_details
=
False
):
"""
To debug string.
Args:
throw_on_error(bool): raise exception when self is not initialized
when throw_on_error is True
with_details(bool): more details about variables and parameters
(e.g. trainable, optimize_attr, ...) will be printed when with_details is True
throw_on_error(bool): raise Value error when any of required fields
is not set.
Returns(str): The debug string.
with_details(bool): True if more details about variables and
parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
to print.
Returns
(str): The debug string.
Raises:
ValueError: If any of required fields is not set and throw_on_error is
True.
"""
assert
isinstance
(
throw_on_error
,
bool
)
and
isinstance
(
with_details
,
...
...
@@ -1126,25 +1173,89 @@ class Program(object):
return
res_str
def
get_desc
(
self
):
"""
Get the C++ side of `ProgramDesc` object pointer. The C++ object is
exposed by :code:`pybind`.
Notes: This is a very low level API. Users should not use this API
directly.
"""
return
self
.
desc
def
clone
(
self
,
for_test
=
False
):
"""Clone the Program object
Args:
for_test(bool): indicate whether clone for test.
"""
Create a new, duplicated program.
Some operators, e.g., :code:`batch_norm`, behave differently between
training and testing. They have an attribute, :code:`is_test`, to
control this behaviour. This method will change the :code:`is_test`
attribute of them to :code:`True` when :code:`for_test=True`.
Set for_test to False when we want to clone the program for training.
Set for_test to True when we want to clone the program for testing.
* Set for_test to False when we want to clone the program for training.
* Set for_test to True when we want to clone the program for testing.
Notes: This API DOES NOT prune any operator. Use
:code:`clone(for_test=True)` before backward and optimization please.
Args:
for_test(bool): Some operators, such as batch_norm and drop_out ops,
behave differently in training and testing. If for_test is True,
the is_test attributes in these operators will be set to True for
testing purposes, otherwise, they remain unchanged.
for_test(bool): True if change the :code:`is_test` attribute of
operators to :code:`True`.
Returns:
Program: The cloned Program object.
Program: The new, duplicated Program object.
Examples:
1. To clone a test program, the sample code is:
>>> import paddle.fluid as fluid
>>> train_program = fluid.Program()
>>> startup_program = fluid.Program()
>>> with fluid.program_guard(train_program, startup_program):
>>> img = fluid.layers.data(name='image', shape=[784])
>>> hidden = fluid.layers.fc(input=img, size=200, act='relu')
>>> hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
>>> loss = fluid.layers.cross_entropy(
>>> input=fluid.layers.fc(hidden, size=10, act='softmax'),
>>> label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
>>>
>>> test_program = train_program.clone(for_test=True)
>>>
>>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
>>> with fluid.program_guard(train_program, startup_program):
>>> sgd.minimize(loss)
2. The :code:`clone` method can be avoid if you create program for
training and program for testing individually.
>>> import paddle.fluid as fluid
>>>
>>> def network(is_test):
>>> img = fluid.layers.data(name='image', shape=[784])
>>> hidden = fluid.layers.fc(input=img, size=200, act='relu')
>>> hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
>>> loss = fluid.layers.cross_entropy(
>>> input=fluid.layers.fc(hidden, size=10, act='softmax'),
>>> label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
>>> return loss
>>>
>>> train_program = fluid.Program()
>>> startup_program = fluid.Program()
>>> test_program = fluid.Program()
>>>
>>> with fluid.program_guard(train_program, startup_program):
>>> with fluid.unique_name.guard():
>>> loss = network(is_test=False)
>>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
>>> sgd.minimize(loss)
>>>
>>> # the test startup program is not used.
>>> with fluid.program_guard(test_program, fluid.Program()):
>>> with fluid.unique_name.guard():
>>> loss = network(is_test=True)
The two code snippets above will generate same programs.
"""
if
for_test
:
p
=
self
.
inference_optimize
()
...
...
@@ -1159,6 +1270,21 @@ class Program(object):
return
p
def
prune
(
self
,
targets
):
"""
Prune operators and variables which are not needed to generate
:code:`targets`.
Notes: This is a very low level API. Users should not use this API
directly. This API is in flux and not stable.
Args:
targets(list|Variable|Operator): A list of variables or operators
need to be pruned
Returns:
Program: A new, pruned program.
"""
if
not
isinstance
(
targets
,
list
):
targets
=
[
targets
]
targets_idx
=
[]
...
...
@@ -1193,6 +1319,17 @@ class Program(object):
return
res
def
inference_optimize
(
self
):
"""
This method will create a new program and change the :code:`is_test`
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
Notes: This API is a very low level API. Use
:code:`Program.clone(for_test=True)` instead.
Returns:
Program: The new program.
"""
# this is an alternative implement before
# core.inference_optimize being fixed.
res
=
Program
()
...
...
@@ -1209,6 +1346,18 @@ class Program(object):
@
staticmethod
def
parse_from_string
(
binary_str
):
"""
Deserialize a program desc from protobuf binary string.
Notes: All information about parameters will be lost after serialization
and deserialization.
Args:
binary_str(str): The binary prootbuf string.
Returns:
Program: A deserialized program desc.
"""
p
=
Program
()
p
.
desc
=
core
.
ProgramDesc
(
binary_str
)
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
xrange
(
p
.
desc
.
num_blocks
())]
...
...
@@ -1217,10 +1366,19 @@ class Program(object):
@
property
def
random_seed
(
self
):
"""
The default random seed for random operators in Program. Zero means get
the random seed from random device.
Notes: It must be set before the operators have been added.
"""
return
self
.
_seed
@
property
def
num_blocks
(
self
):
"""
The number of blocks in this program.
"""
return
self
.
desc
.
num_blocks
()
@
random_seed
.
setter
...
...
@@ -1233,15 +1391,40 @@ class Program(object):
return
str
(
self
)
def
global_block
(
self
):
"""
Get the first block of this program.
"""
return
self
.
blocks
[
0
]
def
block
(
self
,
index
):
"""
Get the :code:`index` block of this program
Args:
index(int): The index of block to get
Returns:
Block: The :code:`index` block
"""
return
self
.
blocks
[
index
]
def
current_block
(
self
):
"""
Get the current block. The :code:`current` block is the block to append
operators.
"""
return
self
.
blocks
[
self
.
current_block_idx
]
def
create_block
(
self
,
parent_idx
=
None
):
"""
Create a new block with the :code:`parent_idx` and change the current block
to new block.
Args:
parent_idx(int): The parent block index.
Returns:
Block: The new block.
"""
new_block_idx
=
len
(
self
.
blocks
)
parent
=
self
.
current_block
()
if
parent_idx
is
None
else
self
.
block
(
parent_idx
)
...
...
@@ -1251,9 +1434,24 @@ class Program(object):
return
self
.
current_block
()
def
rollback
(
self
):
"""
Exit a code block, i.e., roll back to the parent block.
Returns:
None
"""
self
.
current_block_idx
=
self
.
current_block
().
parent_idx
def
sync_with_cpp
(
self
):
"""
Synchronize Python instance to its binding C++ object instance.
If the program is modified in C++ space, this method should be invoked.
Notes: This is a very low level API. Users should not invoke it
directly.
Returns:
None
"""
for
block_idx
in
range
(
len
(
self
.
blocks
),
self
.
desc
.
num_blocks
()):
self
.
blocks
.
append
(
Block
(
self
,
block_idx
))
for
block
in
self
.
blocks
:
...
...
@@ -1263,6 +1461,9 @@ class Program(object):
"""
Copy the information of parameters from other program.
Notes: This is a very low level API. Users should not invoke it
directly.
Args:
other(Program): Other program
...
...
@@ -1282,6 +1483,9 @@ class Program(object):
"""
Copy the information of data variables from other program.
Notes: This is a very low level API. Users should not invoke it
directly.
Args:
other(Program): Other program
...
...
@@ -1300,6 +1504,12 @@ class Program(object):
self
.
global_block
().
var
(
var
.
name
).
is_data
=
True
def
list_vars
(
self
):
"""
Get all variables from this Program. A iterable object is returned.
Returns:
iterable: The generator will yield every variable in this program.
"""
for
each_block
in
self
.
blocks
:
for
each_var
in
each_block
.
vars
.
itervalues
():
yield
each_var
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
08995ac9
...
...
@@ -226,7 +226,7 @@ class Optimizer(object):
optimize_ops
=
[]
for
param_and_grad
in
parameters_and_grads
:
with
param_and_grad
[
0
].
block
.
program
.
optimiz
ed
_guard
(
with
param_and_grad
[
0
].
block
.
program
.
optimiz
ation
_guard
(
param_and_grad
[
0
]):
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
1
]
is
not
None
:
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
08995ac9
...
...
@@ -43,7 +43,7 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
"""
params_and_grads
=
[]
for
param
,
grad
in
parameters_and_grads
:
with
param
.
block
.
program
.
optimiz
ed
_guard
(
param
):
with
param
.
block
.
program
.
optimiz
ation
_guard
(
param
):
# If no gradient then we don't need to do anything
if
grad
is
None
:
params_and_grads
.
append
((
param
,
grad
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录